华东师大版七年级下6.1从实际问题到方程同步练习含答案
七年级数学下册 6.1《从实际问题到方程》随堂练习 (新版)华东师大版
6.1从实际问题到方程1.检验下列方程后面大括号内所列各数中哪些为相应方程的解:
(1) 7x = - 3x+5,
1 2,
2
⎧⎫⎨⎬⎩⎭
;
(2) 21
3
x+
=
2
2
x+
,
1
,4
4
⎧⎫
⎨⎬
⎩⎭
;
(3) 2.5x – 0.5x =3.3x – 1.2x ,{}
47,0,3500
(4) 2
3
(y – 1) = y +
4
3
,
1
,3,6
2
⎧⎫
-
⎨⎬
⎩⎭
2.根据题意,设某数为x,列出方程:
(1) 某数与5的差是4,所列方程为是____________.
(2) 某数的2倍与9的差比它的25%大1,所列方程为________.
3.根据题意设未知数,并列方程(不必求解):
聊城市某中学七年级(2)班学生参加“学雷锋日”的社会义务劳动,分到甲组擦路边广告牌的有26人,分到乙组清除乱贴乱画的有28人,现在需要从甲组调出一部分同学帮助乙组,使乙组人数为甲组的2倍,则需要从甲组调出多少人?
能力升级:
现有四个数2,-3,6,x,把这四个数混合运算(每个数只用1次),使结果为24,比一比,哪个同学求出的x值多?
参考答案:
1.(1)1
2
(2)4 (3) 0 (4)-6
2. (1)x-5 = 4
(2) 2x-9-25% =1
3. 解:设需要从甲组调出x人,则2(26-x)=28+x
2。
七年级数学下册 6.1 从实际问题到方程同步跟踪训练 (新版)华东师大版
6.1从实际问题到方程一.选择题(共8小题)1.下列方程中,2是其解的是()A.x2﹣4=0 B.C.D.x+2=02.已知关于x的方程3x+2a=2的解是a﹣1,则a的值是()A. 1 B C D.﹣13.下列方程,以﹣2为解的方程是()A.3x﹣2=2x B.4x﹣1=2x+3 C.5x﹣3=6x﹣2 D.3x+1=2x﹣14.下列式子中()是方程.A.2+3﹣X B.3+X>5 C.3﹣y=1 D.以上都不是5.若两个方程是同解方程,则()A.这两个方程相等 B.这两个方程的解法相同C.这两个方程的解相同 D.第一个方程的解是第二个方程的解6.下列各式中,是方程的是()A.2+5=7 B.x+8 C.5x+y=7 D.a x+b7.已知:x=2是方程2x+m﹣4=0的解,则m的值为()A.8 B.﹣8 C.0 D.28.下列式子是方程的个数有()35+24=59; 3x﹣18>33; 2x﹣5=0;.A.1个B.2个C.3个D.4个二.选择题(共6小题)9.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于_________ .10.已知方程3x﹣4=8(x=3,x=4),检验括号里面的哪一个数是方程的解:_________ .11.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有_________ (填序号)12.若关于x的方程mx=4﹣x的解是整数,则非负整数m的值为_________ .13.如果x=﹣2是方程:2x2﹣ax﹣b=3﹣2x的根,那么3﹣4a+2b= _________ .14.写出一个解为﹣3的方程_________ .三.解答题(共6小题)15.检验下列各数是否为方程6x+1=4x﹣3的解.(1)x=﹣1;(2)x=﹣2.16.已知是方程的解,求m的值.17.已知x=﹣3是方程|2x﹣1|﹣3|m|=﹣1的解,求代数式3m2﹣m﹣1的值.18.判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7﹣1(2)2x+5y=3.(3)9﹣4x>0.(4)(5)2x+3.19.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)20.下列各方程在后面的括号内分别给出了一组数,从中找出方程的解.(1)3x+1=x+5(0,1,2);(2)x﹣5x+6=0(,,3).6.1从实际问题到方程参考答案与试题解析一.选择题(共8小题)1.下列方程中,2是其解的是()A.x2﹣4=0 B.C.D.x+2=0考点:方程的解.专题:方程思想.分析:解此题时可将x=2代入各方程,然后看方程的左边的解是否等于右边.解答:解:将x=2分别代入各方程得:A、x2﹣4=0,∴本选项正确;B、x﹣2=0,是增根,∴本选项错误;C、=3≠1,∴本选项错误;D、x+2=4≠0,∴本选项错误;故选A.点评:此题考查的是方程的解,只要把x的值代入看方程的值是否与右边的值相等,即可知道x 是否是方程的解.2.已知关于x的方程3x+2a=2的解是a﹣1,则a的值是()A. 1 B.C.D.﹣1考点:方程的解.专题:计算题.分析:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.解答:解:根据题意得:3(a﹣1)+2a=2,解得a=1故选:A.点评:本题主要考查了方程解的定义,已知a﹣1是方程的解实际就是得到了一个关于a的方程.3.下列方程,以﹣2为解的方程是()A.3x﹣2=2x B.4x﹣1=2x+3 C.5x﹣3=6x﹣2 D.3x+1=2x﹣1考点:方程的解.专题:计算题.分析:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.解答:解:A、将x=﹣2代入原方程.左边=3×(﹣2)﹣2=﹣8,右边=2×(﹣2)=﹣4,因为左边≠右边,所以x=﹣2不是原方程的解.B、将x=﹣2代入原方程.左边=4×(﹣2)﹣1=﹣9,右边=2×(﹣2)+3=﹣1,因为左边≠右边,所以x=﹣2是原方程的解.C、将x=﹣2代入原方程.左边=5×(﹣2)﹣3=﹣13,右边=6×(﹣2)﹣2=﹣14,因为左边≠右边,所以x=﹣2不是原方程的解.D、将x=﹣2代入原方程.左边=3×(﹣2)+1=﹣5,右边=2×(﹣2)﹣1=﹣5,因为左边=右边,所以x=﹣2是原方程的解.故选D.点评:解题的关键是根据方程的解的定义.使方程左右两边的值相等的未知数的值是该方程的解.4.下列式子中()是方程.A.2+3﹣X B.3+X>5 C.3﹣y=1 D.以上都不是考点:方程的定义.专题:计算题.分析:根据方程的定义解答.解答:解:A、不是等式,故不是方程,故本选项错误;B、是不等式,不是等式,故不是方程,故本选项错误;C、是含有未知数的等式,是方程,故本选项正确;故选C.点评:本题考查了方程的定义,方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).5.若两个方程是同解方程,则()A.这两个方程相等 B.这两个方程的解法相同C.这两个方程的解相同 D.第一个方程的解是第二个方程的解考点:方程的解.分析:根据方程的解相同是同解方程,可得答案.解答:解:两个方程是同解方程,得这两个方程的解相同,故C正确;故选:C.点评:本题考查了方程的解,利用了同解方程的定义.6.下列各式中,是方程的是()A.2+5=7 B.x+8 C.5x+y=7 D.a x+b考点:方程的定义.专题:推理填空题.分析:本题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案.解答:解:A、2+5=7中不含有未知数,所以它不是方程;故本选项错误;B、x+8不是等式,所以它不是方程;故本选项错误;C、5x+y=7符合方程的定义;故本选项正确;D、ax+b不是等式,所以它不是方程;故本选项错误;故选C.点评:本题考查了方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).7.已知:x=2是方程2x+m﹣4=0的解,则m的值为()A.8 B.﹣8 C.0 D.2考点:方程的解.分析:根据方程解的定义,将方程的解代入方程,就可得一个关于字母m的一元一次方程,从而可求出m的值.解答:解:把x=2代入方程得4+m﹣4=0,解得m=0故选C点评:解决本题的关键在于根据方程的解的定义将x=2代入,从而转化为关于m的一元一次方程.8.下列式子是方程的个数有()35+24=59;3x﹣18>33;2x﹣5=0;.A.1个B.2个C.3个D.4个考点:方程的定义.分析:方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.解答:解:(1)35+24=59,是等式但不含未知数,所以不是方程.(2)3x﹣18>33,含未知数但不是等式,所以不是方程.(3)2x﹣5=0,是含有未知数的等式,所以是方程.(4)+15=0,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选B.点评:解决关键在于掌握方程的两个要素:(1)含未知数.(2)要是等式.二.选择题(共6小题)9.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于﹣1 .考点:方程的解.专题:计算题.分析:使方程左右两边的值相等的未知数的值是该方程的解.将方程的解代入方程可得关于m的一元一次方程,从而可求出m的值.解答:解:根据题意得:4+3m﹣1=0解得:m=﹣1,故答案为:﹣1.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于m字母系数的方程进行求解,注意细心.10.已知方程3x﹣4=8(x=3,x=4),检验括号里面的哪一个数是方程的解:x=4 .考点:方程的解.分析:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.所以把括号内的数分别代入已知方程,进行一一验证.解答:解:当x=3时,左边=3×3﹣4=5,右边=8,左边≠右边,所以x=3不是原方程的解;当x=4时,左边=3×4﹣4=8,右边=8,左边=右边,所以x=4是原方程的解;综上所述,x=4是原方程的解.故答案为x=4.点评:本题考查了方程的解的定义.此题是利用代入法进行验证的.11.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有②,③(填序号)考点:方程的定义.分析:根据含有未知数的等式叫方程,可得答案.解答:解:∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程,故答案为:②、③.点评:本题考查了方程,方程是含有未知数的等式,注意不含未知数的等式不是方程,含有字母的代数式不是方程.12.若关于x的方程mx=4﹣x的解是整数,则非负整数m的值为0或1或3 .考点:方程的解.专题:计算题.分析:先用m的代数式表示x的值,再根据方程的解是整数,求非负整数m的值即可.解答:解:由方程mx=4﹣x,得:x=,∵方程的解是整数,∴非负整数m的值为0或1或3.故答案为:0或1或3.点评:本题主要考查了方程解的定义,关键会用m的代数式表示方程的解.13.如果x=﹣2是方程:2x2﹣ax﹣b=3﹣2x的根,那么3﹣4a+2b= 5 .考点:方程的解.专题:计算题.分析:由x=﹣2是方程的解,将x=﹣2代入方程得到2a﹣b的值,所求式子变形后代入计算即可求出值.解答:解:将x=﹣2代入方程得:8+2a﹣b=3+4,即2a﹣b=﹣1,则3﹣4a+2b=3﹣2(2a﹣b)=3+2=5.故答案为:5.点评:此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.写出一个解为﹣3的方程x=﹣3 .考点:方程的解.专题:开放型.分析:方程的解就是能使方程左右两边相等的未知数的值.解答:解:写出一个解为﹣3的方程x=﹣3.(答案不唯一)点评:本题考查了方程的定义,是一个比较简单的问题.三.解答题(共6小题)15.检验下列各数是否为方程6x+1=4x﹣3的解.(1)x=﹣1;(2)x=﹣2.考点:方程的解.分析:根据使方程成立的未知数的值是方程的解,可得答案.解答:解:(1)当x=﹣1时,左边=6×(﹣1)+1=﹣5,右边=4×(﹣1)﹣3=﹣7,左边≠右边,x=﹣1不是方程6x+1=4x﹣3的解;(2)当x=﹣2时,左边=6×(﹣2)+1=﹣11,右边=4×(﹣2)﹣3=﹣11,左边=右边,x=﹣2是方程6x+1=4x﹣3的解.点评:本题考查了方程的解,把未知数的值代入原方程检验:方程的左边等于右边,未知数的值是方程的解.16.已知是方程的解,求m的值.考点:方程的解.专题:计算题.分析:把x=代入方程,即可得到关于m的方程,即可求得m的值.解答:解:根据题意得:3(m﹣×)+×=5m,解得:m=﹣.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.17.已知x=﹣3是方程|2x﹣1|﹣3|m|=﹣1的解,求代数式3m2﹣m﹣1的值.考点:方程的解;绝对值;代数式求值.分析:先把x=﹣3代入方程|2x﹣1|﹣3|m|=﹣1中,求出m的值,再把m的值代入代数式3m2﹣m ﹣1中,求出答案即可.解答:解:把x=﹣3代入方程|2x﹣1|﹣3|m|=﹣1得:|2×(﹣3)﹣1|﹣3|m|=﹣1,7﹣3|m|=﹣1,解得:,把代入3m2﹣m﹣1得:3×﹣﹣1=;或:3×﹣(﹣)﹣1=23;所以代数式3m2﹣m﹣1的值是:或23.点评:此题考查了方程的解、绝对值;解题的关键是先把m的值求出来,不要漏解;解题时要细心.18.判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7﹣1(2)2x+5y=3.(3)9﹣4x>0.(4)(5)2x+3.考点:方程的定义.分析:根据方程的定义对各小题进行逐一分析即可.解答:解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.点评:本题考查的是方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.19.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)考点:方程的定义.分析:设x年后爸爸的年龄是小明年龄的2倍,再根据x年后两人的年龄是2倍关系列出方程即可.解答:解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.点评:本题考查了列一元一次方程,需要注意父子二人的年龄都增加x.20.下列各方程在后面的括号内分别给出了一组数,从中找出方程的解.(1)3x+1=x+5(0, 1,2);(2)x﹣5x+6=0(,,3).考点:方程的解.分析:把括号内的数代入方程的左右两边,判断是否能使左右两边相等即可判断.解答:解:(1)当x=0时,左边=1,右边=5,左边≠右边,所以x=0不是方程的解;当x=l时,左边=3xl+1=4,右边=1+5=6,左边≠右边,所以x=l不是方程的解;当x=2时,左边=3 x2+1=7,右边=2+5=7,左边=右边,所以x=2是方程的解.(2)当时,左边=,右边=0,左边≠右边,所以不是方程的解;当时,左边=,右边=0,左边=右边,所以是方程的解;当x=3时,左边=3﹣5×3+6=﹣6,右边=0,左边≠右边,所以x=3不是方程的解.点评:本题考查了方程的解的定义,正确理解定义是关键.。
华东师大版七年级数学下册练习题:《一元一次方程》一课一练含单元测试题
6.1 从实际问题到方程1.下列各式中,是方程的是( )A .x 2-2x =0 B.23x -5 C .3+(-4)=-1 D .7x >52.小华想从下面各项中找一个解是x =2的方程,那么她会选择( )A .3x +6=0 B.23x =2 C .5-3x =1 D .3(x -1)=x +13.检验方程后面的数是不是它的解.2x +1=3x -1.(x =-1,x =2)4.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后每个书包的售价为90元,则得到方程( )A .0.8x -10=90B .0.08x -10=90C .90-0.8x =10D .x -0.8x -10=905.列方程:(1)x 的2倍与3的差等于零;(2)y 比它的34多7;(3)x 的3倍加上5等于x 的7倍减去4.6.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.若设上半年平均每月用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=157.已知x =1是方程x +2a =-1的解,那么a 的值是( )A .-1B .0C .1D .28.若单项式3ac x +2与-7ac 2x -1是同类项,则可以得到关于x 的方程为______________.9.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字(不计算标题字数).则七言绝句有多少首?设七言绝句有x 首,根据题意,可列方程为________.10.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株,设乙班植树x株.(1)列两个不同的含x的代数式,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.详解详析1.A [解析] 考查方程的定义.2.D [解析] 把x=2分别代入选项中各方程,它只能使3(x-1)=x+1的左右两边成立,所以选D.3.解:把x=-1代入方程:左边=-2+1=-1,右边=-3-1=-4,左边≠右边,∴x=-1不是方程的解;把x=2代入方程:左边=4+1=5,右边=6-1=5,左边=右边,∴x=2是方程的解.4.A5.解:(1)2x-3=0. (2)y-34y=7.(3)3x+5=7x-4.6.A [解析] 设上半年平均每月用电x度,则下半年平均每月用电(x-2000)度,由题意,得6x+6(x-2000)=150000.故选A.7.A [解析] 把x=1代入方程,得1+2a=-1,解得a=-1.故选A.8.x+2=2x-1 [解析] ∵单项式3ac x+2与-7ac2x-1是同类项,∴x+2=2x-1.故答案为x+2=2x-1.9.28x-20(x+13)=20 [解析] 设七言绝句有x首,则五言绝句有(x+13)首.利用五言绝句与七言绝句总字数之间的关系可列方程为28x-20(x+13)=20.10.解:(1)根据甲班植树的株数比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)由题意,得(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.∵左边=右边,∴25是方程(1+20%)x=2(x-10)的解,∴乙班植树的株数是25株,从上面的检验过程可得甲班植树的株数是30株,而不是35株.6.2 七年级数学下册解一元一次方程同步练习一、选择题1.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2bB.3a+1=2b+6C.3ac=2bc+5D.a=2.将3x﹣7=2x变形正确的是()A.3x+2x=7 B.3x﹣2x=﹣7 C.3x+2x=﹣7 D.3x﹣2x=73.下列方程的变形正确的是()A.由,得: ; B.由,得:; C.由得 D.由得:;4.若x=-3是方程2(x-m)=6的解,则m 的值为( )A .6B .-6C .12D .-125.若7﹣2x 和5﹣x 的值互为相反数,则x 的值为( )A.4B.2C.﹣12D.﹣76.解方程时,为了去分母应将方程两边同时乘以( ) A.12 B.10 C.9 D.47.把方程3x +=3-去分母,正确的是 ( )A .B .C .D . 8.方程,可以化成( )A. B.C. D.9.某书上有一道解方程的题:,处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=-2,那么处应该是数字( ).A.7B.5C.2D.-210.已知方程的解满足,则的值是( ) A. B.C.或 D.任何数二、填空题 11.若关于x 的方程(k+2)x 2+4kx ﹣5k=0是一元一次方程,则k= ,方程的解x= .3137143y y ---=12.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n= .13.已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同,则方程的解为.14.若方程3x+2a=13和方程2x-4=2的解互为倒数,则a的值为 .15.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a=16.已知t满足方程,则的值为 .三、解答题17.解方程:4x-3(20-x)= 3 18.解方程:3(x﹣1)﹣2(x+2)=4x﹣1.19.解方程:. 20.解方程:21.聪聪在对方程①去分母时,错误的得到了方程2(x+3)﹣mx﹣1=3(5﹣x) ②,因而求得的解是x=2.5,试求m的值,并求方程的正确解.22.m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.答案1.C2.D3.D.4.D5.B6.A7.A8.D9.B.10.C11.答案为:﹣2、1.25.12.答案为:-1013.答案为:014.答案为:a=6;15.答案为:2,4;16.答案为:2;17.x=9;18.解:去括号得:3x-3-2x-4=4x-1,移项得:x-4x=-1+7,合并得:-3x=6,解得:x=-2.19.去分母得:5(x﹣3)﹣3(2x+7)=15(x﹣1),去括号得:5x﹣15﹣6x﹣21=15x﹣15,移项合并得:﹣16x=21,解得:x=﹣.20.x=-0.2.21.解:把x=2.5代入方程②得:2(2.5+3)﹣2,5m﹣1=3(5﹣2.5),解得:m=1,把m=1代入方程①得:﹣=,去分母得:2(x+3)﹣x+1=3(5﹣x),去括号得:2x+6﹣x+1=15﹣3x,移项合并得:4x=8,解得:x=2,则方程的正确解为x=2.22.解:由4x﹣m=2x+5,得x=,由2(x﹣m)=3(x﹣2)﹣1,得x=﹣2m+7.∵关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2,∴+2=﹣2m+7,解得m=1.故当m=1时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.华东师大版数学七年级下册第六章 6.3 实践与探索复习练习1. 一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程正确的是() A.600×0.8-x=20 B.600×8-x=20C.600×0.8=x-20 D.600×8=x-202.长方形的长是宽的3倍,如果宽增加了4 m而长减少了5 m,那么面积增加15 m2,设长方形原来的宽为x m,所列方程是() A.(x+4)(3x-5)+15=3x2B.(x+4)(3x-5)-15=3x2 C.(x-4)(3x+5)-15=3x2D.(x-4)(3x+5)+15=3x23.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装获利()A.168元B.108元C.60元D.40元4. 小强父母想用一笔钱购买年利率为2.98%的3年期国库券作为小强3年后读高中的费用(约需8 000元),现在应买这种国库券约() A.7 775元B.7 362元C.7 769元D.7 344元5. 学校计划将120名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出6个小组,那么原计划要分成的小组数是()A.40B.30C.24D.206. 一个两位数的十位上的数字与个位上数字之和为8,把这个数减去36后,结果恰好成为十位数字与个位数字对调后组成的两位数,则这个两位数是()A.26 B.62 C.71 D.537. 某商店销售一批服装,每件售价150元,可获利润25%,求这种服装的成本价.设这种服装的成本价为x元,则得到的方程是() A.150-x=25%·x B.150-x=25%C.x=150×25% D.25%·x=1508. 已知关于x的方程kx2-2x+9=0的一个解是x=-1,则k的值是()A.-11B.11C.7D.-79. 下列各式中是方程的是()A.3x-2 B.7+(-5) C.3y-1=6 D.4×2-2=610. 下列判断正确的是()A.x=2是方程2x-1=x的解B.方程6x=3与方程6|x|=3的解相同C.由7x=5可得x=7 5D.x=1和x=-1都是方程x2-1=0的解11. 某企业存入银行甲、乙两种不同用途的存款共20万元,甲种存款的年利率为5.5%,乙种存款的年利率为4.5%,该企业一年可获利息9 500元,则存款数目为甲______元,乙______元.12. 小华的妈妈为爸爸买了一件上衣和一条裤子,共用306元.其中上衣按标价打七折,裤子按标价打八折,上衣的标价为300元,则裤子的标价为_____元13. 某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是______万元14. 某市政府切实为残疾人办实事,在区道路改造中为盲人修建一条盲道,根据规划设计和要求,每天施工500 m,该市工程队在实际施工时增加了施工人员,每天修建的盲道比原计划增加50%,结果提前2天完成,则盲道______m.15. 某数的3倍加上4等于10,设某数为x,那么可列出方程式:______________16. 已知父子俩的年龄之和为55岁,又知父亲的年龄比儿子的年龄的3倍少5岁,设儿子的年龄为x岁,可列方程为______________.17. 检验x=5是否为方程3x-2=2x+3的解.18. 甲、乙两人捐书给贫困山区,共捐54本,如果甲给乙一本,则乙是甲的2倍,问甲、乙各捐书多少本?19. 某一学生在做作业时,不慎将墨水打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度是每小时45千米,运货汽车的速度是每小时35千米,(以下内容被墨水覆盖)”请将这道题补充完整,并列方程解答20. 某同学在A,B两家超市发现他看中的英语学习机的单价相同,书包单价也相同,英语学习机和书包单价之和是452元,且英语学习机的单价比书包单价的4倍少8元(1)求该同学看中的英语学习机和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打7.5折销售;超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的英语学习机、书包,那么在哪一家购买更省钱?参考答案:1---10 ABCDB BAACD11. 5万15万12. 12013. 12014. 300015. 3x+4=1016. 3x-5+x=5517. 解:左边=3×5-2=13,右边=2×5+3=13.左边=右边,∴x=5是方程的解.18. 解:设甲捐x本,则乙捐了(54-x)本,由题意得:2(x-1)=54-x+1,解得x=19,所以甲捐了19本,乙捐了35本19. 解:可以把它补充成相遇问题,也可以补充成追击问题.方案很多,下面仅举两种方案供参考.方案1(相遇问题):补充“两车分别从甲、乙两地同时出发相向而行,经过几小时才能相遇?”设两车经过x小时才能相遇,依题意有(45+35)x=40.解得x=0.5. 答:经过0.5小时才能相遇.方案2(追击问题):补充“摩托车与汽车分别从甲、乙两地同时同向而行,经过几小时摩托车才能追上运货的汽车?”设经过x小时摩托车才能追上运货的汽车,依题意有45x=40+35x,解得x=4.答:经过4小时摩托车才能追上运货的汽车.20. 解:(1)设书包的单价为x元,则英语学习机的单价为(4x-8)元.根据题意,得4x-8+x=452,解得x=92.4x-8=4×92-8=360.答:该同学看中的英语学习机单价为360元,书包单价为92元.(2)在超市A购买英语学习机与书包各一件,需花费现金:452×75%=339(元);因为339<400,所以可以选择超市A购买.在超市B可先花费现金360元购买英语学习机,再利用得到的90元购物券,加上2元现金购买书包,总计共花费现金:360+2=362(元); 因为362<400,所以也可以选择在超市B购买但是,由于362>339,所以在超市A购买英语学习机与书包更省钱.第6章一元一次方程一、选择题(本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中只有一项符合题意)1.下列方程中,是一元一次方程的是()A.x2+3=0B.x+3=y+2C.=4D.x=02.下列说法中不成立的是()A.若x=y,则x-a=y-aB.若x-y=0,则-x=-yC.若x=-y,则-x-5=y-5D.若-x=1,则x=-3.方程3x+2=2x-1的解为()A.x=-3B.x=-1C.x=1D.x=34.解方程=1-,去分母正确的是()A.3x=1-2x+2B.3x=1-2x-2C.3x=6-2x-2D.3x=6-2x+25.若关于x的方程3x+2a=12和方程2x-4=12的解相同,则a的值为()A.6B.8C.-6D.46.若的值比的值小1,则x的值为()A.B.-C.D.-7.对于非零的两个数a,b,规定a⊗b=3a-b,若(x+1)⊗2=5,则x的值为()A.1B.-1C.D.-28.已知关于x的方程(2a+b)x-1=0无解,那么ab的值是()A.负数B.正数C.非负数D.非正数9.某班组每天需生产50个零件才能在规定的时间内完成一批零件生产任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要生产的零件为x个,则可列方程为()A.-=3B.-=3C.-=3D.-=310.某个体商贩在一次买卖中同时卖出两件上衣,售价都是135元,若按成本计,其中一件盈利25%,另一件亏本25%,则在这次买卖中他()A.不赚不赔B.赚9元C.赔18元D.赚18元二、填空题(本大题共8小题,每小题4分,共32分)11.已知方程(m-2)x|m-1|+4=7是关于x的一元一次方程,则m=.12.当x=时,代数式与1-的值相等.13.如果当x=-2时,式子2x2+mx+4的值为18,那么当x=2时,这个式子的值为.14.如果2(x+3)的值与3(1-x)的值互为相反数,那么x=.15.若代数式3a4b2x与a4b3x-1能合并成一项,则x的值为.16.如果|x+8|=5,那么x=.17.如图6-Z-1是一块在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的正方形的边长为1,则这个长方形色块图的面积为.图6-Z-1 18.一张试卷只有25道选择题,答对一题得4分,答错一题倒扣1分,某学生解答了全部试题共得70分,他答对了道题.三、解答题(本大题共4小题,共38分)19.(8分)解方程:(1)2(x-1)-3(2+x)=5;(2)2-=+1.20.(10分)阅读:解方程2.4-=y,有如下四种解法:解法A:24-=6y,第一步120-y+4=30y,第二步-31y=-124,第三步y=4.第四步解法B:2.4-=y,第一步12+10y-40=3y,第二步7y=28,第三步y=4.第四步解法C:24-=6y,第一步48+10y-40=12y,第二步8=2y,第三步y=4.第四步解法D:-=y,第一步12-10y+40=3y,第二步-13y=-52,第三步y=4.第四步阅读上面的解法,你认为哪些解法是正确的?解法错误的错在哪一步?21.(10分)某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,则原计划生产多少个零件?22.(10分)情景:图6-Z-2试根据图中的信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根跳绳,付款时小红反而比小明少付5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.答案1. D2. D3. A4. D5. C6. B7. C8. D9. C10. C11. 0 12.-1 13. 6 14. 9 15. 1 16.-3或-13 17. 143 18. 1919.解:(1)去括号,得2x-2-6-3x=5.移项、合并同类项,得-x=13.系数化为1,得x=-13.(2)方程两边同乘以6,得12-(2x-1)=2(x+1)+6,12-2x+1=2x+2+6,4x=5,x=.20.解:只有解法D是正确的.解法A错在第一步,解法B错在第二步,解法C错在第二步.21.解:设原计划生产x个零件.由题意,得24+5=x+60,解得x=780.答:原计划生产780个零件.22.解:(1)150240(2)有这种可能.设小红购买了x根跳绳,根据题意,得25×0.8x=25(x-2)-5,解得x=11.所以小红购买了11根跳绳.。
华师大版初中数学七年级下册《6.1 从实际问题到方程》同步练习卷(含答案解析
华师大新版七年级下学期《6.1 从实际问题到方程》同步练习卷一.选择题(共10小题)1.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=82.下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=13.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±24.下列各式中,是方程的是()A.B.14﹣5=9C.a>3b D.x=15.下列各式中,是方程的是()A.3+5B.x+1=0C.4+7=11D.x+3>06.方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2B.3C.4D.67.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=18.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=0 9.下列各数是方程x﹣9=1的解是()A.0B.1C.2D.310.若x=1是方程ax+3x=2的解,则a的值是()A.﹣1B.5C.1D.﹣5二.填空题(共13小题)11.已知式子:①3﹣4=﹣1;②2x﹣5y;③1+2x=0;④6x+4y=2;⑤3x2﹣2x+1=0,其中是等式的有,是方程的有.12.若单项式3ac x+2与﹣7ac2x﹣1是同类项,可以得到关于x的方程为.13.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有(填序号)14.对于有理数a,b,规定一种新运算:a*b=ab+b.例如,2*3=2×3+3=9有下列结论:①(﹣3)*4=﹣8;②a*b=b*a;③方程(x﹣4)*3=6的解为x=5;④(4*3)*2=32.其中,正确的是.(填序号)15.已知x=5是方程ax﹣8=20+a的解,则a=.16.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:.17.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.18.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是.19.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为.20.x=﹣4是方程ax2﹣6x﹣1=﹣9的一个解,则a=.21.方程的解:解方程就是求出使方程中等号左右两边的未知数的值,这个值就是方程的解.(1)在x=3,x=0,x=﹣2中,方程5x+7=7﹣2x的解是.(2)在x=1000和x=2000中,方程0.52x﹣(1﹣0.52)x=80的解是.22.已知关于x的方程ax+b=c的解是x=1,则|c﹣a﹣b﹣1|=.23.若﹣2是关于x的方程3x+4=﹣a的解,则a100﹣=.三.解答题(共10小题)24.x=2是方程ax﹣4=0的解,检验x=3是不是方程2ax﹣5=3x﹣4a的解.25.已知x=﹣1是关于x的方程8x3﹣4x2+kx+9=0的一个解,求3k2﹣15k﹣95的值.26.已知x=﹣3是方程|2x﹣1|﹣3|m|=﹣1的解,求代数式3m2﹣m﹣1的值.27.已知关于x的方程的两个解是;又已知关于x的方程的两个解是;又已知关于x的方程的两个解是;…,小王认真分析和研究上述方程的特征,提出了如下的猜想.关于x的方程的两个解是;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.(1)关于x的方程的两个解是x1=和x2=;(2)已知关于x的方程,则x的两个解是多少?28.阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc﹣q),由于﹣c2﹣pc﹣q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.29.先阅读下列一段文字,然后解答问题.已知:方程的解是x1=2,x2=﹣;方程的解是x l=3,x2=﹣;方程的解是x l=4,x2=﹣;方程的解是x l=5,x2=﹣.问题:观察上述方程及其解,再猜想出方程的解,并写出检验.30.检验下列各题括号内的值是否为相应方程的解(1)2x﹣3=5(x﹣3)(x=6,x=4)(2)4x+5=8x﹣3(x=3,x=2)31.检验括号内的数是不是方程的解.(1)3x﹣5=4x﹣1(x=,x=﹣1);(2)5y+3=﹣y(y=0,y=﹣3)32.检验括号里的数是不是它前面方程的解:3x+1=10(x=3,x=4,x=﹣4).33.先填表,再指出方程1700+150x=2450的解.华师大新版七年级下学期《6.1 从实际问题到方程》同步练习卷参考答案与试题解析一.选择题(共10小题)1.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=8【分析】根据方程的定义(含有未知数的等式叫方程),即可解答.【解答】解:3π+4≠5中不含未知数,所以错误.故选:B.【点评】本题主要考查了方程的定义,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.2.下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1【分析】根据方程的定义:含有未知数的等式叫方程,可得出正确答案.【解答】解:A、不是等式,错误;B、是一元一次方程,正确;C、不是等式,错误;D、不含未知数,错误;故选:B.【点评】本题考查了方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).3.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±2【分析】根据一元一次方程的定义列出关于a的不等式组,求出a的值即可.【解答】解:∵方程(a+3)x|a|﹣2+6=0是关于x的一元一次方程,∴,解得a=3.故选:A.【点评】本题考查的是一元一次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.4.下列各式中,是方程的是()A.B.14﹣5=9C.a>3b D.x=1【分析】根据方程的定义:含有未知数的等式叫方程可得答案.【解答】解:A、没有等号,故不是方程,故此选项错误;B、等式中没有未知数,不是方程,故此选项错误;C、是不等式,不是方程,故此选项错误;D、符合方程的定义,是方程,故此选项正确;故选:D.【点评】此题主要考查了方程,关键是掌握方程定义.5.下列各式中,是方程的是()A.3+5B.x+1=0C.4+7=11D.x+3>0【分析】根据方程的定义:含有未知数的等式叫方程进行分析即可.【解答】解:A、不是方程,故此选项错误;B、是方程,故此选项正确;C、不是方程,故此选项错误;D、不是方程,故此选项错误;故选:B.【点评】此题主要考查了方程定义,关键是掌握方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.6.方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2B.3C.4D.6【分析】设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.【解答】解:设•处的数字是a,则﹣3(a﹣9)=5x﹣1,将x=2代入,得:﹣3(a﹣9)=9,解得a=6,故选:D.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=1【分析】把x=4代入各方程检验即可.【解答】解:解是x=4的方程是3x﹣8=4,故选:C.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=0【分析】可解每个方程,然后判断,也可把根代入每个方程,得结果.【解答】解:(法一)把x=1代入各个方程,只有选项A的左边等于右边.故选:A法(二)因为,去分母,得x﹣1=0解得x=1所以x=1是A中方程的根;因为=﹣1,解得x=﹣1所以x=1不是选项B中方程的根;因为﹣5x=﹣5,解得x=﹣1所以x=1不是选项C中方程的根;因为2(x+1)=0,解得x=﹣1所以x=1不是选项D中方程的根.故选:A.【点评】本题考查了方程的解.题目难度不大,用代入检验法比较简便.9.下列各数是方程x﹣9=1的解是()A.0B.1C.2D.3【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A、当x=0时,左边=﹣9≠右边,则不是方程的解;B、当x=1时,左边=﹣9=﹣≠右边,则不是方程的解;C、当x=2时,左边=﹣9=﹣≠右边,则不是方程的解;D、当x=3时,左边=右边=1,则x=3是方程的解.故选:D.【点评】本题考查了方程的解的定义,理解定义是关键.10.若x=1是方程ax+3x=2的解,则a的值是()A.﹣1B.5C.1D.﹣5【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值.【解答】解:把x=1代入原方程得:a+3=2解得:a=﹣1故选:A.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母的方程进行求解.二.填空题(共13小题)11.已知式子:①3﹣4=﹣1;②2x﹣5y;③1+2x=0;④6x+4y=2;⑤3x2﹣2x+1=0,其中是等式的有①③④⑤,是方程的有③④⑤.【分析】等式的特点:用等号连结的式子,方程的特点:①含未知数,②是等式.【解答】解:①3﹣4=﹣1是等式;③1+2x=0即是等式也是方程;④6x+4y=2即是等式也是方程;⑤3x2﹣2x+1=0即是等式也是方程,故答案为:①③④⑤;③④⑤.【点评】本题主要考查的是方程的定义,熟练掌握方程的概念是解题的关键.12.若单项式3ac x+2与﹣7ac2x﹣1是同类项,可以得到关于x的方程为x+2=2x﹣1.【分析】所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可得到关于x的方程.【解答】解:∵单项式3ac x+2与﹣7ac2x﹣1是同类项,∴x+2=2x﹣1.故答案为:x+2=2x﹣1.【点评】本题考查的是同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同,(2)相同字母的指数相同,是易混点,还要注意同类项与字母的顺序无关,与系数无关.同时考查了方程的定义:含有未知数的等式叫方程.13.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有②,③(填序号)【分析】根据含有未知数的等式叫方程,可得答案.【解答】解:∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程,故答案为:②、③.【点评】本题考查了方程,方程是含有未知数的等式,注意不含未知数的等式不是方程,含有字母的代数式不是方程.14.对于有理数a,b,规定一种新运算:a*b=ab+b.例如,2*3=2×3+3=9有下列结论:①(﹣3)*4=﹣8;②a*b=b*a;③方程(x﹣4)*3=6的解为x=5;④(4*3)*2=32.其中,正确的是①③④.(填序号)【分析】原式各项利用已知的新定义计算得到结果,即可做出判断.【解答】解:①根据题中的新定义得:(﹣3)*4=﹣12+4=﹣8,正确;②a*b=ab+b;b*a=ab+a,不一定相等,错误;③方程整理得:3(x﹣4)+3=6,去括号得:3x﹣12+3=6,移项合并得:3x=15,解得:x=5,正确;④(4*3)*2=(12+3)⊕2=15*2=30+2=32,正确.故答案为:①③④.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.已知x=5是方程ax﹣8=20+a的解,则a=7.【分析】使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.【解答】解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为:7.【点评】已知条件中涉及到方程的解,可以把方程的解代入原方程,转化为关于字母a的方程进行求解.16.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:+=1.【分析】根据观察,可发现规律:第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,可得答案.【解答】解:由一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,得第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,解是x=2017的方程:+=1,故答案为:+=1.【点评】本题考查了方程的解,观察方程得出规律是解题关键.17.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是4.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得2+▲=6,解得▲=4.故答案为:4.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.18.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是1.【分析】●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.【解答】解:●用a表示,把x=1代入方程得1=1﹣,解得:a=1.故答案是:1.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.19.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为x=1.【分析】根据互为相反数(非0)两数之商为﹣1,即可求出方程的解.【解答】解:∵a,b互为相反数,且ab≠0,∴=﹣1,方程ax+b=0,解得:x=﹣=1.故答案为:x=1.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.20.x=﹣4是方程ax2﹣6x﹣1=﹣9的一个解,则a=﹣2.【分析】把x=﹣4代入已知方程,通过解方程来求a的值.【解答】解:把x=﹣4代入方程ax2﹣6x﹣1=﹣9得:16a+24﹣1=﹣9,解得:a=﹣2.故答案为:﹣2.【点评】本题考查了一元一次方程的解的定义.解决本题的关键是熟记使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.21.方程的解:解方程就是求出使方程中等号左右两边的未知数的值,这个值就是方程的解.(1)在x=3,x=0,x=﹣2中,方程5x+7=7﹣2x的解是x=0.(2)在x=1000和x=2000中,方程0.52x﹣(1﹣0.52)x=80的解是x=2000.【分析】将每一个x的值分别代入方程,使方程左右两边相等的x得值就是方程的解,据此解答填空即可.【解答】解:(1)将x=3代入,左边=22,右边=1,故不是;将x=0代入,左边=7,右边=7,故x=0是方程的解;将x=﹣2代入,左边=﹣3,右边=11,故不是;(2)将x=1000代入,左边=40,右边=80,故不是;将x=2000代入,左边=80=右边,x=2000是方程的解.故答案为x=0,x=2000.【点评】此题考查了方程的解,注意使方程中等号左右两边的未知数的值就是方程的解.22.已知关于x的方程ax+b=c的解是x=1,则|c﹣a﹣b﹣1|=1.【分析】把x=1代入方程整理即可求得c﹣a﹣b的值,然后整体代入所求的式子中进行求解即可.【解答】解:根据题意得:a+b=c,即c﹣a﹣b=0∴|c﹣a﹣b﹣1|=|0﹣1|=1.故答案为:1.【点评】本题主要考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.23.若﹣2是关于x的方程3x+4=﹣a的解,则a100﹣=0.【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=﹣2代入方程,就得到关于a 的方程,就可求出a的值,然后再代入代数式计算求值.【解答】解:把x=﹣2代入方程,得﹣2=﹣1﹣a,解得:a=1,∴a100﹣=1﹣1=0.故填0.【点评】本题主要考查了方程解的定义,根据已知可得到一个关于a的方程,此类题目要注意认真运算.三.解答题(共10小题)24.x=2是方程ax﹣4=0的解,检验x=3是不是方程2ax﹣5=3x﹣4a的解.【分析】x=3不是方程2ax﹣5=3x﹣4a的解,理由为:由x=2为已知方程的解,把x=2代入已知方程求出a的值,再将a的值代入所求方程,检验即可.【解答】解:x=3不是方程2ax﹣5=3x﹣4a的解,理由为:∵x=2是方程ax﹣4=0的解,∴把x=2代入得:2a﹣4=0,解得:a=2,将a=2代入方程2ax﹣5=3x﹣4a,得4x﹣5=3x﹣8,将x=3代入该方程左边,则左边=7,代入右边,则右边=1,左边≠右边,则x=3不是方程4x﹣5=3x﹣8的解.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.25.已知x=﹣1是关于x的方程8x3﹣4x2+kx+9=0的一个解,求3k2﹣15k﹣95的值.【分析】将x=1代入方程求出k的值,代入所求式子中计算即可求出值.【解答】解:将x=﹣1代入方程得:﹣8﹣4﹣k+9=0,解得:k=﹣3,当k=﹣3时,3k2﹣15k﹣95=27+45﹣95=﹣23.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.26.已知x=﹣3是方程|2x﹣1|﹣3|m|=﹣1的解,求代数式3m2﹣m﹣1的值.【分析】先把x=﹣3代入方程|2x﹣1|﹣3|m|=﹣1中,求出m的值,再把m的值代入代数式3m2﹣m﹣1中,求出答案即可.【解答】解:把x=﹣3代入方程|2x﹣1|﹣3|m|=﹣1得:|2×(﹣3)﹣1|﹣3|m|=﹣1,7﹣3|m|=﹣1,解得:,把代入3m2﹣m﹣1得:3×﹣﹣1=;或:3×﹣(﹣)﹣1=23;所以代数式3m2﹣m﹣1的值是:或23.【点评】此题考查了方程的解、绝对值;解题的关键是先把m的值求出来,不要漏解;解题时要细心.27.已知关于x的方程的两个解是;又已知关于x的方程的两个解是;又已知关于x的方程的两个解是;…,小王认真分析和研究上述方程的特征,提出了如下的猜想.关于x的方程的两个解是;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.(1)关于x的方程的两个解是x1=11和x2=;(2)已知关于x的方程,则x的两个解是多少?【分析】(1)根据上述的结论方程的两个解是,即可猜想得到答案;(2)可以把x﹣1看作一个整体,即方程两边同时减去1,得x﹣1+=11+,然后根据猜想得到x﹣1=11,x﹣1=,进一步求得方程的解.【解答】解:(1)根据猜想的结论,则x1=11,x2=;(2)原方程可以变形为x﹣1+=11+,则x﹣1=11,x﹣1=.则x1=12,x2=.【点评】此题要能够根据探索得到的结论进行分析求解,能够运用换元法进行求解,有一定难度.28.阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m=0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc﹣q),由于﹣c2﹣pc﹣q与c及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.【分析】(1)认真学习题目给出的材料,掌握“整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数”,再作答.(2)根据分析(1)得出3的因数后再代入检验可得出答案.【解答】解:(1)由阅读理解可知:该方程如果有整数解,它只可能是7的因数,而7的因数只有:1,﹣1,7,﹣7这四个数.(2)该方程有整数解.方程的整数解只可能是3的因数,即1,﹣1,3,﹣3,将它们分别代入方程x3﹣2x2﹣4x+3=0进行验证得:x=3是该方程的整数解.【点评】本题考查同学们的阅读能力以及自主学习、自我探究的能力,该类型的题是近几年的热点考题.认真学习题目给出的材料,掌握“整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数”是解答问题的基础.29.先阅读下列一段文字,然后解答问题.已知:方程的解是x1=2,x2=﹣;方程的解是x l=3,x2=﹣;方程的解是x l=4,x2=﹣;方程的解是x l=5,x2=﹣.问题:观察上述方程及其解,再猜想出方程的解,并写出检验.【分析】认真观察题中的式子,找出规律,再做猜想.【解答】解:猜想:方程的解是x1=11,x2=﹣.检验:当x=11时,左边=11﹣=10=右边,当x=﹣时,左边=﹣+11=10=右边.【点评】此题是探求规律题,读懂题意,寻找规律是关键.30.检验下列各题括号内的值是否为相应方程的解(1)2x﹣3=5(x﹣3)(x=6,x=4)(2)4x+5=8x﹣3(x=3,x=2)【分析】根据方程解的定义,将方程后边的数代入方程,看是否能使方程的左右两边相等.【解答】解:(1)把x=6代入,左边=12﹣3=9,右边=5×3=15,左边≠右边,x=6不是方程的解,把x=4代入,左边=8﹣3=5,右边=5×1=5,左边=右边,x=4是方程的解;(2)把x=3代入,左边=12+5=17,右边=24﹣3=21,左边≠右边,x=3不是方程的解;把x=2代入,左边=8+5=13,右边=16﹣3=13,左边=右边,x=2是方程的解.【点评】本题考查了方程的解,已知条件中涉及到方程的解,把方程的解代入原方程进行检验是解题的关键.31.检验括号内的数是不是方程的解.(1)3x﹣5=4x﹣1(x=,x=﹣1);(2)5y+3=﹣y(y=0,y=﹣3)【分析】(1)将x的值代入方程进行经验即可;(2)将y的值代入方程进行经验即可.【解答】解:(1)将x=代入,左边=,右边=,左边≠右边,∴x=不是方程的解.将x=﹣1代入,左边=﹣8,右边=﹣5,左边≠右边,∴x=﹣1不是方程的解.(2)y=0代入,左边=3,右边=1.5,左边≠右边,∴y=0不是方程的解.将y=﹣3代入,左边=﹣12,右边=4.5,左边≠右边,∴y=﹣3不是方程的解.【点评】本题主要考查的是方程的解的定义,掌握方程的解的定义是解题的关键.32.检验括号里的数是不是它前面方程的解:3x+1=10(x=3,x=4,x=﹣4).【分析】把x的值分别代入方程进行验证即可.【解答】解:把x=3代入3x+1=10,左边=3×3+1=10=右边,即x=3是该方程的解;把x=4代入3x+1=10,左边=3×4+1=13≠右边,即x=4不是该方程的解;把x=﹣4代入3x+1=10,左边=3×(﹣4)+1=﹣11≠右边,即x=﹣4不是该方程的解;综上所述,x=3是原方程的解.【点评】本题考查了方程的解定义.方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.33.先填表,再指出方程1700+150x=2450的解.【分析】将x的值依次代入,计算出代数式的值即可,根据求得的值,可得出方程1700+150x=2450的解.【解答】解:当x=1时,1700+150x=1850;当x=2时,1700+150x=2000;当x=3时,1700+150x=2150;当x=4时,1700+150x=2300;当x=5时,1700+150x=2450;当x=6时,1700+150x=2600;填表如下:故方程1700+150x=2450的解为:x=5.【点评】本题考查了方程的解,解答本题的关键是理解方程解的意义.。
华师大版初中数学七年级下册《6.1 从实际问题到方程》同步练习卷
华师大新版七年级下学期《6.1 从实际问题到方程》2019年同步练习卷一.选择题(共19小题)1.下列选项中哪个是方程()A.5x2+5B.2x+3y=5C.2x+3≠﹣5D.4x+3>12.下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=13.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=84.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±25.下列各式中,是方程的是()A.B.14﹣5=9C.a>3b D.x=16.下列四个式子中,是方程的是()A.﹣3+5=2B.x=1C.2x﹣3D.8﹣2(2x﹣4)7.下列叙述中,正确的是()A.方程是含有未知数的式子B.方程是等式C.只有含有字母x,y的等式才叫方程D.带等号和字母的式子叫方程8.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A.1B.2C.3D.410.在以下的式子中:+8=3;12﹣x;x﹣y=3;x+1=2x+1;3x2=10;2+5=7;其中是方程的个数为()A.3B.4C.5D.611.若x=1是方程ax+3x=2的解,则a的值是()A.﹣1B.5C.1D.﹣512.方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2B.3C.4D.613.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=114.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=0 15.下列方程中,解为x=1的是()A.x﹣1=﹣1B.﹣2x=C.x=﹣2D.2x﹣1=116.下列方程中,解为x=2的方程是()A.x+2=0B.2+3x=8C.3x﹣1=2D.4﹣2x=117.下列方程中,解为x=2的是()A.3x+6=3B.﹣x+6=2x C.4﹣2(x﹣1)=1D.18.下列各数是方程x﹣9=1的解是()A.0B.1C.2D.319.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣5二.填空题(共22小题)20.已知式子:①3﹣4=﹣1;②2x﹣5y;③1+2x=0;④6x+4y=2;⑤3x2﹣2x+1=0,其中是等式的有,是方程的有.21.若单项式3ac x+2与﹣7ac2x﹣1是同类项,可以得到关于x的方程为.22.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有(填序号)23.在①2x﹣1;②2x+1=3x;③|π﹣3|=π﹣3;④t+1=3中,等式有,方程有.(填入式子的序号)24.语句“x的3倍比y的大7”用方程表示为:.25.下列式子是方程的是.①3x+8,②5x+2=8,③x2+1=5,④9=3×3,⑤=8.26.下列各式中是方程的有.(仅填序号)(1)5﹣(﹣3)=8:(2)ab+3a;(3)6x﹣1﹣9;(4)8x>1;(5)xy=3.27.一根细铁丝用去后还剩2m,若设铁丝的原长为xm,可列方程为.28.x的10%与y的差比y的2倍少3,列方程为.29.某校长方形的操场周长为210m,长与宽之差为15m,设宽为xm,列方程为.30.下列式子各表示什么意义?(1)(x+y)2:;(2)5x=y﹣15:;(3)(x+x)=24:.31.一件衣服打八折后,售价为88元,设原价为x元,可列方程为.32.写出一个一元一次方程,同时满足方程的解为3,这个方程可以是.33.写出一个解为x=3的方程:.34.对于有理数a,b,规定一种新运算:a*b=ab+b.例如,2*3=2×3+3=9有下列结论:①(﹣3)*4=﹣8;②a*b=b*a;③方程(x﹣4)*3=6的解为x=5;④(4*3)*2=32.其中,正确的是.(填序号)35.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是.36.已知x=5是方程ax﹣8=20+a的解,则a=.37.如果x=8是方程(x﹣2)(x﹣2k)=0的一个解,则k=.38.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:.39.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是.40.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为.41.方程的解:解方程就是求出使方程中等号左右两边的未知数的值,这个值就是方程的解.(1)在x=3,x=0,x=﹣2中,方程5x+7=7﹣2x的解是.(2)在x=1000和x=2000中,方程0.52x﹣(1﹣0.52)x=80的解是.三.解答题(共9小题)42.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈(1)中,属于一次方程的序号填入圆圈(2)中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9:②x2+4x+4=0;③2x+3y=5:④x2+y=0;⑤x﹣y+z=8:⑥xy=﹣1.43.判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7﹣1(2)2x+5y=3.(3)9﹣4x>0.(4)(5)2x+3.44.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)45.方程17+15x=245,,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?46.小张去水果市场购买苹果和桔子,他看中了A、B两家的苹果和桔子,这两家的苹果和桔子的品质都一样,售价也相同,但每千克苹果要比每千克桔子多12元,买2千克苹果与买5千克桔子的费用相等.(1)根据题意列出方程;(2)在x=6,x=7,x=8中,哪一个是(1)中所列方程的解;(3)经洽谈,A家优惠方案是:每购买10千克苹果,送1千克桔子;B家优惠方案是:若购买苹果超过5千克,则购买桔子打八折,设每千克桔子x元,假设小张购买30千克苹果和a千克桔子(a>5).①请用含a的式子分别表示出小张在A、B两家购买苹果和桔子所花的费用;②若a=16,你认为在哪家购买比较合算?47.已知关于x的方程的两个解是;又已知关于x的方程的两个解是;又已知关于x的方程的两个解是;…,小王认真分析和研究上述方程的特征,提出了如下的猜想.关于x的方程的两个解是;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题.(1)关于x的方程的两个解是x1=和x2=;(2)已知关于x的方程,则x的两个解是多少?48.阅读理解:若p、q、m为整数,且三次方程x3+px2+qx+m=0有整数解c,则将c代入方程得:c3+pc2+qc+m =0,移项得:m=﹣c3﹣pc2﹣qc,即有:m=c×(﹣c2﹣pc﹣q),由于﹣c2﹣pc﹣q与c 及m都是整数,所以c是m的因数.上述过程说明:整数系数方程x3+px2+qx+m=0的整数解只可能是m的因数.例如:方程x3+4x2+3x﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x3+4x2+3x﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程x3+x2+5x+7=0的整数解只可能是哪几个整数?(2)方程x3﹣2x2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.49.先阅读下列一段文字,然后解答问题.已知:方程的解是x1=2,x2=﹣;方程的解是x l=3,x2=﹣;方程的解是x l=4,x2=﹣;方程的解是x l=5,x2=﹣.问题:观察上述方程及其解,再猜想出方程的解,并写出检验.50.下列各方程在后面的括号内分别给出了一组数,从中找出方程的解.(1)3x+1=x+5(0,1,2);(2)x﹣5x+6=0(,,3).华师大新版七年级下学期《6.1 从实际问题到方程》2019年同步练习卷参考答案与试题解析一.选择题(共19小题)1.下列选项中哪个是方程()A.5x2+5B.2x+3y=5C.2x+3≠﹣5D.4x+3>1【分析】根据方程的定义判断即可.【解答】解:A、5x2+5不是等式,不能属于方程,错误;B、2x+3y=5符号方程的定义,正确;C、2x+3≠﹣5不是等式,不能属于方程,错误;D、4x+3>1不是等式,不能属于方程,错误;故选:B.【点评】此题考查方程的定义,关键是根据方程的定义判断.2.下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1【分析】根据方程的定义:含有未知数的等式叫方程,可得出正确答案.【解答】解:A、不是等式,错误;B、是一元一次方程,正确;C、不是等式,错误;D、不含未知数,错误;故选:B.【点评】本题考查了方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).3.下列各式中不是方程的是()A.2x+3y=1B.3π+4≠5C.﹣x+y=4D.x=8【分析】根据方程的定义(含有未知数的等式叫方程),即可解答.【解答】解:3π+4≠5中不含未知数,所以错误.故选:B.【点评】本题主要考查了方程的定义,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.4.已知关于x的一元一次方程(a+3)x|a|﹣2+6=0,则a的值为()A.3B.﹣3C.±3D.±2【分析】根据一元一次方程的定义列出关于a的不等式组,求出a的值即可.【解答】解:∵方程(a+3)x|a|﹣2+6=0是关于x的一元一次方程,∴,解得a=3.故选:A.【点评】本题考查的是一元一次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.5.下列各式中,是方程的是()A.B.14﹣5=9C.a>3b D.x=1【分析】根据方程的定义:含有未知数的等式叫方程可得答案.【解答】解:A、没有等号,故不是方程,故此选项错误;B、等式中没有未知数,不是方程,故此选项错误;C、是不等式,不是方程,故此选项错误;D、符合方程的定义,是方程,故此选项正确;故选:D.【点评】此题主要考查了方程,关键是掌握方程定义.6.下列四个式子中,是方程的是()A.﹣3+5=2B.x=1C.2x﹣3D.8﹣2(2x﹣4)【分析】本题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案.【解答】解:A、不含未知数,故不是方程,选项错误;B、正确;C、不是等式,故选项错误;D、不是等式,故选项错误.故选:B.【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).7.下列叙述中,正确的是()A.方程是含有未知数的式子B.方程是等式C.只有含有字母x,y的等式才叫方程D.带等号和字母的式子叫方程【分析】根据方程的定义结合选项选出正确答案即可.【解答】解:A、方程是含有未知数的等式,错误;B、方程是含有未知数的等式,故选项正确;C、并不是只有含有字母x,y的等式才叫方程,错误;D、含有未知数的等式叫做方程,错误;故选:B.【点评】本题考查了方程的定义,掌握各知识点的定义是解答本题的关键.8.下列说法中,正确的是()A.代数式是方程B.方程是代数式C.等式是方程D.方程是等式【分析】含有未知数的等式叫方程,等式是用等号连接的,表示相等关系的式子,代数式一定不是等式,等式不一定含有未知数也不一定是方程.【解答】解:方程的定义是指含有未知数的等式,A、代数式不是等式,故不是方程;B、方程不是代数式,故B错误;C、等式不一定含有未知数,也不一定是方程;D、方程一定是等式,正确;故选:D.【点评】本题主要考查方程的概念,含有未知数的等式叫方程,要熟练掌握方程的定义.9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A.1B.2C.3D.4【分析】方程是含有未知数的等式,所以依据方程的定义判断即可.【解答】解:①5+3=8,不含有未知数,故不是方程;②a=0,符合方程的定义,故是方程;③y2﹣2y,不是等式,故不是方程;④x﹣3=8,符合方程的定义,故是方程.所以②、④是方程,故选:B.【点评】此题考查了方程的定义,要明确方程必须具备两个条件:①含有未知数;②是等式.10.在以下的式子中:+8=3;12﹣x;x﹣y=3;x+1=2x+1;3x2=10;2+5=7;其中是方程的个数为()A.3B.4C.5D.6【分析】根据方程的定义对各选项进行逐一分析即可.【解答】解:12﹣x不是方程,因为不是等式;2+5=7不是方程,因为不含有未知数;+8=3、x﹣y=3、x+1=2x+1、3x2=10都是方程,字母是未知数,式子又是等式;故选:B.【点评】本题考查的是方程的定义,熟知含有未知数的等式叫方程是解答此题的关键.11.若x=1是方程ax+3x=2的解,则a的值是()A.﹣1B.5C.1D.﹣5【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值.【解答】解:把x=1代入原方程得:a+3=2解得:a=﹣1故选:A.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母的方程进行求解.12.方程﹣3(•﹣9)=5x﹣1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A.2B.3C.4D.6【分析】设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.【解答】解:设•处的数字是a,则﹣3(a﹣9)=5x﹣1,将x=2代入,得:﹣3(a﹣9)=9,解得a=6,故选:D.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.13.下列方程中,解是x=4的是()A.3x+1=11B.﹣2x﹣4=0C.3x﹣8=4D.4x=1【分析】把x=4代入各方程检验即可.【解答】解:解是x=4的方程是3x﹣8=4,故选:C.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=0【分析】可解每个方程,然后判断,也可把根代入每个方程,得结果.【解答】解:(法一)把x=1代入各个方程,只有选项A的左边等于右边.故选:A法(二)因为,去分母,得x﹣1=0解得x=1所以x=1是A中方程的根;因为=﹣1,解得x=﹣1所以x=1不是选项B中方程的根;因为﹣5x=﹣5,解得x=﹣1所以x=1不是选项C中方程的根;因为2(x+1)=0,解得x=﹣1所以x=1不是选项D中方程的根.故选:A.【点评】本题考查了方程的解.题目难度不大,用代入检验法比较简便.15.下列方程中,解为x=1的是()A.x﹣1=﹣1B.﹣2x=C.x=﹣2D.2x﹣1=1【分析】各项中方程计算得到结果,即可作出判断.【解答】解:A、方程解得:x=0,不符合题意;B、方程系数化为1,得x=﹣,不符合题意;C、方程系数化为1,得x=﹣4,不符合题意;D、方程移项合并得:2x=2,解得:x=1,符合题意,故选:D.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.下列方程中,解为x=2的方程是()A.x+2=0B.2+3x=8C.3x﹣1=2D.4﹣2x=1【分析】求出各项中方程的解,即可作出判断.【解答】解:A、方程x+2=0,解得:x=﹣2,不合题意;B、方程2+3x=8,解得:x=2,符合题意;C、方程3x﹣1=2,解得:x=1,不合题意;D、方程4﹣2x=1,解得:x=1.5,不合题意,故选:B.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.下列方程中,解为x=2的是()A.3x+6=3B.﹣x+6=2x C.4﹣2(x﹣1)=1D.【分析】把x=2代入方程判断即可.【解答】解:A、把x=2代入方程,12≠3,错误;B、把x=2代入方程,4=4,正确;C、把x=2代入方程,2≠1,错误;D、把x=2代入方程,3≠0,错误;故选:B.【点评】此题考查方程的解问题,关键是把x=2代入方程,利用等式两边是否相等判断.18.下列各数是方程x﹣9=1的解是()A.0B.1C.2D.3【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【解答】解:A、当x=0时,左边=﹣9≠右边,则不是方程的解;B、当x=1时,左边=﹣9=﹣≠右边,则不是方程的解;C、当x=2时,左边=﹣9=﹣≠右边,则不是方程的解;D、当x=3时,左边=右边=1,则x=3是方程的解.故选:D.【点评】本题考查了方程的解的定义,理解定义是关键.19.已知x=2是关于x的方程3x+a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣5【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.【解答】解:把x=2代入方程得:6+a=0,解得:a=﹣6.故选:A.【点评】本题主要考查了方程解的定义,已知x=2是方程的解实际就是得到了一个关于a 的方程.二.填空题(共22小题)20.已知式子:①3﹣4=﹣1;②2x﹣5y;③1+2x=0;④6x+4y=2;⑤3x2﹣2x+1=0,其中是等式的有①③④⑤,是方程的有③④⑤.【分析】等式的特点:用等号连结的式子,方程的特点:①含未知数,②是等式.【解答】解:①3﹣4=﹣1是等式;③1+2x=0即是等式也是方程;④6x+4y=2即是等式也是方程;⑤3x2﹣2x+1=0即是等式也是方程,故答案为:①③④⑤;③④⑤.【点评】本题主要考查的是方程的定义,熟练掌握方程的概念是解题的关键.21.若单项式3ac x+2与﹣7ac2x﹣1是同类项,可以得到关于x的方程为x+2=2x﹣1.【分析】所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,即可得到关于x的方程.【解答】解:∵单项式3ac x+2与﹣7ac2x﹣1是同类项,∴x+2=2x﹣1.故答案为:x+2=2x﹣1.【点评】本题考查的是同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同,(2)相同字母的指数相同,是易混点,还要注意同类项与字母的顺序无关,与系数无关.同时考查了方程的定义:含有未知数的等式叫方程.22.在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有②,③(填序号)【分析】根据含有未知数的等式叫方程,可得答案.【解答】解:∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程,故答案为:②、③.【点评】本题考查了方程,方程是含有未知数的等式,注意不含未知数的等式不是方程,含有字母的代数式不是方程.23.在①2x﹣1;②2x+1=3x;③|π﹣3|=π﹣3;④t+1=3中,等式有②③④,方程有②④.(填入式子的序号)【分析】方程是含有未知数的等式,因而方程是等式,等式不一定是方程,只是含有未知数的等式是方程.【解答】解:等式有②③④,方程有②④.故答案为:②③④,②④.【点评】本题考查了方程的定义,方程与等式的关系,是一个考查概念的基本题目.24.语句“x的3倍比y的大7”用方程表示为:3x=y+7.【分析】根据x的3倍=x的+7,直接列方程.【解答】解:由题意,得3x=y+7.故答案为:3x=y+7.【点评】本题考查了列方程.列方程的关键是正确找出题目的相等关系,找的方法是通过题目中的关键词如:大,小,倍等.25.下列式子是方程的是②③⑤.①3x+8,②5x+2=8,③x2+1=5,④9=3×3,⑤=8.【分析】根据方程的定义:含有未知数的等式叫方程,可得出正确答案.【解答】解:①3x+8是代数式,②5x+2=8是一元一次方程,③x2+1=5是一元二次方程,④9=3×3是等式,不是方程,⑤=8是一元一次方程,故答案为:②③⑤.【点评】本题考查了方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).26.下列各式中是方程的有(5).(仅填序号)(1)5﹣(﹣3)=8:(2)ab+3a;(3)6x﹣1﹣9;(4)8x>1;(5)xy=3.【分析】本题主要考查的是方程的定义,含有未知数的等式叫方程,据此可得出正确答案.【解答】解:(1)不含未知数,故不是方程;(2)(3)(4)不是等式,故不是方程;(5)是方程.故答案是:(5)【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).27.一根细铁丝用去后还剩2m,若设铁丝的原长为xm,可列方程为x﹣x=2.【分析】设铁丝的原长为xm,用去全长的后还剩2m,根据题意可得出数量关系式:铁丝的全长﹣铁丝全长×=剩下铁丝的长度,据此可列出方程.【解答】解:设铁丝的原长为xm,由题意,得:x﹣x=2.故答案为:x﹣x=2.【点评】本题考查学生利用数量关系式列方程,培养学生的分析能力.28.x的10%与y的差比y的2倍少3,列方程为10%x﹣y=2y﹣3.【分析】根据数学语言列出数量关系等式即可.【解答】解:x的10%与y的差比y的2倍少3,列方程为10%x﹣y=2y﹣3.故答案为:10%x﹣y=2y﹣3.【点评】本题考查了列一元一次方程,主要是数学语言转化为等式的能力的训练,比较简单.29.某校长方形的操场周长为210m,长与宽之差为15m,设宽为xm,列方程为2(x+x+15)=210.【分析】先表示出长,再根据长方形的周长公式列出方程即可.【解答】解:设宽为xm,则长为(x+15)m,根据题意得,2(x+x+15)=210.故答案为:2(x+x+15)=210.【点评】本题考查了一元一次方程,主要利用了长方形的周长公式.30.下列式子各表示什么意义?(1)(x+y)2:x,y的和的平方;(2)5x=y﹣15:x的5倍比y的一半小15;(3)(x+x)=24:x与它的的和的一半等于24.【分析】此题只需将式子用文字语言阐述出来即可.【解答】解:由题意得:(1)(x+y)2:x,y的和的平方;(2)5x=y﹣15:x的5倍比y的一半小15;(3)(x+x)=24:x与它的的和的一半等于24.故答案为:x,y的和的平方;x的5倍比y的一半小15;x与它的的和的一半等于24.【点评】本题考查了方程的定义和阐述式子所要表达的意义,较为新颖.31.一件衣服打八折后,售价为88元,设原价为x元,可列方程为0.8x=88.【分析】根据打八折后售价等于88元列式即可.【解答】解:设原价为x元,根据题意得,0.8x=88.故答案为:0.8x=88.【点评】本题考查了方程的定义,理解打折的意义是解题的关键.32.写出一个一元一次方程,同时满足方程的解为3,这个方程可以是2x=6.【分析】根据一元一次方程的定义,只要含有一个未知数(元),并且未知数的指数是1(次),且还要满足方程的解是3,这样的方程即可,答案不唯一,只要符合以上条件即可.【解答】解:答案不唯一,如2x=6等.故答案为:2x=6【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.33.写出一个解为x=3的方程:x﹣3=0(答案不唯一).【分析】方程的解是指使方程两边相等的未知数的值,根据方程解的定义进行填空即可.【解答】解:∵方程的解为x=3,∴方程为x﹣3=0,故答案为:x﹣3=0(答案不唯一).【点评】本题考查了方程的解,掌握方程解的定义是解题的关键.34.对于有理数a,b,规定一种新运算:a*b=ab+b.例如,2*3=2×3+3=9有下列结论:①(﹣3)*4=﹣8;②a*b=b*a;③方程(x﹣4)*3=6的解为x=5;④(4*3)*2=32.其中,正确的是①③④.(填序号)【分析】原式各项利用已知的新定义计算得到结果,即可做出判断.【解答】解:①根据题中的新定义得:(﹣3)*4=﹣12+4=﹣8,正确;②a*b=ab+b;b*a=ab+a,不一定相等,错误;③方程整理得:3(x﹣4)+3=6,去括号得:3x﹣12+3=6,移项合并得:3x=15,解得:x=5,正确;④(4*3)*2=(12+3)⊕2=15*2=30+2=32,正确.故答案为:①③④.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是1.【分析】●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.【解答】解:●用a表示,把x=1代入方程得1=1﹣,解得:a=1.故答案是:1.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.36.已知x=5是方程ax﹣8=20+a的解,则a=7.【分析】使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a 的一元一次方程,从而可求出a的值.【解答】解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为:7.【点评】已知条件中涉及到方程的解,可以把方程的解代入原方程,转化为关于字母a的方程进行求解.37.如果x=8是方程(x﹣2)(x﹣2k)=0的一个解,则k=4.【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=8代入方程,得到关于k的方程,就可求出k的值.【解答】解:把x=8代入方程得到:6(8﹣2k)=0,解得:k=4.故填4.【点评】本题主要考查了方程解的定义,已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于k的方程进行求解.可把它叫做“有解就代入”.38.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:+=1.【分析】根据观察,可发现规律:第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,可得答案.【解答】解:由一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,得第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,解是x=2017的方程:+=1,故答案为:+=1.【点评】本题考查了方程的解,观察方程得出规律是解题关键.39.方程2+▲=3x,▲处被墨水盖住了,已知方程的解是x=2,那么▲处的数字是4.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得2+▲=6,解得▲=4.故答案为:4.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.40.已知a,b互为相反数,且ab≠0,则方程ax+b=0的解为x=1.【分析】根据互为相反数(非0)两数之商为﹣1,即可求出方程的解.【解答】解:∵a,b互为相反数,且ab≠0,∴=﹣1,方程ax+b=0,解得:x=﹣=1.故答案为:x=1.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.41.方程的解:解方程就是求出使方程中等号左右两边的未知数的值,这个值就是方程的解.(1)在x=3,x=0,x=﹣2中,方程5x+7=7﹣2x的解是x=0.(2)在x=1000和x=2000中,方程0.52x﹣(1﹣0.52)x=80的解是x=2000.【分析】将每一个x的值分别代入方程,使方程左右两边相等的x得值就是方程的解,据此解答填空即可.【解答】解:(1)将x=3代入,左边=22,右边=1,故不是;将x=0代入,左边=7,右边=7,故x=0是方程的解;将x=﹣2代入,左边=﹣3,右边=11,故不是;(2)将x=1000代入,左边=40,右边=80,故不是;将x=2000代入,左边=80=右边,x=2000是方程的解.故答案为x=0,x=2000.【点评】此题考查了方程的解,注意使方程中等号左右两边的未知数的值就是方程的解.三.解答题(共9小题)42.在初中数学中,我们学习了各种各样的方程.以下给出了6个方程,请你把属于一元方程的序号填入圆圈(1)中,属于一次方程的序号填入圆圈(2)中,既属于一元方程又属于一次方程的序号填入两个圆圈的公共部分.①3x+5=9:②x2+4x+4=0;③2x+3y=5:④x2+y=0;⑤x﹣y+z=8:⑥xy=﹣1.【分析】根据一次方程与一元一次方程的定义即可解答.【解答】解:(1)一元方程,①3x+5=9②x2+4x+4=0;(2)一次方程①3x+5=9⑤x﹣y+z=8③2x+3y=5;(3)既属于一元方程又属于一次方程的是①3x+5=9.【点评】此题很简单,关键是熟知一次方程与一元一次方程的定义即可解答.43.判断下列各式是不是方程,不是的说明为什么(1)4×5=3×7﹣1(2)2x+5y=3.(3)9﹣4x>0.(4)(5)2x+3.【分析】根据方程的定义对各小题进行逐一分析即可.【解答】解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.【点评】本题考查的是方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.44.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)【分析】设x年后爸爸的年龄是小明年龄的2倍,再根据x年后两人的年龄是2倍关系列出方程即可.【解答】解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.【点评】本题考查了列一元一次方程,需要注意父子二人的年龄都增加x.45.方程17+15x=245,,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?【分析】根据一元一次方程的定义,一元二次方程的定义,二元一次方程的定义进行求解.【解答】解:方程x2+3=4,x2+2x+1=0,x+y=5不是一元一次方程;x2+3=4和x2+2x+1=0是一元二次方程;x+y=5是二元一次方程.【点评】本题考查了方程的定义.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.只含有一个未知数,未知项的次数为2的整式方程,叫一元二次方程.含有2个未知数,最高次项的次数是1的方程叫做二元一次方程.46.小张去水果市场购买苹果和桔子,他看中了A、B两家的苹果和桔子,这两家的苹果和桔子的品质都一样,售价也相同,但每千克苹果要比每千克桔子多12元,买2千克苹果与买5千克桔子的费用相等.(1)根据题意列出方程;(2)在x=6,x=7,x=8中,哪一个是(1)中所列方程的解;(3)经洽谈,A家优惠方案是:每购买10千克苹果,送1千克桔子;B家优惠方案是:若购买苹果超过5千克,则购买桔子打八折,设每千克桔子x元,假设小张购买30千克苹果和a千克桔子(a>5).①请用含a的式子分别表示出小张在A、B两家购买苹果和桔子所花的费用;②若a=16,你认为在哪家购买比较合算?【分析】(1)根据题意列方程即可;(2)把x=6,x=7,x=8分别代入2(x+12)=5x,即可得到结论;(3)①根据题意列代数式即可;②把a=16代入代数式即可得到结论.【解答】解:(1)根据题意得,2(x+12)=5x;(2)把x=6,x=7,x=8分别代入2(x+12)=5x的,当x=6时,2(x+12)=36,5x=30,∴等号的左右两边不相等,∴x=6不是方程的解;当x=7时,2(x+12)=38,5x=35,∴等号的左右两边不相等,∴x=7不是方程的解;。
七年级下数学同步练习册华东师大
《新课程课堂同步练习册·数学(华东版七年级下册)》参考答案第6章 一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1. x = - 6 2. 2x -15=25 3. x =3(12-x )三、1.解:设生产运营用水x 亿立方米,则居民家庭用水(5.8-x )亿立方米,可列方程为:5.8-x =3x+0.62.解:设苹果买了x 千克, 则可列方程为: 4x +3(5-x )=173.解:设原来课外数学小组的人数为x ,则可列方程为: )4(21431+=+x x §6.2 解一元一次方程(一)一、1. D 2. C 3.A二、1.x =-3,x =2.103. x =538三、1. x =7 2. x =4 3. x = 4. x = 5. x =3 6. y =37-4967-§6.2 解一元一次方程(二)一、1. B 2. D 3. A二、1.x =-5,y =3 2.3. -321三、1. (1)x =(2)x =-2 (3)x = (4) x =-4 (5)x = (6)x=-231114832. (1)设初一(2)班乒乓球小组共有x 人, 得:9x -5=8x +2. 解得:x =7 (2)48人3. (1)x =-7 (2)x =-3§6.2 解一元一次方程(三)一、1. C 2. D 3. B 4. B二、1. 1 2.3. 10 34三、1. (1) x =3 (2) x =7 (3)x =–1(4)x = (5) x=4 (6) x=83-23-2. 3(x -2) -4(x -)=4 解得 x=-3 3. 3元3141§6.2 解一元一次方程(四)一、1. B 2.B 3. D二、1. 5 2., 3. 4. 15173623-51-三、1. (1)y = (2)y =6 (3) (4)x =52-49-=x 1117 2. 由方程3(5x -6)=3-20x 解得x =,把x =代入方程a -x =2a +10x ,得a =-8.5353310∴ 当a =-8时,方程3(5x -6)=3-20x 与方程a -x =2a +10x 有相同的解.3103.解得:x =90)332(532=---x x §6.2 解一元一次方程(五)一、1.A 2. B 3. C二、1.2(x +8)=40 2. 4,6,8 3.2x +10=6x +5 4. 15 5. 160元三、1. 设调往甲处x 人, 根据题意,得27+x =2[19+(20-x )]. 解得:x =172. 设该用户5月份用水量为x 吨,依题意,得1.2×6+2(x -6)=1.4 x .解得 x=8. 于是1.4x =11.2(元) .3. 设学生人数为x 人时,两家旅行社的收费一样多. 根据题意,得 240+120x =144(x +1),解得 x =4.§6.3 实践与探索(一)一、1. B 2. B 3. A二、1. 36 2. 3. 42,27081131)290(22⨯=x π三、1. 设原来两位数的个位上的数字为x ,根据题意,得10x +11-x =10(11-x )+x +63. 解得 x =9. 则原来两位数是29.2.设儿童票售出x 张,则成人票售出(700-x )张.依题意,得30x +50(700-x )=29000 . 解得:x =300, 则700-x=700-300=400人.则儿童票售出300张,成人票售出400张.§6.3 实践与探索(二)一、1. A 2. C 3. C二、1.x +x +1+1=x 2. 23.75% 3. 20455152三、1. 设乙每小时加工x 个零件,依题意得,5(x +2)+4(2x +2)=200解得x =14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x 元,依题意得,3.6%x +4.77%(250000-x )=10170. 解得 x =150000.则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x 个月能完成,依题意,得解得 x = 1166141(2=++x4.小时21第7章 二元一次方程组§7.1 二元一次方程组和它的解一、1. C 2. C 3. B二、1. 2. 5 3. ⎩⎨⎧==12y x ⎪⎩⎪⎨⎧=+=-42230yx y x 三、1. 设甲原来有x 本书、乙原来有y 本书,根据题意,得 ⎩⎨⎧+=--=+1010)10(510y x y x2. 设每大件装x 罐,每小件装y 罐,依题意,得.⎩⎨⎧=+=+843212043y x y x 3. 设有x 辆车,y 个学生,依题意⎩⎨⎧=-=+y x yx )1(601545§7.2二元一次方程组的解法(一)一、1. D 2. B 3. B二、1. 2.略 3. 20⎩⎨⎧==41y x 三、1. 2. 3. 4. ⎩⎨⎧==412y x ⎩⎨⎧-=-=31y x ⎩⎨⎧-==32y x ⎪⎪⎩⎪⎪⎨⎧==14111413y x §7.2二元一次方程组的解法(二)一、1. D 2. C 3. A二、1., 2. 18,12 3. 568-x 856y+⎩⎨⎧==13y x 三、1. 2. 3. 4. ⎩⎨⎧==15y x ⎩⎨⎧==11y x ⎪⎩⎪⎨⎧-==412y x ⎩⎨⎧==32y x 四、设甲、乙两种蔬菜的种植面积分别为x 、y 亩,依题意可得:解这个方程组得 ⎩⎨⎧=+=+138001*********y x y x ⎩⎨⎧==64y x §7.2二元一次方程组的解法(三)一、1. B 2.A 3.B 4. C二、1. 2. 9 3. 180,20⎩⎨⎧==34y x 三、1. 2. 3. ⎩⎨⎧==13y x ⎪⎩⎪⎨⎧-==761y x ⎪⎩⎪⎨⎧-=-=1611y x ⎩⎨⎧-==284y x 四、设金、银牌分别为x 枚、y 枚,则铜牌为(y +7)枚,依题意,得 解这个方程组,, 所以 y +7=21+7=28.⎩⎨⎧+++==+++2)7(100)7(y y x y y x ⎩⎨⎧==2151y x §7.2二元一次方程组的解法(四)一、1. D 2. C 3. B二、1. 2. 3, 3. -13⎩⎨⎧==35y x 52-三、1. 1. 2. 3. 4. 5. 6.⎩⎨⎧==33y x ⎪⎩⎪⎨⎧-==325y x ⎩⎨⎧==12y x ⎩⎨⎧==75y x ⎩⎨⎧==50y x ⎪⎩⎪⎨⎧==373y x 四、设小明预订了B 等级、C 等级门票分别为x 张和y 张.依题意,得 解这个方程组得⎩⎨⎧⨯=+=+.3500150300,7y x y x ⎩⎨⎧==.4,3y x §7.2二元一次方程组的解法(五)一、1. D 2. D 3. A二、1. 24 2. 6 3. 28元, 20元三、1. (1)加工类型项目精加工粗加工加工的天数(天)xy获得的利润(元)6000x8000y(2)由(1)得: 解得⎩⎨⎧=+=+1000008000600015y x y x ⎩⎨⎧==510y x ∴ 答:这批蔬菜共有70吨.7058103=⨯+⨯2.设A 种篮球每个元,B 种篮球每个元,依题意,得x y 解得⎩⎨⎧=+=+840812720146y x y x ⎩⎨⎧==3050y x3.设不打折前购买1件A 商品和1件B 商品需分别用x 元,y 元,依题意,得解这个方程组,得因此50×16+50×4-960=40(元).⎩⎨⎧=+=+10836845y x y x ⎩⎨⎧==.416y x §7.3实践与探索(一)一、1. C 2. D 3.A二、1. 72 2. 3. 14万,28万⎪⎩⎪⎨⎧=+-=9)(232y x y x 三、1.设甲、乙两种商品的原销售价分别为x 元,y 元,依题意,得解得⎩⎨⎧=+=+386%90%70500y y x ⎩⎨⎧==180320y x 2. 设沙包落在A 区域得分,落在B 区域得分,根据题意,得x y解得 ∴ 答:小敏的四次总分为30分.⎩⎨⎧=+=+3222343y x y x ⎩⎨⎧==79y x 307393=⨯+=+y x 3.(1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为y 元,则据题意,可列方程组解得5001313351.y x x y -=⎧⎨%+%=⎩,11001600.x y =⎧⎨=⎩,(2)小李实际付款:(元);小王实际付款:1100(113)957-%=(元).1600(113)1392-%=§7.3实践与探索(二)一、1. A 2. A 3.D二、1. 55米/分, 45米/分 2. 20,18 3.2,1三、1. 设这个种植场今年“妃子笑”荔枝收获x 千克,“无核Ⅰ号”荔枝收获y 千克.根据题意得 解这个方程组得 320081230400x y x y +=⎧⎨+=⎩,.20001200x y =⎧⎨=⎩,.2.设一枚壹元硬币x 克,一枚伍角硬币y 克,依题意得:解得:⎩⎨⎧+==+.10201510105y x yx⎩⎨⎧==.46y x 3.设原计划生产小麦x 吨,生产玉米y 吨,根据题意,得1812102018.x y x y +=⎧⎨+=-⎩,%%解得 10×(1+12%)=11.2(吨),8×(1+10%)=8.8(吨).108.x y =⎧⎨=⎩,4. 略5. 40吨第8章 一元一次不等式§8.1 认识不等式一、1.B 2.B 3.A二、1. <;>;> ; > 2. 2x +3<5 3. 4. ω≤502433t ≤≤三、1.(1)2-1>3;(2)a +7<0;(3)2+2≥0;(4)≤-2;(5)∣-x a b m3a 4∣≥;a (6)-2<2+3<4. 2.80+20n >100+16n ; n =6,7,8,…y §8.2 解一元一次不等式(一)一、1.C 2.A 3.C二、1.3,0,1,,- ;,,0,1 2. x ≥-1 3. -2<x <2 4. x <321032-4-16三、1.不能,因为x <0不是不等式3-x >0的所有解的集合,例如x =1也是不等式3-x >0的一个解. 2.略§8.2 解一元一次不等式(二)一、1. B 2. C 3.A二、1.>;<;≤ 2. x ≥-3 3. >三、1. x >3; 2. x ≥-2 3.x < 4. x >553四、x ≥-1 图略五、(1) (2) (3) 34>x 34=x 34<x §8.2 解一元一次不等式(三)一、1. C 2.A二、1. x ≤-3 2. x ≤- 3. k >294三、1. (1)x >-2 (2)x ≤-3 (3)x ≥-1 (4)x <-2 (5)x ≤5 (6) x ≤-1 (图略)2. x ≥3.八个月257§8.2 解一元一次不等式(四)一、1. B 2. B 3.A二、1. -3,-2,-1 2. 5 3. x ≤1 4. 24三、1. 解不等式6(x -1)≤2(4x +3)得x ≥-6,所以,能使6(x -1)的值不大于2(4x +3)的值的所有负整数x 的值为-6,-5,-4,-3,-2,-1.2. 设该公司最多可印制x 张广告单,依题意得 80+0.3x ≤1200,解得x ≤3733.13 答:该公司最多可印制3733张广告单.3.设购买x 把餐椅时到甲商场更优惠,当x >12时,得200×12+50(x -12)<0.85(200×12+50x ),解得x <32所以12<x <32;当0<x ≤12时,得200×12<0.85(200×12+50x )解得x >,所以<x ≤12其整数解为17144171449,10,11,12.所以购买大于或等于9张且小于32张餐椅时到甲商场更优惠.§8.3 一元一次不等式组(一)一、1. A 2. B二、1. x >-1 2. -1<x≤2 3. x≤-1三、1. (1) x ≥6 (2) 1<x <3 (3)4≤x <10 (4) x >2 (图略)2. 设幼儿园有x 位小朋友,则这批玩具共有3x +59件,依题意得 1≤3x +59-5(x -1)≤3,解得30.5≤x ≤31.5,因x 为整数,所以x =31,3x +59=3×31+59=152(件)§8.3 一元一次不等式组(二)一、1. C 2. B. 3.A二、1. m ≥2 2. <x <1223三、1. (1)3<x <5 (2)-2≤x <3 (3)-2≤x <5 (4) x ≥13(图略)2. 设苹果的单价为x 元,依题意得2×3+2.5x <20 4×3+2x >20解得4<x <5,因x 恰为整数,所以x =5(元)(答略)353. -2<x ≤3 正整数解是1,2,34. 设剩余经费还能为x 名山区小学的学生每人购买一个书包和一件文化衫,依题意得350≤1800-(18+30)x ≤400,解得29≤x ≤30,因人数应为整数,所以x =30.165245.(1)这批货物有66吨 (2)用2辆载重为5吨的车,7辆载重为8吨的车.第九章 多边形§9.1三角形(一)一、1. C 2. C二、1. 3,1,1; 2. 直角 内 3. 12三、1.8个;△ABC、△FDC、△ADC 是锐角三角形;△ABD、△AFC 是钝角三角形;△AEF 、△AEC、△BEC 是直角三角形.2.(1)略(2)三条中线交于一点,交点把每条中线分成的两条线段的比均为1:2.3.不符合,因为三角形内角和应等于180°.4.∠A=95°∠B=52.5°∠C=32.5°§9.1三角形(二)一、1.C 2.B 3. A.二、1.(1)45°;(2)20°,40°(3)25°,35° 2. 165° 3. 20°4. 20°5.3:2:1三、1. ∠BDC 应为21°+ 32°+ 90°=143°(提示:作射线AD )2. 70°3. 20°§9.1三角形(三)一、1.D 2.A二、1.12cm 2. 3个 3. 5<c<9,7三、1.其他两边长都为8cm 2. 略.§9.2多边形的内角和与外角和一、1.C 2. C. 3.C 4.C二、1.八,1080° 2. 10,1800° 3. 125° 4. 120米.三、1.15 2.十二边形 3.九边形,少加的那个内角的度数为135°.4.11§9.3用多种正多边形拼地板(一)一、1. B 2. C .二、1. 6 2. 正六边形3. 11,(3n+2).三、1.(1)因为围绕一点拼在一起的正多边形的内角的和为360°.(2)不能,因为正八边形的每个内角都为135°,不能整除360°.(3)略.2.应选“80×80cm 2”这种规格的瓷砖,因为长方形客厅的长和宽都是80cm 的整数倍,需要这种瓷砖32块。
从实际问题到方程 随堂同步练习(含答案)
【优质】初中数学华东师范大学七年级下册第六章6.1 从实
际问题到方程随堂练习
一、单选题
1.若x=−1是关于x的方程2x+3a=1的解,则a的值为()
A.13B.1C.−1
3D.-1 2.若x=1是ax+2x=3方程的解,则a的值是()
A.-1B.1C.-3D.3 3.若x=3 是关于x的一元一次方程2x+m-5=0的解,则m的值为()A.-1B.0C.1D.11 4.方程﹣2x+3=0的解是()
A.23B.﹣23C.32D.﹣32 5.如果x=1是关于x的方程3x+2m=9的解,则m的值为()A.13B.1C.3D.6 6.已知x=4是关于x的方程3x+2a=0的一个解,则a的值是()
A.– 6B.–3C.– 4D.–5二、填空题
7.若关于x的方程2x+a
2=4(x−1)的解为x=2,则a的值为
. 8.如果关于x的方程3x5-6k+6=0是一元一次方程,求k的值.
9.写出一个解为12的一元一次方程。
10.若2x3k﹣5=3是关于x的一元一次方程,则k=.
11.若关于x的方程ax−3x=15的解为x=5,则a等于.
12.关于x的方程mx−3
3=1−x
2的解是整数,则整数m=.
参考答案与试题解析
1.【答案】B
2.【答案】B
3.【答案】A
4.【答案】C
5.【答案】C
6.【答案】A
7.【答案】4
8.【答案】解:∵3x5-6k+6=0是关于x的一元一次方程,∴5-6k=1,
解得:k=2 3.
9.【答案】2x-1=0(答案不唯一) 10.【答案】2
11.【答案】6
12.【答案】0或-1或-2或-3。
华东师大版数学七年级下册课时练 第6章 一元一次方程 6.1 从实际问题到方程
华东师大版数学七年级下册第6章一元一次方程6.1从实际问题到方程1.下列属于方程的是(B)A.x-3 B.2x+1=0C.3+3=6 D.9+82.(2019·山西临汾模拟)丽丽想找一个解是13的方程,那么她会选择(C)A.6x+1=1 B.7x-1=x-1C.2x=23D.5x=x+23.写出一个解为x=-3的方程__x+3=0(答案不唯一)__.4.检验下列各数是不是方程4x-2=6x-3的解.(1)x=-2; (2)x=1 2.解:(1)不是(2)是5.(2019·河南郑州期中)一个数的3倍比它的2倍多10,若设这个数为x,则可得到方程(A)A.3x-2x=10 B.3x+2x=10C.3x=2×10 D.3x=2x-106.英语听力考试需要耳麦.已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6 000元,假设甲耳麦每个x元,由题意可列方程为(A)A.40x+60(x-20)=6 000 B.40x+60(x+20)=6 000C.60x+40(x-20)=6 000 D.60x+40(x+20)=6 0007.(2019·山西长治模拟)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为__518-x=2(106+x)__.易错点列方程时,单位未统一而出错8.(2019·山西晋城期中)在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为90千米/时的货车,则轿车从开始追及到超越货车所需的时间是多少?(只列方程)解:12米=0.012千米,4米=0.004千米.设轿车从开始追及到超越货车所需的时间为x小时,根据题意,得110x-90x=0.012+0.004.9.(2019·山东枣庄滕州检测)方程-3(■-9)=5x-1,■处被墨水盖住了,已知方程的解是x=2,那么■处的数字是(D)A.2 B.3C.4 D.610. (2019·河南商丘梁园区期末)在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若AE=x cm,依题意可得方程(B)A.6+2x=14-3x B.6+2x=x+(14-3x)C.14-3x=6 D.6+2x=14-x11.甲乙两地相距40 km,摩托车的速度为45 km/h,货车的速度为35 km/h(按题意设未知数列方程,不求解).(1)若两车分别从两地同时开出,相向而行,经过几小时后两车相遇?(2)若两车分别从两地同时开出,同向而行,经过几个小时后摩托车追上货车(摩托车的出发点在货车的出发点的后面)?(3)若两车都从甲地到乙地,要使两车同时到达,货车应先出发几小时?解:(1)设x h后两车相遇,则x h后摩托车行驶的路程为45x km,货车行驶的路程为35x km. 列方程为45x+35x=40.(2)设y h后摩托车追上货车,则y h后摩托车行驶的路程为45y km,货车行驶的路程为35y km.列方程为45y -35y =40.(3)设货车先出发z h .摩托车行驶的时间为4045 h ,则货车行驶的时间为⎝ ⎛⎭⎪⎫z +4045h.列方程为35⎝ ⎛⎭⎪⎫z +4045=40.12.一列方程如下排列:x 4+x -12=1的解是x =2,x 6+x -22=1的解是x =3,x 8+x -32=1的解是x =4,……根据观察得到的规律,写出其中解是x =2 019的方程:__x 4 038+x -2 0182=1__.。
《从实际问题到方程》同步练习(华东师大版七年级下)
§⒍1 从实际问题到方程 同步练习A 组:1、下列方程解为12的是( ) A 3x+2 B 2x+1=0 C 12 x=2 D 12 x= 142、下列说法不正确的个数是( )①等式都是方程;②方程都是等式;③不是方程的就不是等式;④未知数的值就是方程的解A 3个B 2个C 1个D 0个3、x= -2是方程x+a=5的解,则 a 的值是( )A 7B 1C - 1D - 74、下列式子中:①3x+5y=0 ②x=0 ③3x 2-2x ④5x<7 ⑤x 2+1=4 ⑥x 5+2=3x 是方程的有( )个A 1B 2C 3D 45、甲乙两个运输对,甲队32人,乙队28人,若乙队调走x 人到甲队,则甲队人数是乙队人数的2倍,其中x 应满足的条件是( )A 2(32+x )=28- xB 32+x=2(28- x)C 32=2(28- x)D 3×32=28- x6、下列说法正确的是( )A x=- 6是x-6的解B x=5是3x+15的解C x=- 1是- x 4=4的解 D x= 0.04是25x=1的解 7、在代数式x 3- ax 中,当x=- 2时值为4,则a 的值为( )A 6B -6C 2D -28、下列各式方程后面括号里的数是该方程的解的是( )A 3x+4= -13 {-4}B 23x- 1=5 {9} C 6-2x=113 {-1} D 5- y=- 16 {23} 9、根据条件“y 比它的13多4”列方程,正确的是( ) A y=13 +4 B y-13 y=4 C 13 y –y=4 D y+4= 13y 10、一批货物用载重0.5吨的小拖车4辆同时运送比用载重2.5吨的卡车要多运5次才能运完,若设这批货物共x 吨,则可列出方程( )A X 0.5 +5=X 2.5B X 0.5 =X 2.5+5 C X 2 +5= X 2.5 D X 2 =X 2.5+5B 组1、数值-1,-2,0,1,2中,方程3x+3=x+1的解是 .2、3个连续奇数的和是21,设最大的奇数为y ,则可列方程为 .3、根据下列条件列方程:(1)某数的3倍比它的2倍小1,设某数为x ,则可列出方程 .(2)x 与3的差的2倍等于x 的13: . (3)某仓库存放面粉x 千克,运出25%后,还剩余300千克:4、当x=2时,代数式ax-2的值是4,那么当x=- 2时,这个代数式的值为 .5、甲班有32人,乙班有28人,如果要使甲班人数是乙班人数的2倍,那么需要从乙班调多少人到甲班?若设从乙班抽调x 人到甲班,则可列方程为 .6、任写一个以x=2为解的方程,可以是 .7、亮亮在一次测试中,平均分为89分,这次测验共考了三科,其中语文得86分,数学得92分,那么亮亮的英语得了多少分?若设英语得了x 分,则可列方程为 .8、将若干个苹果分给孩子若干人,若每人5个,则不足2个,若每人4个则尚余3个,设孩子有x 人,可列出方程 .9、国家规定:存款利息税=利息×20%,银行一年定期储蓄的年利率为2.25%.小丽有一笔一年期存款,如果到期后全取出,可取回1018元,若小丽的这笔存款是x 元,根据题意,可列方程为 .10、已知矩形周长为20cm ,设长为xcm ,则宽为 .若面积为24,设宽为y ,则长为 .C 组1、 检验下列方程后面括号内所列各数是否是相应方程的解.(1)5x-6=0(x= 65 ,x=56 ) (2)3-x 4 +x-56= 1(-2,- 13)2、 根据题意,只列方程,不必求解(1) 某校初一年级组织学生去科技馆参观,共租用9辆大客车,每辆车有座位60个,老师共去20人,若该年级的男生比女生多30人,刚好每人都有座位,则该校女生有多少人?(2) 某工厂三天共运出货物60箱,第一天运出20箱,第二天运出第一天的12,问第三天运出多少箱?(3)A 、B 两地相距50km ,甲、乙两人分别从A 、B 两地出发,相向而行.甲每小时比乙多行2km ,若两人同时出发,经过3h 相遇,如果设甲的速度为x km/h ,可列出这样的方程?(3) 某地为改善环境,把一部分牧场改为林场.改变后,林场和牧场共有162公顷,牧场面积是林场面积的20%,问退牧还林后林场面积为多少公顷?(4) 在一次数学竞赛中,卷面共有25道选择题,每道题都有四个选项,而且四个选项中有且只有一个选项是正确的,评分规则是:答对一题给4分,不答或答错一题倒扣1分,请思考一下:①小华得了85分,他答对了几道题?②小亮得了60分,他又答对了几道题?。
七年级数学下册第6章一元一次方程6.1从实际问题到方程同步练习(无答案)(新版)华东师大版
七年级数学下册第6章一元一次方程6.1从实际问题到方程同步练习(无答案)(新版)华东师大版6.1 从实际问题到方程一、单选题1.方程+1=0的解是( )A .x =-10B .x =-9C .x =9D .x =2.下列方程中属于一元一次方程的是()A .y 2=4B .2+ =6C .x 2+x+1=0D .x-2y=13.关于x 的方程a ﹣3(x ﹣5)=b (x+2)是一元一次方程,则b 的取值情况是() A .b ≠﹣3 B .b=﹣3 C .b=﹣2 D .b 为任意数4.若关于x 的方程473517n x -+=是一元一次方程,则n = ()A .2B .1C .4D .65.如果x=-2是一元一次方程ax-8=12-a 的解,则a 的值是( )A .-20B .-4C .-3D .-106.如果方程是方程的解,则的值是()A .2B .C .-2D .57.下列说法中,正确的是()A .是方程的解B .是的解C .是的解D .是方程的解 8.下列一元一次方程①,②,③,④中,解是的是 A .①④ B .②③ C .①②③ D .①②④9.已知关于x 的一元一次方程2(x ﹣1)+3a=3的解为4,则a 的值是( )A .﹣1B .1C .﹣2D .﹣310.下列方程中,是一元一次方程的是()A .B .C .D .二填空题 11.写出一个解是-2的一元一次方程:____________________.12.已知关于x 的方程5x m+2+3=0是一元一次方程,则m=________.13.若关于x 的方程240x k +-=的解是3x =-,那么k 的值是________. 14.关于x 的方程的解是,则(|m |﹣1)2002=_____. 15.若-2x2m -3-5m +1=0是关于x 的一元一次方程,则m =_______.三解答题 16.关于x 的方程:(1-m )x | m |+2=0是一元一次方程.求m 的值和方程的解.17.已知关于的方程的解为:,求:的值.18.(1)已知x=﹣2是方程的解.求代数式2m2﹣4m+1的值.(2)x为何值时,代数式与代数的值互为相反数?19.已知 x=3 是方程 4(x﹣1)﹣mx+6=8 的解,求 m2+2m﹣3 的值.20.已知方程与关于x的方程的解相同,求a 的值.。
【教育资料】华东师大版七年级下册数学6.1从实际问题到方程 同步测试(无答案)学习专用
6.1从实际问题到方程一、选择题1.下列方程中解为x=2的是()A. 3x+(10﹣x)=20B. 4(x+0.5)+x=7C. x=﹣x+3D. (x+14)= (x+20)2.下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b23.方程(m+1)x|m|+1=0是关于x的一元一次方程,则m()A. m=±1B. m=1C. m=﹣1D. m≠﹣14.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A. -1B. 0C. 1D. 25.下列方程是一元一次方程的是()A. B. 3x﹣2y=6 C. D. x2+2x=06.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是(-+x)=1-,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是()A. 2 B. 3 C. 4 D. 57.若方程4x﹣1=3x+1和2m+x=1的解相同,则m的值为()A. -3B. 1C.D.8.在甲处工作的有132人,在乙处工作的有108人,如要使乙处工作的人数是甲处工作人数的,应从乙处调多少人到甲处?若设应从乙处调x人到甲处,则下列方程中正确的是( )A. 132+x=(108-x)B. (132-x)=108-xC. ×132+x=108-xD. (132+x)=108-x二、填空题9.已知x=-2是方程的解,则=a ________。
10.已知x= 2是关于的方程3x + a = 8的解,则a =________.11.已知方程的解是,那么________.12.一列方程如下排列:+ =1的解是x=2,+ =1的解是x=3,+ =1的解是x=4,…根据观察得到的规律,写出其中解是x=6的方程:________.13.已知关于x的方程2x+a﹣5=0的解是x=3,则a的值为________.14.写出一个解为3的一元一次方程________.15.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a等于 ________三、解答题16.方程17+15x=245,,2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?17.方程+ =x﹣4与方程(x﹣16)=﹣6的解互为相反数,求m的值.18.m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 从实际问题到方程
核心笔记: 1.方程的定义:含有未知数的等式叫做方程.
2.方程的解:使方程的左、右两边的值相等的未知数的值叫做方程的解.在判断一个数是否为方程的解时常用代入法.
3.列方程的一般步骤:①分析问题,理解题意;②设出适当的未知数,并找出相等关系;③根据题意,用含未知数的式子表示相等关系.
基础训练
1.下列式子:①x=0;②3+2=5;③=4;④x2=9;
⑤2x=3x;⑥6-4x;⑦2(x+1)=2;⑧x+2y=0.
其中方程的个数是( )
A.5
B.4
C.6
D.7
2.方程2x-1=3的解是( )
A.x=-1
B.x=-2
C.x=1
D.x=2
3.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程( )
A.54-x=20%×108
B.54-x=20%(108+x)
C.54+x=20%×162
D.108-x=20%(54+x)
4.当x等于什么数时,2x-3与3x+1的值互为相反数?列方程表示为: .
5.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人,设到雷锋纪念馆的人数为x人,可列方程为.
6.设某数为x,根据下列条件列方程.
(1)某数与8的差等于某数的与4的和;
(2)某数的与某数的的和等于3.
7.检验下列方程后面括号内所列各数是否为相应方程的解.
(1)y=10-4y,(1,2,3);
(2)x(x+1)=12,(3,4,-4).
8.一项工程,甲单独做要20小时,乙单独做要12小时.现在先由甲单独做5小时,然后乙加入进来一起做.完成整项工程一共需要多少小时?(只列方程,不必求解)
培优提升
1.王先生到银行存了一笔三年期的定期存款,年利率是 4.25%,若到期后取出,得到本息和(本金+利息)33 825元.设王先生存入的本金为x
元,则下面所列方程正确的是( )
A.x+3×4.25%x=33 825
B.x+4.25%x=33 825
C.3×4.25%x=33 825
D.3(x+4.25%x)=33 825
2.下列方程中,解是x=2的一共有( )个.
①5x-10=0; ②5x+10=0;
③10x-5=0; ④10x-20=0.
A.1
B.2
C.3
D.4
3.x分别取1、2、3、4这4个数时,使代数式(x-1)(x+2)(x-3)的值为0的有( )
A.1个
B.2个
C.3个
D.4个
4.三个连续偶数的和为60.设其中最大的偶数为x,则可列方程___________.
5.我国明代数学家曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”设这群羊有x只,依据题意可列方程为__________.
6.请依据方程解的定义,检验括号里x的值是否为方程的解.
(1)=x+;
(2)0.2x=0.8x-7.8(x=-13,x=13,x=12).
7.如图,A、B、C、D四个车站在一条直线上,一辆匀速行驶的汽车从A 站到B站花了3小时,从A站到D站花了5小时,又知BC=50千米,CD=70千米.
(1)若设A、D两站之间的路程为x千米,请列出一个关于x的方程;
(2)若设汽车的速度为每小时y千米,请列出一个关于y的方程.
8.一题多变甲、乙两地相距400 km,一列慢车从甲地开出,每小时行驶120 km,一列快车从乙地开出,每小时行驶140 km.
两车同时开出,相向而行,几小时后相遇?(只列方程,不必求解) (1)一变:若两车同时开出,背向而行,两车在几小时后相距620 km?(只列方程,不必求解)
(2)二变:若两车相向而行,慢车开出2 h后,快车再开出,快车开出几小时后相遇?(只列方程,不必求解)
(3)三变:若两车同时开出,快车在慢车后面同向而行,几小时后,快车追上慢车?(只列方程,不必求解)
参考答案
【基础训练】
1.【答案】C
2.【答案】D
3.【答案】B
解:根据改造后旱地面积占林地面积的20%列出方程即可.
4.【答案】2x-3+3x+1=0
解:根据互为相反数的两数之和为0列出方程即可.
5.【答案】2x+56=589-x
解:到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589-x)人.所以可列方程为2x+56=589-x.
6.解:(1)根据题意,得x-8=x+4.
(2)根据题意,得x+x=3.
7.解:(1)当y=1时,左边=1,右边=10-4×1=6,左边≠右边,所以1不是该方程的解;当y=2时,左边=2,右边=10-4×2=2,左边=右边,所以2是该方程的解;当y=3时,左边=3,右边=10-4×3=-2,左边≠右边,所以3不是该方程的解.
(2)当x=3时,左边=3×4=12=右边,所以3是该方程的解;当x=4时,左
边=4×5=20≠右边,所以4不是该方程的解;当x=-4时,左边=(-4)×(-3)=12=右边,所以-4是该方程的解.
8.解:设一共需要x小时,根据题意,得×5+×(x-5) =1. 【培优提升】
1.【答案】A
解:三年后产生的利息为3×4.25%x元,再加上本金,得到33 825元,所以,A是正确的.
2.【答案】B
3.【答案】B
解:直接把x的值代入代数式(x-1)(x+2)(x-3)进行验证即可.
4.【答案】x+(x-2)+(x-4)=60
解:因为其中最大的偶数为x,所以另外两个偶数分别是x-2,x-4.根据三个连续偶数的和为60,可列方程为x+(x-2)+(x-4)=60.
5.【答案】x+x+x+x+1=100.
解:根据“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”列出方程即可.
6.解:(1)当x=-时,左边==0,右边=-+=-,左边≠右边,所以x=-不是方程的解;
当x=0时,左边=,右边=,左边=右边,所以x=0是方程的解.
(2)当x=-13时,左边=0.2×(-13)=-2.6,右边=0.8×(-13)-7.8=-18.2,左边≠右边,所以x=-13不是方程的解;
当x=13时,左边=0.2×13=2.6,右边=0.8×13-7.8=2.6,左边=右边,所以x=13是方程的解;
当x=12时,左边=0.2×12=2.4,右边=0.8×12-7.8=1.8,左边≠右边,所以x=12不是方程的解.
7. 解:(1)由题意得:=.
(2)由题意得:5y=3y+50+70.
8.解:设x h后相遇.根据题意,得120x+140x=400.
(1)设两车在y h后相距620 km.根据题意,得
120y+140y+400=620.
(2)设快车开出a h后相遇.
根据题意,得120(a+2)+140a=400.
(3)设b h后,快车追上慢车.根据题意,得
140b=120b+400.
分析:(1)慢车行驶的路程和快车行驶的路程之和再加上甲、乙两地间的距离即为两车之间的距离.(3)快车追上慢车时,快车行驶的路程等于慢车行驶的路程加上甲、乙两地间的距离.。