初一上学期期末考试数学试题
湖北武汉江岸区2022-2023学年七年级上学期期末考试数学试题(含答案)
七年级数学一、选择题(本大题共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.某市2023年元旦的最低气温为1-℃,最高气温为5℃,这一天的最高气温比最低气温高( )℃. A.6B.5C.4D.32.我国成功完成2200兆帕超级钢的技术突破,打破了潜水艇材料的技术壁垒.数据2200用科学记数法可表示为( ) A.40.2210⨯B.32.210⨯C.22210⨯D. 22210⨯3.如图所示的几何体,从左面看的平面图是( )ABCD4.已知1x =-是关于x 的一元一次方程20mx +=的解,则m 的值为( ) A. 2-B. 1-C. 0D. 25.如图,OA 是北偏西60︒方向的一条射线,若90AOB ∠=︒,射线OB 的方向是( )A.南偏西30︒B.南偏西60︒C.北偏东30︒D.北偏东60︒6.关于单项式3242a b 的系数和次数,下列表述正确的是( )A.系数是2,次数是9B.系数是8,次数是4C.系数是8,次数是6D.系数是8,次数是97.我国唐代有一位尚书杨损任人唯贤,出题选拔官吏。
他说:“有人于黄昏时分在林中散步,无意中听到几个盗贼在分赃,偷的大概是布匹,只听得盗贼说,如果每人分6匹,就余5匹;如果每人分7匹,就差8匹,试问有几个盗贼在分多少匹布?”设有x 个盗贼,则可以列方程为( ) A. 6(5)7(8)x x +=- B. 6578x x +=-C.6(5)7(8)x x -=+D. 6578x x -=+8.卡塔尔卢赛尔体育场是由中国铁建国际集团承建,球场外立面的设计灵感源于阿拉伯吊灯的光影交错的典型图案。
该图案是由一些完全相同的小三角形依照规律排列组成,图形(1)由2个小三角形组成,图形(2)由8个小三角形组成,图形(3)由18个小三角形组成,….依次规律,图形(10)由( )个小三角形组成.(1) (2)(3) A.100B.160C.200D.3009.如图,在数轴上,点A 、B 表示的数分别是19-和3.点C 为线段AD 的中点,且6BC BD =,则点C 表示的数为( )A. 9-B. 9.5-C. 10-D. 10.5-10.如图,把一个角沿过点O 的射线对折后得到的图形为(090)AOB AOB ∠<<︒︒∠,现从点O 引一条射线OC ,使AOC m AOB ∠=∠,再沿OC 把角剪开.若剪开后再展开,得到的三个角中,有且只有一个角最大,最大角是最小角的三倍,则m 的值为( )A.14 B. 25 C. 14或25D.25或35二、填空题(本大题共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡的指定位置. 11. 9-相反数是 ,绝对值是 ,倒数是 . 12.若23m ab -与532ab是同类项,则m = .13.已知∠1是锐角,则∠1的补角比∠1的余角大 ︒.14.如图,正方形ABCD 的边CD 上有一点G ,以CG 为边向右作长方形CEFG ,BEF △沿BF 翻折,点E 的对应点1E 恰好落在线段DG 上,若113ABE E BF ∠=∠,则EBF ∠的度数为 ︒.15.一轮船沿长江从A 码头逆流而上,行驶到B 码头,比从B 码头返回A 码头多用0.5小时,若船速为30千米/小时,水速为2千米/小时,则A 码头和B 码头相距 千米.16.已知点A 、B 、C 都在直线l 上,点C 是线段AB 的三等分点,D 、E 分别为线段AB 、BC 中点,直线l 上所有线段的长度之和为91,则AC = .三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形. 17.(本小题满分8分)计算: (1)(1)(3)(1)(4)--++---(2)32816(2)(3)3+÷---⨯18.(本小题满分8分)解方程: (1)3(4)2(23)x x -=-(2)510118632x x -=- 19.(本小题满分8分)先化简,再求值:22254(53)34a b a b a +-+++-,其中3a =,2b =-.20.(本小题满分8分)某种包装盒的形状是长方体,长AD 比高AE 的三倍多2,宽AB 的长度为3分米,它的展开图如图所示.(不考虑包装盒的黏合处)(1)设该包装盒的高为m ,则该长方体的长为 分米,边FG 的长度为 分米;(用含m 的式子表示)(2)若FG 的长为12分米,现对包装盒外表面涂色,每平方分米涂料的价格是6元,求为每个包装盒涂色的费用是多少?(注:包装盒内壁不涂色)21.(本小题满分8分)已知点C 为线段AB 上的一点,点D 、E 分别为线段AC 、BD 中点. (1)若4AC =,10BC =,求CE 的长;(2)若5AB CE =,且点E 在点C 的右侧,试探究线段AD 与BE 之间的数量关系.22.(本小题满分10分)“丰收1号”油菜籽的平均每公顷产量为2500kg ,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg ,含油率提高了10个百分点.A 村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少5公顷,但是所产油菜籽的总产油量比去年提高了5000kg.(1)分析:根据问题中的数量关系,用含x 的式子填表:求出:A 村去年和今年种植油菜的面积各是多少公顷?(2)去年和今年A 村将所产的油全部制作成压榨菜籽油,然后都以每千克15元的价格卖给批发商,批发商将去年菜籽油按照每千克20元定价,且全部售出.由于销售火爆,批发商今年比去年每千克提高了a 元定价,也全部售出,且今年比去年多盈利130000元,求a 的值.23.(本小题满分10分)如图,在数轴上,点A 表示的数为a ,点B 表示的数为b ,点C 表示的数为c ,且a 、b 、c 满足28120a b c -+-++=.(1)A 、B 、C 三点对应的数分别为a = ,b = ,c = ;(2)带电粒子M 从点C 出发,以每秒3个单位长度的速度向右运动;同时带电粒子N 从点B 出发,以每秒1个单位长度的速度向左运动.点P 为线段CA 上一点.①求两带电粒子M 、N 相遇所用的时间,并求出相遇时点M 所对应的数;②若两带电粒子M 、N 运动开始时,在线段CA 之间放入一某种电场,使得带电粒子在线段CA 运动时,仍按原方向运动,但在线段CP 运动时,速度比原来每秒快1个单位长度,在线段P A 运动时,速度比原来每秒慢1个单位长度,点M 与点N 在其他位置的速度与原来相同。
河北省承德市兴隆县2023-2024学年七年级上学期期末考试数学试卷(含答案)
2023—2024学年度第一学期期末检测试题七年级数学试卷本试卷共8页,满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 某品牌酸奶外包装上标明“净含量:”;随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量/ml295300310305A. 原味B. 草莓味C. 香草味D. 巧克力味2. 下列等式错误的是()A. B. C. D.3. 如图,数轴上点P表示的有理数可能是()A. 1.6B. -1.4C. -1.6D. -2.44. 如图,C、D是线段AB的三等分点,若,则线段CB的长度为()A. 3B. 6C. 9D. 125. 方程去分母后,得()A. B.C. D.6. 一副三角板按如图所示的方式摆放,则余角的度数为()A. B. C. D.7. 如果式子的值为10,则的值为()A. 20B. 22C. 26D. 368. 有理数a,b对应的点在数轴上的位置如图,则下列结论正确的是()A. B. C. D.9. 如图所示,直线MN表示一条铁路,铁路两旁各有一点A和B,表示两个工厂.要在铁路上建一货站P,使它到两厂距离之和最短,这个货站P应建在AB与MN的交点处,这种做法用几何知识解释应是()A. 两点之间,线段最短B. 射线只有一个端点C. 两直线相交只有一个交点D. 两点确定一条直线10. 已知直线上A、B两点相距12cm,点C是线段AB的中点,点D与点B相距8cm,则CD的长度是()A. 2cmB. 8cmC. 14cmD. 14cm或2cm11. 如图,将绕点A顺时针旋转一定的角度得到,此时点恰在边AC上,若,,则的长为()A. 2B. 3C. 4D. 512. 元旦到了,初一某班用彩色小灯布置教室,按“一蓝,二红,四黄,三绿”的规律连接起来,那么第100个小灯是()色的A. 红B. 黄C. 蓝D. 绿13. 已知,,,则相等的两个角是()A. B. C. D. 无法确定14. 某学校在元旦联欢会活动中,设座位有x排,若每排坐25人,则有8人无座位;若每排坐29人,则空24个座位,则下列方程正确的是()A. B. C. D.15. 如图,将刻度尺倒放在数轴上,刻度尺上6cm和0cm分别对应数轴上的数-2和3,那么刻度尺上9cm对应数轴上的数为()A. -5B. -5.4C. -4.5D. -3.616. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A. 110B. 168C. 212D. 222卷Ⅱ(非选择题,共82分)二、填空题(本大题共3个小题,5个空,每空2分,共10分.把答案写在题中横线上)17. ______.18. 王阿姨买了5盒冰激凌,付了a元,找回b元,5盒冰激凌的总价是______元,冰激凌的单价是______元.19. 如图,点A在数轴上对应的数为a,点B对应的数为b,点A与点B之间的距离记作AB.已知,b比a大12.则:(1)AB的值是______;(2)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B 出发沿数轴向左运动.设运动时间是t秒.当点M与点N之间的距离是9时,则t的最大值为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(每小题4分,计8分)(1)(2)解方程:21. 解方程(共10分)学校图书馆以每天借出50册图书为标准.超出部分用正数表示,不足部分用负数表示.上星期图书馆借出图书记录如下:星期一星期二星期三星期四星期五0+8+6-3-7(1)星期五借出______册图书;(2)星期二比星期四多借出______册图书;(3)这五天共借出多少册图书?22.(本小题10分)如图,O是直线AB上一点,OD平分,.若,(1)求的度数;(2)求的度数.23. 应用题(本小题10分)已知,.(1)当,时,求;(2)比较A与B的大小;(3)求.24.(本小题10分)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若,求S的值.25.(本小题12分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为130斤,求大象的体重.请将下列解答过程补充完整:孙权曾致巨象,太祖欲知其斤重,访之群下,咸莫能出其理,冲曰:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.”——《三国志》解:由题意得等量关系:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,所以:①已知搬运工体重均为130斤,设每块条形石的重量是x斤,则可列方程为:______.②解这个方程得,______.③实际上由题也可直接得到:一块条形石的重量=______个搬运工的体重.④最终可求得:大象的体重为______斤.26.(本小题12分)如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.图1 图2 图3(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分.①求t的值;②此时ON是否平分?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由.七年级数学试卷答案卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)CDCBCD BCADB DBDCC卷Ⅱ(非选择题,共82分)17. -8 18. ,19. 12;720. 解:(1)原式(2)(每小题4分,按步骤适当给分)21. 解:(1)43 (2)11(每空3分,共6分)(3)(册),即这五天共借出254册图书.……本小问题4分22.(1)解:∵O是直线AB上一点,∴,∵,∵,∴;……5分(2)解:∵,∴,∵OD平分,∴,∵,,∴.……10分23. 解:(1).……3分(2),所以.……7分(3)……10分24. 解:(1)由图形可知:.……5分(2)将代入上式,.……10分25. ①……3分②260……6分③2……9分④5590……12分26. 解:(1)①∵,,∵,∴,∴,∴,∴,解得:秒;……4分②是,理由如下:∵,,∴ON平分;……8分(2)5秒或115秒时,OC平分角MON,理由如下:当OC运动时,∵,,∵,∴,∵三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,设为3t,为,∵,可得:,解得:秒;……10分OC停止运动,OM运动时,此时,OC也平分,(秒).……12分。
人教版七年级上学期数学《期末考试试题》附答案
人 教 版 数 学 七 年 级 上 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. ﹣3的相反数是( ) A. 13- B. 13 C. 3- D. 32.下列图形中,是正方体表面展开图的是( )A. B.C. D.3.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( )A. 30.2410⨯B. 62.410⨯C. 52.410⨯D. 42410⨯4.已知﹣25a m b 和7a 4b n 是同类项,则m+n 的值是( )A. 2B. 3C. 4D. 55. 在下列调查中,适宜采用全面调查的是( )A 了解我省中学生视力情况B. 了解九(1)班学生校服尺码情况C. 检测一批电灯泡的使用寿命D. 调查台州《600全民新闻》栏目收视率6.已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A. 7cmB. 3cmC. 7cm 或3cmD. 5cm 7.钟表在8:30时,时针与分针的夹角是( )度.A. 85B. 80C. 75D. 708.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A. 95元B. 90元C. 85元D. 80元二、填空题9.2-的绝对值是____.10.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.11.单项式﹣5x2y的次数是_____.12.已知代数式x+2y的值是3,则代数式2x+4y﹣7的值是__.13.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°,则∠AOD=______°.14.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______.15.如果方程2x+a=x﹣1的解是﹣4,那么a的值为_____.16.观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有________个三、解答题17.计算:(1)(2119418--)×36(2)(﹣1)4﹣36÷(﹣6)+3×(﹣13)18.化简(3m+2)﹣3(m2﹣m+1)+(3﹣6m).19.化简求值:2(3x2﹣2x+1)﹣(5﹣2x2﹣7x),其中x=﹣1.20.解方程:(1)4x﹣2(x+0.5)=17(2)42x-﹣213x+=1.21. 如图,在平面内有四个点A,B,C,D,请你用直尺按下列要求作图.(1)作射线CD;(2)作直线AD;(3)连接AB;(4)作直线BD与直线AC相交于点O.22.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?23.粮库3天内进出库的粮食记录日下(单位:吨.进库的吨数记为正数,出库的吨数记为负数):+26,﹣32,﹣25,+34,﹣38,+10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?24.元旦晚会上,准备给班上40位同学一人一件礼物,分别玩具与文具,班委会花了230元到超市买了玩具和文具共40件,若玩具每个5元,文具每个8元,问班委会买了玩具和文具各多少个?答案与解析一、选择题1. ﹣3的相反数是()A.13- B.13C. 3-D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.下列图形中,是正方体表面展开图的是()A. B.C. D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A、B折叠后,缺少一个底面,故不是正方体的表面展开图;选项D折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体,选项C符合141型,可以折叠成正方体.故选C.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况,)判断也可.3.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( )A. 30.2410⨯B. 62.410⨯C. 52.410⨯D. 42410⨯【答案】B【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知﹣25a m b 和7a 4b n 是同类项,则m+n 的值是( )A. 2B. 3C. 4D. 5 【答案】D【解析】【分析】根据同类项的定义“如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项”可得出m ,n 的值,再代入求解即可.【详解】解:∵﹣25a m b 和7a 4b n 是同类项,∴4,1m n ==,∴5m n +=.故选:D .【点睛】本题考查的知识点是同类项,熟记同类项的定义是解此题的关键.5. 在下列调查中,适宜采用全面调查的是( )A. 了解我省中学生视力情况B. 了解九(1)班学生校服的尺码情况C. 检测一批电灯泡的使用寿命D. 调查台州《600全民新闻》栏目的收视率【答案】B【解析】试题分析:采用全面调查时,调查的对象要小,A 、C 、D 三个选项的调查对象庞大,不宜适用全面调查,只能采用抽样调查的方式.考点:调查的方式.6.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A. 7cmB. 3cmC. 7cm或3cmD. 5cm【答案】D【解析】【分析】先根据题意画出图形,再利用线段的中点定义求解即可.【详解】解:根据题意画图如下:∵10,4AB cm BC cm==,M是AC的中点,N是BC的中点, ∴1115222MN MC CN AC BC AB cm=+=+==;∵10,4AB cm BC cm==,M是AC的中点,N是BC的中点, ∴1115222MN MC CN AC BC AB cm=-=-==.故选:D.【点睛】本题考查的知识点是与线段中点有关的计算,根据题意画出正确的图形是解此题的关键.7.钟表在8:30时,时针与分针的夹角是()度.A. 85B. 80C. 75D. 70【答案】C【解析】【分析】时针转动一大格转过的角度是30,再根据时针与分针相距的份数乘以每份的度数,即可得出答案.【详解】解:∵在8:30时,此时时针与分针相差2.5个大格,︒⨯=︒.∴此时组成的角的度数为30 2.575故选:C.【点睛】本题考查的知识点是钟面角,时针转动一大格转过的角度是30,分针转动一小格转过的角度是6︒,熟记以上内容是解此题的关键.8.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A. 95元B. 90元C. 85元D. 80元【答案】B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.二、填空题9.2 的绝对值是____.【答案】2【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】-2的绝对值是2.故答案为:2.【点睛】此题考查绝对值的定义,解题关键在于掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.【答案】两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.11.单项式﹣5x2y的次数是_____.【答案】3【解析】【分析】根据单项式次数的定义来求解,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式次数的定义,所有字母的指数和是2+1=3,故次数是3.【点睛】本题是对单项式基础知识的考查,熟练掌握单项式次数是解决本题的关键.12.已知代数式x+2y的值是3,则代数式2x+4y﹣7的值是__.【答案】-1【解析】∵x+2y=-3,∴2x+4y-7=2(x+2y)-7=2×3-7=6-7=-1.故答案是:-1.13.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°,则∠AOD=______°.【答案】145【解析】∵∠AOB=∠COD=90°,∠BOC=35°∴∠BOD=∠COD-∠BOC=90°-35°=55°,∴∠AOD=∠AOB+∠BOD=90°+55°=145°.故答案为145.14.在数轴上与2 所对应的点相距4个单位长度的点表示的数是______.【答案】2或﹣6【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为2或﹣6.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.15.如果方程2x+a=x﹣1的解是﹣4,那么a的值为_____.【答案】3.【解析】【分析】把x=﹣4,代入方程得到一个关于a的一次方程,即可求解.【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1,解得:a=3.故答案是:3.【点睛】本题考查了一元一次方程方程的求解,掌握一元一次方程的解法是解题的关键.16.观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有________个【答案】49【解析】【分析】将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中★的个数的关系式,然后把n=16代入进行计算即可求解.【详解】解:观察发现,第1个图形★的个数是,1+3=4,第2个图形★的个数是,1+3×2=7,第3个图形★的个数是,1+3×3=10,第4个图形★的个数是,1+3×4=13,…依此类推,第n个图形★的个数是,1+3×n=3n+1,故当n=16时,3×16+1=49.故答案为49.【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n个图形★的个数的表达式是解题的关键.三、解答题17.计算:(1)(2119418--)×36(2)(﹣1)4﹣36÷(﹣6)+3×(﹣13)【答案】(1)-3;(2)6【解析】试题分析:(1)根据乘法分配律可以解答本题;(2)根据幂乘方、有理数的乘除法和加减法可以解答本题.试题解析:解:(1)原式=2113636369418⨯-⨯-⨯=8﹣9﹣2=﹣3;(2)原式=1+6+(﹣1)=6.18.化简(3m+2)﹣3(m 2﹣m+1)+(3﹣6m ).【答案】223m -【解析】【分析】先去括号,再合并同类项即可.【详解】解:原式22323333623m m m m m =+-+-+-=-.【点睛】本题考查的知识点是整式的化简,掌握去括号法则以及合并同类项法则是解此题的关键. 19.化简求值:2(3x 2﹣2x+1)﹣(5﹣2x 2﹣7x ),其中x=﹣1.【答案】2【解析】【分析】 先去括号,再合并同类项化简,最后代入求解即可. 【详解】解:原式222642527833x x x x x x =-+-++=+-, 当x=﹣1,原式28(1)3(1)32=-+⨯--=.【点睛】本题考查的知识点是整式的加减-化简求值,掌握去括号法则以及合并同类项法则是解此题的关键. 20.解方程:(1)4x ﹣2(x+05)=17(2)42x -﹣213x +=1. 【答案】(1)x=9;(2)x=47【解析】 试题分析:根据一元一次方程的解法即可求出答案.试题解析:解:(1)去括号得:4x ﹣2x ﹣1=17移项合并得:2x =18解得:x =9(2)去分母得:3(4-x )-2(2x +1)=6去括号得:12﹣3x ﹣4x ﹣2=6移项合并得:7x=4解得:x=47.21. 如图,在平面内有四个点A,B,C,D,请你用直尺按下列要求作图.(1)作射线CD;(2)作直线AD;(3)连接AB;(4)作直线BD与直线AC相交于点O.【答案】见解析【解析】试题分析:(1)直接利用射线的定义得出答案;(2)直接利用直线的定义得出答案;(3)直接利用线段的定义得出答案;(4)根据直线的定义得出交点.解:(1)如图所示:CD即为所求;(2)如图所示:AD即为所求;(3)如图所示:AB即为所求;(4)如图所示:点O即为所求.考点:直线、射线、线段.22.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?【答案】(1)200;(2)图形见解析;(3)学校有150人平均每天参加体育锻炼在0.5小时以下.【解析】【分析】(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼0.5小时以下.【详解】解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200-60-30-10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.粮库3天内进出库的粮食记录日下(单位:吨.进库的吨数记为正数,出库的吨数记为负数):+26,﹣32,﹣25,+34,﹣38,+10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存粮食是多少吨?【答案】(1)-25吨;(2)505吨;【解析】【分析】(1)理解“+”表示进库“-”表示出库,把粮库3天内发生粮食进出库的吨数相加就是库里现在的情况; (2)利用(1)中所求即可得出3天前粮库里存粮数量.【详解】(1)26+(﹣32)+(﹣25)+34+(﹣38)+10=﹣25(吨).答:粮库里的粮食是减少了25吨;(2)480﹣(﹣25)=505(吨).答:3天前粮库里存粮有505吨;【点睛】此题主要考查了正数和负数的定义,解题关键是理解“正”和“负”的相对性,明确正数和负数的定义,并且注意0这个特殊的数字,既不是正数也不是负数.24.元旦晚会上,准备给班上40位同学一人一件礼物,分别是玩具与文具,班委会花了230元到超市买了玩具和文具共40件,若玩具每个5元,文具每个8元,问班委会买了玩具和文具各多少个?【答案】30个玩具,10个文具【解析】【分析】设班委会买了玩具x 个,则买了(40-x)个文具,再根据买玩具的费用+买文具的费用=总费用230列方程求解即可.【详解】解:设班委会买了玩具x 个,则买了(40-x)个文具,由题意得:58(40)230x x +-=解得:30x =,当30x =时,403010-=(个),因此,班委会买了30个玩具,10个文具.【点睛】本题考查的知识点是一元一次方程的应用,根据题目找准等量关系是解此题的关键.。
广西壮族自治区桂林市2023-2024学年七年级上学期期末数学试题(解析版)
2023~2024学年度上学期学情调研题七年级 数学(考试用时120分钟,满分120分)注意事项:1.试卷分为选择题和非选择题两部分,在本试题卷上作答无效.2.答题前,请认真阅读答题卡上的注意事项.3.考试结束后,将本试卷和答题卡一并交回.一、单选题(共12小题,每小题3分,共36分,请将答案填在答题卡上)1. 有理数,,0,1中最小的一个数是( )A. 1B. 0C.D. 【答案】C【解析】【分析】运用有理数大小比较法则找出有理数中最小的数即可.【详解】解:在实数,,0,1中,负数最小根据两个负数比较大小,绝对值大的反而小所以最小的数是.故选:.【点睛】此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.2. 如果水位上升3米记作米,那么米表示水位( )A. 上升5米B. 下降5米C. 上升2米D. 下降3米【答案】B【解析】【分析】本题考查了正数与负数,解题关键是理解“正”和“负”的相对性,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.【详解】解:米表示上升3米,那么米表示水位下降5米,故选:B .3. 如图,数轴上有,,,四个点,其中绝对值最小的数对应的点是( )13-2-2-13-13-2-2-C 3+5-3+5-A B C DA. 点B. 点C. 点D. 点【答案】B【解析】【分析】根据图示,可得:哪个点离原点越近,则哪个点所对应的数的绝对值就越小,据此判断出绝对值最小的数对应的点是哪个即可.【详解】解:∵,,,四个点中,点离原点最近,∴绝对值最小的数对应的点是.故选:B .【点睛】本题考查绝对值的意义,有理数大小比较的方法,解题的关键是要明确:①正数都大于;②负数都小于;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4. 下列调查中,你认为适合采用全面调查是( )A. 《新闻联播》电视栏目的收视率B. 一批灯泡的使用寿命C. 一个班级学生的体重D. 我国中小学生喜欢上数学课的人数【答案】C【解析】【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】解:A 、调查范围广,无法普查,故不符合题意;B 、调查具有破坏性,无法普查,故不符合题意;C 、一个班级学生的体重,适合普查,符合题意;D 、调查范围广,无法普查,故不符合题意;故选:C .5. 桂林以其独特的山水风光而闻名于世.这里的自然美景如诗如画,仿佛置身于一幅巨大的画卷之中,深受国内外游客的喜爱.据统计,2023年暑假期间,漓江游船和排筏累计接待游客1970000人次.将1970000用科学记数法表示为( )A. B. C. D. 【答案】A【解析】的AB C DA B C D B B 0061.9710⨯519.710⨯71.9710⨯51.9710⨯【分析】本题考查了科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【详解】解:.故选:A .6. 单项式的次数是( )A. B. 1 C. 2 D. 3【答案】D【解析】【分析】本题考查单项式的次数,根据单项式的次数就是所有字母指数之和,即可解题.【详解】解:单项式的次数是,故选:D .7. 如果与是同类项,那么m ,n 的值是( )A , B. , C. , D. ,【答案】A【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,得出关于 的方程,求得 的值;【详解】∵与是同类项,故选A【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同8. 如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知,其依据是( ).10n a ⨯1||10a ≤<n n a n 10≥n 1<n 61970000 1.9710=⨯223xy -23-223xy -123+=232n x y +3213m x y --2m =1n =0m =1n =2m =2n =1m =2n =,m n ,m n 232n x y +3213m x y --23,213,n m ∴+=-=2,1,m n ∴==CA CB AB +>A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 直线比线段长【答案】A【解析】【分析】根据线段公理:两点之间,线段最短,即可得解.【详解】根据题意,得两点之间,线段最短故答案为A .【点睛】此题主要考查对两点之间距离的理解,熟练掌握,即可解题.9. 《诗经》是中国古代诗歌的开端,最早的一部诗歌总集,共有311篇,其中6篇为笙诗,只有标题,没有内容,余下的诗篇可分为《风》、《雅》、《颂》三个部分.其中,《风》的篇数是《颂》的4倍,《雅》的篇数比《颂》的3倍少15篇.若设《颂》有篇,下列根据题意列出的方程正确的是( )A. B. C. D.【答案】C【解析】【分析】考查了由实际问题抽象出一元一次方程,需要掌握列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.设《颂》有篇,根据共有311篇,其中6篇为笙诗,只有标题,没有内容,余下的诗篇可分为《风》、《雅》、《颂》三个部分.其中,《风》的篇数是《颂》的倍,《雅》的篇数.【详解】解:设《颂》有篇,由题意得.故选:C .10. 下面说法与所示的几何图形相符的是()x 43156311x x x ++++=1115631143x x x +-++=43156311x x x +-++=1115631143x x x ++++=x 4x 315-x x 43156311x x x +-++=A. 点在直线上B. 直线和直线表示同一条直线C. 点在射线上D. 直线与直线都经过点【答案】D【解析】【分析】本题考查了点和直线的关系,直线的性质,注意仔细观察图形,掌握角的概念是关键;利用点和直线的关系,结合图形,对选项一一分析,选出正确答案.【详解】解:A 、点不在直线上,故错误,不合题意;B 、直线和直线表示同一条直线,故原说法错误,不合题意.C 、点不在射线上,故原说法错误,不合题意.D 、直线与都经过点,故正确,符合题意;故选:D .11. 如图,已知直线上A ,B 两点相距,点是线段的中点,点在直线上且与点相距,则的长度是( )A. 2cmB. 14cmC. 14cm 或8cmD. 14cm 或2cm【答案】D【解析】【分析】此题主要考查了线段的中点,理解线段中点的定义是解答此题的关键,分类讨论是解答此题的难点,.首先根据线段,是的中点求出,然后分两种情况进行讨论:①当点在点的左侧时,;②当点在点的右侧时,;据此可得出答案.【详解】解:线段,是的中点,,点在直线上,有以下两种情况:①当点在点的左侧时,;P n OA m P OB OA PB OP n OA n P OB OA PB O 12cm C AB D AB B 8cm CD 12cm AB =C AB 6cm BC =D B CD BD BC =-D B CD BC CD =+ 12cm AB =C AB ()16cm 2BC AB ∴== D AB ∴D B ()862cm CD BD BC ∴=-=-=②当点在点右侧时,.综上所述:线段的长是或.故选:D .12. 如图是一个运算程序,若第1次输入的值为16,则第2024次输出的结果是( )A. 1B. 2C. 4D. 8【答案】C【解析】【分析】本题主要考查了代数式求值问题,解题的关键是通过计算特殊结果发现一般规律,根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解.【详解】解:由数据运算程序得,如果开始输入的的值为16,那么:第1次输出的结果是8,第2次输出的结果是4,第3次输出的结果是2,第4次输出的结果是1,第5次输出的结果是4,第6次输出的结果是2,第7次输出的结果是1,第8次输出的结果是4,第9次输出的结果是2,第10次输出结果是1,第11次输出结果是4,综上可得,从第4次开始,每三个一循环,由可得第2024次输出的结果与第5次输出的结果相等,为4.故选:C .的的的D B ()6814cm CD BC BD ∴=+=+=CD 2cm 14cm a a ⋯⋯(20243)36732-÷=⋅⋅⋅二、填空题(共6小题,每小题2分,共12分,请将答案填在答题卡上)13. -5的倒数是_______【答案】##-0.2【解析】【分析】根据倒数的定义即可得出答案.【详解】解:的倒数是;故答案为:.【点睛】本题主要考查了倒数的定义.解题的关键是掌握若两个数的乘积是1,我们就称这两个数互为倒数.14. 计算: _______.【答案】【解析】【分析】本题考查了有理数的乘法,根据有理数的乘法法则:两数相乘.同号得正,异号得负,再把绝对值相乘,即可得到答案.【详解】解:.故答案为:.15. 某校为了了解初一年级300名学生每天完成作业所用时间的情况,从中对20名学生每天完成作业所用时间进行了抽查,这个问题中的样本容量是_______.【答案】20【解析】【详解】因为某校为了了解初一年级300名学生每天完成作业所用时间的情况,从中对20名学生每天完成作业所用的时间进行了抽查,所以这个问题中的样本容量是20.故答案为:2016. 钟表3时30分时,时针与分针所成的角的度数为________.【答案】【解析】【分析】本题考查了钟面角,角的和差运算;根据分针每分钟转,时针每分钟转,分针与时针从3时到3时30分所转过的角度,利用角的和差关系即可求解.【详解】解:分针从3时到3时30分转过,时针从3时到3时30分转过,15-5-15-15-()23⨯-=6-()()23236⨯-=-⨯=-6-75︒6︒0.5︒306180⨯︒=︒300.515⨯︒=︒则钟表3时30分时,时针与分针所成的角的度数为;故答案为:.17. 若代数式的值是6,那么代数式的值是______.【答案】22【解析】【分析】本题考查了求代数式的值,熟练掌握整体代入法是解题的关键,根据已知得出,然后对所求式子变形,整体代入计算即可.【详解】解:,,,故答案为:22.18. 三个面积均是的多边形如图叠放,其中,正方形阴影部分外的面积是,六边形阴影部分外的面积是,若两块阴影部分的面积之和正好是五边形面积的一半,则a 、b 、m 三者之间的数量关系是______.【答案】【解析】【分析】本题考查了二元一次方程组,设正方形与五边形阴影部分的面积是,六边形与五边形阴影部分的面积是,根据题意列出相应的方程组,再消元即可.【详解】解:设正方形与五边形阴影部分的面积是,六边形与五边形阴影部分的面积是,根据题意得:,整理得到:,180(9015)75︒-︒+︒=︒75︒2231a a ++2697a a ++2235a a +=22316a a ++= 2235a a ∴+=226973(23)735722a a a a ∴++=++=⨯+=m a b 302m a b --=1S 2S 1S 2S 121212a S m b S m S S m ⎧⎪+=⎪+=⎨⎪⎪+=⎩302m a b --=故答案为:.三、解答题(本大题共8题,共72分,请将解答过程写在答题卡上)19. 计算:(1)(2).【答案】(1)(2)【解析】【分析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键;(1)去括号,利用减法法则,计算即可求出值;(2)先计算乘方运算,再计算乘除运算.【小问1详解】解:;【小问2详解】解:.20. 将有理数分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}【答案】0,2023;,;,.【解析】【分析】本题考查了有理数的概念及分类,根据有理数的概念分类即可.302m a b --=()735--+41122-⨯÷154-()735--+735=++15=41122-⨯÷22=-⨯4=-12.5,0,2,2023,35%,0.62--2.5-35%-1220.6【详解】解:整数:0,2023;负数:,;正分数:,.故答案为:0,2023;,;,.21. 解方程:(1);(2).【答案】(1); (2).【解析】【分析】本题考查了一元一次方程的解法,解答关键是按照相关解法逐步运算.(1)先去括号,再移项合并同类项,未知项系数化为1,求解;(2)先去分母,再去括号,移项合并同类项,未知项系数化为1,求解;【小问1详解】解:去括号,得,,移项,得,合并同类项,得,,∴;【小问2详解】解:去分母,得,去括号,得,移项,得2.5-35%-1220.6 2.5-35%-1220.67(33)1x x --=1231332x x -+=-12x =-1713x =7331x x -+=7313x x -=-42x =-12x =-()()21233118x x -=+-249318x x -=+-合并同类项,得,∴22. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查整式的化简求值,将原式去括号,合并同类项后代入已知数值计算即可.【详解】解:原式,当时,原式.23. 2023年在杭州举办的第十九届亚运会,共有45个国家和地区的代表队、12000多名运动员参加,共颁发金牌482枚.某校新闻社团的同学根据图1金牌榜前四名的金牌数绘制了不完整的条形统计图和扇形统计图.根据以上信息,解答下列问题:(1)在扇形统计图中,字母A 、B 所代表的国家名称分别是A :______;B :______;(2)除前四名外,其他国家和地区在第十九届亚运会上共夺得金牌多少枚?(3)在扇形统计图中,求中国代表队所得金牌数对应扇形的圆心角度数.(精确到)(4)你还能从图中得到什么信息?(写一条即可)【答案】(1)印度,日本;(2)枚493182x x --=--1317x -=-1713x =(32)(32)xy x xy xy x --+-1,2x y =-=65xy x -7-3232xy x xy xy x=-++-65xy x =-1,2x y =-=6(1)25(1)1257=⨯-⨯-⨯-=-+=-1︒159(3)(4)见解析【解析】【分析】本题考查了统计图、求扇形的圆心角度数,解题的关键是读得懂图表;(1)求出相应频率即可判断;(2)用总数减去前四名即可得到;(3)利用频率乘上即可;(4)通过图表进行分析,分析合理即可,答案不唯一.【小问1详解】解:,故A 表示印度;,故B 表示日本,故答案为:印度,日本;【小问2详解】解: ,故其他国家和地区在第十九届亚运会上共夺得金牌枚;【小问3详解】解:;【小问4详解】解:从图中得到中国获得金牌数目第一,国家对运动的重视程度较高.24. 某水利工程,甲工程队单独施工需要40天可以完成,乙工程队单独施工需要60天可以完成.(1)现在乙工程队施工10天后,为了加快进度,甲工程队加入,两队合作完成余下的工程,问完成此项水利工程一共用了多少天?(2)完成此项水利工程,甲、乙二队共得到施工费68万元,如果按每队完成的工作量计算施工费,那么甲工程队可以得到多少万元?【答案】(1)30,(2)34.【解析】【分析】本题考查了一元一次方程的应用,有理数的混合运算的应用,解题的关键是找准等量关系,正确列出程;(1)设乙队单独完成这项工程需要x 天,根据甲队完成的工作量+乙队完成的工作量=总工作量1,列方程即可;150︒360︒280.0581482≈ 520.108482≈ 482201524228159----=159201360150482⨯︒≈︒(2)根据甲的工作效率和工作时间,计算甲完成工程的几分之几,再乘以施工费即可.【小问1详解】解:设完成此项水利工程一共用了x 天,根据题意得,,解得,,答:完成此项水利工程一共用了30天.【小问2详解】,∴甲工程队可以得到34万元25. 综合与实践:【问题情境】七年级(1)班的同学在劳动实践课上采挖红薯,通过对红薯的称重感受“正数与负数”在生活中的应用.【实践探究】同学们一共挖了10筐红薯,以每筐为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:筐号①②③④⑤⑥⑦⑧⑨⑩重量/千克10412【问题解决】(1)求这10筐红薯的总重量是多少千克?(2)为了让更多的人分享劳动成果,该班同学每人分得2千克后,决定将剩余的红薯赠送给敬老院的爷爷奶奶们.已知敬老院共有138名老人,平均每位老人分得千克的红薯,求七年级(1)班的学生人数.【答案】(1)总重量是千克;(2)七年级(1)班的学生人数为人.【解析】1014060x x -+=30x =3010683440-⨯=30kg 3- 2.50.5- 1.5- 2.5-1.530348【分析】本题考查了有理数的混合运算,一元一次方程的应用,理解题意,正确列式计算是解此题的关键.(1)根据题意列出算式求解即可;(2)设七年级(1)班的学生人数为,列出,求解即可.【小问1详解】解:这10筐红薯的总重量是:,答:总重量是千克;【小问2详解】解:设七年级(1)班的学生人数为,由题意得:,解得:,答:七年级(1)班的学生人数为人.26. 综合与探究【提出问题】小明在学习中遇到这样一个问题:如图1,,请作一个,使与互余(),即.【动手操作】小明是这样思考的:如图2所示,若射线在的内部,则,所以射线在的外部;然后通过构造直角,找到的余角,如图3所示;进而分析要使与互余,只需.因此,小明找到了解决问题的方法:过点O 作射线的垂线,利用量角器作出的平分线,这样就得到与互余.请你帮助小明完成下列推理说明:(1)已知:如图3,,射线平分.请说明与互余.解:理由:因为射线平分(已知),x 3032138 1.5x -=⨯()10303 2.510.5041 1.5 2.52303⨯+-++-+++--+=303x 3032138 1.5x -=⨯48x =48090AOB αα∠=︒<<︒()AOC ∠AOC ∠BOC ∠AOC BOC ∠>∠90AOC BOC Ð+Ð=°OC AOB ∠90AOC BOC ∠+∠<︒OC AOB ∠AOD ∠AOC ∠AOC ∠BOC ∠BOC COD ∠=∠OA OD BOD ∠OC AOC ∠BOC ∠90AOD ∠=︒OC BOD ∠AOC ∠BOC ∠OC BOD ∠所以______(角平分线的定义),由于,即______,所以(______),即与互余.(2)【类比操作】如图4,若,参考小明的画法,请在图4中作出一个,使与互补(),并直接写出的度数.(3)【拓展延伸】如图5,已知,若与互补,射线平分,射线平分.请根据题意,补全图形,并求的度数.【答案】(1),90,等量代换;(2)作图见解析,;(3)补全图形见解析,的度数为或【解析】【分析】本题主要考查角平分线的定义,余角和补角,灵活运用角平分线的定义求解角度之间的关系是解题的关键.(1)根据角平分线的性质得到,利用垂直的定义得到,根据等量代换推出,即可证明;(2)若构造平角(),所以通过构造平角,如图,作的延长线线,利用量角器作出的平分线,根据,,即可求出;(3)分射线在的内部,射线在的外部;两种情况讨论.【详解】(1)证明: 射线平分(已知),(角平分线的定义),BOC ∠=90AOD ∠=︒AOC COD ∠+∠=︒90AOC BOC Ð+Ð=°AOC ∠BOC ∠40AOB ∠=︒AOE ∠AOE ∠∠BOE AOE BOE ∠>∠AOE ∠90180AOB ββ∠=︒<<︒()AOB ∠BOC ∠OM AOB ∠ON BOC ∠MON ∠COD ∠110AOE ∠=︒MON ∠90︒90β-︒BOC COD ∠=∠90AOC COD Ð+Ð=°90AOC BOC Ð+Ð=°BOD ∠AOE BOE ∠<∠AOD ∠AO OD BOD ∠OE 180140BOD AOB ∠=︒-∠=︒1702BOE EOD BOD ︒∠=∠=∠=AOE ∠OC AOB ∠OC AOB ∠ OC BOD ∠∴BOC COD ∠=∠,即,(等量代换),即与互余,故答案为:,90,等量代换;(2)若构造平角(),所以通过构造平角,如图,作的延长线线,利用量角器作出的平分线,射线平分(已知),(角平分线的定义),,(等量代换),即与互补,,,,;(3)如图5,当射线在的外部时,延长到点C ,利用量角器作出的平分线,利用量角器作出的平分线,,,平分,平分,90AOD ∠=︒90AOC COD Ð+Ð=°∴90AOC BOC Ð+Ð=°AOC ∠BOC ∠COD ∠BOD ∠AOE BOE ∠<∠AOD ∠AO OD BOD ∠OE OE BOD ∠∴BOE EOD ∠=∠ 180AOE EOD ∠+∠=︒∴180AOE BOE ∠+∠=︒AOE ∠∠BOE 40AOB ∠=︒180140BOD AOB ∴∠=︒-∠=︒∴1702BOE EOD BOD ︒∠=∠=∠=∴110AOE AOB BOE ∠=∠+∠=︒OC AOB ∠AO BOC ∠ON AOB ∠OM 180AOB BOC ∠+∠=︒ 180BOC β∴∠=︒- OM AOB ∠ON BOC ∠,,;如图6,当射线在的内部时,延长到点D ,利用量角器作出,利用量角器作出的平分线,利用量角器作出的平分线,,,,,平分,平分,,,;综上,的度数为或.1122MOB AOB β∴∠=∠=119022BON BOC β∠=∠=︒-90MON MOB BON ∴∠=∠+∠=︒OC AOB ∠AO BOC BOD ∠=∠BOC ∠ON AOB ∠OM BOC BOD ∠=∠180AOB BOD ∠+∠=︒∴180AOB BOC ∠+∠=︒180BOC β∴∠=︒- OM AOB ∠ON BOC ∠1122MOB AOB β∴∠=∠=119022BON BOC β∠=∠=︒-90MON MOB BON β∴∠=∠-∠=-︒MON ∠90︒90β-︒。
人教版数学七年级上学期《期末考试试题》及答案解析
21.如图,直线AB、CD相交于点O,OE平分∠AOC,OE⊥OF,∠AOE=32°.
(1)求∠DOB的度数;
(2)OF是∠AOD的角平分线吗?为什么?
22.(1)由大小相同 小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图.
(2)用小立方体搭一个几何体,使得它的俯视图和左视图与你在方格中所画的一致,则这样的几何体最少要个小立方块,最多要个小立方块.
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题(每小题3分,满分24分)
1. 的倒数是()
A. B. C. D.
2.“比 的3倍大5的数”用代数式表示为()
A. B. C. D.
3.下列计算结果正确的是()
[答案]7或-7
[解析]
[分析]
设输入的数为x,根据程序列出方程求解即可.
[详解]解:设输入的数为x,则有:
当y=3时,得:
,
解得
故答案为7或-7
[点睛]本题考查了计算程序和列方程求解,能理解程序图是解题关键.
14.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=______.
[详解]主视图与左视图是长方形,所以该几何体是柱体,
又因为俯视图是圆,
所以该几何体是圆柱,
故选C
[点睛]本题考查了由三视图确定几何体的形状,熟练掌握常见几何体的三视图是解题的关键.
6.下列说法正确的个数是()
①射线MN与射线NM是同一条射线;
②两点确定一条直线;
③两点之间直线最短;
④若2AB=AC,则点B是AC的中点
北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)
2023−2024学年度第一学期初一数学期末考试试卷考查目标1.知识:人教版七年级上册《有理数》、《整式的加减》、《一元一次方程》、《几何图形初步》全部内容.2.能力:抽象能力,运算能力,推理能力,几何直观能力,阅读理解能力,实际应用能力.考生须知1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共14页;其中第1卷2页,第Ⅱ卷6页,答题卡6页.全卷共三道大题,28道小题.2.本试卷满分100分,考试时间100分钟.3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号.4.考试结束,将答题卡交回.第I 卷 (选择题共16分)一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.如图是某几何体的三视图,该几何体是( )A .圆柱B .圆锥C .三棱锥D .长方体2.2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为( )A .B .C .D .3.如图,甲从点出发向北偏东方向走到点,乙从点出发向南偏西方向走到点,则的度数是( )6110⨯51010⨯70.110⨯7110⨯O 50︒A O 20︒B AOB ∠A .B 4.已知,,且A .2或8B 5.如图,A .6.若是关于A .10107.如图,将一刻度尺放在数轴上.70︒29a =5b =AOB AOC ∠∠:36︒2x =A .1B .3C .5D .6第Ⅱ卷 (非选择题共84分)10.多项式是 11.若一个角的补角比它的余角的312.古代名著《算学启蒙》中有一题行一十二日,问良马几何追及之.意思是里.慢马先走12天,快马几天可追上慢马?若设快马程为 .32231a a a -+-15.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中号两张正方形纸片既不重叠也无空隙.已知阴影部分的周长是 .(用含a (1)画直线;(2)连接并延长到(3)画射线、并度量AB BC BC CA CD解:∵,∴,∵,∴90AOB ∠=︒90BOC AOC ∠+∠=︒90COD ∠=︒90BOC BOD ∠+∠=︒依题得:,,.50AOC ∠=︒AOB AOD BOD ∴∠=∠+∠COD AOC BOD =∠-∠+∠1805020=︒-︒+︒150=︒根据上图可知:第一次变换后,朝上的点数为5,9.两点之间,线段最短【分析】本题主要考查了线段的性质,即两点之间,线段最短.【详解】解:亮亮打开导航,显示两地直线距离为,但导航提供的三条可选路线长却分别为,,,能解释这一现象的数学知识是:两点之间,线段最短.故答案为:两点之间,线段最短.10. 三 四【分析】本题考查了多项式的概念,几个单项式的和叫做多项式.多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.根据多项式的概念解答即可.【详解】解:∵有4个项,最高次项是3次,∴多项式是三次四项式.故答案为;三,四.11.##43度【分析】本题考查了余角和补角的意义,如果两个角的和等于,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于,那么这两个角互为补角,其中一个角叫做另一个角的补角.设这个角为,根据题意列方程求解即可.【详解】解:设这个角为,由题意,得,解得.故答案为:.12.240x=150x+12×150【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程.【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程.13.2或359km 70km 73km 75km 32231a a a -+-32231a a a -+-43︒90︒180︒x ︒x ︒()1803904x x ︒-︒=︒--︒43x =43︒21.2【分析】本题考查了与线段中点有关的计算,据线段中点的定义求出的长,再根据【详解】解:∵点O 是的中点,∴,OB AB 182OB AB ==及根据绝对值的意义化简绝对值.(1)根据数轴可知a .b ,c 的正负性即可求解.(2)根据数轴可知,,,然后根据绝对值的性质化解求解即可.【详解】(1)解:根据数轴可得:,∴,.故答案为:,(2)根据数轴可得:,,∴24.(1)1040(2)302立方米【分析】本题考查了有理数的混合运算,一元一次方程的应用,找到相等关系是解题的关键.(1)根据题中的收费标准计算;(2)根据“B 家庭2023年水费为1838元”列方程求解.【详解】(1)(元),故答案为:1040;(2)设该家庭年用水量为x 立方米,∵,∴,则:,解得:,答:该家庭年用水量为302立方米.25.(1)见详解0b <0a c +>0b a -<0b a c <<<0c -<0abc ><>0b <0a c +>0b a -<||||||b ac b a ++--()b ac a b =-++--b a c a b=-++-+c=()180572001801040⨯+⨯-=()1805726018014601838⨯+⨯-=<260x >()()1805726018092601838x ⨯+⨯-+-=302x =设,∵射线绕点O 顺时针旋转得到射线∴∵平分,平分AOC α∠=OC 90︒90AOD AOC COD a ∠=∠+∠=+OE AOD ∠OF BOC ∠设,则∵平分,平分∴,则设,则,∵平分,平分∴,设,则∵平分,平分AOC β∠=AOD β∠=+OE AOD ∠OF BOC ∠19022EOD AOD β+︒∠=∠=EOF EOD FOC COD ∠=∠+∠-∠AOC γ∠=90AOD γ∠=︒-OE AOD ∠OF BOC ∠19022EOD AOD γ︒-∠=∠=FOC ∠AOC α∠=AOD AOC ∠=∠-360240BOC AOB AOC ∠=︒-∠-∠=OE AOD ∠OF BOC ∠。
苏科版数学初一上学期期末试题与参考答案(2024-2025学年)
2024-2025学年苏科版数学初一上学期期末复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为多少cm?选项:A、24cmB、26cmC、28cmD、30cm2、题目:已知一个长方形的长为6cm,宽为4cm,那么它的面积是多少平方厘米?选项:A、20cm²B、24cm²C、30cm²D、36cm²3、下列各数中,比-2大的数是()。
A、-3B、-1C、0D、-44、如果一个数的相反数是它本身,那么这个数是()。
A、0B、1C、-1D、不存在5、(选择题)小明家养了若干只兔子,如果5周增长率为20%,则 growth_rate 表示兔子的增长率为:A. 20%B. 25%C. 33.3%D. 50%6、(选择题)一个长方形的周长是24cm,且长是宽的两倍,那么这个长方形的面积是:A. 12平方厘米B. 16平方厘米C. 18平方厘米D. 24平方厘米7、若一个正方形边长增加了原来的50%,则面积增加了多少百分比?A. 50%B. 100%C. 125%D. 225%8、下列哪组数能构成直角三角形的三边长?A. 5, 12, 13B. 7, 10, 12C. 8, 15, 17D. 9, 12, 159、在直角坐标系中,点A的坐标是(-3,4),点B的坐标是(2,-1),则线段AB 的中点坐标是()。
A.(-0.5,1.5)B.(-1,2)C.(-0.5,-2)D.(1,2) 10、已知函数f(x) = 2x - 3,若f(a) = 1,则a的值为()。
A. 1B. 2C. 3D. 4二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是8cm,宽是3cm,那么它的周长是_______cm。
2、一个正方形的边长增加了20%,那么它的面积增加了 _______%。
2025届重庆市十八中学七年级数学第一学期期末考试试题含解析
2025届重庆市十八中学七年级数学第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在23| 3.5|3,05⎛⎫---- ⎪⎝⎭、、中,最小的数是( ) A .3 B .﹣|﹣3.5| C .235⎛⎫-- ⎪⎝⎭ D .02.为了解汝集镇三所中学七年级680名学生的期末考试数学成绩,抽查了其中60名学生的期末数学成绩进行统计分析.下面叙述正确的是( )A .680名学生是总体B .60名学生的期末数学成绩是总体的一个样本C .每名学生是总体的一个个体D .以上调查属于全面调查3.某中学组织初一部分学生参加社会实践活动,需要租用若干辆客车.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.设租了x 辆客车,则可列方程为( )A .4010431x x +=+B .4010431x x -=-C .401043(1)x x +=-D .4010431x x +=-4.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论,其中正确的是( ) ①b ﹣a <1;②a +b >1;③|a |<|b |;④ab >1.A .①②B .③④C .①③D .②④5.在下列单项式中,与是同类项的是( ) A . B . C . D .6.下列各式中,是同类项的是( )A .22a b 与23b a -B .2x π与212xC .2212m n -与225tm nD .6xy -与6yz -7.如果方程24=x 与32x k +=-方程的解相同,则k 的值为( )A .8-B .4-C .4D .88.电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是 ( )A .2400名学生B .100名学生C .所抽取的100名学生对“民族英雄范筑先”的知晓情况D .每一名学生对“民族英雄范筑先”的知晓情况9.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式10.数9的绝对值是( )A .9B .19C .﹣9D .19- 11.∠1与∠2互补,∠3与∠1互余,∠2+∠3=210°,则∠2是∠1的( )A .2倍B .5倍C .11倍D .不确定12.A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2B .1.5C .2或1.5D .2或2.5二、填空题(每题4分,满分20分,将答案填在答题纸上)13.对于X ,Y 定义一种新运算“*”:X *Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么2*3=________.14.一个角的补角与它的余角的3倍的差是40°,则这个角为_____.15.若多项式4322(1)(2)31x a x b x x -++---中不含3x 项和2x 项,则ab =______.16.已知225m a b -和437n a b -是同类项,则m n +的值是_______.17.计算201920191()22-⨯=__________.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)小明爸爸上周买进某种股票1000股,每股27.3元,下表为本周每天该股票的涨跌情况:①星期三收盘时,每股是多少元?②本周内最高价是每股多少元?最低价是每股多少元?③若小明爸爸按本周五的收盘价将股票全部卖出,你认为他会获利吗?19.(5分)定义如下:使等式222ab a b =--成立的一对有理数a ,b 叫“理想有理数对”,记为(a ,b ),如:277442233⨯=-⨯-,所以数对(4,73)是“理想有理数对”. (1)判断数对(-1,1)是否为“理想有理数对”,并说明理由;(2)若数对(-3,m )是“理想有理数对”,求m 的值,并求代数式()231m m --的值. 20.(8分)解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+21.(10分)滴滴快车是一种便捷的出行工具,分为普通快车和优享型快车;两种.下表是普通快车的收费标准:(1)张敏乘坐滴滴普通快车,行车里程7公里,行车时间15分钟,求张敏下车时付多少车费?(2)王红乘坐滴滴普通快车,行车里程22公里,下车时所付车费63.4元,则这辆滴滴快车的行车时间为多少分钟?22.(10分)解方程:2(x ﹣1)﹣2=4x23.(12分)已知多项式3x 2+my ﹣8减去多项式﹣nx 2+2y+7的差中,不含有x 2、y 的项,求n m +mn 的值.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:﹣|﹣3.5|=﹣3.5,﹣(﹣325)=3.4,∵﹣3.5<0<3<3.4,∴﹣|﹣3.5|<0<3<﹣(﹣325),∴在23| 3.5|35⎛⎫---- ⎪⎝⎭、、中,最小的数是﹣|﹣3.5|.故选B.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本即可.【详解】A、680名学生的期末考试数学成绩是总体,故A不符合题意;B、60名学生的期末数学成绩是总体的一个样本,故B符合题意;C、每名学生的期末数学成绩是总体的一个个体,故C不符合题意;D、以上调查属于抽样调查,故D不符合题意;故选:B.【点睛】本题考查了总体、个体、样本和抽样调查,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.3、A【解析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后进行分析从而得到正确答案.【详解】设有x辆客车,由题意得:每辆客车乘40人,则有10人不能上车,总人数为40x+10,若每辆客车乘43人,则只有1人不能上车,则总人数为43x+1,列方程为40x+10=43x+1;故选A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程. 4、C【分析】根据图示,可得b <﹣3,1<a <3,据此逐项判断即可.【详解】①∵b <a ,∴b ﹣a <1;②∵b <﹣3,1<a <3,∴a +b <1;③∵b <﹣3,1<a <3,∴|b |>3,|a |<3,∴|a |<|b |;④∵b <1,a >1,∴ab <1,∴正确的是:①③,故选C .【点睛】本题考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a 、b 的取值范围. 5、C 【解析】试题分析:与是同类项的是.故选C . 考点:同类项.6、B【分析】由题意直接根据同类项的定义进行分析,即可求出答案.【详解】解:A. 22a b 与23b a -,不是同类项,此选项错误;B. 2x π与212x ,是同类项,此选项正确; C. 2212m n -与225tm n ,不是同类项,此选项错误; D. 6xy -与6yz -,不是同类项,此选项错误.【点睛】本题考查同类项的定义,解题的关键是正确理解同类项的定义即如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.7、A【分析】根据24=x 先求出x 的值,然后把x 的值代入32x k +=-求出k 即可.【详解】解:由方程24=x 可得x=2,把x=2代入32x k +=-得:62+=-k解得8k =-.故选:A【点睛】本题考查了同解方程,掌握同解方程即为两个方程解相同的方程是解题的关键.8、C【解析】试题分析:首先根据样本的含义:从总体中取出的一部分个体叫做这个总体的一个样本,可得在这次调查中,样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况.然后判断出这次调查的总体是:2400名学生对“民族英雄范筑先”的知晓情况.故选C考点:总体、个体、样本、样本容量9、B【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【分析】根据绝对值的意义直接进行求解即可.【详解】因为9的绝对值是9;故选A.【点睛】本题主要考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.11、B【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【详解】解:∵∠1与∠2互补,∴∠1+∠2=180°,则∠2=180°−∠1,∵∠3与∠1互余,∴∠3+∠1=90°,则∠3=90°−∠1,∵∠2+∠3=210°,∴180°−∠1+90°−∠1=210°,解得:∠1=30°,则∠2=150°,150°÷30°=5,即∠2是∠1的5倍,故答案为:B.【点睛】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.12、C【分析】设t时后两车相距50千米,分为两种情况,两人在相遇前相距50千米和两人在相遇后相距50千米,分别建立方程求出其解即可.【详解】设t时后两车相距50千米,由题意,得350-110t-80t=50或110t+80t-350=50,解得:t=1.5或1.故选:C【点睛】本题考查了列一元一次方程解实际问题的运用,分类讨论思想的运用,由行程问题的数量关系建立方程是关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、2义计算2*3即可.【详解】∵X*Y=aX+bY , 3*5=15,4*7=28,∴35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, ∴X*Y=-35X+24Y ,∴2*3=-35×2+24×3=2, 故答案为2.【点睛】本题考查了新定义运算与解二元一次方程组,求出a 、b 的值是解题的关键.14、1°【分析】设这个角为x°,则它的补角为(180-x)°,余角为(90-x)°,再根据题意列出等量关系.【详解】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180-x - 3(90-x)=40,解得x =1.故这个角是1°,故答案为:1°.【点睛】本题考查了补角及余角的概念等,熟练掌握补角和余角的概念是解决本题的关键.15、-2【分析】根据多项式系数与项之间的关系,当对应项的系数为零时,可视作多项式不含该项,进而利用方程思想求字母的值即得. 【详解】多项式4322(1)(2)31x a x b x x -++---中不含3x 项和2x 项 ∴1=0+a ,2=0-b∴=1a ,=2b∴=122-⨯=-ab故答案为:2-【点睛】本题考查多项式含参问题,正确找到题目中“不含项”对应的系数列出方程是解题关键,先合并同类项再确定不含项的系数是此类题的易错点.【分析】根据同类项的定义列式求出m 、n 的值,然后计算m n +即可.【详解】解:∵225m a b -和437n a b -是同类项,∴2m =1,3−n =1,解得:m =2,n =2,则m +n =2+2=1.故答案为:1.【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个相同:①所含字母相同,②相同字母的指数相同.17、-1【解析】根据积的乘方的运算方法,求出算式的值是多少即可.【详解】解:(−12)2019×22019=[(−12)×2]2019=(-1)2019=-1. 故答案为:-1.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、①28.3元;②29.8元,25.8元;③不会【分析】(1)根据题意列出算式27.31 1.5 1.5++-,计算即可求解;(2)根据题意可以得到周二股价最高,周四股价最低,分别计算即可求解;(3)根据正负数的意义表示周五的股价,为正数则盈利,为负数则亏损,据此判断即可.【详解】解:(1)27.31 1.5 1.528.3++-=(元)答:星期三收盘时每股是28.3元.(2)27.31 1.529.8++=(元),27.31 1.5 1.5 2.525.8++--=(元)答:本周内最高价是每股29.8元,最低价是每股25.8元(3)1 1.5 1.5 2.50.51++--+=-答:若小明爸爸按本周五的收盘价将股票全部卖出,他不会获利.【点睛】本题考查了正负数的实际应用和有理数的加减混合运算,正确理解题意并正确列出算式是解题关键.【分析】(1)根据“理想有理数对”的定义即可判断;(2)根据“理想有理数对”的定义,构建方程可求得m 的值,再代入原式即可解决问题.【详解】(1)111-⨯=-,()212123--⨯-=-,∴11-⨯≠()21212--⨯-, ∴()11-,不是“理想有理数对”;(2)由题意得:()23322m m -=---,解得:7m =-, ()231m m --()()27317⎡⎤=----⎣⎦ 4924=-25=.【点睛】本题考查了有理数的混合运算、“理想有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题.20、(1)711=y (2)x=0 【分析】(1)方程去分母,去括号,移项,合并同类项,系数化为1,即可得解;(2)方程去括号,移项,合并同类项,系数化为1,即可得解.【详解】解:(1)12225y y y -+-=- )2(220)1(510+-=--y y y42205510--=+-y y y54202510--=+-y y y117=y711=y (2)()()()22431233x x x ---=-+4831239x x x --+=--4332981x x x -+=-+-0x =【点睛】本题考查了解一元一次方程.解一元一次方程的步骤为:去分母,去括号,移项,合并同类项,系数化为1.21、(1)张敏下车时付22元车;(2)这辆滴滴快车的行车时间为26分钟【分析】(1)根据普通快车的收费标准即可求解;(2)设这辆滴滴快车的行车时间为x 分钟,根据题意列出方程即可求解.【详解】解:(1)()()8 2.0720.415522+⨯-+⨯-=(元)答:张敏下车时付22元车费.(2)设这辆滴滴快车的行车时间为x 分钟,依题意有()()()8 2.02220.45 1.0221563.4x +⨯-+⨯-+⨯-=,解得26x =答:这辆滴滴快车的行车时间为26分钟.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意列出方程求解.22、x =﹣1.【分析】根据一元一次方程的解法,去括号,移项合并同类项,系数化为1即可.【详解】解:去括号得:1x ﹣1﹣1=4x ,移项合并得:﹣1x =4,解得:x =﹣1,故答案为:x =-1.【点睛】本题考查了一元一次方程的解法,掌握一元一次方程的解法是解题的关键.23、1.【分析】由题意列出关系式,去括号合并同类项,由于不含有x 2、y 的项,得到它们的系数为0,求出m 、n 的值,将m 、n 的值代入所求式子中计算,即可求出值.【详解】1x 2+my ﹣8﹣(﹣nx 2+2y+7)=1x 2+my ﹣8+nx 2﹣2y ﹣7=(1+n ) x 2+(m ﹣2)y ﹣15因为不含x 2,y 项所以1+n=0,m ﹣2=0,得:n=﹣1,m=2,所以n m+mn=(﹣1)2+2×(﹣1)=1.【点睛】熟练掌握去括号的法则以及合并同类项的法则是解题的关键.。
初一上学期数学期末考试试卷与标准答案
初一上学期数学期末考试试卷与标准答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.333...D. -5标准答案:A. √22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26标准答案:C. 293. 下列等式中正确的是:A. √9 = 3B. √8 = 2√2C. √(√8) = 2D. √(√9) = 3标准答案:B. √8 = 2√24. 下列哪个数是负数:A. -3B. 2C. 0D. -2标准答案:A. -35. 若|x|=5,则x的值为:A. 5B. -5C. 5或-5D. 0标准答案:C. 5或-56. 下列哪个数是正数:A. -3B. -2C. 0D. 2标准答案:D. 27. 已知a=4,b=3,则a²-b²的值是:A. 7B. 13C. 25D. 16标准答案:C. 258. 下列哪个数是无理数:A. √3B. √4C. √9D. √16标准答案:A. √39. 下列哪个数是整数:A. -3/2B. 2.5C. -5/3D. 4标准答案:D. 410. 下列哪个数是负数:A. -2B. 3C. 0D. 2标准答案:A. -2二、填空题(每题4分,共40分)1. 若a=5,b=3,则a²+b²=______。
标准答案:342. 下列哪个数是正数:______。
标准答案:23. 下列哪个数是无理数:______。
标准答案:√34. 下列哪个数是整数:______。
标准答案:45. 若|x|=5,则x的值为______。
标准答案:5或-5三、解答题(每题10分,共20分)1. 解方程:2x-5=3标准答案:x=42. 已知a=4,b=3,求a²-b²的值。
标准答案:25四、应用题(每题10分,共20分)1. 小明的身高是1.6米,小华的身高是1.5米,求小明比小华高多少。
深圳市初一上学期期末考试数学试卷含答案
深圳市初一上学期期末考试数学试卷含答案深圳市初一第一学期期末考试题数学(本试卷满分100分,在90分钟内完成)一. 填空题 : (第1-----11题每空1分,第12—15题每空2分,共25分 )1 .在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有,属于四棱柱的有 .2. 用一个平面去截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是 . 3.深圳市某天早晨的温度是12° C, 中午上升了9° C, 夜间下降了6° C, 则这天夜间的温度是 .4. +8与互为相反数,请赋予它实际意义:5 .用科学记数法表示:5678000000 = .6. 甲、乙争论“ 和哪个大(是有理数)”.甲: “ 一定比大” .乙: “ 不一定” .又说: “ 你漏掉了两种可能. ”请问:乙说的是什么意思? 答: ; .7 . 的平方的3倍与-5的差,用代数式表示为 ,当时,代数式的值为 .8. 如图,是按照某种规律排列的多边形:第20个图形是边形,第41个图形的颜色是色.9 .如图:∠AOB=∠COD=90°,∠AOD=130°, 则∠BOC的度数是 .10. 数轴的A点表示-3,让A点沿着数轴移动2个单位到B点,B点表示的数是 ;线段BA上的点表示的数是 .11. 北环中学初一年级共10个班,每班有43名学生,现从每个班中任意抽一名学生共10名学生参加福田区教育局组织的冬令营.若你是该校初一某班的学生,你被抽到的可能性是 .12 .如图,A点表示数 ,B点表示数 ,在中正数是 .13 .A、B、C是直线上的三点,BC= AB,若BC=6,则AC的长等于 .14 .一商店把彩电按标价的九折出售,仍可获利20% ,若该彩电的进价是2400元,则该彩电的标价为元.15 .某市为了鼓励居民节约用水,对自来水用户按如下标准收费,若每月每户用水不超过15吨,按每吨1元收费,若超过15吨,则超过部分每吨按2元收费.如果小明家12月份交纳的水费29元,则小明家这个月实际用水吨.二.选择题( 每题2分,共20分,将答案直接填在下表中 )1. 下面的算式: ①.-1-1=0; ② ;③ (-1) 2004 =2004 ; ④ -4 2 =-16;⑤⑥ ,其中正确的算式的个数是A . 1个 B. 2 个 C. 3个 D. 4个2 .下面说法:正确的是:①如果地面向上15米记作15米,那么地面向下6米记作-6米;②一个有理数不是正数就是负数;③正数与负数是互为相反数;④任何一个有理数的绝对值都不可能小于零.A . ①,② B. ②,③ C. ③,④ D. ④,①3. 下列图形中,是正方体的展开图是:① ② ③ ④A .① ② B.③ ④ C.③ D.④4. 在8:30这一时刻,时钟上的时针和分针之间的夹角为A . 85° B. 75° C. 70° D. 60°5 .与是同类项,那么等于A . -2 B. -1 C. 0 D. 16 .下列说法正确的是:A . 经过一点可以作两条直线; B. 棱柱侧面的形状可能是一个三角形;C. 长方体的截面形状一定是长方形;D. 棱柱的每条棱长都相等.7 . 下列算式正确的是:A . . B. . C. . D.8 . 下列事件中是必然事件的有①明天中午的气温一定是全天最高的温度;②小明买电影票,一定会买到座位号是双号的票;③现有10张卡片,上面分别写有1,2,3,……,10,把它们装人一个口袋中,从中抽出6张.这6张中,一定有写着偶数的卡片.④元旦节这一天刚好是1月1日.A . ①, ② B. ①, ③ C. ①, ④ D. ③, ④9 .天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于A . 教室地面的面积. B. 黑板面的面积.C. 课桌面的面积.D. 铅笔盒盒面的面积10 .下列说法,正确的是① . 用长为10米的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1米,设长方形的长为X米,则可列方程为2(X+X-1)=10 .② . 小明存人银行人民币2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为X,则可列方程2000(1+X)80%=2120.③ . X表示一个两位数,把数字3写到X的左边组成一个三位数,这个三位数可以表示为300+X.④ . 甲、乙两同学从学校到少年宫去,甲每小时走4千米 ,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s千米,则可列方程A . ①, ② B. ①, ③ C. ②, ④ D. ③, ④三.计算题(要求写出详细的计算过程,不准用计算器。
初一数学上学期期末考试卷(含答案)
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.-2022的相反数是( )A .2022B .-2022C .12022D .-120222. 据报道,南通第一条地铁正在打造中,耗资约257.92亿元,将“257.92亿”用科学记数法表示( )A. 257.92×108B. 2.5792×1010C. 0.25792×1011D. 25.792×1083.下列运算结果正确的是( )A .3a 3﹣a 3=2a 3B .2a 2+a 2=2a 4C .2a +2b =4abD .3ab ﹣2ab =14.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .1cm 、2cm 、3cmC .5cm 、4cm 、3cmD .10cm 、5cm 、4cm5. 下列变形错误的是( )A. 由3x ﹣2=2x +1得x =3B. 由x +7=5得x +7﹣7=5﹣7C. 由﹣2x =3得x =23D. 由4﹣3x =4x ﹣3得4+3=4x +3x 6. 已知∠α=35°,那么∠α的余角等于( )A. 35°B. 55°C. 65°D. 145°7.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .初一数学上学期期末考试卷(含答案)(满分:150 分,时间:120 分钟)8.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .59. 已知一个多边形的每一个外角都为,则这个多边形的边数是( )A. B. C. D. 10. 如图,在中,,分别是,上的点,,,,则等于( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11. 如果“盈利10%”记作+10%,那么“亏损6%”记作 _____.12. 比较大小:﹣3______﹣2(填“>”或“<”或“=”).13.已知多项式222531510x kxy y xy -+--+中不含xy 项,则k =_________14.已知2231x y +=-,则代数式2463x y +-的值为___________.15.已知如图,直线AB 、CD 相交于点O ,OE 为射线,若∠AOE +∠DOE =110°,则∠AOC =____________°;16.如图,直线AB ∥CD ,∠C =45°,AE ⊥CE ,则∠1= .第15题图 第16题图 第17题图17.如图,在△ABC 中,点D 、E 分别是AC 、BD 的中点,S △ABC =12,则S △ADE = .18. 将一副直角三角板ABC ,ADE 按如图1叠加放置,其中B 与E 重合,∠BAC =45°,∠BAD =30°.将三角板ADE 从图1位置开始绕点A 顺时针旋转,AM ,AN 分别为∠BAE ,∠CAD 的平分线,当三角板ADE 旋转至如图2的位置时,∠MAN 的度数为_____°.OE DC BA三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题10分)计算:(1)2151()()32624+-÷-; (2)(﹣2)3×(﹣2+6)﹣|﹣4|.20.(本小题10分)解方程:(1)()2237x x -=-; (2)12326x x -+-=1.21.(本小题10分)化简求值:求代数式)4()32(2722222ab b a ab b a b a ---+的值, 其中a ,b 满足0)21(22=-++b a .22.(本小题10分)如图,是由一些棱长为2的相同的小正方体组合成的简单几何体.(1)请分别画出该几何体从正面看、从左面看、从上面看所得到的图形.(2)这个组合几何体的表面积为多少个平方单位(包括底面积);23.(本题8分)如图,延长线段AB到C,使BC=3AB,点D是线段BC的中点,如果CD=3cm,那么线段AC的长度是多少?24.(本小题10分)原来从张家界到怀化坐普通列车需要3.5小时,当中国“最美扶贫高铁”之一的“张吉怀高铁”修通后,高铁运行里程比原来普通列车缩短了40千米,现在从张家界到怀化坐高铁只需要1小时.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.25.(本小题12分)如图,在三角形ABC中,点D,F在边BC上,点E在边AB上,点G 在边AC上,EF与GD的延长线交于点H,∠1=∠B,∠2+∠3=180°.(1)判断EH与AD的位置关系,并说明理由.(2)若∠DGC=58°,且∠H=∠4+10°,求∠H的度数.26.(本小题12分)如图,已知数轴上点A表示数6,A、B两点之间距离为10.(1)写出数轴上点B表示的数.(2)若数轴上有一点C到A、B两点的距离之和为18,则C对应数为.(3)动点R从B出发,以每秒5个单位速度向右运动,动点P从点A出发,以每秒3个单位速度向右运动,问R运动多少秒时,P、R两点之间相距2个单位长度?27.(本小题14分)【问题背景】同学们,我们一起观察小猪的猪蹄,你会发现一个我们熟悉的几何图形,我们就把这个图形形象的称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.(1)如图①,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.试探究∠BED 与∠B、∠D之间的数量关系,并说明理由.(2)请你利用上述“猪蹄模型”得到的结论或解题方法,完成下面的问题:【类比探究】如图②,AB∥CD,线段AD与线段BC相交于点E,∠BAD=36°,∠BCD =80°,EF平分∠BED交直线AB于点F,则∠BEF=°.【拓展延伸】如图③,AB∥CD,线段AD与线段BC相交于点E,∠BAD=36°,∠BCD =80°,过点D作DG∥CB交直线AB于点G,AH平分∠BAD,DH平分∠CDG,则∠AHD =°.参考答案1.A【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【详解】-2022的相反数是2022.故选:A .2.【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:257.92亿=25792000000=2.5792×1010,故选:B .3.A【分析】所含字母相同,相同字母的指数也相同的单项式是同类项,合并同类项:把同类项的系数相加减,字母与字母的指数不变,根据定义与运算法则逐一分析即可.【详解】解:3a 3﹣a 3=2a 3,故A 符合题意;2a 2+a 2=3a 2,故B 不符合题意;2,2a b 不是同类项,不能合并,故C 不符合题意;3ab ﹣2ab =ab ,故D 不符合题意;故选A【点睛】本题考查的是合并同类项,掌握“同类项的判断与合并同类项的法则”是解本题的关键.4.解:根据三角形的三边关系,得,A .2+2=4,不能组成三角形,不符合题意;B .1+2=3,不能够组成三角形,不符合题意;C .3+4=7>5,能够组成三角形,符合题意;D .4+5=9<10,不能组成三角形,不符合题意.故选:C .5.【答案】C【解析】【分析】根据等式的性质逐个判断即可.【详解】解:A 、由3221x x =+﹣得x =3,正确,故本选项不符合题意; B 、由x +7=5得x +7﹣7=5﹣7,正确,故本选项不符合题意;C 、由﹣2x =3得x =32-,原变形错误,故本选项符合题意;D 、由4﹣3x =4x ﹣3得4+3=4x +3x ,正确,故本选项不符合题意;故选:C .6.【答案】B【解析】【分析】根据余角的定义:如果两个角的和等于90°(直角),就说这两个角互为余角计算.【详解】解:∵∠α=35°,∴它的余角等于90°﹣35°=55°.故选B .7.C【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C .【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.8.B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项,∴n+1=4,解得,n=3,故选:B.9. D10. C11. -6%12. <13. 314. -515. 7016. 13517. 318. 37.519.(1)原式=215()(24)326+-⨯-=﹣16﹣12+20=﹣8(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4=﹣32﹣4=﹣36.20.(1)x=3 (2)x=1221.化简结果7a 2b-5ab 2代入结果16.522.23.8cm24.296千米每小时25.解:(1)EH∥AD,理由如下:∵∠1=∠B,∴AB∥GD,∴∠2=∠BAD,∵∠2+∠3=180°,∴∠BAD+∠3=180°,∴EH∥AD;(2)由(1)得AB∥GD,∴∠2=∠BAD,∠DGC=∠BAC,∵∠DGC=58°,∴∠BAC=58°,∵EH∥AD,∴∠2=∠H,∴∠H=∠BAD,∴∠BAC=∠BAD+∠4=∠H+∠4=58°,∵∠H=∠4+10°,∴∠4+10°+∠4=58°,解得:∠4=24°,∴∠H=34°.26.(1)-4(2)-8或10(3)4或627.解:(1)∠BED=∠B+∠D,理由如下:过E作ET∥AB,如图:∵AB∥CD,∴ET∥AB∥CD,∴∠B=∠BET,∠D=∠DET,∴∠B+∠D=∠BET+∠DET,即∠BED=∠B+∠D;(2)【类比探究】同(1)方法可知:∠AEC=∠BAD+∠BCD,∵∠BAD=36°,∠BCD=80°,∴∠AEC=116°,∴∠BED=116°,∵EF平分∠BED,∴∠BEF∠BED=58°,故答案为:58;【拓展延伸】延长DH交AG于K,如图:∵DG∥CB,∴∠BCD+∠CDG=180°,∵∠BCD=80°,∴∠CDG=100°,∵DH平分∠CDG,∴∠CDH∠CDG=50°,∵AB∥CD,∴∠CDH+∠AKD=180°,∴∠AKD=130°,∵∠BAD=36°,AH平分∠BAD,∴∠KAH∠BAD=18°,∴∠AHK=180°﹣∠KAH﹣∠AKH=32°,∴∠AHD=180°﹣∠AHK=148°,故答案为:148.第11 页共11 页。
福建省泉州市南安市2023-2024学年七年级上学期期末数学试题(含解析)
南安市2023—2024学年度上学期初中期末教学质量监测初一年数学试题(满分:150分;考试时间:120分钟)友情提示:所有答案必须填写在答题卡相应的位置上.一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若气温上升记作,则气温下降记作( )A .B .C .D .2.如图,数轴上点表示的数是( )A .2B .C .D .3.中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .B .C .D .4.一个正方体的表面展开图如右上图所示,六个面上各有一字,连起来的意思是“祝你考试顺利”,把它折成正方体后,与“祝”相对的字是( )A .考B .试C .顺D .利2℃2+℃3℃3-℃2-℃2+℃3+℃A 1-2-3-()()36+++()()36++-()()36-++()(36)-+-A .两点之间,线段最短C .两点确定一条直线8.如图,已知,为保证两条铁轨平行,添加的下列条件中,正确的是(190∠=︒15.如图所示,三、解答题:本题共步骤.17.计算:18.计算:21.如图,在正方形网格中,的顶点在格点上,36,ABC DE ∠=︒()(710---()(2310-+-ABC O(1)请仅用无刻度直尺完成下列画图:过点画线段的垂线,垂足为;过点画的平行线交于点(先用铅笔画图,确定后用黑色签字笔描黑).(2)已知,则(1)所得的的度数为______.22.已知一条长为的铝条,裁剪一部分围成一个长方形铝框(部分数据如图所示).(1)求围成长方形铝框的周长(用含的式子表示);(2)若,试探索剩下的铝条是否足够围成一个边长为5的正方形,请说明理由.23.如图,点分别在上,交于点,且.则与平行吗?请完成下列解答过程,并填空(理由或数学式).解:(已知)(______)(______)(已知)(等式的性质)又____________(等式的性质)又(已知)(同角的余角相等)(______)24.阅读理解:已知;若值与字母的取值无关,则,解得O BC D D AB AC E 45B ∠=︒ODE ∠︒963a b ++a b 、5,3a b ==,E F ,AB CD ,AF CE ,1O B ∠=∠90,290EOF A ∠=︒∠+∠=︒AB CD 1B ∠=∠Q CE BF ∴∥180AFB EOF ∴∠+∠=︒90EOF ∠=︒ 90AFB ∴∠=︒2AFC AFB ∠+∠+∠= ︒2AFC ∴∠+∠=︒290A ∠+∠=︒ A AFC ∴∠=∠AB CD ∴∥()41A a x =--A x 40a -=.当时,值与字母的取值无关.知识应用:(1)已知.①用含的式子表示;②若的值与字母的取值无关,求的值;知识拓展:(2)春节快到了,某超市计划购进甲、乙两种羽绒服共30件进行销售,甲种羽绒服每件进价700元,每件售价1020元;乙种羽绒服每件进价500元,销售利润率为.购进羽绒服后,该超市决定:每售出一件甲种羽绒服,返还顾客现金元,乙种羽绒服售价不变.设购进甲种羽绒服件,当销售完这30件羽绒服的利润与的取值无关时,求的值.25.长方形纸片,点在边上,点分别在边上,连结.将沿对折得,点落在上,四边形沿对折得四边形,点落在上,点落在上.(1)如图1,当点三点共线时,若,则______,______;(2)当点三点不共线时,且,①如图2,当在外部时,若,求的度数.(用含的代数式表示).②直接写出的度数.4a =∴4a =A x ,35A mx x B mx x m =-=-+,m x 32A B -32A B -m x 60%a x x a ABCD P BC ,E F ,AB AD ,PE PF PBE △PE PB E ' B B 'PCDF PF PC D F ''C C 'D D ¢,,B C P ''60AFP ∠=︒FPB ∠'=︒EPB ∠=︒,,B C P ''20B PC ∠=''︒C 'BPB '∠AFP x ∠=︒EPB ∠x EPF ∠参考答案与解析1.A 【分析】根据有理数的实际意义即可判断.此题主要考查有理数的表示,解题的关键是熟知正负数的意义.【详解】气温上升记作,则气温下降记作,故选A .2.C【分析】根据数轴的特点即可求解.此题主要考查数轴所表示的数,解题的关键是熟知数轴的特点.【详解】数轴上点表示的数是,故选C .3.B【分析】根据题意图2中,红色的有三根,黑色的有六根可得答案.【详解】解:由题知, 图2红色的有三根,黑色的有六根,故图2表示的算式是(+3)+ (-6) .故选:B .【点睛】本题主要考查正负数的含义,解题的关键是理解正负数的含义.4.C【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“你”与面“试”相对,面“祝”与面“顺”相对,“考”与面“利”相对.故选:C .【点睛】本题考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题是解题的关键.5.B【分析】此题主要考查同类项的判断,解题的关键是熟知同类项的定义:字母相等,相同字母的次数也相同.根据同类项的定义即可求解.2℃2+℃3℃3-℃A 2-【详解】解:与不是同类项;与是同类项;与不是同类项;与不是同类项;故选:B .6.D【分析】根据两位数的表示方法:十位数字个位数字,即可解答.【详解】解:∵一个两位数,它的十位数是,个位数字是,∴根据两位数的表示方法,这个两位数表示为:.故选:【点睛】本题考查了用字母表示数的方法,会用含有字母的式子表示数量是解题的关键.7.A【分析】本题主要考查了线段的性质,根据两点之间,线段最短解答.【详解】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选:A .8.C【分析】根据平行线的判定方法进行判断即可.【详解】解:A.∠1与∠2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∠1与∠3与两条铁轨平行没有关系,故此选项不符合题意;C. ∠1与∠4是同位角,且∠1=∠4=90°,故两条铁轨平行,所以该选项正确;D. ∠1与∠5与两条铁轨平行没有关系,故此选项不符合题意;故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.9.D【分析】把整体代入即可求解.此题主要考查代数式求值,解题的关键是熟知整体法的应用.【详解】由,则代数式,故选D .10.B2a b 23ab 22ab -23ab ab 23ab 2ab c 23ab 10⨯+x y 10x y +D235x x -=235x x -=()2253265252551x x x x -+=⨯+-=+=【点睛】本题主要考查单项式的次数,能够熟练运用定义算出次数是解题关键.14.1【分析】本题主要考查了与线段中点有关的计算,先由线段中点的定义得到,再根据线段之间的关系求出线段的长即可.【详解】解:∵,是线段的中点,∴,∵,∴,故答案为:1.15.54°【分析】根据平行线的性质,结合∠ABC 的度数可得∠BAD 的度数,再根据余角的性质即可求出∠D 的度数【详解】∵DE ∥BC∴∠DAB=∠ABC=36°∵∠D 与∠DAB 互余∴∠D=90°-36°=54°【点睛】本题主要考查平行线的性质和余角的性质,掌握其相关性质是解题关键16.3【分析】设出第一行、第二行和第三行的未知数,然后根据题意列出等式,再根据等量代换的方法求解.本题主要考查一元一次方程组的应用,解题的关键是根据题意列出方程组.【详解】解:设第一行第一列的数为a ,第两行第二列的数为b ,第三行第一列的数为c ,如下:根据每行、每列以及对角在线的数字的和都是相等的可得:,解得,28AB AD ==CD 4=AD D AB 28AB AD ==3CB =1CD AB AD BC =--=202332023a x b x +++=++3b a =+故,解得,又,故化简得,故答案为:3.17.【分析】根据有理数的加减运算法则即可求解.此题主要考查有理数的运算,解题的关键是熟知有理数的加减运算法则.【详解】.18.【分析】本题主要考查了含乘方的有理数混合计算,先计算乘方,再计算乘除法,最后计算加减法即可.【详解】解;.19.;【分析】先去括号,合并同类项,再代入x ,y 即可求解.此题主要考查整式的化解求值,解题的关键是熟知其运算法则.【详解】由故原式.20.见解析【分析】题考查画几何体的三视图.根据题意先观察出正面和俯视图形再画出即可.【详解】解:∵主视图即从物体正面观察看到的图形,如下图所示:20233a x a k c +++=++2023c x k =+-202333332023a x x b c x a x k +++=+++=+++++-3k x -=7-()()()()71082---+--+71082=-+--7=-14()()()()2310252-+-÷+-⨯-()9510=+-+9510=-+14=2xy 4-()()224232x y xy xy x y -+-224464x y xy xy x y=-+-2xy=1,2x y =-=()22124xy ==⨯-⨯=-俯视图即从物体上边往下看观察到的图形,如下图所示:21.(1)图见解析(2)45【分析】(1)根据网格的特点即可画图求解;(2)根据平行线的性质及垂直的定义即可求解.此题主要考查角度的求解,解题的关键是熟知平行线的性质及垂直的定义.【详解】(1)如图,D 、E 为所求;(2)由图可知,,则,,,,故答案为:45.22.(1)(2)可围成,见解析【分析】本题考查长方形周长公式,正方形周长公式,整式计算.AB DE ∥OD CD ⊥90ODC ∠=︒45B ∠=︒ 45EDC ∴∠=︒904545ODE ∠=︒-︒=︒64a b+(1)根据题意利用长方形周长公式计算即可;(2)先计算剩余线段长,再将代入剩余线段长代数式中求出具体数值,再求出边长为5的正方形周长,即可得到本题答案.【详解】(1)解:∵根据题意长方形周长为:;(2)解:∵一条长为的铝条,∴剩余线段长:,∵,∴,∵边长为5正方形周长为:,∵,∴剩下的铝条足够围成一个边长为5的正方形.23.同位角相等,两直线平行;两直线平行,同旁内角互补;180;90;内错角相等,两直线平行.【分析】根据题目中的每一步推理过程,结合图形填写平行线的判定和性质即可.本题考查平行线的判定,垂线,关键是掌握平行线的判定方法.【详解】(已知)(同位角相等,两直线平行)(两直线平行,同旁内角互补)(已知)(等式的性质)又18090(等式的性质)又(已知)(同角的余角相等)(内错角相等,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,同旁内角互补;180;90;内错角相等,两直线平行.24.(1)①②2(2)20【分析】(1)①把A 与B 代入中,去括号合并即可得到结果;②把①的化简结果变形后,根据的值与字母m 的取值无关,确定出x 的值即可;5,3a b ==2(2)2(32)64a b a b a b a b +++=+=+963a b ++963(64)323a b a b a b ++-+=++5,3a b ==3233523324a b ++=⨯+⨯+=5420⨯=2420>1B ∠=∠Q CE BF ∴∥180AFB EOF ∴∠+∠=︒90EOF ∠=︒ 90AFB ∴∠=︒2AFC AFB ∠+∠+∠= ︒2AFC ∴∠+∠=︒290A ∠+∠=︒ A AFC ∴∠=∠AB CD ∴∥5310m x x m +-32A B -32A B -(2)根据甲乙两种羽绒服总数表示出乙种羽绒服的件数,根据进价×利润率=售价−进价=利润,根据获得的利润相同求出a 的值即可.此题考查了整式的加减−化简求值,以及列代数式,弄清题意是解本题的关键.【详解】解:(1)①∵,∴;②∵,且的值与m 取值无关,∴,解得:;(2)如果购进甲种羽绒服x 件,那么购进乙种羽绒服件,当购进的30件羽绒服全部售出后,所获利润为元;若当销售完这30件羽绒服的利润与的取值无关时,∴,解得:,则a 的值是20.25.(1)(2)①;②【分析】本题考查平行线性质,折叠性质.(1)根据题意利用平行线性质即可求出本题答案;(2)①根据题意利用平角和平行线性质即可得出本题答案;②角度相加即可.【详解】(1)解:∵长方形纸片,当点三点共线时,若,∴,∴,∵沿对折得,四边形沿对折得四边形,∴,,35A mx x B mx x m =-=-+()()323235A B mx x mx x m -=----+332610mx x mx x m=-++-5310mx x m =+-()3253105103A B mx x m x m x -=+-=-+32A B -5100x -=2x =()30x -()()()()102070050060%30900020x x xa a x -+⨯--=+-x 200a -=20a =60;30︒︒80x ︒-︒100︒180︒ABCD ,,B C P ''60AFP ∠=︒AD BC ∥60AFP FPC ∠=∠=︒PBE △PE PB E ' PCDF PF PC D F ''60AFP FPC FPC ∠=∠=='∠︒。
七年级上学期数学期末考试试题及答案 (1)
七年级上学期数学期末试卷一. 单项选择题(每小题3 分,共30 分)1. 冰雪节来到了,爸爸、妈妈带着小明去看冰灯。
在一块由冰块铺成的长方形冰面上,小明发现每块冰都是同样大小的正方形,并估计出正方形冰块的边长为40厘米,他又数出整个冰面有20块冰块长、16 块冰块宽,你能估计出这块冰面的面积大约是()A. 28.8 平方米B. 51.2 平方米C. 12.8 平方米D. 32.6 平方米2. 如下图,如果由小头向大头将胡萝卜切成薄片,下列切面面积变化图比较符合的是()。
3. 将三盒糖果包成一包,糖果的尺寸如图,至少需包装纸()平方厘米。
A. 275B. 525C. 1050D. 4504. 1月5日是多多的生日,妈妈买来生日蛋糕,在切蛋糕时爸爸说:“现在一共有7个人,你至少切几刀就能让每个人都分到一块蛋糕?”多多听了马上就切起来,很快每个人都吃上了蛋糕。
同学们,多多应该切()刀。
A. 3B. 4C. 5D. 65. 2005年12月25日是西方的春节(圣诞节),这一天是星期日,2006年1月29日是中国的春节,这一天是()。
A. 星期五B. 星期六C. 星期日D. 星期一6. 寒假快到了,李华全家打算去旅游,爸爸说:“我们要去的城市在重庆的北边,在济南的南边,在成都的东边,在杭州的西边”,请参考下图,李华全家要去()旅游。
A. 石家庄B. 武汉C. 北京D. 济南7. 营养师建议一个12 岁的儿童每日可通过食用200克鱼或180克肉或360克豆腐来摄取蛋白质。
小睿今年12岁,一天他吃了90克豆腐、90 克肉,再吃()克鱼就可以满足一天的蛋白质需求。
A. 100B. 50C. 200D. 258. 一列货运火车从南安站出发,速度逐渐增加,行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车行驶速度逐渐增加,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况是()9. 在下图中,右边的立体图形最多有()个是由左边的平面图形折叠而成的。
2022~2023学年济南市天桥区七年级上学期数学期末考试试题(含答案)
济南市天桥区七年级上学期数学期末考试试题(满分150分时间120分钟)一.单选题。
(每小题4分,共40分)1.﹣2023的相反数是()A.﹣2023B.2023C.12023D.﹣120232.一个数是67500,这个数用科学记数法表示为()A.6.75×102B.67.5×103C.6.75×104D.0.675×1053.下面调查,适合抽样调查的是()A.调查本班同学的体育达标情况B.了解嫦娥五号探测器的零部件C.了解全班师生入校时体温情况D.调查黄河水的水质情况4.把弯曲的河道改直,能够缩短航程,理由是()A.两点之间,线段最短B.经过一点有无数条直线C.两点之间,直线最短D.两点确定一条直线5.如图,是正方体的展开图,则原正方体中,与“功”字所在面相对面上的汉字是()A.成B.绝C.偶D.然(第5题图)(第8题图)6.从n边形的一个顶点出发,可以作5条对角线,则n的值是()A.6B.8C.10D.127.下列运算正确的是()A.2a+6b=8abB.4x2y-5xy2=﹣x2yC.a2b-3ba2=﹣2a2bD.﹣(﹣a-b)=a-b8.如图,直线AB,CD相交于点O,OE平分∠AOC,若∠BOD=70°,则∠AOE等于()A.35°B.70°C.110°D.145°9.某商场购进一批服装,每件服装的标价是400元,由于换季滞销,商场决定这种服装按标价的六折销售,若打折后每件服装仍能获得20%,则该服装的进件是()A.160元B.180元C.200元D.220元10.如图,是由大小相同的圆点和线段按照一定的规律排列组成的简化汉字,依次规律则图⑧中共有圆点的个数是()①②③④A.63B.75C.88D.102二.填空题。
(每小题4分,共24分)11.如果水位升高5m记作+5m,那么水位下降6m记作m.12.单项式﹣5ab2的次数是.813.已知x=3是关于x的方程ax+2x-3=0的解,则a的值为.14.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=16cm,AC=10cm,则CD等于cm.(第14题图)(第15题图)(第16题图)15.如图,这是小新在询问父母后绘制全家的开支情况扇形统计图,如果他家去年总开支为6万元,则用于教育的支出为万元.16.在如图所受的三阶幻方中,填写了一些数、式子、和汉字(其中每个式子或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则诚实守信这四个字表示的数之和为.三.解答题。
2021-2022学年辽宁省鞍山市七年级上学期期末数学试题(解析版)
【答案】
【分析】分别求出顺水速度和逆水速度,再乘以时间即可.
【详解】解:∵船在静水中的速度为vkm/h,水流速度为2 km/h,
∴船在顺水中的速度为(v+2)km/h,船在逆水中的速度为(v-2)km/h,
5.用四舍五入法按要求对0.040925分别取近似值,其中正确的是()
A. 0.05(精确到0.01)B. 0.04(精确到百分位)
C. 0.040(精确到0.001)D. 0.0410(精确到万分位)
【答案】B
【解析】 分析】根据精确度,正确使用四舍五入原则计算即可.
【详解】∵0.040925精确到0.01或精确到百分位为0.04,
【点睛】本题考查的是数轴上的动点问题,数字的规律探究,有理数的加减运算,除法运算,掌握“从具体到一般的探究方法,再总结规律运用规律”是解本题的关键.
二、填空题:(每题3分,共18分)
11.计算: ______.
【答案】-3
【分析】原式先计算乘方,再进行加减运算即可得到答案.
【详解】解:
故答案为:-3
C.射线AB与射线BA是同一条射线D.线段AB与线段BA是同一条线段
【答案】D
【分析】根据线段、射线与两点之间的距离等性质依次判断即可.
【详解】解:A、两点之间线段最短,选项错误;
B、两点间的线段长度叫两点之间的距离,选项错误;
C、射线AB与射线BA不是同一条射线,方向相反,选项错误;
D、线段AB与线段BA是同一条线段,选项正确,
【答案】
【分析】由5袋萝卜的标准质量加上超过或不足的部分即可得到总重量,从而可得答案.
2025届云南省楚雄北浦中学数学七年级第一学期期末经典试题含解析
2025届云南省楚雄北浦中学数学七年级第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.若多项式22229(93)x y ax y -+--+的值与x 的取值无关,则(2)a -的值为( )A .0B .1C .4-D .42.下列调查中,最适合全面调查(普查)的是( )A .调查某型号炮弹的射程B .调查我市中学生观看电影《少年的你》的情况C .调查某一天离开重庆市的人口数量D .调查某班学生对南开校史知识的了解程度3.如图,射线OA 表示的方向是( )A .北偏东65︒B .北偏西35︒C .南偏东65︒D .南偏西35︒4.将算式1﹣(+2)﹣(﹣3)+(﹣4)写成和式是( )A .﹣1﹣2+3﹣4B .1﹣2﹣3+4C .1﹣2﹣3﹣4D .1﹣2+3﹣4 5.若单项式23m xy-与2385n x y -是同类项,则式子2m n -的值是( ) A .-2 B .2C .0D .-4 6.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是( ).A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 7.下列说法正确的是( )A .若12AOC AOB ∠=∠,则射线OC 为AOB ∠平分线 B .若AC BC =,则点C 为线段AB 的中点C .若123180∠+∠+∠=︒,则这三个角互补D .若α∠与β∠互余,则α∠的补角比β∠大90︒8.有理数a 、b 在数轴上的表示如图所示,则( )A .a-b>0B .a+ b<0C .ab>0D .a b <9.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数): 城市悉尼 纽约 时差/时 2+ 13-当北京6月15日23时,悉尼、纽约的时间分别是( )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时10.已知∠α与∠β互补,∠α=150°,则∠β的余角的度数是( )A .30°B .60°C .45°D .90°二、填空题(本大题共有6小题,每小题3分,共18分)11.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10,正方形A 、B 、C 、D 的面积之和为_______.12.1∠与2∠互为余角,若13420∠=︒',则2∠= _______.13.如图,已知C 为线段AB 的中点,D 在线段CB 上.若DA =6,DB =3,则CD =_____.14.在数轴上,点A 表示-5,从点A 出发,沿数轴移动4个单位长度到达点B ,则点B 表示的数是__________.15.如图,点B 、D 在线段AC 上,且1134BD AB CD ==,E 、F 分别是AB 、CD 的中点,EF =10cm ,则CD =_________cm .16.若3-x y 与1a b x y -是同类项,则(b-a)2019=__________三、解下列各题(本大题共8小题,共72分)17.(8分)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合,研究数轴我们发现:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a ﹣b|,线段AB 的中点表示的数为.如:如图,数轴上点A 表示的数为﹣2,点B 表示的数为8,则A 、两点间的距离AB =|﹣2﹣8|=10,线段AB 的中点C 表示的数为=3,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).(1)用含t 的代数式表示:t 秒后,点P 表示的数为 ,点Q 表示的数为 .(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,PQ =AB ;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.18.(8分)为了迎接全国文明城市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,-3,+2,+1,-2,-1,-2(单位:千米)(1)最后,这辆警车的司机如何向队长描述他的位置?(2)如果此时距离出发点东侧2千米处出现交通事故,队长命令他马上赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)19.(8分)先化简再求值,求代数式22(22)6()b a b b a b b -+---的值,其中12a =-,1b = 20.(8分)如图,以直线 AB 上一点 O 为端点作射线 OC ,使∠BOC=70°,将一个直角三角形的直角顶点放在点 O 处.(注:∠DOE=90°)(1)如图①,若直角三角板 DOE 的一边 OD 放在射线 OB 上,则∠COE= °;(2)如图②,将直角三角板 DOE 绕点 O 逆时针方向转动到某个位置,若 OC 恰好平分∠BOE,求∠COD 的度数;(3)如图③,将直角三角板 DOE 绕点 O 转动,如果 OD 始终在∠BOC 的内部, 试猜想∠BOD 和∠COE 有怎样的数量关系?并说明理由.21.(8分)某校发起了“保护流浪动物”行动,七年级两个班的105名学生积极参与,踊跃捐款,已知甲班有13的学生每人捐了10元,乙班有25的学生每人捐了10元,两个班其余学生每人捐了5元,设甲班有学生x 人. (1)用含x 的代数式表示两班捐款的总额;(结果要化简)(2)计算当x =45,两班共捐款多少元?22.(10分)完成下列各题:(1)计算:()15324368⎛⎫-⨯-+ ⎪⎝⎭. (2)计算:213(12)||6(1)2-+-⨯--÷-. 23.(10分)乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:多边形的顶点数4 5 6 7 8 … n从一个顶点出发 的对角线的条数 12 3 4 5 … ________(1)观察探究:请自己观察上面的图形和表格,并用含n 的代数式将上面的表格填写完整;(2)实际应用:数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳:乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.24.(12分)解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=.参考答案一、选择题(每小题3分,共30分)1、D【分析】先去括号,计算整式的加减,再根据值与x 的取值无关可求出a 的值,然后代入计算有理数的乘方即可得.【详解】22229(93)x y ax y -+--+,2222993x y ax y =-+-+-,2(2)76a x y =-++,多项式22229(93)x y ax y -+--+的值与x 的取值无关,20a ∴-=,解得2a =,则2(2)(2)4a -=-=,故选:D .【点睛】本题考查了整式加减中的无关型问题等知识点,熟练掌握整式的加减运算法则是解题关键.2、D【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.据此即可作出判断.【详解】解:A 、调查某型号炮弹的射程,适合抽样调查,故此选项错误;B 、调查我市中学生观看电影《少年的你》的情况,人数众多,适合采用抽样调查,故此选项错误;C 、调查某一天离开重庆市的人口数量,适合采用抽样调查,故此选项错误;D 、调查某班学生对南开校史知识的了解程度,人数不多,适宜采用全面调查(普查)方式,故此选项正确. 故选:D .【点睛】本题考查抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、C【分析】直接根据方位角确定即可.【详解】射线OA 表示的方向是南偏东65︒故选:C .【点睛】本题主要考查方位角,掌握方位角是解题的关键.4、D【分析】根据加减法之间的关系,将加减运算写出省略加号和括号的和式即可.【详解】解:原式=1﹣2+3﹣4故选:D【点睛】本题考查有理数加减混合运算,解题的关键是熟练掌握利用加减法之间的关系,省略加号代数和.5、C【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出m 和n 的值,进而求解.【详解】解:∵23m xy-与2385n x y -是同类项,∴2n-3=1,2m=8,解得:m=4,n=2,∴m-2n=0,故选C.【点睛】本题考查同类项的概念,解题的关键是熟练运用同类项的概念,本题属于基础题型.6、C【分析】根据两点之间,线段最短即可得出答案.【详解】由于两点之间线段最短∴剩下纸片的周长比原纸片的周长小∴能正确解释这一现象的数学知识是两点之间,线段最短故答案为:C .【点睛】本题考查了线段的性质,关键是掌握两点之间线段最短.7、D【分析】逐一进行分析即可得出答案.【详解】A. 若12AOC AOB ∠=∠,则射线OC 不一定为AOB ∠平分线,点C 可能在AOB ∠外部,故该选项错误; B. 若AC BC =,则点C 不一定为线段AB 的中点,因为C 与A,B 不一定共线,故该选项错误;C. 若123180∠+∠+∠=︒,则这三个角互补,互补是相对于两个角来说的,故该选项错误;D. 若α∠与β∠互余,则α∠的补角为180α︒-∠ ,而90βα∠=︒-∠ ,所以α∠的补角比β∠大90︒,故该选项正确;故选:D .【点睛】本题主要考查线段与角的一些概念,掌握角平分线的定义,互补,互余的定义是解题的关键.8、D【分析】本题可借助数轴用数形结合的方法求解.从图形中可以判断a <0<b ,并且|a |<|b |,再对照题设中每个选项,就能判断正确与否.【详解】观察图形可知a <0<b ,并且|a |<|b |,∴a -b <0,a +b >0,ab <0,|a |<|b |.故A 、B 、C 错误,D 正确.故选D .【点睛】本题考查了利用数轴比较有理数的大小,根据数形结合的思想比较两个数的大小与绝对值大小是解题的重点. 9、A【详解】略10、B【分析】根据补角的概念求出∠β的度数,再求出∠β的余角的度数即可.【详解】解:∵∠α与∠β互补,且∠α=150°,∴∠β=180°-150°=30°,=-=∴∠β的余角903060故选B.【点睛】本题考查的是余角和补角的概念,掌握余角和补角的概念是解题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、100【解析】如图,设正方形A、B、C、D、E、F的边长分别为a、b、c、d、e、f,根据勾股定理可得e2=a2+b2,f2=c2+d2,e2+f2=102,即可得出正方形A、B、C、D的面积之和等于最大正方形G的面积,根据正方形面积公式即可得答案.【详解】如图,设正方形A、B、C、D、E、F的边长分别为a、b、c、d、e、f,∵所有的四边形都是正方形,所有的三角形都是直角三角形,∴e2=a2+b2,f2=c2+d2,∴正方形E、F的面积和为正方形A、B、C、D面积的和,∵最大的正方形的边长为10,∴e2+f2=102,∴最大正方形G的面积等于正方形E、F的面积和,∴正方形A、B、C、D的面积之和等于最大正方形G的面积,∴正方形A、B、C、D的面积之和为102=100,故答案为:100【点睛】本题考查勾股定理的几何意义,勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里边的平方的几何意义就是以该边为边的正方形的面积.12、5540'︒【分析】根据互余关系可知∠1+∠2=90°,再根据∠1的度数即可解答.【详解】解:∵1∠与2∠互为余角,∴∠1+∠2=90°,又∵13420∠=︒',∴2903420'5540'∠=︒-︒=︒故答案为:5540'︒.【点睛】本题考查了余角关系的概念,解题的关键是掌握“若1∠与2∠互为余角,则∠1+∠2=90°”.13、1.5【分析】根据题意即可求出AB 的长,然后根据中点的定义即可求出CB ,从而求出CD 的长.【详解】解:∵DA =6,DB =3,∴AB=DA +DB=9∵C 为线段AB 的中点,∴CB=12AB=4.5 ∴CD=CB -DB=1.5故答案为:1.5.【点睛】此题考查的是线段的和与差,掌握各线段之间的关系是解决此题的关键.14、-9或-1【分析】先根据点A 所表示的数,再分两种情况进行讨论,当点A 沿数轴向右移动和点A 沿数轴向左移动时,列出式子,求出点B 表示的数.【详解】解:∵点A 表示-5,∴从点A 出发,沿数轴向右移动4个单位长度到达B 点,则点B 表示的数是-5+4=-1;∴从点A 出发,沿数轴向左移动4个单位长度到达B 点,则点B 表示的数是-5-4=-9;故答案为:-9或-1.【点睛】此题考查了数轴,解题的关键根据题意列出式子,再根据有理数的加减法法则进行计算,要考虑两种情况,不要漏掉. 15、16【分析】设,BD x =则4CD x =,3,AB x = 6,AC x = 再利用中点的含义分别表示,AE CF ,求解EF ,利用10EF =,列方程解方程即可得到答案.【详解】解:设,BD x = 则4CD x ∴=,3,AB x =6,AC AB DC BD x ∴=+-=E 、F 分别是AB 、CD 的中点,1.5,AE BE x ∴== 2,DF CF x ==6 1.52 2.5,EF AC AE FC x x x x ∴=--=--=10EF =,2.510,x ∴=4,x ∴=44416.CD x ∴==⨯=故答案为:16.【点睛】本题考查的是线段的和差,线段的中点的含义,一元一次方程的应用,掌握以上知识是解题的关键.16、-1【分析】根据同类项的定义可求出a 、b 的值,即可得答案.【详解】∵3-x y 与1a b x y-是同类项, ∴a=3,b-1=1,解得:a=3,b=2,∴(b-a)2019=(2-3)2019=-1.故答案为:-1【点睛】本题考查同类项的概念应用,所含字母相同,并且相同字母的指数也相同的项叫做同类项;根据同类项的定义得出a 、b 的值是解题关键.三、解下列各题(本大题共8小题,共72分)17、(1)-2+3t ,8-2t ;(2)相遇点表示的数为4;(3)当t=1或3时,PQ=AB ;(4)点P 在运动过程中,线段MN 的长度不发生变化,理由见解析.【解析】(1)根据题意,可以用含t 的代数式表示出点P 和点Q ;(2)根据当P、Q两点相遇时,P、Q表示的数相等,可以得到关于t的方程,然后求出t的值,本题得以解决;(3)根据PQ=AB,可以求得相应的t的值;(4)根据题意可以表示出点M和点N,从而可以解答本题.【详解】(1)由题意可得,t秒后,点P表示的数为:-2+3t,点Q表示的数为:8-2t,故答案为:-2+3,8-2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等,∴-2+3t=8-2t,解得:t=2,∴当t=2时,P、Q相遇,此时,-2+3t=-2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数-2+3t,点Q表示的数为8-2t,∴PQ=|(-2+3t)-(8-2t)|=|5t-10|,又∴|5t-10|=5,解得:t=1或3,∴当t=1或3时,PQ=AB;(4)点P在运动过程中,线段MN的长度不发生变化,理由如下:∵点M表示的数为:点N表示的数为:∴MN=∴点P在运动过程中,线段MN的长度不发生变化.【点睛】本题考查一元一次方程的应用、数轴、两点间的距离、绝对值,解答本题的关键是明确题意,利用方程和数形结合的思想解答.18、(1)他的位置为出发点以西3千米;(2)3.6升【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得总耗油量,根据有理数的减法,可得答案.【详解】解:(1)∵(2)(3)(2)(1)(2)(1)(2)++-+++++-+-+-3=-(千米)∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|2||3||2||1||2||1||2||3||2|18++-+++++-+-+-+-++=(千米)∴180.2 3.6⨯=(升),∴这次出警共耗油3.6升.【点睛】本题考查了正数和负数,(1)利用了有理数的加法运算,(2)利用了单位耗油量乘以路程得出总耗油量是解题关键. 19、2682b a b -+,6【分析】先去括号合并同类项进行化简,再代数求值.【详解】原式222266b a b b a b b =--+-+2682b a b =-+ 当12a =-,1b =时 原式21618()122=⨯-⨯-⨯+ 6=【点睛】本题考查了去括号,合并同类项,将整式化到最简,然后把a 、b 的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.20、(1)20;(2)20 º;(3)∠COE ﹣∠BOD=20°.【解析】试题分析:(1)根据图形得出∠COE=∠DOE-∠BOC ,代入求出即可;(2)根据角平分线定义求出∠EOB=2∠BOC=140°,代入∠BOD=∠BOE-∠DOE ,求出∠BOD ,代入∠COD=∠BOC-∠BOD 求出即可;(3)根据图形得出∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,相减即可求出答案. 试题解析:(1)如图①,∠COE=∠DOE ﹣∠BOC=90°﹣70°=20°;(2)如图②,∵OC 平分∠EOB ,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE ﹣∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC ﹣∠BOD=20°;(3)∠COE ﹣∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°, ∴(∠COE+∠COD )﹣(∠BOD+∠COD )=∠COE+∠COD ﹣∠BOD ﹣∠COD=∠COE ﹣∠BOD=90°﹣70°=20°,即∠COE ﹣∠BOD=20°. 点睛:本题考查了角的综合计算,能根据图形和已知条件求出各个角之间的关系是解此题的关键.21、(1)13753x -+;(2)720元. 【分析】(1)设甲班有学生x 人,则乙班有学生(105-x )人,分别表示出每班捐款10和5元的总数,求和并化简即可;(2)根据(1)中所求代数式,把x=45代入求值即可.【详解】(1)设甲班有学生x 人,∵两个班共有学生105人,∴乙班人数为105-x , ∴两班捐款的总额是:121210(105)10(1)5(1)(105)53535x x x x ⨯+⨯-⨯+-⨯+-⨯-⨯ 10104204315333x x x =+-++- 1375()3x =-+元. (2)当x=45时,11375=45375=-15+735=72033x -+-⨯+(元). 答:两班共捐款720元.【点睛】本题考查列代数式及整式的加减,根据题意,分别表示出每班捐款10和5元的总数的代数式并熟练掌握合并同类项法则是解题关键.22、(1)3;(2)-1【分析】(1)利用乘法分配律进行计算;(2)先计算乘方、乘法和除法,再计算加减法.【详解】(1)()15324368⎛⎫-⨯-+ ⎪⎝⎭=-8+20-1=3;(2)213(12)||6(1)2-+-⨯--÷- =-1-6+6=-1.【点睛】此题考查有理数的混合运算,掌握有理数的乘法分配律计算法则,乘方法则,乘除法计算法则是解题的关键.23、 (1)n -3,12n(n -3);(2) 135个;(3) 每个同学相当于多边形的一个顶点,则共有n 个顶点. 【分析】(1)依据图形以及表格中的变换规律,即可得到结论;(2)依据数学社团有18名同学,即可得到数学社团的同学们一共将拨打电话数量;(3)每个同学相当于多边形的一个顶点,则共有n 个顶点,进而得到每人要给不同组的同学打一个电话,则每人要打(n-3)个电话,据此进行判断.【详解】解:(1)由题可得,当多边形的顶点数为n 时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为12n (n-3); 故答案为n-3,12n (n-3); (2)∵3×6=18, ∴数学社团的同学们一共将拨打电话为12×18×(18-3)=135(个); (3)每个同学相当于多边形的一个顶点,则共有n 个顶点;每人要给不同组的同学打一个电话,则每人要打(n -3)个电话; 两人之间不需要重复拨打电话,故拨打电话的总数为12n(n -3); 数学社团有18名同学,当n =18时,12×18×(18-3)=135. 【点睛】本题主要考查了多边形的对角线,n 边形从一个顶点出发可引出(n-3)条对角线.从n 个顶点出发引出(n-3)条,而每条重复一次,所以n 边形对角线的总条数为:12n (n-3)(n≥3,且n 为整数). 24、(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x﹣2x=5+4,解得:x=9;(2)去分母得:2(2x﹣5)+3(3﹣x)=12,去括号得:4x﹣10+9﹣3x=12,移项得:4x﹣3x=12+10﹣9,合并同类项得:x=1.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键.。
福建省厦门市湖滨中学2022-2023学年七年级上学期期末考试数学试题(原卷版)
2022-2023初一上学期期末数学试卷一、选择题(本大题共10题,每小题4分,共40分)1. 中国是世界上最早认识和应用负数的国家,比西方早一千多年,在我国古代著名的数学专著《九章算术》中,首次引入负数.如果支出100元记作-100元,则+60元表示( )A . 支出40元B. 收入40元C. 支出60元D. 收入60元2. 方程24x a +=的解是2x =,则=a ( )A. -8 B. 0 C. 2 D. 83. 在党和国家的领导下,全国人民共同努力,全国疫情得到有效控制,各行各业纷纷复工复产,我国经济形势也越来越好.海关总署发布了2021年上半年中国外贸数据,比去年同期增长不少.2021年上半年我国货物贸易进出口总值180700万元人民币.将180700用科学记数法表示应为( )A. 418.0710´B. 518.0710´C. 51.80710´D. 41.80710´4. 一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A. B. C. D.5. 如图所示,点O 在直线AB 上,OE 平分AOC Ð,90EOF Ð=°,则COF Ð与AOE Ð的关系是( )A. 相等B. 互余C. 互补D. 无法确定6. 《九章算术》是中国古代的数学专著,其第七章的一道题译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,可列方程是( )A. 8374x x -=+ B. 8374x x +=+C. 8374x x -=- D. 8374x x +=-7. 根据等式的性质,下列变形正确的是( )A. 如果a b =,那么11a b -=- B. 如果42a =,那么2a =C. 如果123a a -=,那么321a a +=- D. 如果ab =,那么23a b =8. 下列说法错误的是( )A. 直线AB 和直线BA 是同一条直线B. 若线段AM =2,BM =2,则M 为线段AB 的中点C. 画一条5厘米长的线段D. 若线段AB =5,AC =3,则BC 不可能是19. 如图,数轴上的两个点A 、B 所表示的数分别是,a b ,在,,,a b a b ab a b +--中,是负数的有( )A. 1个B. 2个C. 3个D. 4个10. 把四张形状大小完全相同的小长方形卡片 (如 图①)不重叠的放在一个底面为长方形 (长 为m ,宽为)n 的盒子底部 (如 图②),盒子底面未被卡片覆盖的部分用阴影表示, 则图②中两块阴影部分的周长和是( )A. 4mB. 4nC. 2()m n +D. 4()m n +二、填空题(本大题有6小题,每题4分,共24分)11. (1)()32+-=__________;(2)()()43-´-=__________;(3)()03¸-=__________;(4)|−12|÷(−4)=¿__________.12. 以8折的优惠价买了a 元的一双鞋,他买鞋实际用了___________元.13. 在一面墙上用两根钉子钉木条时,木条就会固定不动,用数学知识解释这种生活现象为________.14. 若a 、b 互为相反数,c 、d 互为倒数,则()()20212021a b cd ++=__________.15. 下表中记录了一次试验中时间和温度的数据如果温度的变化是均匀的,21min 时的温度是__________,当时间为_________min 时温度是32℃.16. 已知O 为直线AB 上的一点,COE Ð是直角,OF 平分AOE Ð,COF m Ð=°,射线OD 在ÐBOE的内部,使得12()2BOD AOF BOE BOD Ð-ÐÐ-Ð,则BOD Ð的度数为____________.三、解答题:(本大题共9小题,共86分)17. 计算:(1)()()1762320-+-+--;(2)()2212822-´+¸-;(3)123183424æöæö+-¸-ç÷ç÷èøèø;(4)解方程:2953x x -=+.18. 当x 取何值时,127x -﹣1和44x -的值相等?19. 先化简,再求值:22223(2)(53)a b ab a b ab ---,其中a =2,b =﹣120. 如图,9090AOB COD аÐ=°=,,OA 平分DOE Ð,若20BOC Ð=°,求AOE Ð的度数.21. 已知点A ,B ,C 的三个点,过B ,C 两点作直线,作线段AC 并延长至点D ,使得2AD AC =.作射线AB ,在射线AB 截取3AE AB =.(1)用尺规作出图形,并标出相应的字母;(保留作图痕迹,不写作法)(2)若AB AC =,6CD =,求BE 的长.22. 用方程解决问题:甲乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,若完不成视为违约,甲乙两人经过商量后签订了该合同.甲乙两人能否履行该合同?为什么?23. 定义:若关于x的方程(0)a xb a+=¹的解是bxa=,则这个方程叫做“奇解”方程.如方程24x+=的解是422x==,方程24x+=是“奇解”方程.(1)判断下列方程是不是“奇解”方程,并说明理由:①3 4.5x+=;②443x+=;(2)已知关于x的方程52(4)x m+=-是“奇解”方程,求m的值.24. 如图已知线段AB、CD,(1)线段AB在线段CD上(点C、A在点B的左侧,点D在点C的右侧)①若线段6AB=,14CD=,M、N分别为AC、BD的中点,求MN的长.②M、N分别为AC、BD的中点,求证:()12MN AB CD=+(2)线段CD在线段AB 的延长线上,M、N分别为AC、BD的中点,②中的结论是否成立?请画出图形,直接写出结论25. 如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O处逆时针旋转至图2,使一边OM在∠BOC的内部.且恰好平分∠BOC,求∠CON的度数.(2)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过 程中,第t秒时.直线ON恰好平分锐角∠AOC,则t的值为________秒(直接写出结果)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级2017年12月份月考测试题
数 学
时间:120分钟 满分:130分
一、精心选一选,旗开得胜(本大题共10道小题,每小题3分,共30分) 1.
3
- 的相反数是 ( )
A. 3-
B. 1
3
- C. 13 D.
3
2.计算2
234x x -+的结果为 ( )
A.
27x - B. 27x C. 2x - D. 2x
3. 代数式x+2与代数式2x ﹣5的值互为相反数,则x 的值为( ) A .7 B .﹣7 C .﹣1 D .1 4.下列说法正确的是 ( )
A. 一个平角就是一条直线
B. 连接两点间的线段,叫做这两点的距离
C. 两条射线组成的图形叫做角
D. 经过两点有一条直线,并且只有一条直线 5.下列立体图形中是圆柱的是 ( )
A B C D
6.据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参加了南湖红船(中共一大会址).数2500万用科学计数法表示为 ( ) A.
82.510⨯ B. 72.510⨯ C. 62.510⨯ D. 62510⨯
7. 规定一种新的运算“∮”,对于任意有理数a ,b ,满足a ∮b=a+b ﹣ab ,则3∮2的运算结果是( ) A .6 B .﹣1
C .0
D .1
8.某船顺流航行的速度为20km/h ,逆流航行的速度为16km/h ,则水流的速度为 ( )
A. 2km/h
B.4km/h
C. 18km/h
D. 36km/h 9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为 ( )
A. 330元
B. 210元
C. 180元
D. 150元
10. 一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是( )
A .上
B .海
C .世
D .博
二、用心填一填,再接再厉(本大题共8道小题,每小题3分,共24分)
11.若海平面以上2000米记做“﹢2000米”,那么海平面以下3000米记做“ ”.
12.把一条弯曲的公路改成直道,可以缩短路程. 用几何知识解释其道理是 .
13. 列代数式表示:比a 的3倍大4的数为 .
14.已知多项式222346m x y x y xy ---+-是4次4项式,则m
= .
15.七八年级学生分别到雷锋、毛泽东纪念馆参观,共689人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人. 设到雷锋纪念馆的人数为x 人,可
列方程为 .
16.已知一个角的余角为3040'20"︒ ,则这个角的补角为 . 17.若2
|3|(2)0x y ++-=,则2015()x y +
= .
18. 线段AB=10cm ,A 、B 、C 三点在同一条直线上,BC=5cm ,AC= .
三、细心做一做,慧眼识金(本大题共6道小题,,共56分) 19.(8分)计算下列各题:
(1)21133838⎛⎫⎛⎫⎛⎫+---+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
(2)
()()234233455-⨯--+÷⨯-
20.(10分)解下列方程:
(1)()()64233x x -+=- (2)
2134
13
4
x x ---=
21.(8分)先化简,再求值:()()2
2
43258a ab ab b ----,其中1
2
a =,
1b =-.
22.(8分)读句画图:如图,A ,B ,C ,D 在同一平面内, (1)过点A 和点D 作直线; (2)画射线CD ; (3)连结AB ;
(4)连结BC ,并反向延长BC .
23.(10分)如图,已知∠AOB=140°,∠COF=30°,OE ,OF 分别为∠AOC ,∠BOC 的平分线,求∠BOE 的度数.
24.(12分)(1)如图,点C 在线段AB 上,线段AC=6cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?
(2)根据(1)的计算过程和结果,设AC+BC=a ,其他条件不变,请你猜出MN 的长度.
(3)对于(1),如果叙述为:“已知线段AC=6cm ,BC=4cm ,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求线段MN 的长?”结果会有变化吗?如果有,求出结果.
F
E
C
B
A
O
四.列方程,解应用题(10分)
在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查武汉市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完,求原有树苗多少棵?
五、耐心想一想,超越自我(本大题共1道小题,每小题10分,共10分) 26(10分)阅读材料: 求2
32015122
22++++
+的值.
解:设 2
3
201512222S =++++ ①,
①×2得:2342016222222S =+++++ ②,
②-①得2016221S S -=- ,
即23201520161222221S
=++++
+=-.
请你仿照此法计算: (1)(4分)2
345122
222+++++= ;
(2)(6分)求2
3133
33n ++++
+的值.(其中n 为正整数)
(温馨提示:请同学们仔细检查)。