2015-2016年广东省广州市荔湾区八年级上学期期末数学试卷及参考答案
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
八年级上学期数学《期末检测试卷》及答案解析
人 教 版 数 学 八 年 级 上 学 期期 末 测 试 卷一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -= 2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠ B. x 1> C. x 1< D. x 1≠- 3. 下列等式成立的是( )A. 123a b a b+=+ B.212a b a b =++ C. 2ab a ab b a b =-- D. a a a b a b =--++ 4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE .则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS 5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1 B. m ≥-1 C. m >-1且m ≠1 D. m ≥-1且m ≠1 6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是( )A. SSSB. SASC. ASAD. AAS8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线的交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-310. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.12. 分解因式234x x--=________________.13. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P 到BC的距离是_______.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 15. 若分式方程211x m x x -=--有增根,则m =________. 16. 若()22316x m x +-+是完全平方式,则m 的值等于_____.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.18. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线. 20. 如图,在△ABC 中,∠A=50°,O 是△ABC 内一点,且∠ABO=20°,∠ACO=30°.∠BOC 的度数是_________.三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值.24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值. 26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .27. 如图,△ABC 为等腰三角形,AC=BC ,△BDC 和△CAE 分别为等边三角形,AE 与BD 相交于点F ,连接CF 并延长,交AB 于点G .求证:∠ACG=∠BCG .28. 已知:△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?答案与解析一.细心选一选(本大题共10个小题,每小题3分,满分30分.每小题有四个选择支,其中只有一个符合题意,请将序号填入题后的括号中)1. 下列计算正确的是( )A. 0(5)0-=B. 235x x x +=C. 2325()ab a b =D. 22a ·12a a -=【答案】D【解析】【分析】直接利用零指数幂、合并同类项、积的乘方、同底数幂的乘除、负整数指数幂的运算法则分别化简进而得出答案.【详解】A 、0(5)1-=,错误,该选项不符合题意; B 、23x x +不能合并,该选项不符合题意;C 、2362()ab a b =,错误,该选项不符合题意;D 、22a ·12a a -=,正确,该选项符合题意;故选:D .【点睛】本题主要考查了负整数指数幂,同底数幂的乘除,积的乘方,合并同类项,零指数幂,正确应用相关运算法则是解题关键.2. 要使分式5x 1-有意义,则x 的取值范围是( ) A. x 1≠B. x 1>C. x 1<D. x 1≠-【答案】A【解析】【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x ≠1,故选A.3. 下列等式成立的是( )A. 123a b a b +=+B. 212a b a b =++C. 2ab a ab b a b =--D. a a a b a b =--++ 【答案】C【解析】【分析】 根据分式的运算,分别对各选项进行运算得到结果,即可做出判断.【详解】A 、221b b a aba +=+,故A 错误; B 、22a b+,分子分母具有相同的因式才可以约分,故B 错误; C 、2()ab ab a ab b b a b a b ==---,故C 正确; D 、a a a b a b=--+-,故D 错误; 故选C .【点睛】本题主要考查了分式的运算,熟悉分式的通分以及约分的重要法则是解决本题的关键.4. 如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是[来( )A. SASB. ASAC. AASD. SSS【答案】D【解析】 试题解析:在△ADC 和△ABC 中,AD AB DC BC AC AC ⎧⎪⎨⎪⎩===,∴△ADC ≌△ABC (SSS ),∴∠DAC=∠BAC ,即∠QAE=∠PAE .故选D .5. 若关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是( ) A. m >-1B. m ≥-1C. m >-1且m ≠1D. m ≥-1且m ≠1 【答案】D【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是非负数”建立不等式求m 的取值范围.【详解】去分母得,()121m x -=-, ∴12m x +=, ∵方程的解是非负数,∴10m +≥即1m ≥-,又因为10x -≠,∴1x ≠, ∴112m +≠, ∴1m ≠,则m 的取值范围是1m ≥-且1m ≠.故选:D .【点睛】本题考查了分式方程的解,解答本题时,易漏掉1m ≠,这是因为忽略了10x -≠这个隐含的条件而造成的,这应引起同学们的足够重视.6. 若一个多边形的外角和与它的内角和相等,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形 【答案】B【解析】【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【详解】解:设多边形的边数为n .根据题意得:(n-2)×180°=360°,解得:n=4.故选:B.【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360°和多边形的内角和公式是解题的关键.7. 如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8. 如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A. △ABC三边垂直平分线交点B. △ABC三条角平分线的交点C. △ABC三条高所在直线的交点D. △ABC三条中线的交点【答案】A【解析】【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【详解】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A.【点睛】本题考查线段垂直平分线的性质,掌握三角形三边垂直平分线的交点到三个顶点的距离相等是本题的解题关键.9. 把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A. a=2,b=3B. a=-2,b=-3C. a=-2,b=3D. a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 10. 如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A. AC=BDB. ∠CAB=∠DBAC. ∠C=∠DD. BC=AD【答案】A【解析】【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【详解】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B 、在△ABC 与△BAD 中,ABC BAD AB BA CAB DBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,△ABC ≌△BAD (ASA ),故B 正确;C 、在△ABC 与△BAD 中,C D ABC BAD AB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (AAS ),故C 正确;D 、在△ABC 与△BAD 中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩,△ABC ≌△BAD (SAS ),故D 正确;故选:A .【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、精心填一填(本大题共10小题,每小题3分,满分30分)11. 某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为_______________.【答案】9.5×10-7 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00000095米用科学记数法表示为9.5×10-7, 故答案为9.5×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 分解因式234x x --=________________.【答案】(4)(1)x x -+【解析】【分析】把-4写成-4×1,又-4+1=-3,所以利用十字相乘法分解因式即可.【详解】∵-4=-4×1,又-4+1=-3∴234(4)(1)x x x x --=-+.故答案为:(4)(1)x x -+【点睛】本题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.13. 如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=6,则点P 到BC 的距离是_______.【答案】3【解析】分析:过点P 作PE ⊥BC 于E ,根据角平分线上的点到角的两边的距离相等,可得PA=PE ,PD=PE ,那么PE=PA=PD ,又AD=6,进而求出PE=3.详解:如图,过点P 作PE ⊥BC 于E ,∵AB ∥CD ,PA ⊥AB ,∴PD ⊥CD ,∵BP 和CP 分别平分∠ABC 和∠DCB ,∴PA=PE ,PD=PE ,∴PE=PA=PD ,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.14. a ,b 互为倒数,代数式22211()a ab b a b a b++÷++的值为__. 【答案】1【解析】对待求值的代数式进行化简,得22211a ab b a b a b ++⎛⎫÷+ ⎪+⎝⎭()2a b a b a b ab ++⎛⎫=÷ ⎪+⎝⎭()ab a b a b =+⋅+ ab =∵a ,b 互为倒数,∴ab =1.∴原式=1.故本题应填写:1.15. 若分式方程211x m x x-=--有增根,则m =________. 【答案】-1【解析】【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【点睛】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.16. 若()22316x m x +-+是完全平方式,则m 的值等于_____. 【答案】7或1-【解析】【分析】由222)2(a ab b a b ±+=±,观察积的2倍项的系数特点得2(3)8,2(3)8m m -=-=-可得答案.【详解】解:因为:222)2(a ab b a b ±+=±,所以2(3)8,2(3)8m m -=-=-解得:7m =或1m =-故答案为:7或1-【点睛】本题考查完全平方式的特点,熟练掌握两个完全平方式是解题关键.17. 如图是一副三角尺拼成图案,则∠AEB=_____度.【答案】75º【解析】【分析】根据三角板的特殊角和三角形的内角和是180度求解即可.【详解】由图知, ∠A=60°, ∠ABE=∠ABC-∠DBC=90°-45°=45°,∴∠AEB=180°-(∠A+∠ABE)= 180°-(60°+45°)=75° .故答案为:7518. 如图,已知△ABC 为等边三角形,BD 为中线,延长BC 至点E ,使CE=CD=1 ,连接DE ,则BE=________.【答案】3【解析】【分析】根据等边三角形和三角形中线的定义求出BC=AC=2CD=2,即可求得BE 的长.【详解】∵△ABC为等边三角形,∴AB=BC=AC,∵BD为中线,∴AD=CD,∵CD=CE=1,∴BC=AC=2CD=2,∴BE=BC+CE=2+1=3.故答案为:3.【点睛】本题考查了等边三角形性质,三角形中线的定义等知识点的应用,关键是求出BC=AC=2CD=2.19. 如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.【答案】6【解析】【分析】设此多边形的边数为x,根据多边形内角和公式求出x的值,再计算对角线的条数即可.【详解】设此多边形的边数为x,由题意得:(x-2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为6.【点睛】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n边形的一个顶点有(n-3)条对角线.20. 如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.【答案】100°【解析】【分析】延长BO 交AC 于E ,根据三角形内角与外角的性质可得∠1=∠A+∠ABO ,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO 交AC 于E ,∵∠A=50°,∠ABO=20°,∴∠1=∠A+∠ABO =50°+20°=70°,∵∠ACO=30°,∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理. 三、耐心做一做(本大题共9个小题,满分60分)21. 化简:(1)2()()()2a b a b a b ab ++-+-;(2)2232(2)()a b ab b b a b --÷--.【答案】(1)22a ;(2)22b -【解析】【分析】(1)利用完全平方公式和平方差公式展开,合并同类项即可;(2)利用多项式除以单项式进行运算,同时利用完全平方公式展开,合并同类项即可.详解】(1)2()()()2a b a b a b ab ++-+- 2222(2)()2a ab b a b ab =+++--22a =;(2)2232(2)()a b ab b b a b --÷--22222(2)a ab b a ab b =----+222222a ab b a ab b =---+-22b =-.【点睛】本题是整式的混合运算,考查了完全平方公式,平方差公式,多项式除以单项式,熟练掌握整式混合运算的法则是解题的关键.22. 因式分解:(1)22mx my -;(2)(1)(3)1x x --+.【答案】(1)()()m x y x y +-;(2)2(2)x - 【解析】【分析】(1)提公因式m 后,再利用平方差公式继续分解即可;(2)根据多项式乘多项式展开,合并后再利用完全平方公式分解即可.【详解】(1)22mx my - 22()m x y =-()()m x y x y =+-;(2)(1)(3)1x x --+2431x x =-++2(2)x =-.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23. 先化简:222122(1)1211x x x x x x x x ++-+÷+--+-,然后从22x -<≤的范围内选取一个合适的整数为x 的值代入求值. 【答案】241x x -+,当2x =时,原式=0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将适合的x 的值代入计算即可求出值.【详解】原式=211(1)2(1)1(1)(1)(1)x x x x x x x x x ++---⋅+-++- =22(1)21(1)1x x x x x x -⋅--++ =2(1)211x x x --++ =241x x -+, ∵满足22x -≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=224021⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+. 24. 如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,使这个度假村P 到三条公路的距离相等请在图中用直尺和圆规作出P 点.【答案】见解析【解析】【分析】根据角平分线上的点到角两边的距离相等可得度假村的修建位置在∠ABC 和∠BCA 的角平分线的交点处.【详解】如图所示:点P 即为所求.【点睛】本题主要考查了作图的应用,关键是掌握角平分线交点到角两边的距离相等.25. (1)已知6x y +=,7xy =,求33x y xy +的值;(2)已知3m x =,2n x =,求32m n x +的值.【答案】(1)154;(2)108【解析】【分析】(1)原式先提取公因式xy ,再利用完全平方公式变形,然后整体代入计算即可;(2)根据同底数幂的乘法,幂的乘方的运算法则计算即可.【详解】(1)33x y xy +22()xy x y =+2[()2]xy x y xy =+-,当6x y +=,7xy =时,原式=()27627⨯-⨯=154;(2)32m n x +32()()m n x x =⋅当3m x =,2n x =时,原式32()()m n x x =⋅108=.【点睛】本题考查了代数式求值,因式分解的应用,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.26. 已知△ABC ,AB=AC ,将△ABC 沿BC 方向平移到△DCE .(1)如图(1),连接AE ,BD ,求证:AE=BD ;(2)如图(2),点M 为AB 边上一点,过点M 作BC 的平行线MN 分别交边AC ,DC ,DE 于点G ,H ,N ,连接BH ,GE .求证:BH =GE .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等腰三角形的性质和平移的性质,可得∠ABC=∠ACB=∠DCE=∠DEC,AB=AC=DC=DE,根据全等三角形的判定与性质,可得答案;(2)利用平行线的性质证得CG=CH,根据全等三角形的判定与性质,可得答案.【详解】(1)由平移,知△ABC≌△DCE,∵AB=AC=DC=DE,∴∠ABC=∠ACB=∠DCE=∠DEC,∴∠BCD=∠ECA,∴△ACE≌DCB(SAS),∴AE=BD;(2)∵GH∥BE,∴∠CHG=∠HCE=∠ACB=∠CGH,∴CG=CH,∵∠BCH=∠ECG,BC=CE,∴△BCH≌△ECG(SAS),∴BH=GE.【点睛】本题考查了全等三角形的判定与性质,平移的性质,平行线的性质,等腰三角形的性质,掌握全等三角形的判定与性质是解题的关键.27. 如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.【答案】见解析【解析】【分析】根据等边三角形的性质和等腰三角形的性质得出∠FAG=∠FBG,得到FA=FB,推出FC为AB的垂直平分线,根据等腰三角形底边三线合一即可解题.【详解】∵△BDC和△ACE分别为等边三角形,∴∠CAE=∠CBD=60°,∵AC=BC,∴∠CAB=∠CBA,∴∠FAG=∠FBG,∴FA=FB,又∵CA=CB,∴FC为AB的垂直平分线,∴∠ACG=∠BCG.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,线段垂直平分线的判定和性质.掌握等腰三角形底边三线合一的性质是解题的关键.28. 已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC 交于点M,BD与AC交于点N.(1)如图1,求证:A E=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB≌△DCE,△EMC≌△BCN,△AON≌△DOM,△AOB≌△DOE.【解析】【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形.【详解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL).29. 某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?【答案】(1)100;(2)二十.【解析】试题分析:(1)设原计划每天修建道路x米,则实际每天修建道路1.5x米,根据题意,列方程解答即可;(2)由(1)的结论列出方程解答即可.试题解析:解:(1)设原计划每天修建道路x米,可得:1200120041.5x x=+,解得:x=100,经检验x=100是原方程的解.答:原计划每天修建道路100米;(2)设实际平均每天修建道路的工效比原计划增加y%,可得:120012002 100100100%y=++,解得:y=20,经检验y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.。
广东省惠州市惠城区八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题
某某省某某市惠城区2015-2016学年八年级数学上学期期末考试试题一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm2.八边形的外角和为()A.180°B.360°C.900°D.1260°3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或175.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.106.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.57.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a58.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+19.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b210.已知,则的值是()A.B.﹣C.2 D.﹣2二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD=.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.13.计算:(4x3y﹣8xy3)÷(﹣2xy)=.14.化简=.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.16.已知a﹣b=1,a2+b2=25,则ab=.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.18.解分式方程:.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.2015-2016学年某某省某某市惠城区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、10+7>15,能组成三角形,故此选项正确;B、4+5<10,不能组成三角形,故此选项错误;C、3+5=8,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;故选:A.【点评】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.八边形的外角和为()A.180°B.360°C.900°D.1260°【考点】多边形内角与外角.【分析】根据多边形的外角和等于360°进行解答.【解答】解:八边形的外角和等于360°.故选B.【点评】本题主要考查了多边形的外角和定理,多边形的外角和等于360°,与边数无关.3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD【考点】角平分线的性质.【分析】根据角平分线性质得出PF=PD,根据勾股定理推出OF=OD,根据三角形内角和定理推出∠DPO=∠FPO.【解答】解:A、∵∠1=∠2,PD⊥OA,PF⊥OB,∴PE=PD,正确,故本选项错误;B、∵PD⊥OA,PF⊥OB,∴∠PFO=∠PDO=90°,∵OP=OP,PF=PD,∴由勾股定理得:OF=OD,正确,故本选项错误;C、∵∠PFO=∠PDO=90°,∠POB=∠POA,∴由三角形的内角和定理得:∠DPO=∠FPO,正确,故本选项错误;D、根据已知不能推出PD=OD,错误,故本选项正确;故选D.【点评】本题主要考查平分线的性质,三角形的内角和,熟练掌握角平分线的性质是解题的关键.4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.5.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.10【考点】多边形内角与外角.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:A【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.6.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.5【考点】轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形的概念判断各图形即可求解.【解答】解:根据轴对称图形的定义可知:①角的对称轴是该角的角平分线所在的直线;②线段的对称轴是线段的垂直平分线;③等腰三角形的对称轴是底边的高所在的直线;⑤圆的对称轴有无数条,是各条直径所在的直线,故轴对称图形共4个.故选C.【点评】本题考查轴对称图形的知识,注意掌握轴对称图形的判断方法:图形沿一条直线折叠后,直线两旁的部分能够互相重合.7.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=(ab)3,正确;B、原式=a5,错误;C、原式=a3,错误;D、原式=a6,错误,故选A.【点评】此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+1【考点】实数X围内分解因式.【分析】利用因式分解的方法,分别判断得出即可.【解答】解;A、x2+y2,无法因式分解,故A选项错误;B、x2﹣y,无法因式分解,故B选项错误;C、x2+x+1,无法因式分解,故C选项错误;D、x2﹣2x+1=(x﹣1)2,故D选项正确.故选:D.【点评】此题主要考查了公式法分解因式,熟练应用公式是解题关键.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10.已知,则的值是()A.B.﹣C.2 D.﹣2【考点】分式的化简求值.【专题】计算题.【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD= 5 .【考点】等腰三角形的性质.【分析】由已知条件,根据等腰三角形“三线合一”的性质,可得CD=BD=5.【解答】解:∵AB=AC∴∠ABD=∠ACD∵AD⊥BC∴∠ADC=∠ADB=90°∴CD=BD=5.故填5.【点评】此题主要考查等腰三角形“三线合一”的性质.题目思路比较直接,属于基础题.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.13.计算:(4x3y﹣8xy3)÷(﹣2xy)= ﹣2x2+4y2.【考点】整式的除法.【分析】直接利用整式的除法运算法则化简求出答案.【解答】解:(4x3y﹣8xy3)÷(﹣2xy)=﹣2x2+4y2.故答案为:﹣2x2+4y2.【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.14.化简= 1 .【考点】分式的加减法.【专题】计算题.【分析】首先把两个分式的分母变为相同再计算.【解答】解:原式=﹣==1.故答案为:1.【点评】此题考查的知识点是分式的加减法,关键是先把两个分式的分母化为相同再计算.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200 台机器.【考点】分式方程的应用.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得: =.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.16.已知a﹣b=1,a2+b2=25,则ab= 12 .【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式得到(a﹣b)2=a2﹣2ab+b2,再把a﹣b=1,a2+b2=25整体代入,然后解关于ab的方程即可.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴1=25﹣2ab,∴ab=12.故答案为12.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了整体思想的运用.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接即可;(2)根据网格结构写出顶点的坐标.【解答】解:(1)所作图形如图所示:;(2)坐标为:A1(﹣1,﹣4)、B1(﹣2,﹣2)、C1(0,﹣1).【点评】本题考查了根据轴对称变化作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.18.解分式方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘以(x+2)(x﹣2),得x(x+2)﹣8=(x+2)(x﹣2),解这个方程,得x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理求出∠ACB的度数,根据线段垂直平分线的性质得到EA=EC,求出∠ACE的度数,计算即可.【解答】解:∵AB=AC,∠A=36°∴∠ACB=∠B==72°,又∵DE是AC的垂直平分线,∴EA=EC,∴∠ACE=∠A=36°∴∠ECB=∠ACB﹣∠ACE=36°.【点评】本题考查的是线段的垂直平分线的性质和三角形内角和定理以及等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.【考点】整式的除法.【分析】(1)根据计算程序把数据代入即可求出答案;(2)把n代入计算程序后列出代数式化简即可.【解答】解:(1)输入n 3 ﹣2 ﹣3 …输出答案 1 1 1 1…(2)(n2+n)÷n﹣n(n≠0)=﹣n=n+1﹣n=1.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系,读表,明确计算程序是正确解答本题的前提.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BE D;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【考点】分式方程的应用.【专题】应用题.【分析】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同.三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.【考点】分式的化简求值;分母有理化.【专题】计算题.【分析】首先把除法运算转化成乘法运算,能因式分解的先因式分解,进行约分,然后进行减法运算,最后代值计算.【解答】解:原式=﹣=﹣==,当a=,b=时,原式==.【点评】本题的关键是正确进行分式的通分、约分,并准确代值计算.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.【考点】等腰三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据角平分线上的点到两边的距离相等可得:FG=FA;则只要在确定FA与AE的关系即可确定AE与FG之间的关系;在直角三角形AFC中∠AFC+∠ACF=90°,在直角三角形CDE中,∠DEC+∠ECD=90°,根据角平分线的性质可知:∠ACF=∠DCE,则∠AFC=∠DEC,又知∠AEF=∠DEC,则∠AFC=∠AEF,所以AE=FA,则AE=FG.【解答】证明:∵CF平分∠ACB,FA⊥AC,FG⊥BC∴FG=FA∵∠AFC+∠ACF=90°,∠DEC+∠ECD=90°,且∠ACF=∠ECD∴∠AFC=∠DEC∵∠AEF=∠DEC∴∠AFC=∠AE F∴AE=FA∴AE=FG.【点评】本题主要考查了等腰三角形的判定和性质,角平分线的性质;解题时利用了AF这个中间量进行了等量代换是解答本题的关键.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)欲证明AD=BE,只要证明△ACD≌△BAE即可.(2)由α=∠ABE+∠BAP=∠CAD+∠BAP即可得出结论.(3)在RT△PBQ中,利用30度角的性质即可知道PB=2PQ,由此可以解决问题.【解答】(1)证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°在△ACD和△BAE中,,∴△ACD≌△BAE,∴AD=BE.(2)解:不变.由(1)可知:△ACD≌△BAE,∴∠CAD=∠ABE,∵α=∠ABE+∠BAP=∠CAD+∠BAP=60°,(3)解:在△PBQ中,∠PBQ=90°﹣∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.【点评】本题考查全等三角形的判定和性质、直角三角形30度角的性质等知识,解题的根据利用全等三角形的性质,属于中考常考题型.。
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
2023-2024学年广东省广州市天河区八年级(上)期末数学试卷(含解析)
2023-2024学年广东省广州市天河区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.近年来,国产汽车发展迅速,我国已成为全球第一汽车生产国.下列图形是我国国产汽车品牌的标识,在这些标识中,不是轴对称图形的是( )A. B.C. D.2.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 2B. 3C. 5D. 113.若一个多边形的内角和是1080°,则这个多边形是( )A. 十边形B. 九边形C. 八边形D. 七边形4.下列计算正确的是( )A. a3+a2=a5B. a3⋅a2=a6C. (a2)3=a5D. a6÷a2=a45.如图,在△ABC中,AB=AC=4,∠BAC=120°,则BC边上的高AD的长为( )A. 1B. 2C. 3D. 46.若分式|x|−3的值为0,则x的值为( )x+3A. ±3B. 0C. −3D. 37.如图,AB=AD,∠1=∠2,请问添加下列哪个条件不能得△ABC≌△ADE的是( )A. BC=DEB. AC=AEC. ∠B=∠DD. ∠E=∠C8.若关于x的方程x+m=3的解为正数,则m的取值范围是( )x−3A. m>−9B. m>−9且m≠−3C. m<−9D. m>−9且m≠0二、多选题:本题共2小题,共8分。
在每小题给出的选项中,有多项符合题目要求。
9.如图,将长为a,宽为b的长方形纸板,在它的四角都切去一个边长为x的正方形,然后将四周突起部分折起,制成一个长方体形状的无盖纸盒.下列说法正确的有( )A. 纸盒的容积等于x(a−x)(b−x)B. 纸盒的表面积为ab−4x2C. 纸盒的底面积为ab−2(a+b)x−4x2D. 若制成的纸盒是正方体,则必须满足a=b=3x10.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为点D,AE平分∠BAC,交BD于点F,交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论正确的是( )A. AF=2BEB. DH=DFC. AH=2DFD. HE=BE三、填空题:本题共6小题,每小题3分,共18分。
2015-2016学年度上学期期末考试八年级数学试卷(含答案)
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
2014-2015学年荔湾区八年级数学第一学期期末教学质量检测试卷+答案.
2014-2015学年第一学期期末教学质量检测八年级数学本试卷分选择题和非选择题两部分,共三大题23小题,共4页,满分100分.考试时间90分钟,可以使用计算器.注意事项:1. 答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用墙皮擦干净后,再选涂其它答案,答案不能答在问卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须卸写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔(除作图外)、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用科学记数法表示0.00000506 =( )A .5.06×106B .5.06×10-6C .50.6×10-7D .506×10-8 2.如果把分式xx y+的x 和y 都扩大3倍,那么分式的值( ). A .扩大3倍 B .缩小为原来的13C .不变D . 扩大6 倍 3.要使x 2+4x +m 是完全平方式,那么m 的值是( ).A .4B .8C .±4D . 164.计算223(-)(3)4x y z xy ÷-正确的是( ). A . 14xyz B . 94xyzC .294x zD . 214x z5.下面是一些著名汽车品牌的标志,其中不是轴对称的图形是().A.B. C. D.6.三角形的一个外角是锐角,则这个三角形的是().A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7.以下长度的线段为边,可以作为一个三角形的是().A.10cm,20cm,30cm B.10cm,20cm,40cmC.10cm,40cm,50cmD.20cm,30cm,40cm∆≅∆,则需添加的条件是().8.如图,AB=DB,BC=BE,要使AEB DCBA.AB=BC B.AE=CD C.AC=CD D.AE=AC第8题第9题第10题∆≅∆,且∠O=65°,∠C=20°,则∠OAD=().9.如图,若OAD OBCA.20°B.65°C.86°D.95°∆是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,10.如图,若ABC则BE=().A.7B.8 C.9 D.10二、填空题(本大题共6小题,每小题3分,共18分.)11.计算:3-3=_______.12.如图,垂直平分线段AB,且垂足为M,则图中一定相等的线段有_______对.13.如果点A的坐标是(3,-2),点B的坐标是(3,2),那么点A和点B关于________轴对称.14.一个多边形的每一个外角为30°,那么这个多变形的边数是__________.15.如果10m =4,10n =12,那么10m+n =__________. 16.如图,在Rt ABC ∆中,∠C =90°,AC =3, BC =4,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E , 则BDE ∆的周长等于__________.一、解答题(本大题共7小题,共62分.解答应写出文字说明、证明过程或演算步骤.) 17.(每小题4分,本题满分8分)计算: (1) (2x -3)(x -5)(2) (3a 2)2-5a 2(2a 2+3a 2b 4)18.(每小题5分,本题满分10分)分解因式: (1) 4ma 2-4mb 2(2) 7(x 2-y 2)-6x (x -y )+16y 219.(每小题5分,本题满分10分)计算: (1)2212--yx y x y- (2) 22269--34a a a a a +-+-20.(本题满分8分)如图,已知∠A =∠D ,∠ABC =∠DCB ,求证:AC =DB .第12题第16题 第20题21.(本题满分8分)如图,在ABC ∆中,点D 在BC 上,A C=CD ,∠B=30°,∠ADB=100°.(1) 作AB 的垂直平分线EF ,分别交BC 、AB 于E 、F (不写作法,保留作图痕迹); (2) 连结AE ,求∠C 与∠AED 的大小.22.(本题满分8分)列方程解应用题:汛期将至,解放军某连兵官为驻地民众着想,计划加固驻地附近18千米的河堤.根据气象部门预测,今年的汛期有可能提前,因此,官兵们发扬我军不怕苦、不怕累的优良传统,早出晚归,使实际施工速度提高到原计划的1.5倍,结果比计划提前6天完成.求该连队实际每天加固河堤多少千米?23.(本题满分10分)如图,已知ABC ∆为等边三角形,点D 由点C 出发,在BC 的延长线上运动,连结AD ,以AD 为边作等边三角形ADE ,连结CE .(1) 请写出AC 、CD 、CE 之间的数量关系,并证明;(2) 若AB =6cm ,点D 的运动速度为每秒2cm ,运动时间为t 秒,则t 为何值时,CE ⊥AD ?第21题第23题第23题备用图2014~2015学年第一学期期末考试八年级数学参考答案一、选择题(每小题2分,共20分)二、填空题(每小题3分,共18分)三、解答题(共62分)注:下面只是给出各题的一般解法,其余解法对应给相应的分数17. (每小题4分,本题满分8分)计算:(1)原式=2210315x x x --+ ………………………………3分=221315x x -+ ………………………………4分(2)原式=444491015a a a b -- ………………………………3分=44415b a a -- ………………………………4分18. (每小题5分,本题满分10分)分解因式:(1)原式=224()m a b - ………………………………2分=4()()m a b a b +- ………………………………5分(2)原式=2222776616x y x xy y --++ ………………………………2分 =2269x xy y ++ ………………………………3分=2(3)x y + ………………………………5分19. (每小题5分,本题满分10分)计算: (1)原式=2()()()()x y yx y x y x y x y +--+-+ ………………………………2分=2()()x y yx y x y +--+ ………………………………3分=()()x yx y x y --+ ………………………………4分=1x y+ ………………………………5分 (2)原式=22(3)3(2)(2)a a a a a +-⋅-+- ………………………………3分 =32a a -- ………………………………5分20. (本题满分8分)证明:∵∠A=∠D ,∠ABC =∠DCB ,BC =CB ,……………………………4分∴△ABC ≌△DCB , ………………………………6分 ∴AC=DB . ………………………………8分21. (本题满分8分)(1)如图; ………………………………2分(2)∵∠ADB =100°,∴∠ADC =80°, …………………3分FEABCD∵AC=CD,∴∠DAC=∠ADC=80°,…………………4分∴∠C=20°,…………………5分由(1)知,EF垂直平分AB,∴AE=BE,…………………6分∴∠BAE=∠B=30°,…………………7分∴∠AED=60°…………………8分22.(本题满分8分)解:设原计划每天加固河堤x千米,……………………………1分根据题意,得:181861.5x x-=……………………………5分解得x=1.………………………………6分经检验,x=1是原分式方程的根.………………………………7分1.5x=1.5,答:该连队实际每天加固河堤1.5千米.………………………………8分23.(本题满分10分)(1)AC+CD=CE ……………………………1分证明:∵△ABC和△ADE为等边三角形,∴AC=AB,AE=AD,∠BAC=∠DAE=60°,…………………………2分∴∠BAD=∠CAE,…………………………3分∴△ACE≌△ABD …………………………4分∴BD=CE,…………………………5分∴AC+CD=BC+CD=BD. …………………………6分(2)∵△ADE为等边三角形,CE AD⊥,∴CE是△ADE的边AD的垂直平分线,…………………………8分∴CD= CA= AB=6,…………………………9分∴3t . …………………………10分第23题E。
2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷
2015-2016学年广东省深圳市龙岗区八年级(上)期末数学试卷、选择题(每小题 3分,共36分)A . 1B. 2C. 3D. 42. (3分)下列长度的线段不能构成直角三角形的是( )A . 8, 15, 17 B. 1.5, 2, 3C. 6, 8, 10 D . 5, 12, 13 3. (3分)如图,笑脸盖住的点的坐标可能为()A . (5, 2)B . (3, -4) C. (- 4, - 6) D. (- 1 , 3)4. (3分)点M (2, 1)关于x 轴对称的点的坐标是( )A. (1, - 2)B. (- 2, 1)C. (2, - 1)D.( - 1, 2)5. (3分)下列各式中,正确的是( )A . VT&=- 4 B. ±VT^=4 C .为 _ 事=-3 D . J (一 4)~~= - 4 A.中位数 B.平均数 C.众数 D.加权平均数10. (3分)2016年龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来, 同时小丽也往回走,遇到妈妈后聊了 一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为 t,小丽与体育馆的距离为S,下面能反映S 与t 的函数关系的大致图象是()勇扼,°・3中无理数的个数是(6. A.7. I k l(3分)右函数 y= (k - 1) xk= 土 1, b= - 1 B. k= 土 1, b=0 ((3 分)在 Rt△ ABC 中,Z C=90 °,D W4+b+1是正比例函数,贝U k 和b 的值为() 36T(3分)下列命题中,不成立的是( A.两直线平行,同旁内角互补 B .同位角相等,两直线平行C. 一个三角形中至少有一个角不大于D. 三角形的一个外角大于任何一个内角 A. B. 12 25C. 8.60度么最终买什么水果,下面的调查数据中最值得关注的是(班长对全班学生爱吃哪几种水果作了民意调查.)A.1.(3分)数学11. (3分)如图,/ X 的两条边被一直线所截,用含 a 和6的式子表示/ X 为(A . a _ 3 B. 3- a C. 180 - a+ 3D. 180 - a~ 312. (3分)如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )、填空题(每小题 3分,共12分)13. (3分)16的平方根是.14. (3分)数据3, 4, 6, 8, x, 7的众数是7,贝U 数据4, 3, 6, 8, 2, x 的中位数是 15. (3分)观察下列各式: 日—V2+1你发现的规律计算:(1 .1.1. - 1 (++ _+,, + ______ _________2+V?妮+2 V2016 +V201516. (3分)如图,在矩形 ABCD 中,AB=3 , BC=4,现将点A 、C 重合,使纸片折叠压平,折痕为EF,那么重叠部分三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) _.1'木历’志=2柄..请利用A . 3B . V10C . ^2D . 2龙△ AEF 的面积=17.(5分)计算:遍- |昨商-40"鹿.19. (7分)每年9月举行 全国中学生数学联赛”,成绩优异的选手可参加 全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入 国家集训队”.第31界冬令营已于2015年12 月在江西省鹰谭一中成功举行.现将脱颖而出的 50名选手分成两组进行竞赛,每组 25人,成绩整理并绘制成如下的统计图:18. (6分)解方程组:Q 5x+0.7y=35 jc+O. 4y=40二铝(1)请你将表格补充完整:平均数一组74二组 —中位数 众数 方差104 72(2)从本次统计数据来看, 组比较稳定.请你根据以上提供的信息解答下列问题:20.(8分)已知:如图,/ C= / 1 ,』2和』D互余,BE ± FD于点G.求证:AB // CD.21.(8分)双十一”当天,某淘宝网店做出优惠活动,按原价应付额不超过200元的一律9折优惠,超过200元的,其中200元按9折算,超过200元的部分按8折算.设某买家在该店购物按原价应付x元,优惠后实付y元.(1)当x> 200时,试写出y与x之间的函数关系式(如果是一次函数,请写成y=kx+b的形式);(2)该买家挑选的商品按原价应付300元,求优惠后实付多少元?22.(9分)如图,11反映了甲离开A地的时间与离A地的距离的关系12反映了乙离开A地的时间与离开A地距离之间的关系,根据图象填空:(1)当时间为0时,甲离A地千米;(2)当时间为时,甲、乙两人离A地距离相等;(3)图中P点的坐标是;(4) 11对应的函数表达式是:S1=;(5)当t=2时,甲离A地的距离是千米;(6)当S=28时,乙离开A地的时间是时.23.(9分)如图,在直角坐标系中,矩形OABC的顶点。
2024-2025学年广东省广州市八年级上学期期中数学试题及答案
2024-2025学年第一学期广东省广州市八年级数学期中复习试卷试卷满分:120分 考试时间:120分钟一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.下列四个图形中,是轴对称图形的是( )A .B .C .D .2.下列各组长度的三条线段能组成三角形的是( )A .1,2,3B .1,1,2C .1,2,2D .1,5,73.将一副三角板按如图所示的方式放置,则α∠的度数为( )A .75°B .85°C .90°D .95°4.已知等腰三角形一边长为2,一边的长为4,则这个等腰三角形的周长为() A .8 B .9 C .10 D .8或105.在平面直角坐标系中,点A (﹣2,m ﹣1)与点B (n +2,3),则m +n 的值是() A .﹣6 B .4 C .5 D .﹣56.如图,在Rt ABC △中,90C ∠=°,30B ∠=°,点D 是AB 的中点,ED AB ⊥于点D ,交BC 于点E ,连接AE ,若2DE =,则BC 的值是( )A .3B .4C .5D .67.如图,在ABC 中,90C ∠=°,30A ∠=°,AB 的垂直平分线交AC 于点D ,交AB 于点E ,3CD =,则AC 等于( )A .5B .6C .8D .98 .如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的A ′处,折痕为DE .如果A α∠=,CEA β∠′=,BDA γ∠′=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=−−9.如图,在ABC 中AB =AC ,BC=4,面积是20,AC 的垂直平分线EF 分别交AC 、AB 边于E 、F 点, 若点D 为BC 边的中点,点M 为线段上一动点,则CDM 周长的最小值为( )A .6B .8C .10D .1210 .如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②PQ AE ∥;③EQ DP =;④60AOB ∠=°;其中恒成立的结论有( )个A .1B .2C .3D .4二、填空题:本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.11.一个n 边形的内角和是720°,则n = .12.如图,D 在BC 边上,△ABC ≌△ADE ,则∠B 的度数为 .13.如图,ABC 中,AB AC =,AB 的垂直平分线交AC 于点D ,交AB 于点E .若30A ∠=°,则DBC ∠= .14.如图,在Rt ABC △中,90C ∠=°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AAAA 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,交边BC 于点D , 若3CD =,12AB =,则ABD △的面积是 .15.若等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数是 .16 .如图,ABC 中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,BE AC ⊥于E ,与CD 相交于点F ,DH BC ⊥于H 交BE 于G .下列结论:①BD CD =;②AD CF BD +=;③12CE BF =;④AE BG =. 其中正确的是 .三、解答题:本大题共9个小题,共72分,解答应写出文字说明、证明过程或演算步骤17.在△ABC 中,∠A =100°,∠C 比∠B 大20°求∠B 、∠C 的度数18.如图,AB DEAB DE BE CF ==∥,,.求证:ABC DEF ≌△△.19.如图,在所给正方形网格图中完成下列各题,ABC 的三个顶点都在格点上(用无刻度的直尺画图).(1)画出ABC 的中线AD ;(2)作出ABC 关于直线l 对称的111A B C △;(3)在直线l 上找到一点Q ,使QB QC +的值最小.20 . 如图,点B. F. C. E 在一条直线上(点F,C 之间不能直接测量),点A,D 在直线l 的异侧,测得AB=DE,AB ∥DE,AC ∥DF.(1)求证:△ABC ≌△DEF ;(2)若BE=13m ,BF=4m ,求FC 的长度.21.如图,在△ABC 中,EF 垂直平分AC ,交BC 于点E ,AD ⊥BC ,连接AE .(1)若∠BAE =44°,求∠C 的度数.(2)若AC =7cm ,DC =5cm ,求△ABC 的周长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB =AE =CE ,求出∠AEB 和∠C =∠EAC ,即可得出答案;(2)根据已知能推出AB +BD =EC +DE =DC ,即可得出答案.22.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求证:△CEF 是等腰三角形;(2)若CD =3,求DF 的长.23.如图,在ABC 中,AB CB =,90ABC ∠=°,F 是AAAA 延长线上一点,点E 在BC 上,且BE BF =.(1)求证:ABE CBF △△≌;(2)若30CAE ∠=°,求AEF ∠和ACF ∠的度数.24.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(m,0)、B(0,n),且|m﹣n﹣3|+(2n﹣6)2=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)OA=________,OB=_________.(2)连接PB,若△POB的面积为3,求t的值;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样点P,使△EOP≌△AOB,若存在,请直接写出t的值;若不存在,请说明理由.25.如图,在△ABC中,AB=AC,点在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△A BE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.参考解答一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.D 2.C . 3.A 4.C . 5.A . 6 .D 7 .D 8 .A 9 .D 10 .D二、填空题:本大题共6个小题.每小题3分,共18分.把答案填在题中横线上. 11.3. 12.70°.13 .45° 14 .18 15.50°或130° 16 .①②③三、解答题:本大题共9个小题,共72分,解答应写出文字说明、证明过程或演算步骤17.解:∵∠C 比∠B 大20°,∴∠C =∠B +20°,根据三角形内角和定理得:∠A +∠B +∠C =180°,∴100°+∠B +∠B +20°=180°,解得:∠B =30°,∠C =30°+20°=50°.18.证明:∵AB DE ∥,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,在ABC 和DEF 中,AB DE B DEF BC EF = ∠=∠ =. ∴()SAS ABC DEF △△≌.19.(1)如图,找出BC 中点D ,然后连接AD ,∴AD 即为所求;(2)如图,利用网格特点和轴对称的性质画出、、A B C 关于l 的对称点111A B C 、、,∴111A B C △即为所求;(3)如图,连接1B C 交l 于Q ,利用1QB QB =得到1QB QC B C +=,则根据两点之间线段最短即可,∴点Q 即为所求.20 . (1)证明:∵AB ∥DE , ∴∠ABC=∠DEF ,∴AC ∥DF ,∴∠ACB=∠DFE ,在△ABC 与△DEF 中, ABC=DEF ACB=DFE AB=DE ∠∠ ∠∠∴△ABC ≌△DEF ;(AAS )(2)∵△ABC ≌△DEF , ∴BC=EF ,∴BF+FC=EC+FC ,∴BF=EC ,∵BE=13m ,BF=4m ,∴FC=BE-BF-EC=13-4-4=5m .21.解:(1)∵AD⊥BC,EF垂直平分AC,∴AE=AB=EC,∴∠CAE=∠C,∵∠BAE=44°,∴,∴.(2)由(1)知:EC=AE=AB,∵DE=BD.∴AB+BD=EC+DE=DC,∴△ABC的周长为AB+BC+AC=AB+BD+DC+AC=2DC+AC=6×5+7=17(cm).答:△ABC的周长为17cm.22.解:(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°∴∠EDC=∠ECD=∠DEC=60°∵EF⊥ED,∴∠DEF=90°∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°∴CE =CF .∴△CEF 为等腰三角形(2)由(1)可知∠EDC =∠ECD =∠DEC =60°∴CE =DC =3又∵CE =CF ,∴CF =3∴DF =DC +CF =3+3=623.(1)证明:90ABC ∠=° , 90CBF ABE ∴∠=∠=°,在ABE 和CBF 中,AB CB ABE CBF BE BF = ∠=∠ =, ∴()SAS ABE CBF ≌△△;(2)解:由1()知:ABE CBF △≌△,∴BE BF =,BCF BAE ∠=∠, 又∵90ABC ∠=°, ∴90EBF ∠=°, ∴45BEF BFE ∠=∠=°, 90AB BC ABC =∠=° ,,45CAB ACB ∴∠=∠=°,又453015BAE CAB CAE ∠=∠−∠=°−°=° ,15BCF BAE ∴∠=∠=°,9075AEB BAE ∠=°−∠=°,∴120AEF BEF AEB ∠=∠+∠=°,451560ACF BCF ACB ∠=∠+∠=°+°=°.24.解:(1)∵|m ﹣n ﹣3|+(2n ﹣6)2=0,|m ﹣n ﹣3|≥0,(2n ﹣6)2≥0,∴|m ﹣n ﹣3|=0,(2n ﹣6)2=0,∴m ﹣n ﹣3=0,2n ﹣6=0,解得,m =6,n =3,∴OA =6,OB =3,故答案为:6;3;(2)当点P 在线段AO 上时,OP =6﹣t , 则12×(6﹣t )×3=3, 解得,t =4,当点P 在线段AO 的延长线上时,OP =t ﹣6, 则12×(t ﹣6)×3=3, 解得,t =8,∴当t =4或8时,△POB 的面积等于3;(3)如图1,当点P 在线段AO 上时,∵△POE ≌△BOA ,∴OP =OB ,即6﹣t =3,解得,t =3,如图2,当点P 在线段AO 的延长线上时,∵△POE ≌△BOA ,∴OP =OB ,即t ﹣6=3,解得,t =9,∴当t =3或9时,△POQ 与△AOB 全等.25.(1)解:BD BC = ,60DBC ∠=°, DBC ∴∆是等边三角形,DB DC ∴=,60BDC DBC DCB ∠=∠=∠=°, 在ADB ∆和ADC ∆中,AB AC AD AD DB DC = = =, ()ADB ADC AAS ∴∆≅∆,ADB ADC ∴∠=∠,1(36060)1502ADB ∴∠=°−°=°. (2)解:结论:ABE ∆是等边三角形.理由:60ABE DBC ∠=∠=° , ABD CBE ∴∠=∠,在ABD ∆和EBC ∆中,150ADB BCE ABD CBE BD BC ∠=∠=° ∠=∠ =, ABD EBC ∴∆≅∆,AB BE ∴=,60ABE ∠=° , ABE ∴∆是等边三角形.(3)解:连接DE . 150BCE ∠=° ,60DCB ∠=°, 90DCE ∴∠=°, 90EDB ∠=° ,60BDC ∠=°, 30EDC ∠=°∴, 142EC DE ∴==, ABD EBC ∆≅∆ , 4AD EC ∴==.。
2022-2023学年广东省广州市番禺区八年级上学期期末数学试卷及参考答案
2022-2023学年广东省广州市番禺区初二数学第一学期期末试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,40A ∠=︒,CBD ∠是ABC ∆的外角,60C ∠=︒,则CBD ∠的大小是( )A .180︒B .120︒C .100︒D .80︒ 2.若分式11x −的值大于零,则x 的取值范围是( ) A .1x > B .0x < C .1x < D .0x >3.如图图形中,作ABC ∆的边BC 上的高,正确的是( )A .B .C .D .4.下列计算正确的是( )A .3332b b b ⋅=B .527()a a =C .32()()xy xy xy ÷=D .22(2)4a a −=−5.若长度分别为a 、3、5的三条线段能组成一个三角形,则a 的值可以是( )A .2B .3C .8D .96.如图,若ABC ADE ∆≅∆,则下列结论中一定成立的是( )A .AD DC =B .BAD CAE ∠=∠C .AB AE =D .ABC AED ∠=∠7.如图,在ABC ∆中,90ACB ∠=︒,CD 是高,60B ∠=︒,若1BD =,则(AD = )A .2B .52C .3D .728.在边长为a 的正方形中挖去一个边长为b 的小正方形()a b >(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式( )A .222()2a b a ab b +=++B .222()2a b a ab b −=−+C .22()()a b a b a b −=+−D .22(2)(2)2a b a b a ab b +−=−−9.如图,在四边形ABCD 中,90A ∠=︒,3AD =,5BC =,对角线BD 平分ABC ∠,则BCD ∆的面积为( )A .7.5B .12C .8D .610.如图,梯形ABCD 中,90B C ∠=∠=︒,E 是BC 的中点,DE 平分ADC ∠,以下说法:①60CDE ∠=︒;②DE AE ⊥;③AD CD AB <+;④12ADE ABCDS S ∆=梯形,其中正确的是( )A .①②④B .③④C .①②③D .②④二、填空题(共6小题,每小题3分,满分18分.)11.计算:123()x y −= . 12.若2(1)(2)2x x x ax −+=+−,则a = .13.点(1,2)P −关于y 轴对称的点的坐标是 .14.等腰三角形的一个角100︒,它的另外两个角的度数分别为 .15.如图三角形纸片中,8AB cm =,6BC cm =,5AC cm =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则AED ∆的周长为 cm .16.观察以下等式:第1个等式:222(211)(221)(22)⨯+=⨯+−⨯第2个等式:222(221)(341)(34)⨯+=⨯+−⨯第3个等式:222(231)(461)(46)⨯+=⨯+−⨯第4个等式:222(241)(581)(58)⨯+=⨯+−⨯⋯⋯按照以上规律,第5个等式是: ,第n 个等式(用含n 的式子表示)是: .三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤.)17.因式分解(1)249a −;(2)22363ax axy ay ++.18.如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O .(1)求证:AOB DOC ∆≅∆.(2)若120BOC ∠=︒,求OBC ∠的大小.19.如图所示,牧马人从A 地出发,到一条直的河流l 边的C 处饮马,然后到达B 地.牧马人到河边的什么地点饮马,可以使所走的路程最短?请用尺规作图,在图中找出路程最短的饮马点C ,并用轴对称的性质说明理由.20.(1)计算:①(8)()x y x y −−;②32(2)(5)x xy ⋅−;③234()2a c c a⋅−. (2)先化简,再求值:2(23)(2)(2)x y x y x y +−+−,其中12x =,1y =−. 21.如图,ACD ∆、BCE ∆都是等边三角形,BD 分别与AE 、AC 相交于点M 、N .(1)证明:BD AE =;(2)求AMN ∠的度数.22.(1)解分式方程:513x x=+; (2)已知22112()(02a ab b H a b a ab−+=−÷≠,0b ≠,且)a b ≠. ①化简H ;②若数轴上点A 、B 表示的数分别为a ,b ,且2AB =,求H 的值.23.如图,在ABC ∆中,AD 是BAC ∠的平分线,AD 的垂直平分线交AB 于点F ,交BC 的延长线于点E .(1)求证://AC FD ;(2)B ∠与CAE ∠的大小是否相等?若相等,请给予证明;若不相等,请说明理由.24.(Ⅰ)列方程解应用题:两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?(Ⅱ)编应用题:联系你的生活实际,编一道关于分式方程的应用题,并列出方程求出答案.25.如图,ABC∆是等边三角形.(1)点P是AB边上一动点.①当点P移动到AB中点时,延长CB至E,使BE BP=;=,连接PE,PC.求证:PE PC②在点P运动过程中,以CP为边在CP上方作等边CPD∠的取值范围;∆,连接AD,CD,当AP BP>时,求ADP(2)AH是ABC∆的高,记AH长为a,动点M在AH上运动,在CM上方以CM为边作等边CMN∆,在点M运动过程中,求点N所经过的路径长.答案与解析一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.解:40A ∠=︒,CBD ∠是ABC ∆的外角,60C ∠=︒,100CBD A C ∴∠=∠+∠=︒.故选:C .2.解:分式11x −的值大于零, 10x ∴−>, 解得:1x >.故选:A .3.解:A 、图形中,AD 是ABC ∆的BC 边上的高,本选项符合题意;B 、图形中,不能表示ABC ∆的BC 边上的高,本选项不符合题意;C 、图形中,不能表示ABC ∆的BC 边上的高,本选项不符合题意;D 、图形中,不能表示ABC ∆的BC 边上的高,本选项不符合题意;故选:A .4.解:A 、336b b b ⋅=,选项错误,不符合题意;B 、5210()a a =,选项错误,不符合题意;C 、32()()xy xy xy ÷=,选项正确,符合题意;D 、22(2)4a a −=,选项错误,不符合题意;故选:C .5.解:由三角形三边关系可得:28a <<,因为238<<.故选:B .6.解:ABC ADE ∆≅∆,AD AB ∴=,故A 、C 选项错误,不符合题意;BAC DAE ∴∠=∠,BAC CAD DAE CAD ∴∠−∠=∠−∠,即BAD CAE ∠=∠,故B 选项正确,符合题意.ABC ADE ∆≅∆,ABC ADE ∴∠=∠,故D 选项错误,不符合题意.故选:B .7.解:在ABC ∆中,90ACB ∠=︒,CD 是高,60B ∠=︒,90CDB ∴∠=︒,9030A DCB B ∠=∠=︒−∠=︒,22BC BD ∴==,24AB BC ==,413AD ∴=−=;故选:C .8.解:根据图甲可得阴影面积为22a b −,根据图乙可得阴影面积为()()a b a b +−,∴可以验证等式22()()a b a b a b −=+−,故选:C .9.解:过点D 作DE BC ⊥,交BC 于点E ,90A ∠=︒,DA AB ∴⊥, BD 平分ABC ∠,3DA DE ∴==, ∴11537.522BCD S BC DE ∆=⋅=⨯⨯=. 故选:A .10.解:过点E 作EF AD ⊥于点F ,则90DFE ∠=︒,E 是BC 的中点,EB EC ∴=,90B C ∠=∠=︒,DFE C ∴∠=∠, DE 平分ADC ∠,FDE CDE ∴∠=∠,又DE DE =,()DEF DEC AAS ∴∆≅∆,EF EC EB ∴==,FED CED ∠=∠,DF CD =,90AFE B ∠=∠=︒,AE AE =,Rt AEF Rt AEB(HL)∴∆≅∆,AF AB ∴=,AEF AEB ∠=∠,AD DF AF CD AB ∴=+=+,故③错误;180FED CED AEF AEB ∠+∠+∠+∠=︒,90FED AEF ∴∠+∠=︒,即90AED ∠=︒,DE AE ∴⊥,故②正确;DEF DEC S S ∆∆=,AEF AEB S S ∆∆=,DEF DEC AEF AEB ABCD S S S S S ∆∆∆∆+++=梯形, ∴12DEF AEF ABCD S S S ∆∆+=梯形,即12ADE ABCD S S ∆=梯形, 故④正确;题中无条件证明60CDE ∠=︒,故①错误;正确的有②④故选:D .二、填空题(共6小题,每小题3分,满分18分.)11.解:6123363()y x y x y x −−==, 故答案为:63y x. 12.解:2(1)(2)2x x x x −+=+−,2(1)(2)2x x x ax −+=+−,2222x x x ax ∴+−=+−,1a ∴=.故答案为:1.13.解:点(1,2)P −关于y 轴对称的点的坐标是(1,2).故答案为:(1,2).14.解:等腰三角形的一个角100︒,100∴︒的角是顶角,∴另两个角是1(180100)402︒−︒=︒, 即40︒,40︒.故答案为:40︒,40︒.15.解:由折叠的性质得:6BE BC cm ==,DE DC =,862()AE AB BE AB BC cm ∴=−=−=−=,AED ∴∆的周长527()AD DE AE AD CD AE AC AE cm =++=++=+=+=,故答案为:7.16.解:第1个等式:22222(211)[(11)211][(11)21](221)(22)⨯+=+⨯⨯+−+⨯⨯=⨯+−⨯; 第2个等式:22222(221)[(21)221][(21)22](341)(34)⨯+=+⨯⨯+−+⨯⨯=⨯+−⨯; 第3个等式:22222(231)[(31)231][(31)23](461)(46)⨯+=+⨯⨯+−+⨯⨯=⨯+−⨯;第4个等式:22222(241)[(41)241][(41)24](581)(58)⨯+=+⨯⨯+−+⨯⨯=⨯+−⨯;⋯⋯∴第5个等式:22222(251)[(51)251][(51)25](6101)(610)⨯+=+⨯⨯+−+⨯⨯=⨯+−⨯, ∴第n 个等式(用含n 的式子表示)是:222(21)[(1)21][(1)2]n n n n n ⨯+=+⨯+−+⨯;故答案为:222(251)(6101)(610)⨯+=⨯+−⨯,222(21)[(1)21][(1)2]n n n n n ⨯+=+⨯+−+⨯.三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤.)17.解:(1)原式(23)(23)a a =+−;(2)原式223(2)a x xy y =++23()a x y =+.18.(1)证明:AOB ∆和DOC ∆中,AOB DOC A DAB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, (AOB DOC ∴∆≅∆)AAS ;(2)AOB DOC ∆≅∆,OB OC ∴=,OBC OCB ∴∠=∠,120BOC ∠=︒, ∴1(180)302OBC BOC ∠=︒−∠=︒. 19.解:如图,过点B 作直线l 的对称点B ',连接AB ',与直线l 的交点即为点C ,此时所走的路程最短, 即AC BC AC B C AB ''+=+=,取直线l 上另一点C ',根据轴对称得到AC BC AC B C AB ''''''+=+, ∴牧马人到河边的点C 处饮马,可以使所走的路程最短.20.解:(1)①(8)()x y x y −−2288x xy xy y =−−+2298x xy y =−+;②32(2)(5)x xy ⋅−328(5)x xy =⋅−4240x y =−;③234()2a c c a⋅− 23244a c c a=⋅1ac=; (2)2(23)(2)(2)x y x y x y +−+−222241294x xy y x y =++−+21210xy y =+, 当12x =,1y =−时, 原式2112(1)10(1)42=⨯⨯−+⨯−=. 21.(1)证明:ACD ∆、BCE ∆都是等边三角形,AC DC ∴=,CE BC =,60ACD BCE ∠=∠=︒,ACD ACB BCE ACB ∴∠+∠=∠+∠,即ACE BCD ∠=∠,在ACE ∆和DCB ∆中,AC DC ACE BCD CE CB =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,BD AE ∴=;(2)解:ACD ∆是等边三角形,60CAD ADC ∴∠=∠=︒,ACE DCB ∆≅∆,CAE CDB ∴∠=∠,120ADM DAM ADM CAD CAM ADM CAD CDB ADC CAD ∴∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒,180()60AMN ADM DAM ∴∠=︒−∠+∠=︒.22.解:(1)513x x=+, 去分母得:53x x =+, 解得:34x =, 检验:当34x =时,(3)0x x +≠, 所以原方程的解为34x =;(2)①22211222()2()a ab b a b ab H b a ab ab a b a b −+−=−÷=⋅=−−; ②数轴上点A 、B 表示的数分别为a ,b ,且2AB =,2a b ∴−=−或2,当2a b −=−时,212H ==−−; 当2a b −=时,212H ==; H ∴的值为1±. 23.(1)证明:AD 是BAC ∠的平分线,CAD BAD ∴∠=∠, AD 的垂直平分线交AB 于点F ,AF DF ∴=,FDA BAD ∴∠=∠,FDA CAD ∴∠=∠,//AC FD ∴;(2)B CAE ∠=∠,理由如下: AD 的垂直平分线交AB 于点F ,交BC 的延长线于点E .AE DE ∴=,ADE EAD ∴∠=∠,ADE B BAD ∠=∠+∠,EAD CAD CAE ∠=∠+∠,CAD BAD ∠=∠,B CAE ∴∠=∠.24.解:(Ⅰ)设乙队的工作效率是x ,依题意得方程:111()1323x +⨯=−, 解得1x =,∴乙队单独施工1个月可以完成总工程,答:乙队的施工速度快;(Ⅱ)应用题:甲、乙两人送外卖,甲比乙平均每小时多送2份,甲送30份外卖与乙送20份外卖所用时间相同,求甲平均每小时送外卖的份数.设甲平均每小时送外卖y 份,由题意得,30202y y =−, 解得6y =,检验:当6y =时,(2)0y y −≠, 6y ∴=是分式方程的解,且符合题意, 答:甲平均每小时送外卖6份.25.(1)①证明:ABC ∆是等边三角形, 60ABC ACB ∴∠=∠=︒, 点P 是AB 中点,30ACP BCP ∴∠=∠=︒, BE BP =,E BPE ∴∠=∠,60E BPE ∠+∠=︒,30E ∴∠=︒,E BCP ∴∠=∠,PE PC ∴=;②解:当点P 是AB 中点时,30ACP ∠=︒,90APC ∠=︒, CPD ∆的等边三角形,60PDC PCD ∴∠=∠=︒,CP CD =, 30ACD ACP ∴∠=︒=∠, 又AC AC =,(ACP ACD ∴∆≅∆)SAS , 90ADC APC ∴∠=∠=︒, 30ADP ∴∠=︒;AP BP >,∴当P 点向B 点运动时,ADP ∠在变大, 3060ADP ∴︒<∠<︒;(2)解:取AC 的中点E ,连接NE ,如图,AH BC ⊥, ∴12CH BC =, 1122CE AC BC ==, CH CE ∴=,ABC ∆和CMN ∆都是等边三角形, 60ACB MCN ∴∠=∠=︒,CM CN =, MCH NCE ∴∠=∠,(MCH NCE ∴∆≅∆)ASA ,MH NE ∴=,90NEC MHC ∠=∠=︒, NE AC ∴⊥,当点M 与点A 重合时,NE MH AH a ===, 当点M 与点H 重合时,点N 与点E 重合, ∴点N 所经过的路径长为a .。
2016-2017广州市荔湾区八年级上数学期末试卷
2016学年第一学期数学科八年级教学质量检测试卷本试卷共三大题23小题,共4页,满分100分.考试时间90分钟,可以使用计算器.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在问卷上. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔(除作图外)、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列运算正确的是( * ).(A )2-1=-2(B )(-1)0=1(C )(-2)2=-4(D )(-2)3=-62. 下列分式中是最简分式的是( * ).(A )11xx (B )211x x(C )42x(D )21x 3. 下列等式成立的是( * ).(A )123aba b (B )212a b a b (C )2ab a abba b(D )a a abab4. 如图所示,一扇窗户打开后,用窗钩????可将其固定,这里所运用的几何原理是( * ).(A )三角形的稳定性(B )两点之间,线段最短(C )两点确定一条直线(D )垂线段最短5. 下列各图中,正确画出????边上的高的是( * ).(A )(B )(C )(D )6. 如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠??+∠??的度数是( * ).(A )180°(B )220°(C )240°(D )300°第4题第6题7. 在△ABC和△A′B′C′中,????=??′??′,∠??=∠??′,补充条件后仍不一定能....保证△ABC ≌△A'B'C',则补充的这个条件是( * ).(A)????=??′??′(B)????=??'??'(C)∠??=∠??′(D)∠??=∠??′8. 若??2-??2=3,则(??+??)2?(??-??)2的值是( * ).(A)3(B)6(C)9(D)189. 如图,????是Rt△??????斜边????上的高,将△??????沿????折叠,??点落在线段????上的??点处,若∠??=30°,则∠??????等于( * ).(A)60°(B)30°(C)45°(D)25°10. 如图,直线??是一条河,??,??是两个村庄.欲在??上的某处修建一个水泵站,向??,??两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( * ).二、填空题(本大题共6小题,每小题3分,共18分.)11. 使分式32x有意义的x的取值范围是*.12. 如图,在△??????中,∠??=30°,∠??=50°,延长????到??,则∠??????=*°. 13. 如图所示,△??????≌△??????,∠??=70°,∠??=26°,∠??????=30°,则∠??????等于*°.14. ??是△??????三条角平分线的交点,∠??=60°,则∠??????=*°.15. 如图,在Rt△??????中,∠??=90°,∠??=30°,????-????=2,则????等于*.16. 观察下列各等式:1111212,1112323,1113434,?,根据你发现的规律计算:11111223341n n*.(??为正整数).第15题第13题第12题第9题(C)(A)(B)(D)三、解答题(本大题共7小题,共62分.解答应写出文字说明、证明过程或演算步骤.)17.(每小题4分,本题满分8分)计算:(1))3)((y xy x(2)yx y x y x 22352)24(18.(每小题4分,本题满分8分)分解因式:(1)aab42(2)2)1(9)1(124x x 19.(每小题4分,本题满分8分)计算:(1)222222510a b a bab a b(2)2222x y x xy xyxyxy20.(本题满分8分)如图,△ABC 中,点A 的坐标为(0,1),点B 的坐标为(3,1),点C 的坐标为(4,3),(1)画出△ABC 关于x 轴对称的△A ′B ′C ′;(2)如果在平面直角坐标系中存在点D ,使△ABD 与△ABC 全等(点D 与点C 不重合),直接写出所有符合要求的点D 的坐标.第20题21. (本题满分10分)如图,点D 在AB 上,点E 在AC 上,BE=CD ,∠B=∠C.求证:BD =CE .22. (本题满分10分)列方程解应用题:八年级学生在综合实践活动课进行甲、乙两种环保包装盒的手工制作.已知同样用12m 2的材料制成甲盒的个数比制成乙盒的个数少4个,且制作一个甲盒比制作一个乙盒需要多用20%的材料.求制作每个甲盒、乙盒各用多少材料?23.(本题满分10分)(1)已知:△ABC 是等腰三角形,其底边是BC ,点D 在线段AB 上,E 是直线BC 上一点,且∠DEC =∠DCE ,若∠A=60°(如图①).求证:EB=AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由.第23题EDCBA第21题。
广东省广州市荔湾区2021-2022学年八年级上学期期末数学试题(解析版)
【答案】B
【解析】
【分析】根据分式的值为零的条件是分子等于零,分母不等于零,即可求得 的值.
【详解】解:∵分式 的值为零,
∴
解得:
故选B
【点睛】本题考查了分式值为零的条件,掌握“分式的值为零的条件是分子等于零,分母不等于零”是解题的关键.
3.下列运算正确的是( )
A.a4•a2=a8B.a6÷a2=a3C.(a3)2=a5D.(2ab2)2=4a2b4
【答案】C
【解析】
【分析】甲不符合三角形全等的判断方法,乙可运用SAS判定全等,丙可运用AAS证明两个三角形全等.
【详解】由图形可知,甲有两边一角,但50°的角不是两边的夹角,故不能判断两三角形全等,乙有两边及其夹角,能判断两三角形全等,丙得出两角及其一角对边,能判断两三角形全等,根据全等三角形的判定得:乙丙正确.
【详解】解:∵△ABC≌△AED,
∴∠AED=∠B,AE=AB,∠BAC=∠EAD,
∴∠1=∠BAE=40°,
∴△ABE中,∠B= =70°,
∴∠AED=70°,
故选:A.
【点睛】本题考查的是全等三角形的性质、等腰三角形的性质,掌握全等三角形的对应角相等是解题的关键.
9.如图,在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,若△ABD的周长为a,BC=b,则△BCD的周长为( )
【详解】解:A.不是轴对称图形,故本选项不合题意;
B.是轴对称图形,故本选项符合题意;
C.不是轴对称图形,故本选项不合题意;D源自不是轴对称图形,故本选项不合题意.
故选:B.
【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2022-2023学年广东省广州市荔湾区八年级(上)期末数学试卷+答案解析(附后)
2022-2023学年广东省广州市荔湾区八年级(上)期末数学试卷1. 下列几种著名的数学曲线中,不是轴对称图形的是( )A. 笛卡尔爱心曲线B. 蝴蝶曲线C. 费马螺线曲线D. 科赫曲线2. 如果分式的值为0,那么x的值为( )A. B. C. D.3. 下列计算正确的是( )A. B. C. D.4.“KN95”表示此类型的口罩能过滤空气中的粒径约为米的非油性颗粒.其中,用科学记数法表示为( )A. B. C. D.5. 若,则下列分式化简正确的是( )A. B. C. D.6. 下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.7. 如图,,,则下列结论中,不正确的是( )A.B.C.D.8. 已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A. 10B. 8C. 7D. 49. 如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A. 6B. 7C. 8D. 910. 如图,中,,,,,BD平分,如果点M,N分别为BD,BC上的动点,那么的最小值是( )A. 6B. 8C. 10D.11. 已知点和点关于y轴对称,那么__________.12. 若是一个完全平方式,则m的值为__________.13.如图,在中,D是BC上一点,,,则__________14. 如图,BE是的中线,点D是BC边上一点,,BE、AD交于点F,若的面积为24,则等于 __________.15. 若,则的值为__________.16. 如图,在中,和的平分线相交于点O,过O点作交AB于点E,交AC于点F,过点O作于D,下列四个结论:①;②;③点O到各边的距离相等;④设,,则其中正确的结论有__________填写序号17. 计算:18. 解方程:19. 分解因式:;20. 先化简,再求值:,其中21. 如图,在单位长度为1的方格纸中画有一个画出关于y轴对称的;写出点、的坐标;求的面积.22. 如图,点A,B,C,D在一条直线上,,,求证:≌若,,求的度数.23. 节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多元.求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?24. 在等腰中,,,于D,点O、点P分别在射线AD、BA上运动,且保证,连接当点O运动到D点时,如图1,求AP的长度;当点O运动到D点时,如图1,试判断的形状并证明;当点O在射线AD其它地方运动时,还满足的结论吗?请用图2说明理由.25. 如图1,在平面直角坐标系中,,,且,求点B的坐标;如图2,若BC交y轴于点M,AB交x轴于点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由;如图3,若在点B处有一个等腰,且,,连接AG,点H为AG的中点,试猜想线段DH与线段CH的数量关系与位置关系,并证明你的结论.答案和解析1.【答案】C【解析】【分析】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:选项A、B、D均能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;选项C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:2.【答案】D【解析】【分析】本题考查了分式值为零的条件:分式值为零的条件是分子等于零且分母不等于零.利用分式值为零的条件得到且,求解即可.【解答】解:根据题意得:且,解得故选:3.【答案】A【解析】【分析】本题主要考查同底数幂的乘法、同底数幂的除法、幂的乘方以及积的乘方,熟练掌握同底数幂的乘法、同底数幂的除法、幂的乘方以及积的乘方是解决本题的关键.根据同底数幂的乘法、同底数幂的除法、幂的乘方以及积的乘方解决此题.【解答】解:根据幂的乘方,得,故A符合题意.B.根据同底数幂的乘法,得,故B不符合题意.C.根据积的乘方,得,故C不符合题意.D.根据同底数幂的除法,得,故D不符合题意.故选:4.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n 为整数,正确确定a的值以及n的值是解决问题的关键.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数.【解答】解:故选:5.【答案】C【解析】【分析】本题考查分式性质,掌握分式性质,正确对分式进行化简是求解本题的关键.利用分式性质依次判断.【解答】解:当,时,,,不成立,不成立.不成立.故选:6.【答案】D【解析】【分析】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可.【解答】解:从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.从左到右的变形属于因式分解,故本选项符合题意;故选:7.【答案】D【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形的判定,熟练掌握全等三角形的判定和性质是解题的关键.根据全等三角形的性质得到,,,由等腰三角形的判定得到,于是得到,由于,得到,即可得到结论.【解答】证明:在与中,,≌,,,,,,即,,B,C选项正确,,,选项错误,故选:8.【答案】C【解析】解:根据三角形的三边关系,得,即,因为m是整数,则m的最大值为7,故选:根据三角形的三边关系确定第三边的取值范围,进而解答即可.本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.9.【答案】C【解析】【分析】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是,根据题意得:解得故选:10.【答案】D【解析】【分析】本题考查了垂线段最短、角分线的性质,解决本题的关键是找到使最小时的动点M 和先作CE垂直AB交BD于点M,再作MN垂直BC,根据角平分线的性质:角分线上的点到角的两边距离相等,即可找到动点M和N,进而求得的最小值.【解答】解:如图所示:过点C作于点E,交BD于点M,过点M作于点N,平分,,中,,,,,,,,即的最小值是,故选:11.【答案】【解析】【分析】本题考查了关于x 轴、y 轴对称的点的坐标,掌握对称点的坐标规律是关键.根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点和关于y 轴对称,,,那么故答案为:12.【答案】【解析】【分析】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的结构特征即可确定出m 的值.【解答】解:是一个完全平方式,故答案为:13.【答案】25【解析】【分析】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.设,然后根据,,表示出和的度数,最后根据三角形的内角和定理求出的度数,进而求得的度数即可.【解答】解:,,,设,,,,在中,,,解得:,,故答案为:14.【答案】4【解析】【分析】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即底高;三角形的中线将三角形分成面积相等的两部分.根据三角形面积公式,利用,,利用得到,然后计算即可.【解答】解:是的中线,,,,即,,,即故答案为:15.【答案】【解析】【分析】本题考查了分式的化简求值,解决本题的关键是利用整体代入.变形已知为的形式,然后整体代入得结果.【解答】解:,,即,则,故答案为:16.【答案】①③④【解析】【分析】此题考查了角平分线的定义与性质,等腰三角形的判定.此题难度适中,解题的关键是注意数形结合思想的应用.由在中,和的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②错误;由平行线的性质和角平分线的定义得出和是等腰三角形得出故①正确;由角平分线的性质得出点O到各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得③设,,则,故④正确.【解答】解:在中,和的平分线相交于点O,,,,,;故②错误;在中,和的平分线相交于点O,,,,,,,,,,,故①正确;过点O作于M,作于N,连接OA,在中,和的平分线相交于点O,,;故④正确;在中,和的平分线相交于点O,点O到各边的距离相等,故③正确.故答案为:①③④.17.【答案】解:原式【解析】此题考查了多项式的乘法公式,以及合并同类项的法则.其中多项式的乘法公式有两个:平方差公式和完全平方公式掌握这两公式的特征是解本题的关键.观察所求的式子发现,被减式满足平方差公式的特征,减式为单项式乘多项式,去括号并合并同类项即可得到最后结果.18.【答案】解:,,方程两边同时乘,得整式方程,即,所以,解得:,检验:当时,所以原分式方程的解为【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.19.【答案】解:;【解析】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.先提公因式,然后再利用完全平方公式继续分解即可;先提公因式,然后再利用平方差公式继续分解即可.20.【答案】解:,当时,原式【解析】本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,最后代入求出答案即可.21.【答案】解:如图所示,即为所求.由图可知点的坐标为,点的坐标为;的面积为【解析】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质.分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;根据图形即可写出点、的坐标;用长方形的面积减去四周三个三角形的面积.22.【答案】证明:因为,所以,因为,所以,在和中,,所以≌,解:因为,,所以所以,因为≌,所以则的度数为【解析】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.由“SAS”可证≌;由全等三角形的性质和三角形内角和定理可求解.23.【答案】解:设汽车行驶中每千米用电费用是x元,则每千米用油费用为元,可得:,解得:,经检验是原方程的解,汽车行驶中每千米用电费用是元,甲、乙两地的距离是千米;汽车行驶中每千米用油费用为元,设汽车用电行驶ykm,可得:,解得:,所以至少需要用电行驶60千米.【解析】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;根据各数量间的关系,正确列出一元一次不等式.根据从甲地行驶到乙地的路程相等列出分式方程解答即可;根据所需费用不超过50元列出不等式解答即可.24.【答案】解:,,,,,,,,,在与中,,≌,,,,,;是等边三角形.证明:≌,,,是等边三角形.还满足的结论,理由:过C作于E,,,,,,在与中,,≌,,是等边三角形.【解析】本题考查了全等三角形的判定与性质,等腰三角形的性质,含30度角直角三角形的性质,等边三角形的判定与性质,熟练掌握全等三角形对应边相等的性质是解题的关键.根据等腰三角形的性质得到,求得,证明≌,根据全等三角形的性质即可得到结论;根据全等三角形的性质及等边三角形的判定可得出结论;过C作于E,根据角平分线的性质得到,根据全等三角形的性质得到,由等边三角形的判定即可得到结论.25.【答案】解:如图1中,过点C作轴于点T,过点B作交CT的延长线于点,,,,,,,,,在和中≌,,,,;结论:理由:在射线OE上截取,连接,轴,轴,,,四边形BEOF是长方形,,在和中≌,,,,,,在和中≌,,,;结论:,理由:如图3中,延长DH到J,使得,连接AJ,CJ,延长DG交AC于点在和中≌,,,,,,,,,,,,,在和中≌,,,,,,,即,【解析】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.如图1中,过点C作轴于点T,过点B作交CT的延长线于点证明≌,推出,,可得结论;结论:证明≌,推出,,再证明≌,推出,可得结论;结论:,如图3中,延长DH到J,使得,连接AJ,CJ,延长DG交AC于点证明是等腰直角三角形,可得结论.。
2023-2024学年广东省河源市紫金县八年级上学期期中数学试卷及参考答案
河源市紫金县2023—2024学年度第一学期期中综合测评八年级数学本试卷共4页,25小题,满分120分.考试用时120分钟.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列几组数中是勾股数的一组是( )A.3,4,6B.1,2,3C.9,12,15D.6,12,132. )3.下列数据不能..确定物体位置的是( )A.某小区3单元406室B.南偏东30°C.淮海路125号D.东经121°、北纬35°4.在平面直角坐标系中,点(2,3)A −位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.将三个正方形和一个直角三角形按如图所示拼在一起,则图形A 的面积是( )A.225B.144C.81D.无法确定6.已知x ,y 2(1)0y ++=,那么x y −的平方根是( )A. C.1 D.1±7.下列计算中正确的是( )= 7=C.(21=D.3=8.已知一次函数31y x =−+的图象过点()11,x y ,()121,x y +,()132,x y +,则() A.123y y y << B.321y y y << C.213y y y << D.312y y y <<9.一次函数y ax a =−的图象大致是( )A B C D 10.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第331个点的坐标为( )A.(8,17)B.(8,16)C.(7,17)D.(7,18)二、填空题:本大题共6小题,每小题3分,共18分.11.比较大小:2___________3.(填“>”“<”或“=”) 12.如图,一个圆桶底面直径为5cm ,高12cm ,则桶内所能容下的最长木棒为__________cm .13.函数y =x 的取值范围是___________.14.如果点P 在第二象限内,点P 到x 轴的距离是5,到y 轴的距离是2,那么点P 的坐标为___________.15.若函数1(2)m y m x −=+是正比例函数,则m 的值是___________.16.若点(,3)A a 关于x 轴的对称点为点(2,)A b ',则2023()a b +=___________.三、解答题:本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(40(3)π−. 18.(4分)如图,在ABC △中,10AB =,6BC =,8AC =,试判断ABC △的形状.19.(6分)把下列各数分别填入相应的集合中.35π,3.14,0,-5.12345…,(1)有理数集合:{ …};(2)无理数集合:{ …};(3)正实数集合:{ …}.20.(6分)已知ABC △在平面直角坐标系的位置如图所示.(1)请画出ABC △关于y 轴对称的A B C '''△(其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法);(2)请直接写出A ',B ',C '三点的坐标.21.(8分)如图,已知直线y kx b =+的图象经过点(0,4)A −,(3,2)B ,且与x 轴交于点C .(1)求直线y kx b =+的解析式;(2)求BOC △的面积.22.(10分)如图,在ABC △中,90ACB ∠=︒,15BC =,20AC =,CD 是边AB 上的高.求:(1)线段AB的长;(2)ABC△的面积;(3)线段CD的长.23.(10分)某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x (天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系.(1)由图象可知,新设备因工人操作不当停止生产了___________天.(2)新、旧设备每天分别生产多少万个口罩?(3)在生产过程中,x为何值时,新、旧设备所生产的口罩数量相同?24.(12分)(1=___________=___________.(2(32022+25.(12分)如图,在平面直角坐标系xOy中,直线443y x=−+与x轴、y轴分别交于点A,B,点D在y轴的负半轴上,若将DAB△沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求线段AB的长;(2)求点C 和点D 的坐标;(3)y 轴上是否存在一点P ,使得12PAB OCD S S =△△?若存在,求出点P 的坐标;若不存在,请说明理由.2023—2024学年度第一学期期中综合测评八年级数学参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分1.C2.A3.B4.D5.C6.A7.A8.B9.C 10.D二、填空题:本大题共6小题,每小题3分,共18分.11.> 12.13 13.1x 14.(2,5)− 15.2 16.-1三、解答题:本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.解:原式21=−+ ········································································································ 3分1=−. ···························································································································· 4分18.解:由题意可知,在ABC △中,10AB =,6BC =,8AC =.∵2226810+=,∴222BC AC AB +=. ····················································································· 3分 ∴ABC △是直角三角形. ·········································································································· 4分19.解:(1)有理数集合:35⎧⎫⎨⎬⎩⎭ ····································································· 2分 (2)无理数集合:{, 5.12345,3}π−−··············································································· 4分(3)正实数集合:3,3.145π⎧⎫⎨⎬⎩⎭ ······················································································· 6分 20.解:(1)如图所示,A B C '''△即为所求. ·················································································· 3分(2)(2,3)A ',(3,1)B ',(1,2)C '−−. ························································································ 6分21.解:(1)把点(0,4)A −,(3,2)B 分别代入直线的解析式y kx b =+,得4b =−,32k b +=, ········································································································· 1分 解得4b =−,2k =. ··············································································································· 3分 ∴直线y kx b =+的解析式是24y x =−. ···················································································· 4分(2)在直线24y x =−中,令0y =,得2x =. ··········································································· 5分 ∴点C 的坐标为(2,0). ············································································································ 6分 ∴1122222BOC C B S x y =⋅=⨯⨯=△. ··························································································· 8分 22.解:(1)∵在ABC △中,90ACB ∠=︒,∴ABC △是直角三角形. ·············································· 1分由勾股定理得25AB ===. ··································································· 3分(2)∵在ABC △中,90ACB ∠=︒,15BC =,20AC =, ∴11152015022ABC S BC AC =⋅=⨯⨯=△. ··················································································· 6分 (3)∵CD 是边AB 上的高, ∴11502ABC S AB CD =⋅=△. ···································································································· 7分 ∴1251502CD ⨯⋅=. ··············································································································· 8分 ∴12CD =. ························································································································ 10分23.解:(1)2 ························································································································· 2分(2)新设备:4.81 4.8÷=(万个/天), ····················································································· 3分 旧设备:16.87 2.4÷=(万个/天) ··························································································· 4分 故新设备每天生产4.8万个口罩,旧设备每天生产2.4万个口罩. ······················································· 5分(3)①由2.4 4.8x =,解得2x =; ·························································································· 7分 ②由2.4 4.8(2)x x =−,解得4x =. ··························································································· 9分 故在生产过程中,当x 为2或4时,新、旧设备所生产的口罩数量相同.··········································· 10分24.解:(1)①2 ②12·································································································· 4分(2)原式21)=+− ··································································································· 6分21=+− ··················································································································· 7分 1=. ····································································································································· 8分(3)原式12023=−++ ··················································· 10分1=−. ······················································································································· 12分 25.解:(1)在直线443y x =−+中,令0x =,得4y =. ······························································· 1分 ∴点B 的坐标为(0,4).∴4OB =. ······························································································ 2分 同理令0y =,得4043x =−+,解得3x =. ················································································ 3分 点A 的坐标为(3,0).∴3OA =. ·································································································· 4分在Rt OAB △中,由勾股定理得5AB ===. ················································· 5分(2)∵5AC AB ==,∴358OC OA AC =+=+=.∴点C 的坐标为(8,0).············································································································· 6分 设OD x =,则4CD DB x ==+.在Rt OCD △中,由勾股定理得222CD OD OC =+,即222(4)8x x +=+,解得6x =. ······························································································ 8分 ∴点D 的坐标为(0,6)−. ·········································································································· 9分 (3)∵12PAB OCD S S =△△, ∴11681222PAB S =⨯⨯⨯=△. ·································································································· 10分 ∵点P 在y 轴上,12PAB S =△,∴1122BP OA ⋅=,即13122BP ⨯=,解得8BP =. ·····································································11分 ∵点P 在点B 的上方或下方,4OB =,∴点P 的坐标为(0,12)或(0,4)−. ···························································································· 12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年广东省广州市荔湾区八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm2.(2分)计算(2004﹣π)0的结果是()A.0 B.1 C.2004﹣π D.π﹣20043.(2分)如果把分式中的x、y都扩大到原来的5倍,那么分式的值()A.扩大到原来的25倍B.扩大到原来的5倍C.不变D.缩小到原来的4.(2分)计算(a3)2÷a4的结果是()A.1 B.a C.a2D.a105.(2分)下列图形不是轴对称图形的是()A.B.C.D.6.(2分)在建筑工地我们经常可看见如图所示用木条EF固定长方形门框ABCD 的情形,这种做法根据是()A.两点之间线段最短B.两点确定一条直线C.长方形的四个角都是直角D.三角形的稳定性7.(2分)下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形8.(2分)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.79.(2分)如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.1210.(2分)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)使分式的值为零的条件是x=.12.(3分)如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD 的周长差为cm.13.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.14.(3分)△ABC中,∠B=30°,∠C=90°,AC=4,则AB=.15.(3分)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.16.(3分)对于实数a、b,定义运算⊗如下:a⊗b=,例如,2⊗4=2﹣4=.计算[2⊗2]×[(﹣3)⊗2]=.三、解答题:本大题共7题,共62分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:(1)(a+3)(a﹣1)+a(a﹣2);(2)(2x﹣3)2﹣(x+y)(x﹣y)﹣y2.18.(10分)因式分解(1)ax2﹣4a;(2)2pm2﹣12pm+18p.19.(10分)计算:(1)(2).20.(8分)在平面直角坐标系中,P点坐标为(2,6),Q点坐标为(2,2),点M为y轴上的动点.(1)在平面直角坐标系内画出当△PMQ的周长取最小值时点M的位置.(保留作图痕迹)(2)写出点M的坐标.21.(8分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.22.(8分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?23.(10分)在等边△ABC中,D为线段BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.求证:(1)AD=DE;(2)BC=DC+2CF.2015-2016学年广东省广州市荔湾区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)下列各组线段的长为边,能组成三角形的是()A.2cm,3cm,4cm B.2cm,3cm,5cm C.2cm,5cm,10cm D.8cm,4cm,4cm【解答】解:根据三角形任意两边的和大于第三边,可知A、2+3>4,能组成三角形,故A正确;B、2+3=5,不能组成三角形,故B错误;C、2+5<10,不能够组成三角形,故C错误;D、4+4=8,不能组成三角形,故D错误;故选A.2.(2分)计算(2004﹣π)0的结果是()A.0 B.1 C.2004﹣π D.π﹣2004【解答】解:原式=1,故选B.3.(2分)如果把分式中的x、y都扩大到原来的5倍,那么分式的值()A.扩大到原来的25倍B.扩大到原来的5倍C.不变D.缩小到原来的【解答】解:当x、y都扩大到原来的5倍,5xy扩大到原来的25倍,x+y扩大到原来的5倍,∴分式的值扩大到原来的5倍.故选:B.4.(2分)计算(a3)2÷a4的结果是()A.1 B.a C.a2D.a10【解答】解:(a3)2÷a4=a6÷a4=a2.故选C.5.(2分)下列图形不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故选项错误;B、不是轴对称图形,故选项正确;C、是轴对称图形,故选项错误;D、是轴对称图形,故选项错误.故选:B.6.(2分)在建筑工地我们经常可看见如图所示用木条EF固定长方形门框ABCD 的情形,这种做法根据是()A.两点之间线段最短B.两点确定一条直线C.长方形的四个角都是直角D.三角形的稳定性【解答】解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.故选D.7.(2分)下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.8.(2分)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.9.(2分)如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.12【解答】解:在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.10.(2分)如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)使分式的值为零的条件是x=﹣1.【解答】解:由题意,得x+1=0,解得,x=﹣1.经检验,x=﹣1时,=0.故答案是:﹣1.12.(3分)如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD 的周长差为2cm.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=6﹣4=2cm.故答案为:2.13.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.14.(3分)△ABC中,∠B=30°,∠C=90°,AC=4,则AB=8.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,∴AB=2AC,∵AC=4,∴AB=8,故答案为:8.15.(3分)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.16.(3分)对于实数a、b,定义运算⊗如下:a⊗b=,例如,2⊗4=2﹣4=.计算[2⊗2]×[(﹣3)⊗2]=.【解答】解:2⊗2=2﹣2=,(﹣3)⊗2=(﹣3)﹣2=,则[2⊗2]×[(﹣3)⊗2]=×=.故答案为:.三、解答题:本大题共7题,共62分.解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:(1)(a+3)(a﹣1)+a(a﹣2);(2)(2x﹣3)2﹣(x+y)(x﹣y)﹣y2.【解答】解:(1)(a+3)(a﹣1)+a(a﹣2)=a2﹣a+3a﹣3+a2﹣2a=2a2﹣3;(2)(2x﹣3)2﹣(x+y)(x﹣y)﹣y2=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9.18.(10分)因式分解(1)ax2﹣4a;(2)2pm2﹣12pm+18p.【解答】解:(1)ax2﹣4a=a(x2﹣4)=a(x﹣2)(x+2);(2)2pm2﹣12pm+18p=2p(m2﹣6m+9)=2p(m﹣3)2.19.(10分)计算:(1)(2).【解答】解:(1)原式=﹣===﹣;(2)原式=+•=+==.20.(8分)在平面直角坐标系中,P点坐标为(2,6),Q点坐标为(2,2),点M为y轴上的动点.(1)在平面直角坐标系内画出当△PMQ的周长取最小值时点M的位置.(保留作图痕迹)(2)写出点M的坐标(0,4).【解答】解:(1)如图所示:(2)设直线Q′P的解析式为y=kx+b,将点Q′、点P的坐标代入得:.解得:b=4.故点M的坐标为(0,4).21.(8分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.【解答】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.22.(8分)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?【解答】解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.23.(10分)在等边△ABC中,D为线段BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.求证:(1)AD=DE;(2)BC=DC+2CF.【解答】证明:(1)如图,过D作DG∥AC交AB于G∵△ABC是等边三角形,AB=BC,∴∠B=∠ACB=60°∴∠BDG=∠ACB=60°,∴∠BGD=60°∴△BDG是等边三角形,∴BG=BD∴AG=DC∵CE是∠ACB外角的平分线,∴∠DCE=120°=∠AGD∵∠ADE=60°,∴∠ADB+∠EDC=120°=∠ADB+∠DAG∴∠EDC=∠DAG,在△AGD和△DCE中,,∴△AGD≌△DCE(SAS)∴AD=DE(2)∵△AGD≌△DCE,∴GD=CE,∴BD=CE∴BC=CE+DC=DC+2CF.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。