七年级上册数学期末试卷及答案
七年级上册数学期末试卷(含答案)
七年级上册数学期末试卷(含答案)一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 2.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1B .410 +415x +=1C .410x + +415=1D .410x + +15x =1 3.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( ) A .1个B .2个C .3个D .4个 4.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7 B .﹣1 C .9 D .75.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)7.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .8.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180° 9.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣4 10.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元 11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )A .赚了10元B .赔了10元C .赚了50元D .不赔不赚12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.若523m x y +与2n x y 的和仍为单项式,则n m =__________.16.写出一个比4大的无理数:____________.17.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.18.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.20.若α与β互为补角,且α=50°,则β的度数是_____.21.方程x +5=12(x +3)的解是________. 22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.用度、分、秒表示24.29°=_____.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、解答题25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马.(1)当良马追上驽马时,驽马行了 里(用x 的代数式表示).(2)求x 的值.(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?26.计算(﹣1)2019+36×(11-32)﹣3÷(﹣34) 27.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?28.甲乙两站相距450km ,一列慢车从甲站开出,每小时行驶65km ,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,那么两车行驶多少小时相遇?(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30min ,两车相向而行,慢车行驶多少小时两车相遇?29.甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的12,应调往甲、乙两队各多少人? 30.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.四、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.33.阅读下列材料,并解决有关问题: 我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x 分钟, 由题意得6x -0.5x =180,解之得x =36011. 故选D. 【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.3.D解析:D【解析】【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52 +25 x x a x x a=⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x ax a=⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确④方程组解得25-15x a y a=⎧⎨=-⎩由题意得:x-3a=5把25-15x ay a=⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键4.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.5.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 -,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.6.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.7.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.8.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:3x﹣9﹣3=0,解得:x=4,故选:B.【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.10.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.11.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【分析】根据图和题意可得出答案.【详解】解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.5【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.18.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,,∴AB=1–(–2)=1+2, 则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.19.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】 解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面20.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.21.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.22.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.23.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.24.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、解答题25.(1)(150x+1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.【解析】【分析】(1)利用路程=速度×时间可用含x的代数式表示出结论;(2)利用两马行的路程相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设驽马出发y天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B站时四种情况考虑,根据两马相距450里,即可得出关于y的一元一次方程,解之即可得出结论.【详解】解:(1)∵150×12=1800(里),∴当良马追上驽马时,驽马行了(150x+1800)里.故答案为:(150x+1800).(2)依题意,得:240x=150x+1800,解得:x=20.答:x的值为20.(3)设驽马出发y天后与良马相距450里.①当良马未出发时,150y=450,解得:y=3;②当良马未追上驽马时,150y﹣240(y﹣12)=450,解得:y=27;③当良马追上驽马时,240(y﹣12)﹣150y=450,解得:y=37;④当良马到达B站时,7500﹣150y=450,解得:y=47.答:驽马出发3或27或37或47天后与良马相距450里.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.26.-3【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣1+12﹣18+4=﹣3.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.27.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.28.(1)两车行驶3小时相遇;(2)行驶22.5小时快车追上慢车;(3)慢车行驶163 60小时两车相遇.【解析】【分析】(1)设两车行驶t1小时相遇,根据相遇时两车行驶路程之和为450km建立方程求解;(2)设t2小时快车追上慢车,快车比慢车多行驶450km建立方程求解;(3)设慢车行驶t3小时两车相遇,根据两车行驶路程之和为450km建立方程求解.【详解】解:(1)设两车行驶t1小时相遇,依题意得65t1+85t1=450解得:t1=3因此,那么两车行驶3小时相遇.(2)设t2小时快车追上慢车,依题意得 85t2-65t2=450解得:t2=22.5因此,行驶22.5小时快车追上慢车(3)设慢车行驶t3小时两车相遇,依题意得30分钟=0.5小时85×0.5+85t3+65t3=450解得:t3=163 60因此,慢车行驶16360小时两车相遇. 【点睛】 本题考查了一元一次方程的应用,熟练掌握行程问题中的等量关系是解题的关键.29.应调往甲队25人,乙队5人【解析】【分析】由题意设调往甲队x 人,并根据题意建立一元一次方程与解出一元一次方程即可.【详解】解:设调往甲队x 人,依题意得1(65)40(30)2x x +=+- 解得 25x =∴30255-=(人)答:应调往甲队25人,乙队5人.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤.解决本题的关键是表示出调入后甲乙两队的人数.30.()1(42-8x )元,(28-4x )元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x 元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x )元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x 元,则爱心气球的单价是(14-3x )元,根据题意得 第②束气球的总价格是:x+3(14-3x )=x+42-9x=42-8x (元);第③束气球的总价格是:2x+2(14-3x )=2x+28-6x=28-4x (元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.四、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.33.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值, (2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--, ②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。
七年级上学期数学期末试卷及答案-百度文库
七年级上学期数学期末试卷及答案-百度文库一、选择题1.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.912.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A.87 B.91 C.103 D.1113.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形4.下列四个选项中,不是正方体展开图形的是()A.B.C.D .5.计算22221111 (11223320152015)++++++++的结果为( ) A .1B .20142015C .20152016D .201620156. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -8.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 9.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( )A .2B .4C .6D .810.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9411.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度 B .7度 C .8度 D .9度 12.若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2 C .8 D .﹣8 13.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°14.已知a ,b ,c 为有理数,且0a b c ++=,0abc <,则a b ca b c++的值为( ) A .1B .1-或3-C .1或3-D .1-或315.若m 5=,n 3=,且m n 0+<,则m n -的值是( )A.8-或2-B.8±或2±C.8-或2 D.8或216.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 17.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n,则n=( )A.9 B.11 C.13 D.1518.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( ) A.1985 B.-1985 C.2019 D.-201919.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C .D .20.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强21.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .622.根据等式性质,下列结论正确的是( ) A .如果22a b -=,那么=-a b B .如果22a b -=-,那么=-a b C .如果22a b =-,那么a b =D .如果122a b =,那么a b = 23.使用科学计算器进行计算,其按键顺序如图所示,输出结果应为( )A .14-B . 3.94-C . 1.06-D . 3.7- 24.“比a 的3倍大5的数”用代数式表示为( ) A .35a +B .3(5)a +C .35a -D .3(5)a -25.以下问题,不适合抽样调查的是( ) A .了解全市中小学生的每天的零花钱B .旅客上高铁列车前的安检C .调查某批次汽车的抗撞击能力D .调查某池塘中草鱼的数量26.在料幻电影《银河护卫队》中,星球之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成.如图所示:两个星球之间的路径只有1条,三个星球之间的路径有3条,四个星球之间的路径有6条,…,按此规律,则10个星球之间“空间跳跃”的路径有( ).A .45条B .21条C .42条D .38条27.已知如图,数轴上的A 、B 两点分别表示数a 、b ,则下列说法正确的是( ).A .a b >-B .22a b <C .0ab >D .a b b a -=-28.若0a >,0b <,0a b +>,则a ,b ,a -,b -按照从小到大的顺序用“<”连接起来,正确的是( ) A .a b b a -<<-< B .a b b a >->>- C .b a b a <-<-<D .a b b a -<-<<29.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >030.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论. 【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.2.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.3.C解析:C【解析】【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒, 第2个图形有8根火柴棒, 第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12, 若5+7(n-1)×12=295,没有整数解, 若8+7(n-2)×12=295,解得n=84, 即用295根火柴搭成的图形是第84个图形, 故选:C . 【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.4.A解析:A 【解析】 【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体. 【详解】正方体共有11种表面展开图, B 、C 、D 能围成正方体;A 、不能,折叠后有两个面重合,不能折成正方体. 故选:A . 【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=1111111 12233420152016 -+-+-++-=1 12016 -=2015 2016故选:C.【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.6.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.7.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.8.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.9.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.10.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.11.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.12.B解析:B【解析】【分析】把x=1代入方程3x﹣m=5得出3﹣m=5,求出方程的解即可.【详解】把x=1代入方程3x﹣m=5得:3﹣m=5,解得:m=﹣2,故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m的一元一次方程是解此题的关键.13.B解析:B【解析】【分析】根据钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【详解】解:如图,上午八点半钟时,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴上午八点半钟的时候,时钟的时针和分针所夹的角度是2.5×30°=75°.故选:B .【点睛】本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.14.A解析:A【解析】【分析】先根据有理数的乘法法则推出:要使三个数的乘积为负,a ,b ,c 中应有奇数个负数,进而可将a ,b ,c 的符号分两种情况:1负2正或3负;再根据加法法则:要使三个数的和为0,a ,b ,c 的符号只能为1负2正,然后化简即得.【详解】∵0abc <∴a ,b ,c 中应有奇数个负数∴a ,b ,c 的符号可以为:1负2正或3负∵0a b c ++=∴a ,b ,c 的符号为1负2正令0a <,0b >,0c > ∴a a =-,b b =,c c = ∴a b c a b c ++1111=-++= 故选:A .【点睛】本题考查了绝对值的性质、乘法法则及加法法则,利用加法法则和乘法法则确定数的符号是解题关键.15.A解析:A【分析】根据题意,利用绝对值的代数意义求出m与n的值,即可确定出原式的值.【详解】解:∵|m|=5,|n|=3,且m+n<0,∴m=−5,n=3或m=−5,n=−3,∴m−n=−8或m-n=-2故选A.【点睛】本题考查了有理数的加减法和绝对值的代数意义.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.18.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.19.D解析:D【解析】【分析】做出点A 关于OB 和OC 的对称点A′和A″,连接A′A″,与OB 、OC 分别交与点M ,N ,则沿AM-MN-NA 的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A 点的对称点A',连接A'N 与河流相交于M 点,再连接AM ,则张大伯可沿着AM 走一条直线去河边M 点挑水,然后再沿MN 走一条直线到菜园去,同理,画出回家的路线图如下:故选D .本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.20.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.B解析:B【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.考点:频数(率)分布直方图.22.A解析:A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A正确;B.左边加2,右边加-2,故B错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.解析:B 【解析】【分析】根据如图所示的按键顺序,列出算式3×(-56)-1.22,再计算可得.【详解】根据如图所示的按键顺序,输出结果应为3×(-56)-1.22=-2.5-1.44=-3.94,故选:B.【点睛】本题主要考查计算器-基础知识,解题的关键是掌握分数的按键和平方的按键,并依据其功能列出算式.24.A解析:A【解析】【分析】根据题意可以用代数式表示比a的3倍大5的数,本题得以解决.【详解】解:比a的3倍大5的数”用代数式表示为:3a+5,故选A.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.25.B解析:B【解析】A、了解全市中小学生的每天的零花钱,人数较多,应采用抽样调查,故此选项错误;B、旅客上高铁列车前的安检,意义重大,不能采用抽样调查,故此选项正确;C、调查某批次汽车的抗撞击能力,具有破坏性,应采用抽样调查,故此选项错误;D、调查某池塘中草鱼的数量众多,应采用抽样调查,故此选项错误;故选B.26.A解析:A【解析】【分析】观察图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,…,按此规律,可得10个星球之间“空间跳跃”的路径的条数.【详解】解:由图形可知,两个星球之间,它们的路径只有1条;三个星球之间的路径有2+1=3条,四个星球之间路径有3+2+1=6条,……,按此规律,10个星球之间“空间跳跃”的路径有9+8+7+6+5+4+3+2+1=45条. 故选:A .【点睛】本题是图形类规律探求问题,探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.27.D解析:D【解析】【分析】根据有理数a 、b 在数轴上的位置可得0,0,a b a b <>>,进一步即可根据绝对值的意义、乘方的意义对各选项进行判断.【详解】解:由题意得:0,0,a b a b <>>,所以a b <-,22a b >,0ab <,a b b a -=-;所以选项A 、B 、C 的说法是错误的,选项D 的说法是正确的;故选:D .【点睛】本题考查了数轴、绝对值以及有理数的乘方等知识,属于基础题型,熟练掌握基本知识是解题的关键.28.A解析:A【解析】【分析】由题意可知||||a b >,再根据有理数的大小比较法则比较即可.【详解】解:0a >,0b <,0a b +>,||||a b ∴>,如图,, a b b a ∴-<<-<.故选:A .【点睛】本题考查了有理数的大小比较,有理数的加法和数轴等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.29.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.30.D解析:D【解析】分析:根据数轴上a、b的位置,判断出a、b的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a<﹣2,1<b<2,∴|a|>|b|,a<﹣b,b>a,a<﹣2,故选D.点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.。
七年级数学上册期末测试(含答案)
七年级数学上册期末测试(含答案)时间:100分钟 总分:120分一、选择题(每题3分,共24分)1.已知a 与﹣2021互为倒数,则a 的值为 ( ) A .+2021 B .﹣2021 C .12021-D .12021+【解析】 解:∵()1202112021⎛⎫-⨯-= ⎪⎝⎭, ∴12021-与2021-互为倒数, 则a 的值为12021-.故选:C . 【点睛】本题主要考查倒数的定义,掌握倒数的定义是解题的关键. 2.已知2234m x y x y x y +=,则m 的值为 ( ) A .0 B .1 C .2 D .3 【解析】解:∵2234m x y x y x y +=, ∴m x y 与2x y 是同类项, ∴m =2, 故选: C . 【点睛】本题考查了整式的加减,同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.3.关于x 的方程43x a x +=+的解是1x =,则a 的值是 ( ) A .5 B .6 C .7 D .8 【解析】解:x =1代入方程得:4+3=a +1,a =6, 故选: B . 【点睛】本题考查了方程的解的意义(代入方程满足等式关系)和解一元一次方程,掌握其意义是解题关键.4.下列说法错误的是 ( )A .0既不是正数,也不是负数B .零上6摄氏度可以写成+6℃,也可以写成6℃C .向东走一定用正数表示,向西走一定用负数表示D .若盈利1000元记作+1000元,则-200元表示亏损200元 【解析】∵0既不是正数,也不是负数, ∴A 正确,不符合题意;∵零上6摄氏度可以写成+6℃,也可以写成6℃, ∴B 正确,不符合题意; ∵正方向可以自主确定,∴向东走一定用正数表示,向西走一定用负数表示,是错误的, ∴C 不正确,符合题意;∵盈利1000元记作+1000元,则-200元表示亏损200元, ∴D 正确,不符合题意; 故选:C . 【点睛】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.5.若5x y +=,2310x y -=,则4x y -的值为 ( ).A .15B .5-C .5D .3 【解析】解:因为5x y +=①,2310x y -=②,所以②-①得:4105x y -=-,即45x y -=, 故选:C . 【点睛】本题考查了代数式求值,正确找出所求代数式与两个已知等式之间的联系是解题关键. 6.《九章算术》是中国古代的数学专著,其中载有“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”译文“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么还差3钱,求买羊的人数和羊的价钱.”设羊价是x 钱,则可列方程为 ( )A .45357x x ++= B .45357x x --= C .45375x x -+= D .45375x x --= 【解析】解:设羊是x 钱, 根据题意得:45357x x --=. 故选:B .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.下列哪个图形是正方体的展开图 ( )A .B .C .D .【解析】解:根据正方体展开图的特征,选项A 、C 、D 不是正方体展开图;选项B 是正方体展开图. 故选:B . 【点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.8.已知三条不同的射线OA 、OB 、OC ,有下列条件:①AOC BOC ∠=∠;②2AOB AOC ∠=∠;③AOC COB AOB ∠+∠=∠;④1BOC AOB 2∠=∠其中能确定射线OC 平分AOB ∠的有( ) A .3个 B .2个 C .1个 D .0个 【解析】∵AOC BOC ∠=∠, ∴OC 平分∠AOB , ∴①正确.∵如图,当∠AOC =∠AOD =∠DOB 时,满足∠AOB =2∠AOC ,但OC 不是∠AOB 的平分线, ∴②错误.∵如图,满足∠AOB =∠AOC +∠COB ,但OC不是∠AOB的平分线,∴③错误.∵如图,满足12BOC AOB∠=∠,但OC不是∠AOB的平分线,∴④错误.综上,只有一个符合要求的,故选C.【点睛】本题考查了角的平分线即从同一顶点出发的射线把这个角分成相等的两个角,正确理解角的平分线的定义是解题的关键.二、填空题(每题3分,共24分)9.某地星期一上午的温度是﹣7℃,中午上升了8℃,下午由于冷空气南下,到夜间又下降了10℃,则这天夜间的温度是_____℃.【解析】由题意可列算式为:﹣7+8−10=﹣9(℃),即这天夜间的温度是﹣9℃,故答案为:﹣9.【点睛】本题考查有理数的加减实际应用,根据题意列出式子再计算时解题的关键.10.若a,b互为倒数,则﹣4ab+1的值为______.【解析】解:∵a,b互为倒数,∴ab=1,∴﹣4ab+1=﹣4+1=﹣3,故答案为:﹣3.【点睛】本题主要考查倒数,代数式求值,利用倒数的定义求解ab的值是解题的关键.11.线段AB =3cm ,延长AB 至点C ,使BC =2AB ,则AC =________cm . 【解析】解:∵线段AB =3cm ,延长AB 至点C ,使BC =2AB , ∴BC=6cm ,∴AC=AB+BC=9cm, 故答案为:9. 【点睛】本题考查线段的和差倍分,解题关键是理清线段之间的和差关系. 12.若a 的相反数是﹣3,b 的绝对值是4,则a ﹣b =________. 【解析】解:∵a 的相反数是−3,b 的绝对值是4, ∴a =3,b =4或−4,∴a ﹣b =3-4=-1或a ﹣b =3−(−4)=3+4=7, 故答案为:-1或7. 【点睛】此题考查了相反数,绝对值以及有理数的减法,熟练掌握各自的性质是解本题的关键.13.已知2AOB BOC ∠=∠,若25BOC ∠=︒,则AOC ∠的度数是__________. 【解析】解:分两种情况考虑.当OB 在∠AOC 中时,如图1所示, ∵∠AOB =2∠BOC =2×25°=50°,∴∠AOC =∠AOB +∠BOC =50°+25°=75°; 当OC 在∠AOB 中时,如图2所示, ∵∠AOB =2∠BOC =2×25°=50°,∴∠AOC =∠AOB ﹣∠BOC =50°﹣25°=25°. 故答案为:75°或25°.【点睛】本题考查了角的计算,分∠AOC =∠AOB +∠BOC 和∠AOC =∠AOB ﹣∠BOC 两种情况考虑是解题的关键. 14.关于x 的一元一次方程120222022xx m -=+的解为2019x =-,则关于y 的方程()31202232022yy m --=-+的解为______. 【解析】 ∵120222022xx m -=+的解为2019x =-, ()31202232022yy m --=-+,∴x =3-y , ∴3-y =-2019, 解得y =2022, 故答案为:2022. 【点睛】本题考查一元一次方程的解,正确得出x 和y 的关系是解题的关键.15.如图,每个图案均由边长相等的黑、白两色的正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多____________个(用含n 的代数式表示).【解析】解:第1个图案中白色正方形有3⨯2+1⨯1=7个,黑色正方形有2个,白色正方形比黑色正方形多7-2=5个,即多(2⨯2+1)个;第2个图案中白色正方形有3⨯3+1⨯2=11个,黑色正方形有2⨯2=4个,白色正方形比黑色正方形多11-4=7个,即多(2⨯3+1)个;第3个图案中白色正方形有3⨯4+1⨯3=15个,黑色正方形有2⨯3=6个,白色正方形比黑色正方形多15-6=9个,即多(2⨯4+1)个; ,第n 个图案中白色正方形比黑色正方形多()()21123n n ++=+个, 故答案为:(2n +3). 【点睛】此题考查了图形类规律,正确计算已知图形中色正方形比黑色正反向多的个数并得到规律是解题的关键.16.如图,在直线m 上顺次取A ,B ,C 三点,使得3cm AB =,1cm BC =,取线段AC 的中点D ,若动点P 从点A 出发以2cm/s 的速度沿射线AC 方向运动,设运动时间为s t ,当5DP DB =时,t 的值为______s .【解析】解:3cm AB =,1cm BC =, 4cm AC ∴=,D 是线段AC 的中点, 2cm AD ∴=,1cm DB AB AD ∴=-=, 依题意有:2251t -=⨯, 解得 3.5t =. 故答案为:3.5. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(每题8分,共72分) 17.计算:(1)()()()()219812---+---;(2)24132844⎛⎫--⨯-+ ⎪⎝⎭.【解析】(1)解:原式219812=-+-+ 12812=--+ 2012=-+ 8=-(2)原式13168164=--⨯+ 131624=--+131624=-+3154=-【点睛】此题考查了有理数的混合运算,熟练掌握有理数的混合运算法则,是解本题的关键.18.先化简,再求值:2(3ab 2﹣a 2b +ab )﹣3(2ab 2﹣4a 2b +ab ),其中a =﹣1,b =2. 【解析】解:2(3ab 2﹣a 2b +ab )﹣3(2ab 2﹣4a 2b +ab ) =6ab 2﹣2a 2b +2ab ﹣6ab 2+12a 2b ﹣3ab =10a 2b ﹣ab .当a =﹣1,b =2时, 原式=10a 2b ﹣ab=10×(﹣1)2×2﹣(﹣1)×2 =10×1×2﹣(﹣1)×2 =20+2 =22. 【点睛】本题考查整式加减运算的化简求值,熟练掌握该知识点是解题关键. 19.已知224102m x x y =++,2222n x y y =-+,求: (1)2m n -;(2)当522x y +=时,求2m n -的值. 【解析】解:(1)()222224102222m n x x y x y y -=++--+ 22224102442x x y x y y =++-+- 104x y =+;(2)∵522x y +=∴原式=1042(52)x y x y +=+=2×2=4. 【点睛】此题考查了利用整式的加减化简求值,熟练掌握运算法则是解本题的关键. 20.如图,数轴上有若干个点,每相邻两点间的距离为1,其中点A ,B ,C 对应的数分别是整数a ,b ,c .(1)用含b 的式子分别表示:=a _________,c =_________. (2)已知29c a -=,求b 的值. 【解析】(1)解:由题意知,线段AB 的长为3,线段BC 的长度为1, 则a +3=b ,b +1=c ∴3a b =-,1c b =+ 故答案为:3b -;1b + (2)由3a b =-,1c b =+得:212(3)1267c a b b b b b -=+--=+-+=-+, 79b ∴-+=, 解得2b =-. 【点睛】本题考查了数轴上两点间的距离,列代数式及解一元一次方程等知识,关键根据数轴的距离表示a 与c .21.如图120AOB ∠=,OF 平分AOB ∠,212∠=∠(1)判断1∠与2∠互余吗?试说明理由. (2)2∠与AOB ∠互补吗?试说明理由. 【解析】(1)解:1∠与2∠互余,理由如下: ∵120AOB ∠=︒,OF 平分AOB ∠,∴12==602∠∠︒AOB ,∵21=2∠∠,∴1=30∠︒ ,∴1+2=30+60=90∠∠︒︒︒,∴1∠与2∠互余;(2)解:2∠与AOB ∠互补,理由如下: ∵∠AOB =120°,OF 平分AOB ∠, ∴12==602∠∠︒AOB ,∴∠2+∠AOB =60°+120°=180°, ∴2∠与AOB ∠互补. 【点睛】本题考查角平分线定义,两角互余,互补的判定,掌握角平分线定义,两角互余,互补的判定是解题关键.22.如图是一个长方体的表面展开图,每个面上都标注了字母和数据,请根据要求回答(1)如果A 面在长方体的底部,那么 面会在上面; (2)求这个长方体的表面积和体积.【解析】(1)如图所示,A 与F 是对面,所以如果A 面在长方体的底部,那么 F 面会在上面;故答案是:F ;(2)这个长方体的表面积是:2×(1×3+1×2+2×3)=22(米2).这个长方体的体积是:1×2×3=6(米3).【点睛】关于几何体的表面展开图,关键是那些面是相对的,那些面是相邻的. 23.某糕点厂中秋节前要制作一批盒装月饼,每盒中装4块大月饼和8块小月饼,制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg 面粉,现共有面粉4500kg ,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?最多可生产多少盒盒装月饼?【答案】应用2500kg 面粉生产大月饼,2000kg 面粉生产小月饼才能生产最多的盒装月饼.最多可生产12500盒盒装月饼 【解析】解:设用kg x 面粉生产大月饼,用()4500kg x -面生产小月饼, ∵每盒中装4块大月饼和8块小月饼,4500×20.050.02x x -=, 解得2500(kg)x =,共生产了:2500125000.054=⨯(盒).答:应用2500kg 面粉生产大月饼,2000kg 面粉生产小月饼才能生产最多的盒装月饼.最多可生产12500盒盒装月饼. 【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键. 24.某中学七年级(1)班4名老师决定带领本班m 名学生去某革命胜地参观.该革命胜地每张门票的票价为30元,现有A 、B 两种购票方案可供选择: 方案A :教师全价,学生半价;方案B :不分教师与学生,全部六折优惠(1)请用含m 的代数式分别表示选择A 、B 两种方案所需的费用;(2)当学生人数40m =时,且只选择其中一种方案购票,请通过计算说明选择哪种方案更为优惠. 【解析】(1)解:选择方案A 所需的费用为130430120152m m ⨯+⨯=+(元),选择方案B 所需的费用为()3040.61872m m ⨯+⨯=+(元).(2)解:当40m =时,选择方案A 所需的费用为1201540720+⨯=(元), 选择方案B 所需的费用为184072792⨯+=(元), ∵720792<,∴选择方案A 更为优惠. 【点睛】本题考查了列代数式及代数式求值,理解题意正确列出代数式是解决问题的关键. 25.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数﹣2,点B 表示的数4,下列各数,3,2,0所对应的点分别C 1,C 2,C 3,其中是点A ,B 的“联盟点”的是 ;(2)点A 表示数﹣10,点B 表示的数30,P 在为数轴上一个动点: ①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,求此时点P 表示的数; ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数为 . 【解析】(1)解:对于表示的数是3的C 1来说.∵点A 所表示的数为﹣2,点B 所表示的数是4, ∴AC 1=5,BC 1=1.∵AC 1和BC 1不满足2倍的数量关系, ∴C 1不是点A 、点B 的“联盟点”. 对于表示的数是2的C 2来说.∵点A 所表示的数为﹣2,点B 所表示的数是4, ∴AC 2=4,BC 2=2.∵422=⨯,即AC 2=2BC 2,11 ∴C 2是点A 、点B 的“联盟点”.对于表示的数是0的C 3来说.∵点A 所表示的数为﹣2,点B 所表示的数是4,∴AC 3=2,BC 3=4.∵422=⨯,即BC 3=2AC 3,∴C 3是点A 、点B 的“联盟点”.故答案为:C 2或C 3.(2)解:①设点P 在数轴上所表示的数为x .当点P 在线段AB 上,且PA =2PB 时.根据题意得()()10230x x --=-.解得503x =. 当点P 在线段AB 上,且2PA =PB 时.根据题意得()21030x x --=-⎡⎤⎣⎦.解得103x =. 当点P 在点A 的左侧时,且2PA =PB 时.根据题意得2(﹣10﹣x )=30﹣x .解得x =﹣50.综上所述,点P 表示的数为103或503或﹣50. ②当点A 是点P ,点B 的“联盟点”时,有PA =2AB .根据题意得()()1023010x --=⨯--⎡⎤⎣⎦.解得x =70.当点B 是点A 、点P 的“联盟点”时,有AB =2PB 或2AB =PB .根据题意得()()3010230x --=-或()2301030x ⨯--=-⎡⎤⎣⎦.解得x =50或x =110.当点P 是点A 、点B 的“联盟点”时,有PA =2PB .根据题意得()()10230x x --=⨯-.解得x =70.所以此时点P 表示的数为70或50或110.故答案为:70或50或110.【点睛】本题考查数轴上两点间的距离,一元一次方程的实际应用,正确理解题意和应用分类讨论思想是解题关键.。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
七年级数学(上)期末试卷(含答案)
七年级数学(上)期末试卷(含答案)一、选择题(共10小题,满分40分)1.一个数的相反数是﹣,则这个数是()A.B.2C.﹣D.﹣22.第七次全国人口普查显示,我国人口已达到141178万.把这个数据用科学记数法表示为()A.1.41178×107B.1.41178×108C.1.41178×109D.1.41178×10103.下列各组单项式中,不是同类项的是()A.﹣a2b与ab2B.7与2.1C.2xy与﹣5yx D.mn2与3n2m 4.当x=1时,代数式ax2﹣2bx+1的值为3,那么5﹣2a+4b的值是()A.1B.2C.3D.45.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中每名学生每天用于学习的时间6.下列等式变形正确的是()A.若4x=﹣5,则B.若ax=bx,则a=bC.若a2=b2,则a=b D.若,则x=y7.如图,O为直线AB上的一点,∠AOC=90°,∠DOE=90°,则图中∠BOE的余角共有()A.1个B.2个C.3个D.4个8.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.109.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”形的图案,如图②所示,则这个“”形的图案的周长可以表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b10.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2021的值为()A.﹣2018B.﹣1010C.﹣1009D.﹣1008二、填空题(共5小题,满分25分)11.比较大小:﹣﹣.12.已知关于x,y的二元一次方程组的解满足x+y=﹣5,则m的值是.13.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为元.14.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.15.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.点P在数轴上,且满足AP=2PB,则点P对应的数为.三、解答题(共85分)16.计算:(1)5+2×(﹣6)﹣|﹣9|;(2).17.先化简,再求值:2(x2y﹣5x2+4y)﹣3(x2y﹣x2+y)+7x2,其中,y=3.18.解方程(组):(1);(2).19.(1)已知∠α,∠AOB,在图2中,求作:以OB为边,在∠AOB内部作∠BOC=∠α(要求:用直尺和圆规作图,不写作法,保留作图痕迹).(2)若∠AOB=50°,∠BOC=30°,OD平分∠AOC.求∠BOD的度数.20.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买羊,人出五,不足四十五;人出七,不足三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差四十五钱;若每人出七钱,还差三钱.问合伙人数和羊价各是多少?21.为了了解某中学学生体质健康达标情况,该校九年级兴趣小组随机抽查了本校若干名学生的体质健康达标情况(A.优秀:B.良好;C.合格;D.待合格),并将调查结果绘制成条形统计图和扇形统计图(不完整)请你根据图中提供的信息,解答下列问题:(1)此次调查的学生有人;(2)将两幅统计图补充完整;(3)根据抽样调查结果,请你估计该校2600名学生中,达到优良等级的学生共有多少人?22.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.(1)设购入甲型机器x台,完成下列表格.型号单价(万元)数量(台)总价(万元)甲10x乙45(2)在(1)的条件下,若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?23.将1到2021之间的所有奇数按顺序排成下表:记P mn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=;(2)若P mn=2021,则m=,n=;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200?若能,求出4个数中的最大数;若不能,请说明理由.参考答案一、选择题(共10小题,满分40分)1.一个数的相反数是﹣,则这个数是()A.B.2C.﹣D.﹣2【分析】根据只有符号不同的两个数叫做互为相反数解答.解:的相反数是﹣.故选:A.2.第七次全国人口普查显示,我国人口已达到141178万.把这个数据用科学记数法表示为()A.1.41178×107B.1.41178×108C.1.41178×109D.1.41178×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:141178万=1411780000=1.41178×109,故选:C.3.下列各组单项式中,不是同类项的是()A.﹣a2b与ab2B.7与2.1C.2xy与﹣5yx D.mn2与3n2m 【分析】根据同类项的意义判断即可.解:A.﹣a2b与ab2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;B.7与2.1是同类项,故本选项不合题意;C.2xy与﹣5yx所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;D.mn2与3n2m所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;故选:A.4.当x=1时,代数式ax2﹣2bx+1的值为3,那么5﹣2a+4b的值是()A.1B.2C.3D.4【分析】由已知条件得出a﹣2b=2,将原式后两项提取﹣2,代入计算即可.解:根据题意,将x=1代入ax2﹣2bx+1=3,得:a﹣2b=2,则5﹣2a+4b=﹣2(a﹣2b)+5=﹣2×2+5=﹣4+5=1.故选:A.5.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中每名学生每天用于学习的时间【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:本题考查的是总体、个体和样本的概念.其中选项A、B、D都正确,而C中,样本容量是样本中包含的个体的数目,不能带单位,所以错误.故选:C.6.下列等式变形正确的是()A.若4x=﹣5,则B.若ax=bx,则a=bC.若a2=b2,则a=b D.若,则x=y【分析】根据等式的基本性质逐一判断即可.解:A.若4x=﹣5,则x=﹣,故A不符合题意;B.若ax=bx(x≠0),则a=b,故B不符合题意;C.若a2=b2,则a=±b,故C不符合题意;D.若,则x=y,故D符合题意;故选:D.7.如图,O为直线AB上的一点,∠AOC=90°,∠DOE=90°,则图中∠BOE的余角共有()A.1个B.2个C.3个D.4个【分析】根据余角的和等于90°,结合图形找出构成直角的两个角,然后再计算对数.解:∵∠AOC=∠DOE=90°,∴∠AOD+∠BOE=90°,∠COE+∠BOE=90°.∴∠BOE的余角共有2个.故选:B.8.如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点.若线段MN的长为4,则线段BC的长度是()A.4B.6C.8D.10【分析】根据点M是线段AC的中点,点N是线段BC的中点,可知:MN=AM﹣AN=AB﹣AC=(AC﹣BC)=BC,继而即可得出答案.解:∵点M是线段AB的中点,点N是线段AC的中点,MN=AM﹣AN=AB﹣AC=(AC﹣BC)=BC,∵MN=4,∴BC=8.故选:C.9.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“”形的图案,如图②所示,则这个“”形的图案的周长可以表示为()A.4a﹣8b B.8a﹣4b C.8a﹣8b D.4a﹣10b【分析】根据图形和题意,可以得到这个“”形的图案的周长为4a+4(a﹣b),然后去括号,合并同类项即可.解:由图②可得,这个“”形的图案的周长可以表示为:4a+4(a﹣b)=4a+4a﹣4b=8a﹣4b,故选:B.10.已知整数a1、a2、a3、a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…,以此类推,则a2021的值为()A.﹣2018B.﹣1010C.﹣1009D.﹣1008【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值a2n=﹣n,序数为奇数时,其最后的数值a2n+1=﹣+1,从而得到答案.解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,序数为奇数时,其最后的数值a2n+1=﹣+1,则a2021=﹣+1=﹣1011+1=﹣1010,故选:B.二、填空题(共5小题,满分25分)11.比较大小:﹣<﹣.【分析】根据负有理数比较大小的方法比较(绝对值大的反而小).解:根据两个负数,绝对值大的反而小的规律得出:﹣<﹣.12.已知关于x,y的二元一次方程组的解满足x+y=﹣5,则m的值是﹣24.【分析】把两个方程相加即可求出x+y=,再根据x+y=﹣5,即可=﹣5,然后进行计算即可.解:,①+②得:5x+5y=m﹣1,∴x+y=,∵x+y=﹣5,∴=﹣5,∴m﹣1=﹣25,∴m=﹣24,故答案为:﹣24.13.一件商品如果按标价的八折销售,仍可获得25%的利润.已知该商品的成本价是40元,则该商品标价为62.5元.【分析】设该商品标价为x元,利用利润=售价﹣成本价,即可得出关于x的一元一次方程,解之即可得出该商品的标价.解:设该商品标价为x元,依题意得:80%x﹣40=40×25%,解得:x=62.5.故答案为:62.5.14.如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为110°.【分析】根据角平分线的意义,设∠DOE=x,根据∠AOB=150°,∠COD=40°,分别表示出图中的各个角,然后再计算2∠BOE﹣∠BOD的值即可.解:如图:∵OE平分∠AOC,∴∠AOE=∠COE,设∠DOE=x,∵∠COD=40°,∴∠AOE=∠COE=x+40°,∴∠BOC=∠AOB﹣∠AOC=150°﹣2(x+40°)=70°﹣2x,∴2∠BOE﹣∠BOD=2(70°﹣2x+40°+x)﹣(70°﹣2x+40°)=140°﹣4x+80°+2x﹣70°+2x﹣40°=110°,当角AOC小于80度时,OD在OE左侧,同法可得,2∠BOE﹣∠BOD=110°当OD和OE重合时,同法可得,2∠BOE﹣∠BOD=110°故答案为:110.15.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+5|+(b﹣3)2=0.点P在数轴上,且满足AP=2PB,则点P对应的数为或11.【分析】根据|a+5|+(b﹣3)2=0,可以先求出a、b的值,然后根据AP=2PB,利用分类讨论的方法,列出相应的方程,然后求解.解:∵|a+5|+(b﹣3)2=0,∴a+5=0,b﹣3=0,解得a=﹣5,b=3,∴点A表示的数为﹣5,点B表示的数为3,设点P表示的数为x,∵AP=2PB,∴当点P在点A和点B之间时,x﹣(﹣5)=2(3﹣x),解得x=;当点P在点B的右侧时,x﹣(﹣5)=2(x﹣3),解得x=11;当点P在点A的左侧时,(﹣5)﹣x=2(3﹣x),解得x=11(不合题意,舍去);由上可得,点P对应的数为或11,故答案为:或11.三、解答题(共85分)16.计算:(1)5+2×(﹣6)﹣|﹣9|;(2).【分析】(1)先算乘法和去绝对值,然后算加减法即可;(2)先算乘方和去括号,然后算乘除法、最后算加减法.解:(1)5+2×(﹣6)﹣|﹣9|=5+(﹣12)﹣9=﹣7﹣9=﹣16;(2)=﹣1﹣4×()+3÷(﹣9)=﹣1﹣4×(﹣)+3×(﹣)=﹣1++(﹣)=﹣1.17.先化简,再求值:2(x2y﹣5x2+4y)﹣3(x2y﹣x2+y)+7x2,其中,y=3.【分析】先去括号、合并同类项化简原式,再将x和y的值代入计算可得.解:原式=2x2y﹣10x2+8y﹣3x2y+3x2﹣3y+7x2=﹣x2y+5y,当x=﹣,y=3时,原式=+5×3=﹣+15=.18.解方程(组):(1);(2).【分析】(1)方程去分母、去括号、移项、合并同类项、系数化为1即可;(2)方程组利用加减消元法解答即可.解:(1),去分母,得4(x+2)﹣3(2x﹣1)=12,去括号,得4x+8﹣6x+3=12,移项,得4x﹣6x=12﹣8﹣3,合并同类项,得﹣2x=1,系数化为1,得x=﹣;(2),①﹣②×2,得2y=3,解得y=,把y=代入②,得x=,故方程组的解为.19.(1)已知∠α,∠AOB,在图2中,求作:以OB为边,在∠AOB内部作∠BOC=∠α(要求:用直尺和圆规作图,不写作法,保留作图痕迹).(2)若∠AOB=50°,∠BOC=30°,OD平分∠AOC.求∠BOD的度数.【分析】(1)根据画一个角等于已知角的方法即可在∠AOB内部作∠BOC=∠α;(2)结合(1)根据角平分线定义即可解决问题.解:(1)如图,∠BOC即为所求;(2)∵∠AOB=50°,∠BOC=30°,∴∠AOC=∠AOB﹣∠BOC=20°,∵OD平分∠AOC.∴∠COD=AOC=10°,∴∠BOD=∠BOC+∠COD=40°.20.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买羊,人出五,不足四十五;人出七,不足三.问人数羊价各几何?”其大意是:今有人合伙买羊,若每人出五钱,还差四十五钱;若每人出七钱,还差三钱.问合伙人数和羊价各是多少?【分析】设合伙人数为x,根据“若每人出五钱,还差四十五钱;若每人出七钱,还差三钱”,即可得出关于x的一元一次方程,解之即可求出合伙人数,再将其代入(5x+45)中即可求出羊价.解:设合伙人数为x,依题意得:5x+45=7x+3,解得:x=21,∴5x+45=5×21+45=150.答:合伙人数为21,羊价为150钱.21.为了了解某中学学生体质健康达标情况,该校九年级兴趣小组随机抽查了本校若干名学生的体质健康达标情况(A.优秀:B.良好;C.合格;D.待合格),并将调查结果绘制成条形统计图和扇形统计图(不完整)请你根据图中提供的信息,解答下列问题:(1)此次调查的学生有120人;(2)将两幅统计图补充完整;(3)根据抽样调查结果,请你估计该校2600名学生中,达到优良等级的学生共有多少人?【分析】(1)用A类人数除以它所占的百分比即可得到调查的总人数;(2)先计算出C类人数,进而得出D类人数,然后补全条形统计图;(3)利用样本估算总体即可.解:(1)此次调查的学生有:24÷20%=120(人);故答案为:120;(2)C类人数有:120×30%=36(人),D类人数有:120﹣24﹣36﹣48=12(人),补全统计图如下:(3)2600×=1560(人),答:估计该校2600名学生中,达到优良等级的学生共有1560人.22.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.(1)设购入甲型机器x台,完成下列表格.型号单价(万元)数量(台)总价(万元)甲10x10x乙45(600﹣10x)(2)在(1)的条件下,若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?【分析】(1)设购入甲型机器x台,则购入甲型机器所需总价为10x万元,购入乙型机器所需总价为(600﹣10x)万元,购入乙型机器台;(2)根据购买甲型机器的数量是乙型机器数量的5倍还多3台,即可得出关于x的一元一次方程,解之即可得出结论.解:(1)设购入甲型机器x台,则购入甲型机器所需总价为10x万元,购入乙型机器所需总价为(600﹣10x)万元,购入乙型机器台.故答案为:10x,,(600﹣10x);(2)依题意得:x=5×+3,解得:x=33,=6(台),答:购入甲型机器33台,乙型机器6台.23.将1到2021之间的所有奇数按顺序排成下表:记P mn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=45;(2)若P mn=2021,则m=169,n=3;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200?若能,求出4个数中的最大数;若不能,请说明理由.【分析】(1)根据题意可知P45表示第4行第5个数,每行都有6个数,所有的数字都是奇数,然后即可计算出相应的值;(2)根据题意,可以得到2[6(m﹣1)+n]﹣1=2021,然后m为整数,1≤n≤6,即可得到m、n的值;(3)先判断,然后设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,即可列出相应的方程,然后求解即可说明理由.解:(1)由题意可得,P45=2×(6×3+5)﹣1=45,故答案为:45;(2)∵P mn=2021,∴2[6(m﹣1)+n]﹣1=2021,∴12m+2n﹣13=2021,∵m为正整数,1≤n≤6,∴m=169,n=3,故答案为:169,3;(3)所覆盖的4个数之和能等于200,理由:设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,由题意可得(2n﹣3)+(2n﹣1)+(2n+1)+(2n+11)=200,解得:n=24,∴所覆盖的4个数之和能等于200。
数学七年级上册数学期末试卷(含答案)
数学七年级上册数学期末试卷(含答案)一、选择题1.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是( )A.1601603045x x-=B.1601601452x x-=C.1601601542x x-=D.1601603045x x+=2.如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个()A.1个B.2个C.3个D.4个3.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是()A.50°B.130°C.50°或 90°D.50°或 130°4.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.75.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.6cm B.3cm C.3cm或6cm D.4cm6.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120207.解方程121123x x+--=时,去分母得()A.2(x+1)=3(2x﹣1)=6 B.3(x+1)﹣2(2x﹣1)=1 C.3(x+1)﹣2(2x﹣1)=6 D.3(x+1)﹣2×2x﹣1=6 8.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱9.已知一个多项式是三次二项式,则这个多项式可以是()A.221x x-+B.321x+C.22x x-D.3221x x-+ 10.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A.0 B.1 C.12D.311.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A.1个B.2个C.3个D.4个12.如图的几何体,从上向下看,看到的是()A.B.C.D.13.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3 cm B.6 cm C.11 cm D.14 cm14.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个15.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN 的长度为()cm.A.2 B.3 C.4 D.6二、填空题16.已知x=5是方程ax ﹣8=20+a 的解,则a= ________17.已知方程22x a ax +=+的解为3x =,则a 的值为__________.18________19.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元. 20.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 21.若方程11222m x x --=++有增根,则m 的值为____. 22.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.23.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.24.数字9 600 000用科学记数法表示为 . 25.计算7a 2b ﹣5ba 2=_____.26.钟表显示10点30分时,时针与分针的夹角为________. 27.用度、分、秒表示24.29°=_____. 28.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.29.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.30.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.33.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)34.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.35.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.36.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级数学上册期末试卷(附含答案)
七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
新人教版七年级数学上册期末试卷及答案【完美版】
新人教版七年级数学上册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.如果y=+ +3, 那么yx的算术平方根是()A. 2B. 3C. 9D. ±32.某种衬衫因换季打折出售, 如果按原价的六折出售, 那么每件赔本40元;按原价的九折出售, 那么每件盈利20元, 则这种衬衫的原价是()A. 160元B. 180元C. 200元D. 220元3. 按如图所示的运算程序,能使输出的结果为的是()A. B.C. D.4.若x, y的值均扩大为原来的3倍, 则下列分式的值保持不变的是()A. B. C. D.5.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, ∠1=70°, 直线a平移后得到直线b, 则∠2-∠3()A. 70°B. 180°C. 110°D. 80°7.如图, △ABC的面积为3, BD:DC=2:1, E是AC的中点, AD与BE相交于点P, 那么四边形PDCE的面积为()A. B. C. D.8.比较2, , 的大小, 正确的是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知(a+1)2+|b+5|=b+5, 且|2a-b-1|=1, 则ab=___________. 2.如图a是长方形纸带, ∠DEF=25°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是__________°.3. 如图, 有两个正方形夹在AB与CD中, 且AB//CD,若∠FEC=10°, 两个正方形临边夹角为150°, 则∠1的度数为________度(正方形的每个内角为90°)4. 如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程, 那么m的取值是________.5. 如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=________.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:.2. 先化简, 再求值:(1)3x2-[7x-(4x-3)-2x2], 其中x=5(2) , 其中3. 如图1, 在平面直角坐标系中, A(a, 0)是x轴正半轴上一点, C是第四象限内一点, CB⊥y轴交y轴负半轴于B(0, b), 且|a﹣3|+(b+4)2=0, S四边形AOBC=16.(1)求点C的坐标.(2)如图2, 设D为线段OB上一动点, 当AD⊥AC时, ∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P, 求∠APD的度数;(点E在x轴的正半轴).(3)如图3, 当点D在线段OB上运动时, 作DM⊥AD交BC于M点, ∠BMD、∠DAO的平分线交于N点, 则点D在运动过程中, ∠N的大小是否会发生变化?若不变化, 求出其值;若变化, 请说明理由.4. 某住宅小区有一块草坪如图所示. 已知AB=3米, BC=4米, CD=12米, DA =13米, 且AB⊥BC, 求这块草坪的面积.5. “大美湿地, 水韵盐城”. 某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生, 要求每位同学选择且只能选择一个最想去的景点, 下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息, 解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图, 并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生, 请估计“最想去景点B“的学生人数.6. 重百江津商场销售AB两种商品, 售出1件A种商品和4件B种商品所得利润为600元, 售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完, 重百商场决定再次购进A、B两种商品共34件, 如果将这34件商品全部售完后所得利润不低于4000元, 那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.C3.C4.D5.C6.C7、B8、C9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、2或4.2.105°3、70.4.-15.316.2或-8三、解答题(本大题共6小题, 共72分)1.x=1.2.(1)5x2-3x-3, 原式=107;(2)-xy+2xy 2;原式=-4.3、(1) C(5, ﹣4);(2)90°;(3)略4.36平方米5、(1)40;(2)72;(3)280.6.(1)200元和100元(2)至少6件。
七年级(上)期末数学试卷(含答案解析)
七年级(上)期末数学试卷(含答案解析)一、选择题(本大题共10小题,共30.0分)1.在下列有理数:-5,-(-3)3,|-|,0,-22中,负数有()A. 1个B. 2个C. 3个D. 4个2.随着北京公交车票价调整,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:另外,一卡通刷卡实行8折优惠,小明用一卡通乘车上车时站名上对应的数字是5,下车时站名上对应的数字是20,那么小明乘车的费用是()A. 1.6元B. 2元C. 2.4元D. 3.2元3.下列各组中,不是同类项的是()A. 52与25B. -ab与baC. 0.2a2b与-a2bD. a2b3与-a3b24.下列说法:①倒数等于本身的数只有1;②若a、b互为相反数,那么a、b的商必定等于-1;③对于任意实数x,|x|+x一定是非负数;④两个负数,绝对值小的反而大,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个5.在有理数-32,3.5,-(-3),|-2|、(-)2,-3.1415926中,负数的个数是()A. 1个B. 2个C. 3个D. 4个6.数18000用科学记数法表示为()A. 0.18×104B. 1.8×104C. 18×104D. 1.8×1057.下列各组数中,相等的一组是()A. (-2)3与-23B. (-2)2与-22C. (-3×2)3与3×(-2)3D. -32与(-3)+(-3)8.如图几何体的俯视图是()A.B.C.D.9.要使多项式不含的项,则的值是A. B. C. D.10.如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A. 64°B. 66°C. 74°D. 86°二、填空题(本大题共10小题,共40.0分)11.单项式-4πa3b的系数是______.12.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b-c|-2|b-a|+|2c|=______.13.已知有理数a、b在数轴上的位置如图所示,化简|a-b|+|a+b|的结果为______.14.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则-2mn+-x=______.15.将直角三角形按如图放置,直角顶点重合,则∠AOB+∠COD=______.16.若∠A的补角等于116°,则∠A= .17.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a+b+c的值为______.18.如图.AC,BD交于点O.图中共有______ 条线段,它们分别是______ .19.废纸回收能减少树木的砍伐量,保持森林覆盖率,有利于封山育林减少水土流失,有利于生态环境,能减少化学原料的运用与排放,减少污染,有利于环境维护和降低消费本钱.若回收废纸1kg,可生产(结再生纸0.6kg,小明和小亮每学期分别能回收讲义等废纸a kg,b kg,这些废纸可生产再生纸______kg.果用含a,b的代数式表示)20.若x2=9,则x= ______ ;若x3=-27,x= ______ ;已知|x|=9,则x= ______ .三、计算题(本大题共1小题,共5.0分)21.先化简,再求值:5a2-[a2-(2a-5a2)-2(a2-3a)],其中a=4.四、解答题(本大题共7小题,共45.0分)22.某一出租车一天下午以菜市场为出发地在东西方向营运, 约定向东为正,向西为负,行车里程(单位:千米)依先后次序记录如下: +8,-3,-4,+2,-8,+13,-2(1)将最后一名乘客送到目的地,出租车离出发点菜市场多远?在菜市场的什么方向?(2)若每千米耗油0.2升,问从出发地出发到收工时共耗油多少升?23.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,化简|c-a|+|c-b|+|a+b|.24.由角的旋转的定义可知,平角的两边成一条直线,能不能说直线就是平角?周角两边重合成同一条射线,能不能说周角就是射线?为什么?25.如图,已知∠1+∠2=180°,∠3=∠B,对DE∥BC说明理由.理由:∵∠1+∠2=180°(已知)且∠1+______=180°(邻补角定义),∴∠2=______,∴BD∥EF (______),∴∠3=______(两直线平行,内错角相等),又∵∠3=∠B(已知)∴______=______(等量代换),∴DE∥BC (______).26.如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到______的距离,______是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是______(用“<”号连接)27.已知长方形的长为a,宽为b.(1)求阴影部分的面积.(用a、b字母表示)(2)当a=5,b=3时,求阴影部分的面积.28.已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为______.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.答案和解析1.【答案】B【解析】解:∵-(-3)3=27,|-|=,-22=-4,∴-5,-(-3)3,|-|,0,-22中,负数有-5,-22,故选B.首先化简各数,根据负数的定义分别进行判断,从而得出负数的个数即可.本题主要考查了正数和负数以及绝对值和乘方等知识,正确化简各数是解题关键.2.【答案】C【解析】解:小明乘车|20-5|=15(站),对应的票价为3元,3×80%=2.4(元),故选:C.先计算出小明乘车是15站,对照表格,对应的票价是3元,根据一卡通刷卡实行8折优惠,即可计算出费用.本题考查了有理数的减法,绝对值,根据题意求出小明乘车路程,对照表格,得出对应的票价,这是解题的关键.3.【答案】D【解析】解:A.52与25是同类项,故此选项不符合题意;B.-ab与ba所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;C.0.2a2b与-a2b所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;Da2b3与-a3b2所含字母相同,但相同字母的指数不同,不是同类项,故此选项符合题意.故选:D.根据同类项的定义(所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项)即可作出判断.本题考查了同类项,掌握同类项的定义是解答本题的关键.4.【答案】C【解析】解:①倒数等于本身的数只有1,错误,还有-1;②若a、b互为相反数,那么a、b的商必定等于-1,错误,a,b不能等于0;③对于任意实数x,|x|+x一定是非负数,正确;④两个负数,绝对值小的反而大,正确.故选:C.直接利用倒数以及绝对值和相反数的性质分别分析得出答案.此题主要考查了倒数以及绝对值和相反数的性质,正确把握相关性质是解题关键.5.【答案】B【解析】解:-32=-9,-(-3)=3,|-2|=2,,∴-32,-3.1415926是负数,一共2个,故选:B.根据有理数的乘方法则、相反数的概念、绝对值的性质计算,根据负数的概念判断即可.本题考查的是有理数的乘方、绝对值的性质、正数和负数,掌握有理数的乘方法则、绝对值的性质是解题的关键.6.【答案】B【解析】解:18000=1.8×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】A【解析】解:A.(-2)3=-8,-23=-8,相等,此选项符合题意;B.(-2)2=4,-22=-4,不相等,此选项不符合题意;C.(-3×2)3=(-6)3=-216,3×(-2)3=3×(-27)=-81,不相等,此选项不符合题意;D.-32=-9,(-3)+(-3)=-6,不相等,此选项不符合题意;故选:A.根据乘方的定义和有理数混合运算顺序逐一计算即可判断.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.8.【答案】C【解析】解:从上面看,是一个矩形,矩形内部是一个由虚线围成的小矩形.故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.9.【答案】D【解析】由题意得,,,,故选D。
七年级数学上册期末考试及答案【完整版】
七年级数学上册期末考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上5.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为()A .1°B .2°C .4°D .8°6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④7.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃9.观察等式(2a ﹣1)a +2=1,其中a 的取值可能是( )A .﹣2B .1或﹣2C .0或1D .1或﹣2或010.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.已知654a b c ==,且26a b c +-=,则a 的值为__________. 3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.把5×5×5写成乘方的形式__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)326{2317x y x y -=+= (2)414{3314312x y x y +=---=2.解不等式组()31511242x x x x ⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.3.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.4.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.5.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?6.某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、B5、C6、B7、D8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、123、15°4、50°5、16、35三、解答题(本大题共6小题,共72分)1、(1)43xy=⎧⎨=⎩;(2)3114xy=⎧⎪⎨=⎪⎩.2、非负整数解是:0,1、2.3、4.4、(1)略;(2)略;(3)略;(4)略;5、(1)P(转动一次转盘获得购物券)=12;(2)选择转转盘对顾客更合算.6、(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元;(2)41.6元/千克.。
七年级数学上册期末试卷及答案(多套题)
七 年 级 上 册 期 末 数 学 试 卷(1)一、精心选一选1、下列式子正确的是( D )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 2、多项式12++xy xy 是( D )A .二次二项式B .二次三项式C .三次二项式D .三次三项式3、桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( A )A .①②③④B .①③②④C .②④①③D .④③①②4、一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( A )5、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( C )A .3瓶B .4瓶C .5瓶D .6瓶 二、填空题6、52xy -的系数是 51- 。
7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第6次后剩下的绳子的长度是641米。
图3 O O O O A B C D8、如图点A 、O 、B 在一条直线上,且∠AOC =50°,OD 平分∠AOC 、,则图中∠BOD= 155 度。
-|c -b |化简9、有理数a ,b ,c 在数轴上的位置如图,式子|a |-|b|+|a+b|结果为___-b+c ____10、如图:A 地和B 地之间途经C 、D 、E 、F 四个火车站,且相邻两站之间的距离各不相同,则售票员应准备___30____种火车票.11、用小立方块搭一几何体,使得它的从正面看和从上面看 形状图如图所示,这样的几何体最少要____9__个立方块,最 多要____13___个立方块.12、已知A=2x 2+3xy -2x -1,B=-x 2+xy-1,若3A +6B 的值与x 的值无关,则y 的值___52__三、对号入座13、(1)把下列各整式填入相应圈里ab +c ,2m ,ax 2+c ,-ab 2c ,a, 0, -x 21,y +2.(1)单项式:2m ,-ab 2c ,a ,0,-x 21 多项式:ab +c ,ax 2+c ,y +2AOBC D 单项式多项式C 地在A 2×2, 3×2, 4×3, 5×4,……,(1) 同一行中两个算式的结果怎样?(2)算式2005+20042005和2005×20042005的结果相等吗?(3)请你试写出算式,试一试,再探索其规律,并用含自然数n 的代数式表示这一规律。
七年级上册数学期末测试卷(含答案)
七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。
1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)数学期末试题一、选择题(每小题3分,共24分)1.(3分)如图﹣2的相反数在数轴上表示为()A.点A B.点B C.点C D.点D2.(3分)网购越来越多的成为人们的一种消费方式,刚刚过去的2012年11月11日的网上促销活动中,阿里巴巴中国可谓独占鳌头,当天交易额达到了惊人的191亿元,相比2011年“双11”实现了10倍以上增长,其中191亿元用科学记数法表示为()A.1.91×108B.1.91×1010C.19.1×109D.0.191×10113.(3分)(2004•无为县)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg4.(3分)代数式﹣的系数是()B.C.﹣D.A.﹣5.(3分)下列调查中,适宜采用抽样调查方式的是()A.调查奥运会100米决赛参赛运动员兴奋剂的使用情况B.调查一个班级的学生对“中国好声音”的知晓率C.调查一架“歼15”舰载战机各零部件的质量D.调查郑州市中小学生每天体育锻炼的时间6.(3分)如果点C在线段AB上,则下列各式中:AC=AB,AC=CB,AB=2AC,AC+CB=AB,能说明C是线段AB中点的有()A.1个B.2个C.3个D.4个7.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米28.(3分)(2003•山西)某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是()A.45% B.50% C.90% D.95%二、填空题(每小题3分,共21分)9.(3分)用平面去截一个正方体,截面的形状可能是_________.10.(3分)比较大小:﹣_________﹣.(填“>”,“<”号)11.(3分)若x=1是关于x的方程2x+3k=0的解,则k=_________.12.(3分)计算5400″=_________°.13.(3分)一张约0.1毫米的纸,连续对折10次的厚度是_________厘米.14.(3分)若2ab2c3x+1与﹣5ab y c6x﹣5是同类项,则x+y=_________.15.(3分)(2009•娄底)王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n个“中”字形图案需_________根火柴棒.三、解答题(共55分)16.(6分)计算:﹣22÷(﹣0.6×).17.(6分)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),,.18.(6分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.19.(8分)(1)平面内将一副三角板按如图1所示摆放,∠EBC=_________°;(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,那么∠α=_________°;(3)平面内将一副三角板按如图3所示摆放,∠EBC=115°,求∠α的度数.20.(9分)小明一天的时间安排如图所示(所有活动均不重复进行):(1)补全条形统计图;(2)请完成表格;安排的项目各项目所占的百分比各项目对应的扇形圆心角的度数睡觉40% _________活动15% 54°学习__________________吃饭5% 18°其它10% 36°(3)画出对应的扇形统计图.21.(10分)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元,相关资料表明:甲、乙两种鱼苗的成活率分别为90%和96%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)这批鱼苗理论上的成活率是多少?(成活率=)22.(10分)幻方的历史很悠久,传说中最早出现在夏禹时代的“洛书”,用今天的数学符号翻译出来.就是一个三阶幻方,如图1.(1)请你选取一组数据构造一个三阶幻方,填入到如图2的3×3方格中,使得每行、每列、每条对角线上的三个数之和都等于21;(2)在你构造的幻方中,你是如何确定正中间位置上的数字的?请简要说明理由;(3)请你选取一组数据构造一个三阶幻方,填入到如图3的3×3方格中,使得每行、每列、每条对角线上的三个数之和都等于_________.(除15,21外,填一个你自己喜欢的,且符合题意的数)参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)如图﹣2的相反数在数轴上表示为()A.点A B.点B C.点C D.点D考点:相反数;数轴.分析:根据图示知点A、B、C、D在数轴上表示的数,然后由相反数的定义知,在数轴上表示为2的点即为所求.解答:解:根据图示知,A、B、C、D在数轴上表示的数分别是﹣3,﹣2,2,3.∵﹣2的相反数是2,∴﹣2的相反数在数轴上表示为2,即点C.故选C.点评:本题考查了相反数的定义,数轴.规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2.(3分)网购越来越多的成为人们的一种消费方式,刚刚过去的2012年11月11日的网上促销活动中,阿里巴巴中国可谓独占鳌头,当天交易额达到了惊人的191亿元,相比2011年“双11”实现了10倍以上增长,其中191亿元用科学记数法表示为()A.1.91×108B.1.91×1010C.19.1×109D.0.191×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将191亿用科学记数法表示为:1.91×1010.故选B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2004•无为县)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg考点:正数和负数.专题:应用题.分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.解答:解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.4.(3分)代数式﹣的系数是()B.C.﹣D.A.﹣考点:单项式.分析:根据单项式系数的定义即可得出答案.解答:解:代数式﹣的系数是﹣.故选C.点评:本题考查了单项式的知识,属于基础题,注意掌握单项式系数的定义.5.(3分)下列调查中,适宜采用抽样调查方式的是()A.调查奥运会100米决赛参赛运动员兴奋剂的使用情况B.调查一个班级的学生对“中国好声音”的知晓率C.调查一架“歼15”舰载战机各零部件的质量D.调查郑州市中小学生每天体育锻炼的时间考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、事关重大,必须进行普查,故选项错误;B、人数不多,容易调出,因而适合普查,故选项错误;C、事关重大,必须进行普查,故选项错误;D、人数多,不容易普查,因而适合抽查,故选项正确.故选D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.(3分)如果点C在线段AB上,则下列各式中:AC=AB,AC=CB,AB=2AC,AC+CB=AB,能说明C是线段AB中点的有()A.1个B.2个C.3个D.4个考点:比较线段的长短.专题:计算题.分析:根据线段中点的定义,能判断AC=CB的条件都能说明C是线段AB中点.解答:解:根据分析得:若AC=AB,则可判断C是线段AB中点;若AC=CB,则可判断C是线段AB中点;若AB=2AC,则可判断C是线段AB中点;若AC+CB=AB,则不能判断C是线段AB中点;综上可得共有三个正确.故选C.点评:本题考查了中点的定义,属于基础题,注意满足线段中点的两个条件.7.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米2考点:列代数式.分析:横档的长度为x米,则竖档的长度=(12﹣3x)÷2=6﹣1.5x,根据窗框的面积=长×宽求出答案.解答:解:竖档的长度=(12﹣3x)÷2=6﹣1.5x,∴窗框的面积=长×宽=x(6﹣1.5x)=x(6﹣x)米2.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.需注意,用字母表示数时,数字通常写在字母的前面,带分数的要写成假分数的形式.8.(3分)(2003•山西)某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是()A.45% B.50% C.90% D.95%考点:一元一次方程的应用.专题:增长率问题.分析:此题中的百分数很多,充分理解这些百分数的含义是解题的关键.把原价看作单位1,提价后的价格为1+100%=2,降价后的价格为1+10%=1.1,设该药品现在降价的幅度是x,等量关系为:提价后的价格×(1﹣x)=降价后的价格.解答:解:设该药品现在降价的幅度是x,根据题意列方程得(1+100%)(1﹣x)=1+10%解得x=45%,故选A.点评:此题考查了学生对百分数的理解,要注意是在谁的基础上提价或降价,找出等量关系.二、填空题(每小题3分,共21分)9.(3分)用平面去截一个正方体,截面的形状可能是三角形,四边形,五边形,六边形.考点:截一个几何体.分析:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是,三角形、四边形、五边形、六边形.解答:解:用平面去截一个正方体,截面的形状可能是,三角形、四边形、五边形、六边形.点评:本题考查几何体的截面,关键要理解面与面相交得到线.正方体截面的形状应熟记.10.(3分)比较大小:﹣<﹣.(填“>”,“<”号)考点:有理数大小比较.分析:先把﹣和﹣化成同分母的分数,再根据两个负数比较大小,绝对值大的反而小进行比较,即可得出答案.解答:解:∵﹣=﹣,﹣=﹣,又∵,∴﹣<﹣;故答案为:<.点评:此题考查了有理数的大小比较,解题的关键掌握好两个负数比较大小,绝对值大的反而小,是一道基础题.11.(3分)若x=1是关于x的方程2x+3k=0的解,则k=.考点:一元一次方程的解.专题:计算题.分析:将方程的解代入方程可得关于k的一元一次方程,从而可求出k的值.解答:解:根据题意得:2+3k=0,解得:k=﹣.故答案为:﹣.点评:本题考查一元一次方程的解得知识,把方程的解代入原方程,转化为关于k字母系数的方程进行求解,注意细心.12.(3分)计算5400″= 1.5°.考点:度分秒的换算.专题:计算题.分析:根据1°=60′,1′=60″,把5400除以3600即可转化为度.解答:解:∵5400÷60=90,90÷60=1.5,∴5400″=1.5°.故答案为1.5.点评:本题考查了度分秒的换算:1°=60′,1′=60″.13.(3分)一张约0.1毫米的纸,连续对折10次的厚度是10.24厘米.考点:有理数的乘方.分析:根据对折一次的厚度是0.1×21毫米,对折两次的厚度是0.1×22毫米,对折三次的厚度是0.1×23毫米…,根据此规律可知对折10次的厚度为0.1×210毫米.解答:解:∵一张纸的厚度大约是0.1毫米,∴对折一次的厚度是0.1×21毫米,对折两次的厚度是0.1×22毫米…,∴对折10次的厚度为0.1×210=102.4(毫米)=10.24(厘米).故答案为:10.24.点评:此题主要考查了有理数乘方的运算法则,根据题意找出每次对折后纸片厚度的规律是解答此题的关键.14.(3分)若2ab2c3x+1与﹣5ab y c6x﹣5是同类项,则x+y=4.考点:同类项.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出x、y的值,代入计算即可.解答:解:∵2ab2c3x+1与﹣5ab y c6x﹣5是同类项,∴3x+1=6x﹣5,y=2,解得:x=2,y=2,则x+y=4.故答案为:4.点评:本题考查了同类项的定义,属于基础题,注意掌握同类项中的两个相同.15.(3分)(2009•娄底)王婧同学用火柴棒摆成如下的三个“中”字形图案,依此规律,第n个“中”字形图案需6n+3@9+6(n﹣1)根火柴棒.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:通过观察发现后边的图形总比前边的图形多的根数,即可解决.解答:解:观察图形发现:第一个图形中有9根,后边是多一个图形,多6根.根据这一规律,则第n个图形中,需要9+6(n﹣1)=6n+3.点评:首先正确数出第一个图形中的根数,然后观察分析可得到答案.三、解答题(共55分)16.(6分)计算:﹣22÷(﹣0.6×).考点:有理数的混合运算.分析:首先计算括号内的式子,然后把除法转化成乘法,计算乘法即可.解答:解:原式=﹣22÷(﹣×)=﹣22÷(﹣1)=﹣22÷(﹣)=22×=33.点评:本题考查了有理数的混合运算,正确确定运算顺序是关键.17.(6分)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),,.考点:整式的加减—化简求值.分析:本题应先将括号去掉,然后合并同类项,将方程化为最简式,最后把x,y的值代入计算即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解答:解:原式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.点评:此题考查了整式的加减运算.注意在去括号时,一定不要发生数字漏乘现象,也要正确处理符号问题.18.(6分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.考点:作图-三视图;由三视图判断几何体.分析:由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,2,3;从左面看有3列,每列小正方形数目分别为2,4,3.据此可画出图形.解答:解:如图所示:点评:考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.19.(8分)(1)平面内将一副三角板按如图1所示摆放,∠EBC=150°;(2)平面内将一副三角板按如图2所示摆放,若∠EBC=165°,那么∠α=15°;(3)平面内将一副三角板按如图3所示摆放,∠EBC=115°,求∠α的度数.考点:角的计算.分析:(1)(2)根据角的和差关系可直接算出答案;(3)首先计算出∠DBC的度数,再用∠ABC的度数减去∠DBC的度数即可.解答:解:(1)∠EBC=90°+60°=150°;(2)∠α=∠EBC﹣∠DBE﹣∠ABC=165°﹣90°﹣60°=15°;(3)因为∠EBC=115°,∠EBD=90°,所以∠DBC=∠EBC﹣∠EBD=25°.因为∠ABC=60°,所以∠α=∠ABC﹣∠DBC=35°.点评:此题主要考查了角的计算以及一副三角板各角之间的关系,根据图象得出是解题关键.20.(9分)小明一天的时间安排如图所示(所有活动均不重复进行):(1)补全条形统计图;(2)请完成表格;安排的项目各项目所占的百分比各项目对应的扇形圆心角的度数睡觉40% 144°活动15% 54°学习30%108°吃饭5% 18°其它10% 36°(3)画出对应的扇形统计图.考点:条形统计图;统计表;扇形统计图.分析:(1)用一天的总时间减去其余4项活动的时间得出小明的学习时间,补全条形统计图即可;(2)用360°乘以40%得出睡觉对应的扇形圆心角的度数;用1减去其余各项目所占的百分比得出学习所占的百分比,再用这个百分比乘以360°得出学习对应的扇形圆心角的度数;(3)根据(2)中数据即可画出对应的扇形统计图.解答:解:(1)由图可知,小明的学习时间为24﹣9.6﹣3.6﹣1.2﹣2.4=7.2(小时).条形统计图如下图所示:(2)睡觉对应的扇形圆心角的度数为360°×40%=144°;学习所占的百分比为1﹣40%﹣15%﹣5%﹣10%=30%,学习对应的扇形圆心角的度数为360°×30%=108°.故答案为144°,30%,108°;(3)扇形统计图如下图所示:点评:本题考查的是条形统计图、扇形统计图和统计图表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元,相关资料表明:甲、乙两种鱼苗的成活率分别为90%和96%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)这批鱼苗理论上的成活率是多少?(成活率=)考点:一元一次方程的应用.分析:(1)设甲种鱼苗x尾,乙种鱼苗(6000﹣x)尾,根据两种鱼苗的总价是3600元为等量关系建立方程求出其解即可;(2)根据(1)的结论分别甲种鱼苗和乙种鱼苗的成活数,再用这两种鱼苗的成活数之和除以购买的鱼苗总数就可以求出结论.解答:解:(1)设甲种鱼苗x尾,乙种鱼苗(6000﹣x)尾.根据题意得0.5x+0.8(6000﹣x)=3600,解得:x=4000,乙种鱼苗的数量为:6000﹣x=2000(尾).答:甲种鱼苗4000尾,乙种鱼苗2000尾;(2)由题意,得.答:理论成活率为92%.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,求百分比的运用,解答时根据两种鱼苗的总价为3600元为等量关系建立方程求出两种鱼的数量是第二问求理论成活率的关键.22.(10分)幻方的历史很悠久,传说中最早出现在夏禹时代的“洛书”,用今天的数学符号翻译出来.就是一个三阶幻方,如图1.(1)请你选取一组数据构造一个三阶幻方,填入到如图2的3×3方格中,使得每行、每列、每条对角线上的三个数之和都等于21;(2)在你构造的幻方中,你是如何确定正中间位置上的数字的?请简要说明理由;(3)请你选取一组数据构造一个三阶幻方,填入到如图3的3×3方格中,使得每行、每列、每条对角线上的三个数之和都等于27.(除15,21外,填一个你自己喜欢的,且符合题意的数)考点:一元一次方程的应用.分析:(1)根据三阶幻方的特点,要使三阶幻方的幻和为21,所以中心数必为21÷3=7;左下角的数是:(2+6)÷2=4,再根据和是21求出其他数;(2)根据三阶幻方的特点,要使三阶幻方的幻和为x,进而得出方程求出即可;(3)根据以上特点得出假设和为27得出各行以及各列的数据即可.解答:解:(1)答案不唯一,例如:(2)学生的解释合理即可,例如:设中间的数为x,根据题意得(如图)3x+21×2=21×3.解得:x=7.所以中间位置的数一定是7.(3)答案不唯一,例如:27,.点评:本题主要考查了三阶幻方的特点以及一元一次方程的应用,解决此题的关键利用幻和求得中心数,再由幻和和已知数求得各数,从而问题解决.======*以上是由明师教育编辑整理======。