不等式教案
不等式的基本性质教案
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生对数学的兴趣。
3. 引导学生通过观察、分析、归纳等方法,自主学习不等式的性质。
二、教学内容:1. 不等式的概念及表达方式。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式性质在实际问题中的应用。
三、教学重点与难点:1. 教学重点:不等式的基本性质及其应用。
2. 教学难点:不等式性质的推导和理解。
四、教学方法:1. 采用自主学习、合作探讨的教学方法,让学生在实践中掌握不等式的基本性质。
2. 利用多媒体课件,直观展示不等式的性质,提高学生的学习兴趣。
3. 结合生活实例,让学生感受不等式在实际问题中的应用。
五、教学过程:1. 导入新课:通过简单的例子,引导学生认识不等式,激发学生的学习兴趣。
2. 自主学习:让学生自主探究不等式的基本性质,教师巡回指导。
3. 课堂讲解:讲解不等式的概念、表达方式,详细阐述不等式的性质1、性质2、性质3。
4. 巩固练习:布置相关练习题,让学生巩固所学的不等式性质。
5. 应用拓展:结合实际问题,让学生运用不等式性质解决问题。
6. 课堂小结:总结本节课的主要内容,强调不等式性质的重要性。
7. 作业布置:布置适量作业,巩固所学知识。
8. 课后反思:教师对本节课的教学情况进行反思,为下一节课的教学做好准备。
六、教学评价:1. 通过课堂提问、练习题和课后作业,评估学生对不等式基本性质的理解和掌握程度。
2. 观察学生在解决问题时的思维过程和方法,评价其应用能力和创新意识。
3. 收集学生对教学过程的意见和建议,以促进教学方法的改进和教学质量的提高。
七、教学反馈:1. 课后及时批改学生作业,了解学生对不等式基本性质的掌握情况。
2. 根据学生作业中出现的问题,进行有针对性的辅导和讲解,确保学生理解透彻。
3. 定期与学生交流,了解他们在学习不等式过程中的困惑和问题,及时给予解答和指导。
高中数学不等式的模型教案
高中数学不等式的模型教案
教学目标:
1. 理解不等式的概念及性质。
2. 掌握解不等式的方法。
3. 能够运用不等式解决实际问题。
教学重点:
1. 不等式的定义。
2. 不等式的性质。
3. 解不等式的方法。
教学难点:
1. 不等式组合的运算规则。
2. 不等式解答实际问题的能力。
教学过程:
一、导入(5分钟)
教师引导学生讨论生活中的“不等式”,以引起学生的兴趣和思考。
二、讲解不等式的定义(15分钟)
1. 介绍不等式的定义和符号表示。
2. 讲解不等式的性质和性质与等号的关系。
三、解不等式的方法(20分钟)
1. 介绍解一元一次不等式的基本方法。
2. 演示解决不等式的过程,并指导学生做练习。
四、练习与讨论(15分钟)
1. 让学生做一些不等式的练习题,并讨论解题过程和答案。
2. 教师解答学生提出的问题,帮助学生理解不等式的知识点。
五、实际问题解决(15分钟)
1. 给学生提供一些实际问题,让学生运用不等式解决问题。
2. 学生自主讨论解决问题的方法,并展示解题过程。
六、总结(5分钟)
1. 教师对本节课进行总结,提出学生存在的问题和不足之处。
2. 提醒学生在日常生活中多加练习,提高不等式解决问题的能力。
作业布置:
* 完成课堂练习题目。
* 自编不等式实际问题,并解答。
教学反思:
* 对学生学习不等式过程中的困难加以理解和帮助。
* 注重学生实际问题解决能力的培养。
高中数学《不等式》教案
高中数学《不等式》教案教学内容:不等式
教学目标:
1. 理解不等式的概念和性质。
2. 掌握不等式的解法和解集表示法。
3. 能够根据不等式的性质解决实际问题。
教学重点:
1. 掌握不等式的基本概念和性质。
2. 能够利用不等式解决实际问题。
教学难点:
1. 熟练掌握各种不等式的解法。
2. 能够根据实际问题建立并解决不等式。
教学过程:
一、导入(5分钟)
1. 引入不等式的概念,并和等式做比较,引发学生思考。
二、讲解不等式的性质和解法(15分钟)
1. 讲解不等式的符号表示及性质。
2. 讲解不等式的解法,包括加减法、乘法、除法等。
三、练习与讨论(20分钟)
1. 练习不等式的基本运算和解法。
2. 让学生在小组讨论中解决不等式问题。
四、实际问题应用(10分钟)
1. 列举一些实际问题,让学生通过建立不等式解决。
五、总结与展望(5分钟)
1. 总结不等式的性质和解法。
2. 展望下节课内容,讲解高级不等式的解法。
六、作业布置(5分钟)
1. 布置练习题,巩固不等式的知识。
教学板书:
不等式
1. 定义:比较两个数的大小关系的代数式。
2. 符号表示:大于(>)、小于(<)、大于等于(≥)、小于等于(≤)。
3. 特性:加减法、乘除法性质。
教学反思:
通过本节课的教学,学生对不等式的概念和性质有了初步了解,并能够熟练解决基本的不等式问题。
下一步可以引入更复杂的不等式,挑战学生的解题能力。
不等式的基本性质(教案)
不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生对数学逻辑思维的认知。
二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。
2) 不等式的两边乘除同一个正数,不等号的方向不变。
3) 不等式的两边乘除同一个负数,不等号的方向改变。
3. 运用不等式的基本性质解决实际问题。
三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。
2. 教学难点:不等式性质3的理解与应用。
四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。
2. 通过例题讲解,让学生学会运用不等式解决实际问题。
3. 利用小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。
2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。
3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。
4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。
5. 课堂小结:总结不等式的基本性质及运用方法。
6. 课后作业:布置相关作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。
2. 练习题解答:检查学生运用不等式解决实际问题的能力。
3. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。
2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。
八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。
2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。
九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。
2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。
不等式的基本性质(教案)
不等式的基本性质教学目标:1. 了解不等式的概念及基本性质;2. 掌握不等式的运算规则;3. 能够运用不等式的基本性质解决实际问题。
教学重点:1. 不等式的基本性质;2. 不等式的运算规则。
教学难点:1. 不等式的性质3的推导;2. 不等式运算的灵活运用。
教学准备:1. 教学课件;2. 练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识;2. 提问:不等式有哪些基本性质?二、探究不等式的基本性质(15分钟)1. 引导学生发现不等式的性质1:不等式两边加(减)同一个数(或式子),不等号的方向不变;2. 引导学生发现不等式的性质2:不等式两边乘(除)同一个正数,不等号的方向不变;3. 引导学生发现不等式的性质3:不等式两边乘(除)同一个负数,不等号的方向改变。
三、不等式的运算规则(15分钟)1. 讲解不等式的加减法运算规则;2. 讲解不等式的乘除法运算规则;3. 举例说明不等式运算的运用。
四、巩固练习(10分钟)1. 让学生完成练习题,巩固不等式的基本性质和运算规则;五、课堂小结(5分钟)1. 回顾本节课所学的不等式的基本性质和运算规则;2. 强调不等式在实际问题中的应用。
教学反思:六、不等式的应用举例(15分钟)1. 举例说明不等式在实际生活中的应用,如分配问题、比赛评分等;2. 引导学生运用不等式的基本性质和运算规则解决实际问题;3. 让学生尝试解决一些复杂的不等式问题,培养学生的解决问题能力。
七、不等式的综合训练(15分钟)1. 给出一些综合性的不等式题目,让学生独立解答;2. 引导学生运用不等式的基本性质和运算规则,提高解题效率;3. 及时给予学生反馈,帮助学生纠正错误,提高解题正确率。
2. 强调不等式在实际问题中的应用,提醒学生课后加强练习。
九、课后作业(课后自主完成)1. 完成练习册上的相关题目,巩固不等式的基本性质和运算规则;2. 选择一些不等式的应用题目,尝试解决实际问题。
不等式基本性质教学设计(共5篇)
不等式根本性质教学设计〔共5篇〕第1篇:不等式性质教学设计 2022-2022学年度第二学期关集中心校七年级数学组导学案专用纸主备人:胡伟审核人:使用人:第11周讨论时间:不等式的根本性质〔1〕教学设计学习目标1、理解、掌握不等式的根本性质;2、能够运用不等式的根本性质解决有关问题.重点难点重点:不等式的三个性质.难点:不等式性质3的探索及运用.解决方法:不等式的根本性质3的导出,采用通过学生自己动手实践、观察、归纳猜测结论、验证等环节来突破的.并在理解的根底上加强练习,以期到达学生稳固所学知识的目的.教学方法先学后教、讨论、探究、讲练结合教具准备多媒体,或小黑板教学设计流程问题:等式有哪些性质?〔学生交流3-5分钟〕学生答复等式的性质:性质1 等式两边同时加〔或减〕同一个数〔或式子〕,结果仍相等.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.此次活动中教师应重点关注:〔1〕学生对已学过的等式性质内容的记忆,及表达语言的准确性;〔2〕学生对等式性质得出过程的回忆.探讨不等式的根本性质.〔学生读文8-10分钟后,研讨并解决下面问题〕如果a>b,那么,在数轴上表示a的点A位于表示b 的点B的右侧,画图表示.〔一〕做做1.请你在上面的数轴上画出表示a+3和b+3的点来,哪个点在右侧?并用不等号连接下面的式子: a+3______b+3.类似地,应有 a+c______b+c.2.如果在a>b的两边都减去同一个数或同一个整式,你认为应该有怎样的结论? 让学生多举出几组数据,结合数轴来比拟出两组数的大小关系.〔以小组为单位,充分讨论,通过交流得出结论〕.不等式的根本性质1:如果a>b,那么 a+c>b +c,a-c>b-c.就是说,不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变.〔二〕探究1.根据8>3,用“>〞或“ 8×2_______3 × 2; 8×〔-2〕_______3×〔-2〕.8× _______3×; 8×〔-〕_______3×〔-〕.8×0.01______3×0.01; 8×〔-0.01〕_______3×〔-0.01〕.2.对于8>3,在不等式两边乘同一个正数,不等号方向改变吗?3.对于8>3,在不等式两边乘同一个负数,不等号方向改变吗?4.你有什么发现?再举几例,验证你的结论.通过多组数据,观察、思考、一起探究两组数的大小关系.学生在填空的根底上分组探索不等式的性质.教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论.此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察题目,并继续举几个例子让学生观察比照,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律.不等式的根本性质2:如果a>b,并且c>0,那么ac>bc.不等式的根本性质3:如果a>b,并且c 〔三〕例题例根据不等式的根本性质,把以下不等式化成x>a或x2;〔2〕2x20.学生独立完成,举手答复以下问题.教师填写答案,并对学生出现的问题给予指导,进一步稳固不等式的性质.此次活动中教师应重点关注:〔1〕学生能否说出填空根据的是不等式的哪一条性质;〔2〕学生对不等式性质3的掌握情况.解:〔1〕 x-l>2,x-l+l>2+1〔不等式的根本性质1〕, x>3.〔2〕2x 2x-x 〔不等式的根本性质2〕, x20 〔不等式的根本性质3〕, xa或x 〔四〕教后检测1.如果a〞或“a或x8x+1;〔3〕 x>-4;〔4〕-10x 〔五〕当堂训练1.在以下各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式根本性质.〔1〕假设a-3<9,那么 a ______12;〔2〕假设-a<10,那么a______ -10;答:〔1〕a<12,根据不等式根本性质1.〔2〕a>-10,根据不等式根本性质3. 2.a<0,那么〔1〕a+2 ______2;〔2〕a-1 ______ -1;〔3〕3a______ 0;〔4〕a-1______0;〔5〕|a|______0.答:〔1〕a+2<2,根据不等式根本性质1.〔2〕a-1<-1,根据不等式根本性质1.〔3〕3a<0,根据不等式根本性质2.〔4〕因为a<0,两边同加上-1,由不等式根本性质1,得a-1<-1.又,-1<0,所以 a-1<0.〔5〕因为a<0,所以a≠0,所以|a|>0.〔此题除了进一步运用不等式的三条根本性质外,还涉及了一些旧的根底知识.如a<0表示a是负数;a>0表示a是正数;|a| 是非负数等.〕 3.判断以下各题的推导是否正确?为什么?〔投影〕〔请学生口答〕〔1〕因为7.5>5.7,所以-7.5<-5.7;〔2〕因为a+8>4,所以a>-4;〔3〕因为4a>4b,所以a>b;〔4〕因为-1>-2,所以-a-1>-a-2;〔5〕因为3>2,所以3a>2a.答:〔1〕正确,根据不等式根本性质3.〔2〕正确,根据不等式根本性质1.〔3〕正确,根据不等式根本性质2.〔4〕正确,根据不等式根本性质1.〔5〕不对,应分情况逐一讨论.当a>0时,3a>2a.〔不等式根本性质2〕当 a=0时,3a=2a.当a<0时,3a<2a.〔不等式根本性质3〕〔学生在答复此题的过程中,当遇到困难或问题时,教师应做适当引导、启发、帮助〕4.按照以下条件,写出仍能成立的不等式:〔1〕由-2<-1,两边都加-a;〔2〕由7>5,两边都乘以不为零的-a.5.用不等号填空:〔1〕当a-b<0时,a______ b;〔2〕当a<0,b<0时,ab ______0;〔3〕当a<0,b>0时,ab ______0;〔4〕当a>0,b<0时,ab ______ 0;〔5〕假设a ______ 0,b<0,那么ab>0;〔六〕教后反思第2篇:根本不等式教学设计根本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解根本不等式;③引导学生从不同角度去证明根本不等式;④用根本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的微妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解根本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比拟几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对根本不等式进行严格的证明,包括了比拟法,综合法和分析法,而学生对作差比拟法是比拟熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并标准证明过程,为今后学习证明方法打下根底.第四个环节:训练小结,稳固深化.学习根本不等式最终的目的表达在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对根本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,表达化归的思想,最后设计三道思考题,两道进一步稳固化归思想及应用根本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的时机,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用根本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等〞这样的结论,但已潜移默化为我们下一节课使用根本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解根本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用根本不等式,以及根本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索根本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜测,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??〔教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情〕?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用根本不等式解决生活中的应用问题2.进一步掌握用根本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是根本不等式应用举例的延伸。
基本不等式的教学设计一等奖4篇
第4篇教学设计一、素质教育目标(一)知识教学点1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.2.灵活运用不等式的基本性质进行不等式形.(二)能力训练点培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.(三)德育渗透点培养学生积极主动的参与意识和勇敢尝试、探索的精神.(四)美育渗透点通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操,数学教案-不等式和它的基本性质教学设计方案(二)。
二、学法引导1.教学方法:观察法、探究法、尝试指导法、讨论法.2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.三、重点·难点·疑点及解决办法(一)重点掌握不等式的三条基本性质,尤其是不等式的基本性质3.(二)难点正确应用不等式的三条基本性质进行不等式变形.(三)疑点弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.(四)解决办法讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.四、课时安排一课时五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.七、教学步骤(一)明确目标本节课主要学习不等式的三条基本性质并能熟练地加以应用.(二)整体感知通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.(三)教学过程1.创设情境,复习引入什么是等式?等式的基本性质是什么?学生活动:独立思考,指名回答.教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.请同学们继续观察习题:(1)用“>”或“<”填空.①7+3____4+3 ②7+(-3)____4+(-3)③7×3____4×3 ④7×(-3)____4×(-3)(2)上述不等式中哪题的不等号与7>4一致?学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.学生活动:观察思考,猜想出不等式的性质.教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”师生活动:师生共同叙述不等式的性质,同时教师板书.不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.【教法说明】观察时,引导学生注意不等号的.方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?师生活动:由学生概括总结不等式的其他性质,同时教师板书.不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.强调:要特别注意不等式基本性质3.实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.不等式的基本性质与等式的基本性质有哪些区别、联系?学生活动:思考、同桌讨论.归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.①若,则,;②若,且,则,;③若,且,则,.师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.2.尝试反馈,巩固知识请学生先根据自己的理解,解答下面习题.例1 根据不等式的基本性质,把下列不等式化成或的形式.(1)(2)(3)(4)学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.所以(2)根据不等式基本性质1,两边都减去,得(3)根据不等式基本性质2,两边都乘以2,得(4)根据不等式基本性质3,两边都除以-4得【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.例2 设,用“<”或“>”填空.(1)(2)(3)学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.解:(1)因为,两边都减去3,由不等式性质1,得(2)因为,且2>0,由不等式性质2,得(3)因为,且-4<0,由不等式性质3,得教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.3.变式训练,培养能力(1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)①∵∴()②∵∴()③∵∴()④∵∴()⑤∵∴⑥∵∴()学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.答案:①(A)②(B)③(C)④(C)⑤(C)⑥(A)【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.(2)单项选择:①由得到的条件是()A.B.C.D.②由由得到的条件是()A.B.C.D.③由得到的条件是()A.B.C.D.是任意有理数④若,则下列各式中错误的是()A.B.C.D.师生活动:教师选出答案,学生判断正误并说明理由.答案:①A ②D ③C ④D(3)判断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√②×③√④×【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.(四)总结、扩展1.本节重点:(1)掌握不等式的三条基本性质,尤其是性质3.(2)能正确应用性质对不等式进行变形.2.注意事项:(1)要反复对比不等式性质与等式性质的异同点.(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.3.考点剖析:不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.八、布置作业(一)必做题:P61 A组4,5.(二)选做题:P62 B组1,2,3.参考答案(一)4.(1)(2)(3)(4)5.(1)(2)(3)(4)(5)(6)(二)1.(1)(2)(3)2.(1)(2)(3)(4)3.(1)(2)(3)九、板书设计6.1 不等式和它的基本性质(二)一、不等式的基本性质1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.若,则,.2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.二、应用例1 解(1)(2)(3)(4)例2 解(1)(2)(3)三、小结注意不等式性质3的应用.四、背景知识与课外阅读盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?第5篇教学设计初二下册数学16.1.2分式的基本性质说课稿设计16.1.2《分式的基本性质》说课稿今天我说课的内容是《分式的基本性质》。
不等式的基本性质数学教案
不等式的基本性质数学教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题能力,提高分析问题和解决问题的能力。
3. 培养学生合作学习、积极探究的学习态度。
二、教学内容:1. 不等式的概念2. 不等式的基本性质3. 不等式的解法三、教学重点与难点:1. 教学重点:不等式的基本性质,不等式的解法。
2. 教学难点:不等式的性质在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究不等式的基本性质。
2. 利用实例分析,让学生学会解决实际问题。
3. 组织小组讨论,培养学生合作学习的能力。
五、教学过程:1. 导入新课:通过复习相关知识,引导学生进入不等式学习。
2. 讲解不等式的概念,引导学生理解不等式的基本性质。
3. 实例分析:运用不等式的基本性质解决实际问题。
4. 练习巩固:让学生独立完成练习题,检测学习效果。
6. 布置作业:让学生课后巩固所学知识,提高解题能力。
六、教学评价:1. 课后作业:通过布置相关的习题,评估学生对不等式基本性质的理解和应用能力。
2. 课堂互动:观察学生在小组讨论和回答问题时的表现,评估他们的参与度和理解程度。
3. 知识测试:通过书面测试或口头提问,检验学生对不等式基本性质的记忆和运用。
七、教学拓展:1. 对比等式的性质,引导学生探讨不等式与等式的异同。
2. 引入绝对值不等式和分式不等式,为学生提供更多不等式解题方法。
八、教学资源:1. PPT课件:展示不等式的基本性质,方便学生理解和记忆。
2. 练习题库:提供丰富的习题,帮助学生巩固所学知识。
3. 实际问题案例:用于引导学生将不等式应用于解决实际问题。
九、教学反馈:1. 课堂反馈:课后与学生交流,了解他们对不等式基本性质的理解程度。
2. 家长反馈:与家长沟通,了解学生在家中的学习情况。
3. 自我反馈:教师根据学生的作业和测试成绩,反思教学效果,调整教学策略。
十、教学改进:1. 根据学生的学习情况,调整教学进度和难度,确保学生能够跟上课程。
高中数学的几个不等式教案
高中数学的几个不等式教案
教学目标:
1. 了解不等式的基本概念与性质
2. 掌握解不等式的方法与技巧
3. 能够独立解决不等式问题
教学内容:
1. 不等式的定义及表示方法
2. 不等式的性质
3. 解不等式的方法
4. 不等式的应用
教学步骤:
1. 热身:利用简单的不等式练习引出不等式的概念
2. 导入:介绍不等式的定义及表示方法
3. 讲解:讲解不等式的性质,如加减乘除不等式、绝对值不等式等
4. 演示:演示解不等式的方法,如化简、整理、分析不等式中的关系等
5. 练习:让学生进行一些不等式练习,巩固所学知识
6. 拓展:引导学生探讨不等式的应用领域,如最值问题、应用题等
7. 总结:总结本节课的重点内容并布置作业
教学反馈:
1. 学生完成作业后,进行批改并给予反馈
2. 收集学生对不等式学习过程中的疑问,进行解答与指导
教学资源:
1. 教材:高中数学教材中的相关章节
2. 教具:黑板、彩色粉笔、教学PPT等
3. 练习册:针对不等式的练习题
教学评估:
1. 课堂学习表现评定
2. 作业完成情况评定
3. 学生解决不等式问题的能力评定
教学总结:
通过本节课的教学,学生应该能够掌握不等式的基本概念与性质,掌握解不等式的方法与技巧,提高解决数学问题的能力。
同时,也对不等式的应用有一定的了解与认识。
初中不等式全部解法教案
初中不等式全部解法教案教学目标:1. 理解不等式的概念,掌握不等式的基本性质。
2. 学会解一元一次不等式,并能运用不等式解决实际问题。
3. 能够运用图像法、符号法等多种方法解不等式组。
教学重点:1. 不等式的概念与基本性质。
2. 一元一次不等式的解法。
3. 不等式组的解法。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生举例说明不等式的含义。
2. 引导学生理解不等式的基本性质,如对称性、传递性等。
二、一元一次不等式的解法(15分钟)1. 讲解一元一次不等式的定义,让学生明确解的概念。
2. 引导学生运用代数方法解一元一次不等式,如加减乘除等。
3. 举例讲解如何将实际问题转化为不等式,并求解。
三、不等式组的解法(15分钟)1. 讲解不等式组的概念,让学生理解不等式组的组成。
2. 引导学生运用图像法、符号法等多种方法解不等式组。
3. 举例讲解如何将实际问题转化为不等式组,并求解。
四、巩固练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的解法,引导学生运用不等式的性质和解法。
五、总结与拓展(10分钟)1. 总结不等式的概念、基本性质、解法等。
2. 引导学生思考如何将不等式应用于实际生活中,解决实际问题。
教学反思:本节课通过讲解不等式的概念、基本性质和解法,使学生掌握了不等式的基本知识。
在教学过程中,注意引导学生运用不等式解决实际问题,提高了学生的应用能力。
同时,通过练习题的训练,使学生巩固了所学知识。
但在教学中也存在一些不足,如对学生自主学习能力的培养不够,个别学生对不等式的理解仍有一定困难。
在今后的教学中,应加强对学生的引导,提高学生的学习兴趣和自主学习能力。
高中数学基本不等式教案设计(优秀3篇)
基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
这次白话文为您整理了高中数学基本不等式教案设计(优秀3篇),如果能帮助到您,小编的一切努力都是值得的。
高中数学教学设计篇一教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。
基本不等式应用教案
基本不等式应用教案教案标题:基本不等式应用教案教案目标:1. 学生能够理解基本不等式的概念和性质。
2. 学生能够应用基本不等式解决实际问题。
3. 学生能够运用基本不等式进行数学推理和证明。
教学资源:1. 教科书和课本。
2. 各种练习题和实际问题。
3. 黑板、白板或投影仪。
教学活动:1. 导入(5分钟)- 引入基本不等式的概念,让学生回顾等式和不等式的区别。
- 提问学生对不等式的理解和应用。
2. 知识讲解(15分钟)- 解释基本不等式的定义和性质,包括大于号、小于号、大于等于号、小于等于号的含义。
- 介绍如何解决基本不等式,包括加减法、乘除法等运算法则。
- 给出一些例子,让学生通过计算和推理来解决不等式。
3. 练习和应用(20分钟)- 分发练习题,让学生独立或合作完成。
- 引导学生应用基本不等式解决实际问题,如长度、面积、体积等相关的计算和比较。
- 鼓励学生分享解题思路和答案,进行讨论和交流。
4. 拓展(10分钟)- 提供一些挑战性的问题,让学生运用基本不等式进行推理和证明。
- 引导学生思考不等式在数学中的重要性和应用领域。
5. 总结(5分钟)- 总结基本不等式的概念和性质。
- 强调学生在解决实际问题时,要善于运用基本不等式进行推理和计算。
教学评估:1. 在练习和应用环节中观察学生的解题过程和答案,给予及时的指导和反馈。
2. 在拓展环节中观察学生的推理和证明能力,评估其对基本不等式的理解和应用程度。
3. 可以布置作业,让学生继续巩固和拓展基本不等式的应用。
教学延伸:1. 学生可以进一步学习复合不等式和绝对值不等式的概念和应用。
2. 学生可以通过解决更复杂的实际问题来提高基本不等式的应用能力。
3. 学生可以学习不等式的证明方法和技巧,拓展数学推理和证明的能力。
不等式的基本性质数学教案
不等式的基本性质数学教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容:1. 不等式的定义及其表示方法。
2. 不等式的基本性质:(1) 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(2) 不等式两边乘以(或除以)同一个正数,不等号的方向不变。
(3) 不等式两边乘以(或除以)同一个负数,不等号的方向改变。
三、教学重点与难点:重点:不等式的基本性质及其应用。
难点:不等式性质的理解和运用。
四、教学方法:1. 采用问题驱动法,引导学生发现不等式的基本性质。
2. 运用案例分析法,让学生在实际问题中运用不等式。
3. 采用小组讨论法,培养学生的团队协作能力。
五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。
2. 探究不等式的基本性质:(1) 性质1:通过举例让学生发现不等式两边加(或减)同一个数(或式子),不等号的方向不变。
(2) 性质2:通过举例让学生发现不等式两边乘以(或除以)同一个正数,不等号的方向不变。
(3) 性质3:通过举例让学生发现不等式两边乘以(或除以)同一个负数,不等号的方向改变。
3. 应用不等式的基本性质:通过案例分析,让学生在实际问题中运用不等式。
4. 课堂小结:总结不等式的基本性质,强调其在实际问题中的应用。
5. 课后作业:布置相关练习题,巩固所学知识。
六、教学评估:1. 通过课堂问答,检查学生对不等式概念的理解程度。
2. 通过举例,检验学生对不等式基本性质的掌握情况。
3. 通过课后作业,评估学生对不等式应用的能力。
七、教学拓展:1. 讨论不等式在实际生活中的应用,如分配问题、比赛评分等。
2. 介绍不等式的进一步概念,如不等式组、不等式的解集等。
八、教学资源:1. PPT课件:展示不等式的基本性质及其应用。
2. 案例材料:提供实际问题,供学生分析运用不等式解决。
不等式的基本性质教案
不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
3. 通过对不等式的学习,培养学生的逻辑推理和运算能力。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质(性质1、性质2、性质3)。
3. 不等式的运算规则。
三、教学重点与难点:1. 教学重点:不等式的概念、表示方法、基本性质及运算规则。
2. 教学难点:不等式基本性质的理解和应用。
四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 利用实例分析,让学生感受不等式在实际问题中的应用。
3. 运用小组合作学习,培养学生之间的交流与协作能力。
五、教学过程:1. 导入:通过生活实例引入不等式的概念,让学生感知不等式的存在。
2. 新课讲解:讲解不等式的表示方法,阐述不等式的基本性质,引导学生理解和记忆。
3. 例题解析:分析典型例题,让学生运用不等式的基本性质解决问题。
4. 课堂练习:设计相关练习题,巩固学生对不等式基本性质的掌握。
5. 总结与拓展:对本节课内容进行总结,布置课后作业,鼓励学生深入研究不等式的应用。
6. 教学反思:根据学生课堂表现和作业情况,对教学效果进行评估,为下一步教学提供调整依据。
六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对不等式基本性质的理解和应用能力。
2. 关注学生在解决问题时的思维过程,考察其逻辑推理和运算能力。
3. 结合学生的小组合作学习和课堂参与度,评价其协作和沟通能力。
七、教学资源:1. 教学PPT:展示不等式的定义、表示方法和基本性质。
2. 练习题库:提供不同难度的练习题,用于巩固所学内容。
3. 实例素材:收集与不等式相关的实际问题,用于课堂讨论和练习。
八、教学进度安排:1. 第1-2课时:介绍不等式的概念和表示方法。
2. 第3-4课时:讲解不等式的基本性质。
3. 第5-6课时:通过例题解析和练习,巩固不等式的基本性质。
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
不等式高中数学教案
不等式高中数学教案教学目标:1. 能够理解不等式的概念和性质。
2. 能够解决简单的一元不等式。
3. 能够应用不等式解决实际问题。
教学重点和难点:重点:不等式的概念和性质,一元不等式的解法。
难点:应用不等式解决实际问题。
教学准备:1. 教师准备PPT课件,包括不等式的定义、性质和解法。
2. 打印不等式练习题目,用于课堂练习。
教学步骤:一、导入(5分钟)1. 引导学生回顾线性方程的解法,了解不等式的概念。
2. 提出一个简单的不等式问题,让学生思考如何解决。
二、讲解不等式的定义和性质(15分钟)1. 介绍不等式的定义,即含有不等号的等式。
2. 讲解不等式的性质,包括可加性、可乘性和转化性等。
三、解决一元不等式(20分钟)1. 讲解一元不等式的解法,包括加减法解法、乘除法解法和开平方解法。
2. 给学生提供几个简单的一元不等式练习题目,让他们尝试解答。
四、应用不等式解决实际问题(15分钟)1. 引导学生思考如何应用不等式解决实际问题,例如长度、面积和体积等问题。
2. 给学生一个实际问题案例,让他们运用所学知识进行解答。
五、总结复习(5分钟)1. 通过回顾本节课的内容,强化学生对不等式的理解和运用能力。
2. 鼓励学生积极思考和练习不等式相关的题目,提高解决问题的能力。
教学反思:通过本节课的教学,学生应该能够掌握不等式的概念和性质,能够解决简单的一元不等式,并能够应用不等式解决实际问题。
在接下来的教学中,需要继续强化学生对不等式知识的理解和应用能力,提高他们的数学思维和解决问题的能力。
不等式及不等式的性质(教案)
一、教学内容
本节课选自人教版七年级数学下册第八章第一节“不等式及其性质”。教学内容主要包括以下部分:
1.不等式的定义:了解不等式的概念,能够识别不等号(>、<、≥、≤)。
2.不等式的读法:掌握如何正确读出各种不等式。
3.不等式的性质:
(1)不等式两边同时加上(或减去)同一个数,不等号的方向不变。
3.重点难点解析:在讲授过程中,我会特别强调不等式的性质1、2、3。对于难点部分,比如性质3,我会通过具体数字的示例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过比较不同物体的重量,让学生直观地感受到不等式的意义。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《不等式及不等式的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过比较两个数大小的情况?”(如:比较两个人的身高)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不式的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个数之间大小关系的式子。它是数学中非常重要的一个工具,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,小华的身高是1.6米,小丽的身高是1.55米,我们可以用不等式表示这个关系:小华的身高>小丽的身高。
5.培养学生的数据分析素养:在解决实际问题的过程中,培养学生对数据的敏感性,学会利用不等式分析数据,为决策提供依据。
不等式的性质教案
不等式的性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生解决实际问题的能力,提高逻辑思维能力。
3. 通过对不等式性质的探究,培养学生的探究精神和合作意识。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质。
3. 不等式的应用。
三、教学重点与难点:1. 教学重点:不等式的概念、表示方法及基本性质。
2. 教学难点:不等式性质的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究不等式的性质。
2. 运用案例分析法,让学生在实际问题中运用不等式性质。
3. 采用小组讨论法,培养学生的合作意识。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识不等式,引入不等式的概念。
2. 新课导入:讲解不等式的表示方法,并举例说明。
3. 探究不等式的性质:引导学生通过小组讨论,探究不等式的基本性质。
4. 案例分析:运用不等式性质解决实际问题,巩固所学知识。
6. 作业布置:布置相关练习题,巩固所学知识。
7. 课后反思:对本节课的教学进行反思,为学生提供反馈。
六、教学评价:1. 评价学生对不等式概念的理解程度。
2. 评价学生对不等式表示方法的掌握情况。
3. 评价学生在实际问题中应用不等式性质的能力。
4. 评价学生的合作意识和探究精神。
七、教学拓展:1. 不等式的进一步性质探究。
2. 不等式在实际问题中的应用案例分析。
3. 引导学生关注不等式在其他学科领域的应用。
八、教学资源:1. 教学PPT。
2. 不等式性质的案例材料。
3. 练习题及答案解析。
4. 小组讨论工具。
九、教学进度安排:1. 第1-2课时:介绍不等式概念及表示方法。
2. 第3-4课时:探究不等式的基本性质。
3. 第5-6课时:应用不等式性质解决实际问题。
4. 第7-8课时:教学评价及拓展。
十、教学反馈与调整:1. 根据学生课堂表现和作业完成情况,及时给予反馈。
2. 对学生掌握不足的部分进行有针对性的辅导。
不等式的基本性质(教案)
不等式的基本性质一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。
2. 培养学生运用不等式解决实际问题的能力。
3. 提高学生对数学逻辑思维的认知水平。
二、教学内容:1. 不等式的定义及表示方法。
2. 不等式的基本性质:加减乘除同一个数(或式子)到不等式的两边,不等号的方向不变。
3. 不等式的解集及其表示方法。
三、教学重点与难点:1. 教学重点:不等式的基本性质,不等式的解集表示方法。
2. 教学难点:不等式性质的灵活运用,解集的表示方法。
四、教学方法与手段:1. 采用问题驱动法,引导学生探索不等式的基本性质。
2. 利用多媒体课件,展示不等式的图形解集,增强直观感受。
3. 运用实例分析,让学生学会解决实际问题。
五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,引导学生理解不等式的表示方法。
2. 探索不等式的基本性质:引导学生分组讨论,发现不等式的加减乘除性质。
3. 应用不等式性质解决实际问题:选取典型例题,讲解解题思路和方法。
4. 课堂练习:布置练习题,让学生巩固不等式的基本性质。
5. 总结与拓展:总结不等式的基本性质,提出拓展问题,激发学生思考。
教案附件:练习题:1. 判断下列不等式是否成立,并说明理由:a) 2x > 3xb) 5(x 2) < 3(2x + 1)c) 4x 12 < 3(2x + 6)2. 解下列不等式:a) 3x 7 > 2b) 2(x 5) > 15c) 5x + 6 <= 4x + 20答案:1. a) 不成立,因为2x < 3x;b) 成立,因为5(x 2) = 5x 10,3(2x + 1) = 6x + 3,5x 10 < 6x + 3;c) 成立,因为4x 12 = 4(x 3),3(2x + 6) = 6x + 18,4(x 3) < 6x + 18。
2. a) x > 3;b) x > 10;c) x <= 14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程
一、复习预习
一辆匀速行驶的汽车在11:20时距离A地50千米,要在12:00以前驶过A地,车速应该具备什么条件?
题目中有等量关系吗?
没有。
那是什么关系呢?
从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。
从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。
这些是不等关系。
二、知识讲解
1、不等式的概念
若设车速为每小时x千米,你能用一个式子表示上面的关系吗?
50/x <2/3 ① 或2/3x >5 ②
像①②这样用“>”或“<”号表示大小关系的式子,是不等式。
我们还见过像a+2≠a 这样用“ ≠”号表示的式子,也是不等式。
“>”、“<”、 “ ≠”叫做不等号,不等号也可以写成“≤”、“≥”的形式。
总之,用不等号连接起来的式子叫做不等式。
2、不等式的解和解集
思考2:判断下列数中哪些能使不等式2/3x > 50成立:
76,73,79,80,74. 9,75.1,90,60
76, 79,80, 75.1,90能使不等式2/3x > 50成立。
我们把能使不等式成立的未知数的值,叫不等式的解.
我们看到不等式的解不是一个, 你还能找出这个不等式的其他解吗?它的解到底有多少个?
如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。
如所有大于75的数组成不等式2/3x > 50的解集,写作x >7 5,这个解集可以用数轴来表示。
考点/易错点1
思考1:下列式子中哪些是不等式?
(1)a +b=b +a (2)-3>-5 (3)x ≠l
(4)x 十3>6 (5) 2m< n (6)2x-3
我们看到有些不等式不含未知数,有些不等式含有未知数。
类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。
注意:像①中分母含有未知数的不等式不是一元一次不等式,这一点与一元一次方程类似。
考点/易错点2
解一元一次不等式的步骤类似于解一元一次方程,但是在系数化为1的步骤上要注意考虑系数的符号,如果是负数,不等号方向要改变。
学生容易在符号和不等号方向上出错。
三、例题精析
【例题1】
【题干】用不等式表示:
(1)a 是非负数;(2)x 与1的和为正数;(3)x, y 的和不小于22m ;(4)a 的
12与b 的3倍的差的绝对值小于2;(5)x, y 的平方和大于1.
【答案】(1)a ≥0. (2)x+1>0 .(3)x + y ≥22m .(4)∣12
a+3b ∣<2.(5) 221x y +>.
【解析】正确理解每个语句的含义及“非负数”、“不小于”、“正数”等关键性词语的符号表示。
【例题2】
【题干】在数轴上表示下列不等式的解集
(1)x>-1;(2)x ≥-1;(3)x<-1;(4)x ≤-1
【答案】
【解析】按画数轴,定界点,走 方 向的步骤答,注意:1.实心点表示包括这个点,空心点表示不包括这个点。
【例题3】
【题干】求不等式104(3)2(1)x x --≥-的非负整数解。
【答案】解:把原不等式变形,得1041222x x -+≥-,即22422x x -≥-,
两边同时加上4x-2,得624x ≤,两边同时除以6,得4x ≤.
因为4x ≤的非负整数位0,1,2,3,4,
所以原不等式的非负整数解为0,1,2,3,4.
【解析】分析:先求出不等式的解集,再在解集中找出非负整数解。
四、课堂运用
【基础】
【题干】1. 解不等式
532122
x x ++-<. 【答案】解:原不等式的性质可化为5311222x x +-<+,即331222
x x +<+, 两边都减去12x +,得x>12. 【解析】利用不等式的性质,将不等式变形为x>a 或x<a 的形式。
【巩固】
【题干】1. 例8、已知关于x 的不等式x<a 的正整数解共有6个,则a 的取值范围是_________.
【答案】6<a ≤7.
【解析】由于不等式x<a 的正整数解共有6个,知它们是1,2,3,4,5,6,所以a 的取值介于6和7之间,从而得a 的取值范围是6<a ≤7.
【题干】2. 用不等式表示:
(1)a 是非负数;(2)x 与1的和为正数;(3)x, y 的和不小于22m ;(4)a 的
12与b 的3倍的差的绝对值小于2;(5)x, y 的平方和大于1.
【答案】解:(1)a ≥0. (2)x+1>0 .(3)x + y ≥22m .(4)∣12
a+3b ∣<2.(5) 221x y +>. 【解析】正确理解每个语句的含义及“非负数”、“不小于”、“正数”等关键性词语的符号表示。
【拔高】
【题干】1. 比较大小.
(1) 若c>d,则3c+1____3d+1;
(2) 若a>b>0,c<0,则(a-b )c____0.
【答案】(1)>. (2)<.
【解析】由题中的已知条件,根据不等式的性质进行合理变形,即可比较出题中两式的大小。
(1) 方法 一:若c<d,则两边都乘3,得3c>3d,两边都加1,得3c+1>3d+1.
方法二:因为c>d,所以c-d>0,所以3c+1-(3d+1)=3c-3d=3(c-d)>0,即3c+1>3d+1;
(2) 若a>b,则两边都减去b,得a-b>0,因为c<0,所以两边都再乘c,得(a-b )c<0.
【题干】2. 已知方程组213,21x y m x y m +=+⎧⎨+=-⎩
的解满足x+ y<0,求m 的取值范围。
【答案】解:①+②,得3x+3y=2+2m,即x+ y=
223m +. 因为x+ y<0,所以223
m +<0.
所以2+2m<0,所以m<-1,即m 的取值范围是m<-1.
【解析】观察方程组中x, y 的系数,发现两方程中两未知数的系数的代数式相等,因此可用整体思想。
课程小结
本节课重点掌握不等式的定义和性质,并且理解不等式的解和解集的概念和意义。
学会利用不等式的性质解简单的一元一次不等式,同时会在数轴上表示解集。
课后作业
【基础】
_____________。
【解析】将方程左边运用乘法分配律计算,然后去分母,进行移项合并同类项,最后求出x 的取值范围.
【题干】2. 同时满足不等式7x + 4≥5x – 8和
5
23x x -<的整解为______________。
【答案】解:不等式组,
解得:-6≤x <.
∴整数解为-6,-5,-4,-3,-2,-1,0,1,2,3.
故答案为:-6,-5,-4,-3,-2,-1,0,1,2,3. 【解析】先解不等式组,求出其解集,然后求出符合题意的整数解即可.
【巩固】
【题干】1. 已知a, b 和c 满足a ≤2,b ≤2,c ≤2,且a + b + c = 6,则a b c=______________。
【答案】若a, b, c ,中某个值小于2,比如a < 2,但b ≤2, c ≤2,所以a + b + c <6 ,与题设条件a + b + c = 6矛盾,所以只能a = 2,同理b = 2, c = 2,所以a b c=8。
【解析】利用不等式的性质可确定a, b, c 的具体值。
【拔高】
【题干】1.解:(1)m, n是有理数,若m>n>0,则22
m n
.
(1)m, n是有理数,若m>n>0,则3m>3n.
例10、(应用题)某物流公司要将300吨货物运往某地,现有A、B两种型号的车可供调用。
已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完。
问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
【答案】解设需调用B型车x辆,依题意,得20×5+15x≥300.
移项,得15x≥200,x≥
1 13
3
.
又因为x为整数,故x最小为14,
所以至少还需调用B型车14辆。
【解析】所有的B型车所装的物资的质量应大于或等于所有的A型车装完后剩下的物资的质量.。