重庆市大学城第一中学校人教版高中数学必修二导学案 第四章第二节圆与圆的位置关系
高中数学人教A版必修2导学案:4.2.2圆和圆的位置关系(学生版)
章节
4.2.2 课题圆与圆的位置关系
教学目标1.能根据给定的两圆的方程,判断直线与圆的位置关系.
2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.
教学重点圆与圆的位置关系的几何图形及其判断方法.教学难点用坐标法判断圆与圆的位置关系.【复习回顾】
1.直线与圆的位置关系,,。
2.直线与圆的位置关系的判断方法有。
课前预习案
【新知探究】
探究一、圆与圆的位置关系
问题1:圆与圆的位置关系有几种,各有几条公切线,分别画出来?
探究二、圆与圆的位置关系的判断
问题2:在初中,我们怎样判断圆与圆的位置关系呢?
新知:设圆两圆的圆心距设为d,半径分别为r,R,(R>r)则当d R r
>+时,两圆
当d R r
=+时,两圆当R r d R r
-<<+时,两圆
当d R r
=-时,两圆当d R r
<-时,两圆
问题3:如何用两圆的方程判断它们之间的位置关系呢?
新知:设两圆的方程分别为22
1111
:0
C x y
D x
E y F
++++=,22
2222
:0
C x y
D x
E y F
++++=,两圆作差得公共弦所在直线,将直线方程代入其中任一圆的方程,消去y得到关于x的一元二次方程式20
Px Qx R
++=,则当0
∆<时,圆与圆;当0
∆=时,圆与圆;当0
∆>时,圆与圆。
高中数学人教版必修2 4.2.2圆与圆的位置关系 教案(系列二)
4.2.2 圆与圆的位置关系整体设计教学分析本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上结合前面学习的点与圆、直线与圆的位置关系,得到圆与圆的位置关系的几何方法,用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的常用方法.因此,增加了用代数方法来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧对今后整个圆锥曲线的学习有着非常重要的意义.根据学生的基础,学习的自觉性和主动性,自主学习和探究学习能力,平时的学习养成的善于观察、分析和思考的习惯,同时由于本节课从内容结构与思维方法上与直线与圆的位置关系相似,学生对上节课内容掌握较好,从而本节课从学生学习的角度来看不会存在太多的障碍,因而教学方法可以是引导学生从类比直线与圆位置关系来自主研究圆与圆的位置关系.三维目标使学生理解并掌握圆和圆的位置关系及其判定方法.培养学生自主探究的能力.通过用代数的方法分析圆与圆的位置关系,使学生体验几何问题代数化的思想,深入了解解析几何的本质,同时培养学生分析问题、解决问题的能力,并进一步体会数形结合的思想.重点难点教学重点:求弦长问题,判断圆和圆的位置关系.教学难点:判断圆和圆的位置关系.课时安排1课时教学过程导入新课思路1.平面几何中,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距OO2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系.1两圆的位置关系:在解析几何中,我们用代数的方法如何判断圆与圆之间的位置关系呢?这就是我们本堂课研究的课题,教师板书课题圆与圆的位置关系.思路2.前面我们学习了点与圆的位置关系、直线与圆的位置关系,那么,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?教师板书课题:圆与圆的位置关系.推进新课新知探究提出问题①初中学过的平面几何中,圆与圆的位置关系有几种?②判断两圆的位置关系,你有什么好的方法吗?③你能在同一个直角坐标系中画出两个方程所表示的圆吗?④根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学语言呢?⑤如何判断两个圆的位置关系呢?⑥若将两个圆的方程相减,你发现了什么?⑦两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?活动:教师引导学生回顾学过的知识、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.学生观察图形并思考,发表自己的解题方法.教师应该关注并发现有多少学生利用“图形”求解,对这些学生应该给予表扬.同时强调,解析几何是一门数与形结合的学科.启发学生利用图形的特征,用代数的方法来解决几何问题.教师指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置.学生互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻求解题的途径.讨论结果:①初中学过的平面几何中,圆与圆的位置关系有五类,分别是外离、外切、相交、内切、内含.②判断两圆的位置关系,我们可以类比直线与圆的位置关系的判定,目前我们只有初中学过的几何法,利用圆心距与两圆半径的和与差之间的关系判断.③略.④根据所画出的图形,可以直观判断两个圆的位置关系.用几何的方法说就是圆心距(d)与两圆半径(r,R)的和与差之间的关系.⑤判断两个圆的位置关系.一是可以利用几何法,即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:1°当d>R+r时,圆C1与圆C2外离;2°当d=R+r时,圆C1与圆C2外切;3°当|R-r|<d<R+r时,圆C1与圆C2相交;4°当d=|R-r|时,圆C1与圆C2内切;5°当d<|R-r|时,圆C1与圆C2内含;二是看两圆的方程组成的方程组的实数解的情况,解两个圆的方程所组成的二元二次方程组.若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离.总结比较两种方法的优缺点.几何方法:直观,容易理解,但不能求出交点坐标.代数方法:1°只能判断交点,并不能准确的判断位置关系(有一个交点时不能判断内切还是外切,无交点时不能判断内含还是外离).2°优点是可以求出公共点.⑥若将两个圆的方程相减,得到一个一元一次方程,既直线方程,由于它过两圆的交点,所以它是相交两圆的公共弦的方程.⑦两个圆的公共点的问题可以化归为这条公共直线与两个圆中的一个圆的公共点的判定问题.由点到直线的距离公式来判断.应用示例思路1例1 已知圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2-4x-4y-2=0,判断两圆的位置关系.活动:学生思考交流,教师引导提示,判断两圆的位置关系有两种基本的方法,要合理使用.方法一看两圆的方程组成的方程组的实数解的情况,方法二利用圆心距与两圆半径的和与差之间的关系判断.解:方法一:圆C 1与圆C 2的方程联立得到方程组⎪⎩⎪⎨⎧=---+=-+++)2(.0244)1(,08822222y x y x y x y x①-②得x+2y-1=0, ③ 由③得y=21x +,把上式代入①并整理得x 2-2x-3=0. ④ 方程④的判别式Δ=(-2)2-4×1×(-3)=16>0,所以方程④有两个不等的实数根,即圆C 1与圆C 2相交.方法二:把圆C 1:x 2+y 2+2x+8y-8=0,圆C 2:x 2+y 2-4x-4y-2=0,化为标准方程,得(x+1)2+(y+4)2=25与(x-2)2+(y-2)2=10.圆C 1的圆心是点(-1,-4),半径长r 1=5;圆C 2的圆心是点(2,2),半径长r 2=10.圆C 1与圆C 2的连心线的长为22)24()21(--+--=35,圆C 1与圆C 2的半径长之和为r 1+r 2=5+10,半径长之差为r 1-r 2=5-10.而5-10<35<5+10,即r 1-r 2<35<r 1+r 2,所以圆C 1与圆C 2相交,它们有两个公共点A 、B.点评:判断两圆的位置关系,一般情况下,先化为标准方程,利用几何法判断较为准确直观. 变式训练判断下列两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16,(2)x 2+y 2+6x-7=0与x 2+y 2+6y-27=0.解:(1)根据题意,得两圆的半径分别为r 1=1和r 2=4,两圆的圆心距d=22)25()2(2[-+--=5.因为d=r 1+r 2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x+3)2+y 2=16,x 2+(y+3)2=36.故两圆的半径分别为r 1=4和r 2=6,两圆的圆心距d=23)03()30(22=-+-.因为|r 1-r 2|<d <r 1+r 2,所以两圆相交.例2 已知圆C 1:x 2+y 2+2x-6y+1=0,圆C 2:x 2+y 2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x 2项、y 2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x 1,y 1)、B(x 2,y 2),则A 、B 两点坐标满足方程组⎪⎩⎪⎨⎧=-+-+=+-++)2(.01124)1(,01622222y x y x y x y x①-②,得3x-4y+6=0.因为A 、B 两点坐标都满足此方程,所以3x-4y+6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r=3.又点C 1到直线的距离为d=22)4(3|63431|-++⨯-⨯-=59. 所以AB=2524)59(322222=-=-d r ,即两圆的公共弦长为524. 点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.思路2例1 求过点A(0,6)且与圆C:x 2+y 2+10x+10y=0切于原点的圆的方程.图1活动:学生思考交流,回顾圆的方程的求法,教师引导学生注意题目的条件,灵活处理,如图1.所求圆经过原点和A(0,6),且圆心应在已知圆的圆心与原点的连线上.根据这三个条件可确定圆的方程.解:将圆C 化为标准方程,得(x+5)2+(y+5)2=50,则圆心为C(-5,-5),半径为52.所以经过此圆心和原点的直线方程为x-y=0.设所求圆的方程为(x-a)2+(y-b)2=r 2.由题意,知O(0,0),A(0,6)在此圆上,且圆心M(a,b)在直线x-y=0上,则有⎪⎩⎪⎨⎧=-=-+-=-+-,0,)6()0(,)0()0(222222b a r b a r b a 解得⎪⎩⎪⎨⎧===.23,3,3r b a于是所求圆的方程是(x-3)2+(y-3)2=18.点评:求圆的方程,一般可从圆的标准方程和一般方程入手,至于选择哪一种方程形式更恰当,要根据题目的条件而定,总之要让所选择的方程形式使解题过程简单.例2 已知⊙O 方程为x 2+y 2=4,定点A(4,0),求过点A 且和⊙O 相切的动圆圆心的轨迹方程. 活动:教师引导学生回顾学过的知识,两圆外切,连心线长等于两圆半径之和,两圆内切,连心线长等于两圆半径之差,由此可得到动圆圆心在运动中所应满足的几何条件,然后将这个几何条件坐标化,即得到它的轨迹方程.解法一:设动圆圆心为P(x,y),因为动圆过定点A,所以|PA|即为动圆半径.当动圆P 与⊙O 外切时,|PO|=|PA|+2;当动圆P 与⊙O 内切时,|PO|=|PA|-2.综合这两种情况,得||PO|-|PA||=2.将此关系式坐标化,得 |2222)4(y x y x +--+|=2.化简可得(x -2)2-32y =1. 解法二:由解法一可得动点P 满足几何关系||OP|-|PA||=2,即P 点到两定点O 、A 的距离差的绝对值为定值2,所以P 点轨迹是以O 、A 为焦点,2为实轴长的双曲线,中心在OA 中点(2,0),实半轴长a=1,半焦距c=2,虚半轴长b=322=-a c ,所以轨迹方程为(x -2)2-32y =1. 点评:解题的过程就是实现条件向结论转化的过程,对于圆与圆,要综合平面几何知识、解析几何、代数知识,将条件转化成我们熟悉的形式,利用常规思路去解,求点的轨迹更要注意平面几何的知识运用.知能训练课堂练习P练习题141课堂小结本节课主要学习了圆与圆的位置关系,判断方法:几何方法和代数方法. 作业习题4.2 A组8、9、10、11.。
人教版高中数学必修二 4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用 学案+课时训练
人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学案【学习目标】1.掌握圆与圆的位置关系及判定方法.(重点、易错点)2.能利用直线与圆的位置关系解决简单的实际问题.(难点)【要点梳理夯实基础】知识点1圆与圆位置关系的判定阅读教材P129至P130“练习”以上部分,完成下列问题.1.几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2|0≤d<|r1-r2| ⎭⎬⎫圆C1方程圆C2方程――→消元一元二次方程⎩⎨⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[思考辨析学练结合]两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是()A.外离B.相交C.内切D.外切[解析]两圆x2+y2=9和x2+y2-8x+6y+9=0的圆心分别为(0,0)和(4,-3),半径分别为3和4.所以两圆的圆心距d=42+(-3)2=5.又4-3<5<3+4,故两圆相交.[答案] B知识点2 直线与圆的方程的应用阅读教材P130“练习”以下至P132“练习”以上部分,完成下列问题.用坐标方法解决平面几何问题的“三步曲”[思考辨析学练结合]一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米[解析]建立如图所示的平面直角坐标系.如图,设蓬顶距地面高度为h,则A(0.8,h-3.6).半圆所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62,∴h=40.77≈3.5(米).[答案] B【合作探究析疑解难】考点1 圆与圆位置关系的判定[典例1] 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[分析]求圆C1的半径r1→求圆C2的半径r2→求|C1C2|→利用|C1C2|与|r1-r2|和r1+r2的关系求k[解答]将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即0≤k<14或34<k<50时,两圆相离.1.判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.2.应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.1.已知圆C1:x2+y2-2ax-2y+a2-15=0,圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:(1)相切;(2)相交;(3)外离;(4)内含.[解]圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C 1(a,1),C 2(2a,1),半径r 1=4,r 2=1.∴|C 1C 2|=(a -2a )2+(1-1)2=a .(1)当|C 1C 2|=r 1+r 2=5,即a =5时,两圆外切;当|C 1C 2|=r 1-r 2=3,即a =3时,两圆内切.(2)当3<|C 1C 2|<5,即3<a <5时,两圆相交.(3)当|C 1C 2|>5,即a >5时,两圆外离.(4)当|C 1C 2|<3,即a <3时,两圆内含.考点2 两圆相交有关问题[典例2] 求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长. [分析] 联立圆C 1、C 2的方程――→作差得公共弦所在的直线―→圆心C 3到公共弦的距离d ―→圆的半径r ―→弦长=2r 2-d 2[解答] 设两圆的交点坐标分别为A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标是方程组⎩⎨⎧x 2+y 2=1,x 2+y 2-2x -2y +1=0的解, 两式相减得x +y -1=0.因为A ,B 两点的坐标满足 x +y -1=0,所以AB 所在直线方程为x +y -1=0,即C 1,C 2的公共弦所在直线方程为x +y -1=0,圆C 3的圆心为(1,1),其到直线AB 的距离d =12,由条件知r 2-d 2=254-12=234,所以直线AB 被圆C 3截得弦长为2×232=23.1.圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.[解] 联立两圆的方程得方程组⎩⎨⎧ x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此为两圆公共弦所在直线的方程.法一:设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧ x =-4,y =0或⎩⎨⎧x =0,y =2.所以|AB |=(-4-0)2+(0-2)2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.考点3 直线与圆的方程的应用探究1 设村庄外围所在曲线的方程可用(x -2)2+(y +3)2=4表示,村外一小路方程可用x-y+2=0表示,你能求出从村庄外围到小路的最短距离吗?[分析]从村庄外围到小路的最短距离为圆心(2,-3)到直线x-y+2=0的距离减去圆的半径2,即|2+3+2|12+(-1)2-2=722-2.探究2已知台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,请建立适当的坐标系,用坐标法求B城市处于危险区内的时间.[分析]如图,以A为原点,以AB所在直线为x轴建立平面直角坐标系.射线AC为∠xAy的平分线,则台风中心在射线AC上移动.则点B到AC的距离为202千米,则射线AC被以B为圆心,以30千米为半径的圆截得的弦长为2302-(202)2=20(千米).所以B城市处于危险区内的时间为t=2020=1(小时).[典例3] 为了适应市场需要,某地准备建一个圆形生猪储备基地(如图4-2-1),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km 到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,求DE的最短距离.图4-2-1[分析]建立适当坐标系,求出圆O的方程和直线BC的方程,再利用直线与圆的位置关系求解.[解答]以O为坐标原点,过OB,OC的直线分别为x轴和y轴,建立平面直角坐标系,则圆O的方程为x2+y2=1,因为点B(8,0),C(0,8),所以直线BC的方程为x8+y8=1,即x+y=8.当点D选在与直线BC平行的直线(距BC较近的一条)与圆的切点处时,DE为最短距离.此时DE长的最小值为|0+0-8|2-1=(42-1) km.[方法总结]解决关于直线与圆方程实际应用问题的步骤[跟踪练习]3.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?[解] 以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10 km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|-28|42+72=2865,而半径r=3,∴d>r,∴直线与圆外离,所以轮船不会受到台风的影响.【学习检测巩固提高】1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25 B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25 D.(x-3)2+(y+2)2=25[解析]设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x-5)2+(y+1)2=25.[答案] B2.一辆卡车宽1.6 m,要经过一个半圆形隧道(半径为3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A.1.4 m B.3.5 m C.3.6 m D.2.0 m [解析]圆半径OA=3.6,卡车宽1.6,所以AB=0.8,所以弦心距OB= 3.62-0.82≈3.5(m).[答案] B3.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是__相交__.[解析]圆x2+y2+6x-7=0的圆心为O1(-3,0),半径r1=4,圆x2+y2+6y-27=0的圆心为O 2(0,-3),半径为r 2=6,∴|O 1O 2|=(-3-0)2+(0+3)2=32,∴r 2-r 1<|O 1O 2|<r 1+r 2,故两圆相交.4.已知实数x 、y 满足x 2+y 2=1,则y +2x +1的取值范围为__ [34,+∞) __. [解析] 如右图所示,设P (x ,y )是圆x 2+y 2=1上的点,则y +2x +1表示过P (x ,y )和Q (-1,-2)两点的直线PQ 的斜率,过点Q 作圆的两条切线QA ,QB ,由图可知QB ⊥x 轴,k QB 不存在,且k QP ≥k QA .设切线QA 的斜率为k ,则它的方程为y +2=k (x +1),由圆心到QA 的距离为1,得|k -2|k 2+1=1,解得k =34.所以y +2x +1的取值范围是[34,+∞). 5.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 解法一:联立两圆方程⎩⎨⎧ x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0, 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎨⎧4x +3y -2=0x 2+y 2-12x -2y -13=0, 联立得两圆交点坐标(-1,2)、(5,-6).∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.解法二:由解法一可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-122(1+λ),-16λ-22(1+λ)). ∵圆心C 在公共弦所在直线上,∴4·-(12λ-12)2(1+λ)+3·-(16λ-2)2(1+λ)-2=0, 解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0.人教版高中数学必修二第4章 圆与方程4.2 直线、圆的位置关系4.2.2圆与圆的位置关系课时检测一、选择题1.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0[解析] 解法一:线段AB 的中垂线即两圆的连心线所在直线l ,由圆心C 1(1,0),C 2(-1,2),得l 方程为x +y -1=0.解法二:直线AB 的方程为:4x -4y +1=0,因此线段AB 的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),故选A .[答案] A2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( )A .外离B .相交C .外切D .内切[解析] 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2), 半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.[答案] B3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b应满足的关系式是()A.a2-2a-2b-3=0 B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0[解析]利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.[答案] B4.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25 B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15 D.(x+5)2+(y-7)2=25[解析]设动圆圆心为P(x,y),则(x-5)2+(y+7)2=4+1,∴(x-5)2+(y+7)2=25.[答案] A5.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r =()A.5B.4C.3D.2 2 [解析]设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.[答案] C6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6 B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36 D.(x-6)2+(y±4)2=36[解析]半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.7.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.[答案] D8.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=0[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.[答案] A9.已知两圆相交于两点A (1,3),B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是( )A .-1B .2C .3D .0 [解析] 两点A ,B 关于直线x -y +c =0对称,k AB =-4m -1=-1. ∴m =5,线段AB 的中点(3,1)在直线x -y +c =0上,∴c =-2,∴m +c =3.[答案] C10.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 由题知圆M :x 2+(y -a )2=a 2,圆心(0,a )到直线x +y =0的距离d =a 2,所以2a 2-a 22=22,解得a =2.圆M 、圆N 的圆心距|MN |=2,两圆半径之差为1、半径之和为3,故两圆相交.二、填空题11.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=.[解析]两个圆的方程作差,可以得到公共弦的直线方程为y=1a,圆心(0,0)到直线y=1a的距离d=|1a|,于是由(232)2+|1a|2=22,解得a=1.[答案] 112.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为________.[解析]C1(m,-2),r1=3,C2(-1,m),r2=2,由题意得|C1C2|=5,即(m+1)2+(m+2)2=25,解得m=2或m=-5.[答案]2或-513.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.[解析]∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d=|C1C2|=a2+b2=4=2,∴d=r1+r2.∴两圆外切.[答案]外切14.与直线x+y-2=0和圆x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.[解析]已知圆的标准方程为(x-6)2+(y-6)2=18,则过圆心(6,6)且与直线x+y -2=0垂直的方程为x-y=0.方程x-y=0分别与直线x+y-2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x-2)2+(y-2)2=2.[答案](x-2)2+(y-2)2=215.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0. [解析](1)∵C1:(x-1)2+y2=4,C2:(x-2)2+(y+1)2=2.∴圆C1的圆心坐标为(1,0),半径r1=2,圆C2的圆心坐标为(2,-1),半径r2=2,d=|C1C2|=(2-1)2+(-1)2= 2.∵r1+r2=2+2,r1-r2=2-2,∴r1-r2<d<r1+r2,两圆相交.(2)∵C1:x2+(y-1)2=1,C2:(x-3)2+y2=9,∴圆C1的圆心坐标为(0,1),r1=1,圆C2的圆心坐标为(3,0),r2=3,d=|C1C2|=3+1=2.∵r2-r1=2,∴d=r2-r1,两圆内切.(3)∵C1:(x-2)2+(y-3)2=4,C2:(x+6)2+(y+3)2=64.∴圆C1的圆心坐标为(2,3),半径r1=2,圆C2的圆心坐标为(-6,-3),半径r2=8,∴|C1C2|=(2+6)2+(3+3)2=10=r1+r2,∴两圆外切.(4)C1:(x+1)2+(y-1)2=4,C2:(x-2)2+(y-3)2=16,∴圆C1的圆心坐标为(-1,1),半径r1=2,圆C2的圆心坐标为(2,3),半径r2=4,∴|C1C2|=(2+1)2+(3-1)2=13.∵|r1-r2|<|C1C2|<r1+r2,∴两圆相交.16.求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点且圆心在直线x -y -4=0上的圆的方程.[解] 法一:解方程组⎩⎨⎧x 2+y 2+6x -4=0,x 2+y 2+6y -28=0, 得两圆的交点A (-1,3),B (-6,-2).设所求圆的圆心为(a ,b ),因为圆心在直线x -y -4=0上,故b =a -4. 则有(a +1)2+(a -4-3)2 =(a +6)2+(a -4+2)2,解得a =12,故圆心为⎝ ⎛⎭⎪⎫12,-72, 半径为⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫-72-32=892. 故圆的方程为⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +722=892,即x 2+y 2-x +7y -32=0. 法二:∵圆x 2+y 2+6y -28=0的圆心(0,-3)不在直线x -y -4=0上,故可设所求圆的方程为x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0(λ≠-1),其圆心为⎝ ⎛⎭⎪⎫-31+λ,-3λ1+λ,代入x -y -4=0,求得λ=-7. 故所求圆的方程为x 2+y 2-x +7y -32=0.17.已知圆M :x 2+y 2-2mx -2ny +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0交于A 、B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程.[解析] 两圆方程相减,得公共弦AB 所在的直线方程为2(m +1)x +2(n +1)y -m 2-1=0,由于A 、B 两点平分圆N 的圆周,所以A 、B 为圆N 直径的两个端点,即直线AB 过圆N 的圆心N ,而N (-1,-1),所以-2(m +1)-2(n +1)-m 2-1=0,即m 2+2m +2n +5=0,即(m +1)2=-2(n +2)(n ≤-2),由于圆M 的圆心M (m ,n ),从而可知圆心M 的轨迹方程为(x +1)2=-2(y +2)(y ≤-2).18.已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,|PQ |=|P A |成立,如图.(1)求a,b间的关系;(2)求|PQ|的最小值.[解析](1)连接OQ,OP,则△OQP为直角三角形,又|PQ|=|P A|,所以|OP|2=|OQ|2+|PQ|2=1+|P A|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2x+y-3=0上,所以|PQ|min=|P A|min,为A到直线l的距离,所以|PQ|min=|2×2+1-3|22+12=255.人教版高中数学必修二第4章圆与方程4.2 直线、圆的位置关系4.2.3直线与圆的方程的应用课时检测一、选择题1.已知实数x、y满足x2+y2-2x+4y-20=0,则x2+y2的最小值是() A.30-105B.5-5C.5D.25[解析]x2+y2为圆上一点到原点的距离.圆心到原点的距离d=5,半径为5,所以最小值为(5-5)2=30-10 5.[答案] A2.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB 的垂直平分线方程为()A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0[解析]所求直线即两圆圆心(1,0)、(-1,2)连线所在直线,故由y-02-0=x-1-1-1,得x+y-1=0.[答案] A3.方程y=-4-x2对应的曲线是()[解析]由方程y=-4-x2得x2+y2=4(y≤0),它表示的图形是圆x2+y2=4在x轴上和以下的部分.[答案] A4.y=|x|的图象和圆x2+y2=4所围成的较小的面积是()A.π4B.3π4C.3π2D.π[解析]数形结合,所求面积是圆x2+y2=4面积的1 4.[答案] D5.方程1-x2=x+k有惟一解,则实数k的范围是()A.k=-2B.k∈(-2,2)C.k∈[-1,1)D.k=2或-1≤k<1[解析]由题意知,直线y=x+k与半圆x2+y2=1(y≥0只有一个交点.结合图形易得-1≤k<1或k= 2.[答案] D6.点P是直线2x+y+10=0上的动点,直线P A、PB分别与圆x2+y2=4相切于A、B两点,则四边形P AOB(O为坐标原点)的面积的最小值等于()A .24B .16C .8D .4[解析] ∵四边形P AOB 的面积S =2×12|P A |×|OA |=2OP 2-OA 2=2OP 2-4,∴当直线OP 垂直直线2x +y +10=0时,其面积S 最小.[答案] C7.已知圆C 的方程是x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值为( )A .9B .14C .14-65D .14+6 5[解析] 圆C 的标准方程为(x +2)2+(y -1)2=9,圆心为C (-2,1),半径为3.|OC |=5,圆上一点(x ,y )到原点的距离的最大值为3+5,x 2+y 2表示圆上的一点(x ,y )到原点的距离的平方,最大值为(3+5)2=14+6 5.[答案] D8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0与圆C :x 2+y 2+2x =b 2-1(b >0)的位置关系是“平行相交”,则实数b 的取值范围为( )A .(2,322)B .(0,322)C .(0,2)D .(2,322)∪(322,+∞)[解析] 圆C 的标准方程为(x +1)2+y 2=b 2.由两直线平行,可得a (a +1)-6=0,解得a =2或a =-3.当a =2时,直线l 1与l 2重合,舍去;当a =-3时,l 1:x -y -2=0,l 2:x -y +3=0.由l 1与圆C 相切,得b =|-1-2|2=322,由l 2与圆C 相切,得b =|-1+3|2= 2.当l 1、l 2与圆C 都外离时,b < 2.所以,当l 1、l 2与圆C “平行相交”时,b 满足⎩⎨⎧ b ≥2b ≠2,b ≠322,故实数b 的取值范围是(2,322)∪(322,+∞).[答案] D9.已知圆的方程为x2+y2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.106B.206C.306D.40 6 [解析]圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为252-12=46,所以四边形ABCD的面积为12×AC×BD=12×10×46=20 6.[答案] B10.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()A.4π5B.3π4C.(6-25)πD.5π4[解析]原点O到直线2x+y-4=0的距离为d,则d=45,点C到直线2x+y-4=0的距离是圆的半径r,由题知C是AB的中点,又以斜边为直径的圆过直角顶点,则在直角△AOB中,圆C过原点O,即|OC|=r,所以2r≥d,所以r最小为25,面积最小为4π5,故选A.[答案] A二、填空题11.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A、B两点,则直线AB 的方程是________.[解析] 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为:x2+y2-10-[(x-1)2+(y-3)2-20]=0,即x+3y=0.[答案]x+3y=012.已知M={(x,y)|y=9-x2,y≠0},N={(x,y)|y=x+b},若M∩N≠∅,则实数b的取值范围是.[解析] 数形结合法,注意y =9-x 2,y ≠0等价于x 2+y 2=9(y >0),它表示的图形是圆x 2+y 2=9在x 轴之上的部分(如图所示).结合图形不难求得,当-3<b ≤32时,直线y =x +b 与半圆x 2+y 2=9(y >0)有公共点.[答案] (-3,32]13.某公司有A 、B 两个景点,位于一条小路(直道)的同侧,分别距小路 2 km 和2 2 km ,且A 、B 景点间相距2 km ,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于 .[解析] 所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点,以小路所在直线为x 轴,过B 点与x 轴垂直的直线为y 轴上建立直角坐标系.由题意,得A (2,2)、B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2.由A 、B 在圆上,得⎩⎨⎧ a =0b =2,或⎩⎨⎧a =42b =52,由实际意义知⎩⎨⎧ a =0b =2.∴圆的方程为x 2+(y -2)2=2,切点为(0,0),∴观景点应设在B 景点在小路的投影处.[答案] B 景点在小路的投影处14.设集合A ={(x ,y )|(x -4)2+y 2=1},B ={(x ,y )|(x -t )2+(y -at +2)2=1},若存在实数t ,使得A ∩B ≠∅,则实数a 的取值范围是 .[解析] 首先集合A 、B 实际上是圆上的点的集合,即A 、B 表示两个圆,A ∩B ≠∅说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径之和2,即(t -4)2+(at -2)2≤2,整理成关于t 的不等式:(a 2+1)t 2-4(a +2)t +16≤0,据题意此不等式有实解,因此其判别式不小于零,即Δ=16(a +2)2-4(a 2+1)×16≥0,解得0≤a ≤43. [答案] [0,43]三、解答题15.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.[解析] 以O 为坐标原点,过OB 、OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1,因为点B (8,0)、C (0,8),所以直线BC 的方程为x 8+y 8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆相切所成切点处时,DE 为最短距离,此时DE 的最小值为|0+0-8|2-1=(42-1)km. 16.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,求支柱A 2P 2的长.(精确到0.01 m)[解析] 如图,以线段AB 所在的直线为x 轴,线段AB 的中点O 为坐标原点建立平面直角坐标系,那么点A 、B 、P 的坐标分别为(-18,0)、(18,0)、(0,6).设圆拱所在的圆的方程是x 2+y 2+Dx +Ey +F =0.因为A 、B 、P 在此圆上,故有⎩⎨⎧ 182-18D +F =0182+18D +F =062+6E +F =0,解得⎩⎨⎧ D =0E =48F =-324.故圆拱所在的圆的方程是x 2+y 2+48y -324=0.将点P 2的横坐标x =6代入上式,解得y =-24+12 6.答:支柱A 2P 2的长约为126-24 m.17.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km的B处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)[解析]如图,以O为原点,东西方向为x轴建立直角坐标系,则A(40,0),B(0,30),圆O方程x2+y2=252.直线AB方程:x40+y30=1,即3x+4y-120=0.设O到AB距离为d,则d=|-120|5=24<25,所以外籍轮船能被海监船监测到.设监测时间为t,则t=2252-24228=12(h)答:外籍轮船能被海监船监测到,时间是0.5 h.18.已知隧道的截面是半径为4.0 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m、高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?[解析]以某一截面半圆的圆心为坐标原点,半圆的直径AB所在的直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为:x2+y2=16(y≥0).将x=2.7代入,得y=16-2.72=8.71<3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度,因此,货车不能驶入这个隧道.将x=a代入x2+y2=16(y≥0)得y=16-a2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.。
人教版高中数学必修二导学案:第四章第二节直线与圆的方程应用
第四章第二节直线与圆的方程应用三维目标1.掌握直线与圆的方程在实际生活中的应用;2. 能用坐标法解决直线与圆的位置关系的实际问题;3. 会用“数形结合”的数学思想解决问题。
___________________________________________________________________________ 目标三导学做思1问题1. 写出圆的标准方程及一般方程,并指出圆心及半径。
问题2.点与圆的位置关系有哪些?判断方法如何?问题3.直线与圆的位置关系有哪些?判断方法如何?问题4.圆与圆的位置关系如何?判断方法有哪些?【学做思2】1. 阅读教材P126问题,你能否将这个问题转化成数学问题,写出已知和所求?【小结】用坐标法解题的步骤:2.如图是某圆拱形桥一孔圆拱的示意图,这个圆的圆拱跨度AB=20m,拱高OP=4m,建造时每间隔4m需要用一根支柱支撑,求支柱A2P2的高度(精确到0.01m)。
【结论】建立恰当的直角坐标系可以简化我们的计算,一般该如何建系?*3. 如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC上的点,且BC⋅AE=DC⋅AF,B、E、F、C四点共圆。
(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值。
达标检测*1. 已知直线1x y +=与圆22x y a +=交于A 、B 两点,O 是原点,C 是圆上一点,若OC OB OA =+,则a 的值为( )A .1B 2C .2D .4*2. 动圆C 经过点(1,0)F ,并且与直线1x =-相切,若动圆C 与直线221y x =+总有公 共点,则圆C 的面积( )A .有最大值8πB .有最小值2πC .有最小值3πD .有最小值4π3. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的 地区为危险区,城市B 在A 的正东40千米处,城市B 位于危险区内的时间为( ) A .0.5小时 B .1小时 C .1.5小时 D .2小时赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF-aaBE1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°-aaBE挖掘图形特征:x-aa E-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM(2)当AE =1时,求EF 的长.E2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;CE的值.(3)求AE-变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.。
人教版高中数学必修二导学案第四章第二节圆与圆的位置关系
第四章第二节圆与圆的位置关系三维目标1.理解圆与圆的位置关系的几种分类和判断方法;2. 能根据给定圆的方程,判断两圆的位置关系;3. 能求相交两圆的公共弦所在的直线方程和公共弦长;4. 深入理解数形结合的数学思想;类比思想.___________________________________________________________________________ 目标三导 学做思1问题1.请画出两圆的所有位置关系。
问题2. 类比直线与圆的位置关系的判断方法,你能找出判断两圆位置关系的方法些?代数法几何法【学做思2】1. 已知圆221:2880C x y x y +++-=,圆0244:222=---+y x y x C ,试判断圆1C 与圆2C 的关系?【总结】你能总结出判断两圆位置关系的方法和步骤吗?并比较两种方法的优劣?2. 已知两圆221:420C x y x y +-+=和圆222:240C x y y +--=的交点为A ,B(1)求弦AB 所在的直线方程; (2)求AB 的长; (3)求过A ,B 两点且圆心在直线:2410l x y +-=上的圆的方程.【思考】从这题你对求两圆的公共弦所在的直线方程有什么体会?*3. 已知圆A :x 2+y 2-2x -2y -2=0.(1)若直线l :ax +by -4=0平分圆A 的周长,求原点O 到直线l 的距离的最大值;(2)若圆B 平分圆A 的周长,圆心B 在直线y =2x 上,求符合条件且半径最小的圆B 的方程.达标检测*1. 若圆222x y a +=与圆2260x y ay ++-=的公共弦长为32,则a 的值为A.2± B .2 C .2- D .无解2. 圆C 1:(x +1)2+(y -3)2=25,圆C 2与圆C 1关于点(2,1)对称,则圆C 2的方程是( )A.(x -3)2+(y -5)2=25B.(x -5)2+(y +1)2=25C.(x -1)2+(y -4)2=25D.(x -3)2+(y +2)2=253. 若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围( )A .(4,6)B .[4,6)C .(4,6]D .[4,6]4. 已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则求圆C 2的标准方程。
重庆市大学城第一中学校人教版高中数学必修二导学案:第四章第一节圆的一般方程-
第四章第一节圆的一般方程
三维目标
1.掌握圆的一般方程,会将圆的一般方程和圆的标准方程相互转化;
2. 会用待定系数法求圆的一般方程;
3. 会用坐标法求点的轨迹方程;
4.体会代入消元的思想。
___________________________________________________________________________ 目标三导学做思 1
问题1.对下列方程进行配方,得到的方程表示什么
? (1)222210x y
x y ; (2) 054222y x y x ;(3) 064222y x
y x 问题 2. 方程022F Ey Dx y x
在什么条件下表示圆?此时圆的圆心坐标和半径是
多少?【试试】1. 圆的一般方程:
()圆心坐标(,
),半径为 . 【试试】2. 若方程052422k y x y x 表示圆,则k 的取值范围是()
A.k>1
B.k<1
C.1k
D.k 1
【学做思2】
*1.已知ABC 中,顶点2,2A ,边AB 上的中线CD 所在直线的方程是
0x y ,边AC 上高BE 所在直线的方程是
340x y .(1)求点B 、C 的坐标;(2)求ABC 的外接圆的方程.
【思考】根据这题的解法,请你总结出求圆的方程的一般步骤
2.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22y x
上运动,求线段AB
的中点M 的轨迹方程。
(学生小组讨论展示解题思路)【小结】求轨迹方程的一般步骤
【变式】自圆422y x 上的点A(2,0)引此圆的弦AB ,求弦AB 的中点轨迹方程。
人教版高中数学必修二导学案:第四章第二节直线与圆的位置关系
第四章第二节直线与圆的位置关系三维目标1 理解直线与圆的几种位置关系;2. 能用两种方法判断直线与圆的位置关系及解决一些简单问题;3. 进一步体会数形结合思想。
___________________________________________________________________________ 目标三导 学做思1问题1. 结合已有知识,画出直线与圆的几种位置?说出它的判断方法?问题 2. 若圆的方程为:222)()(r b x a x =-+-,直线0:=++c By Ax l 则如何判断它们的位置关系?【学做思2】1. 已知直线l :063=-+y x 和圆心为C 的圆04222=--+y y x ,判断直线l 与圆的位置关系;如果相交,求它们的交点坐标。
方法一:从方程角度,判断直线l 与圆的位置关系的方法方法二:从几何的角度,判断直线l 与圆的位置关系的方法2. 已知直线l :032=+-y x 与圆021422=-++y y x 相交,求弦长。
3. 已知点P (0,4)和圆的方程C :044222=+--+y x y x ,过点P 向圆引切线,求切线方程。
【变式1】已知直线l :b x y +=和圆C :122=+y x ,当实数b 取何值时,直线与圆相交?相切?相离?【变式2】已知直线l :2+=kx y 与圆C :122=+y x 相交,求实数k 的取值范围。
4. 在直线022=+-y x 上求一点P ,使P 到圆221x y +=的切线长最短,并求出此时切线长。
达标检测*1.过点M(1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线的方程是( ) A .x =1 B .y =1 C .x -y +1=0 D .x -2y +3=02. 若直线1=+by ax 与圆221x y +=相交,则点P(a,b)的位置是( ) A.在圆上 B.在圆外 C.在圆内 D.都有可能 *3. 过点A(11,2)作圆x 2+y 2+2x-4y-164=0的弦,其中弦长为整数的共有( ) A.16条 B.17条 C.32条 D.34条;4.直线经过点P(0,2),且截圆x ²+y ²=4所得的弦长为2,则该直线斜率等于______ ;5. 过点(1,2)的所有直线中,求被圆016922=--+y x y x 截得的弦最长的直线的方程和弦最短的直线方程。
人教A版高中数学必修二《圆与圆的位置关系》导学案
4.4圆与圆的位置关系导学案【学习目标】1.掌握圆与圆的五种位置关系;2.会用圆心距与两圆的半径长的关系判断圆与圆的位置关系,培 养学生数形结合的数学思想;【学习重点】利用数形结合研究圆与圆的位置关系;【课前预习案】一.复习回顾1.直线与圆的位置关系有:_______,________,________三种2.判断直线与圆的位置关系的方法:法一.代数法:联立直线方程与圆方程,消去x (或y ),转化为 关于x (或y )的一元二次方程,根据判别式∆的符号判断(1)0>∆时,直线与圆_____________; (2)0=∆时,直线与圆_____________;(3)0<∆时,直线与圆_____________.法二.几何法:根据___________________d 与圆半径长r 的大小判断(1)__d r 时,直线与圆相交; (2)d r =时,直线与圆______(3)__d r 时,直线与圆相离二.研讨过程:1、认识生活中有关圆与圆的位置关系的一些图形在现实生活中,圆与圆有不同的位置关系,如下图所示:2、观察两圆相对运动判断两圆的位置关系;奥运会五环(1) 用数量关系识别两圆的位置关系利用以上的思考题让同学们画图或想象,概括出两圆的位置关系与圆心距、两圆的半径具有什么关系。
(1)两圆外离;_d R r ⇔+ (2)两圆外切_d R r ⇔+;(3)两圆相交__R r d R r ⇔-+; (4)两圆内切_d R r ⇔-;(5)两圆内含_d R r ⇔-; (填<、=、>号)(2)、用公共点的个数阐述两圆的位置关系观察两圆的位置关系和公共点的个数;左图(1)、(2)、(3)所示,两个圆没有公共点,那么就说两个圆相离,其中 又叫做外离, 又叫做内含。
中两圆的圆心相同,这两个圆还可以叫做同心圆。
如果两个圆只有一个公共点,那么就说这两个圆相切,上图(4)、(5)所示.其中 又叫做外切, 又叫做内切。
最新人教版高中数学必修2第四章《直线与圆、圆与圆的位置关系(二)》教案
2.3 直线与圆、圆与圆的位置关系(二)圆与圆的位置关系整体设计教学分析本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上结合前面学习的点与圆、直线与圆的位置关系,得到圆与圆的位置关系的几何方法,用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的常用方法.因此,增加了用代数方法来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧对今后整个圆锥曲线的学习有着非常重要的意义.三维目标使学生理解并掌握圆和圆的位置关系及其判定方法.培养学生自主探究的能力.通过用代数的方法分析圆与圆的位置关系,使学生体验几何问题代数化的思想,深入了解解析几何的本质,同时培养学生分析问题、解决问题的能力,并进一步体会数形结合的思想.重点难点教学重点:求弦长问题,判断圆和圆的位置关系.教学难点:判断圆和圆的位置关系.课时安排1课时教学过程导入新课思路1.平面几何中,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O1O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系.在解析几何中,我们用代数的方法如何判断圆与圆之间的位置关系呢?这就是我们本堂课研究的课题,教师板书课题圆与圆的位置关系.思路2.前面我们学习了点与圆的位置关系、直线与圆的位置关系,那么,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?教师板书课题:圆与圆的位置关系.推进新课新知探究提出问题①初中学过的平面几何中,圆与圆的位置关系有几种?②判断两圆的位置关系,你有什么好的方法吗?③你能在同一个直角坐标系中画出两个方程所表示的圆吗?④根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学语言呢?⑤如何判断两个圆的位置关系呢?⑥若将两个圆的方程相减,你发现了什么?⑦两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?活动:教师引导学生回顾学过的知识、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.学生观察图形并思考,发表自己的解题方法.教师应该关注并发现有多少学生利用“图形”求解,对这些学生应该给予表扬.同时强调,解析几何是一门数与形结合的学科.启发学生利用图形的特征,用代数的方法来解决几何问题.教师指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置.学生互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻求解题的途径. 讨论结果:①初中学过的平面几何中,圆与圆的位置关系有五类,分别是外离、外切、相交、内切、内含.②判断两圆的位置关系,我们可以类比直线与圆的位置关系的判定,目前我们只有初中学过的几何法,利用圆心距与两圆半径的和与差之间的关系判断.③略.④根据所画出的图形,可以直观判断两个圆的位置关系.用几何的方法说就是圆心距(d)与两圆半径(r,R)的和与差之间的关系.⑤判断两个圆的位置关系.一是可以利用几何法,即两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置关系.设两圆的连心线长为d,则判别圆与圆的位置关系的依据有以下几点:1°当d>R+r时,圆C1与圆C2外离;2°当d=R+r时,圆C1与圆C2外切;3°当|R-r|<d<R+r时,圆C1与圆C2相交;4°当d=|R-r|时,圆C1与圆C2内切;5°当d<|R-r|时,圆C1与圆C2内含;二是看两圆的方程组成的方程组的实数解的情况,解两个圆的方程所组成的二元二次方程组.若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离.总结比较两种方法的优缺点.几何方法:直观,容易理解,但不能求出交点坐标.代数方法:1°只能判断交点,并不能准确的判断位置关系(有一个交点时不能判断内切还是外切,无交点时不能判断内含还是外离).2°优点是可以求出公共点.⑥若将两个圆的方程相减,得到一个一元一次方程,即直线方程,由于它过两圆的交点,所以它是相交两圆的公共弦的方程.⑦两个圆的公共点的问题可以化归为这条公共直线与两个圆中的一个圆的公共点的判定问题.由点到直线的距离公式来判断.应用示例思路1例1 在平面直角坐标系中分别作出圆心为C1(0,0),C2(1,1),半径分别为1,2的两圆,并判断两圆的位置关系.解:作出两圆,如图1.图1两圆半径分别记作r 1和r 2,则r 1=1,r 2=2,圆心距d=|C 1C 2|=21)10()10(-+-=2,于是,1=|r 1-r 2|<d<r 1+r 2=3,所以两圆相交.例2 判断圆C 1:x 2+y 2+2x-6y-26=0与圆C 2:x 2+y 2-4x+2y+4=0的位置关系,并画出图形. 解:由已知得圆C 1:(x+1)2+(y-3)2=36,其圆心C 1(-1,3),半径r 1=6;圆C 2:(x-2)2+(y+1)2=1,其圆心C 2(2,-1),半径r 2=1.于是|C 1C 2|=22)31()12(--++=5.又|r 1-r 2|=5,即|C 1C 2|=|r 1-r 2|,所以两圆内切.如图2.图2变式训练判断下列两圆的位置关系,如果两圆相交,请求出公共弦的方程.(1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16;(2)x 2+y 2+6x-7=0与x 2+y 2+6y-27=0.解:(1)根据题意,得两圆的半径分别为r 1=1和r 2=4,两圆的圆心距d=22)25()]2(2[-+--=5.因为d=r 1+r 2,所以两圆外切.(2)将两圆的方程化为标准方程,得(x+3)2+y 2=16,x 2+(y+3)2=36.故两圆的半径分别为r 1=4和r 2=6,两圆的圆心距d=22)03()30(--+-=32.因为|r 1-r 2|<d<r 1+r 2,所以两圆相交.例3 已知圆C 1:x 2+y 2+2x-6y+1=0,圆C 2:x 2+y 2-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.活动:学生审题,思考并交流,探讨解题的思路,教师及时提示引导,因两圆的交点坐标同时满足两个圆方程,联立方程组,消去x 2项、y 2项,即得两圆的两个交点所在的直线方程,利用勾股定理可求出两圆公共弦长.解:设两圆交点为A(x 1,y 1)、B(x 2,y 2),则A 、B 两点坐标满足方程组⎪⎩⎪⎨⎧=-+-+=+-++)2(.01124)1(,01622222y x y x y x y x①-②,得3x-4y+6=0.因为A 、B 两点坐标都满足此方程,所以3x-4y+6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r=3.又点C 1到直线的距离为d=59)4(3|63431|22=-++⨯-⨯-. 所以AB=222d r -=524)59(3222=-,即两圆的公共弦长为524. 点评:处理圆有关的问题,利用圆的几何性质往往比较简单,要注意体会和应用.思路2例1 求过点A(0,6)且与圆C:x 2+y 2+10x+10y=0切于原点的圆的方程.活动:学生思考交流,回顾圆的方程的求法,教师引导学生注意题目的条件,灵活处理,如图 3.所求圆经过原点和A(0,6),且圆心应在已知圆的圆心与原点的连线上.根据这三个条件可确定圆的方程.图3解:将圆C 化为标准方程,得(x+5)2+(y+5)2=50,则圆心为C(-5,-5),半径为25.所以经过此圆心和原点的直线方程为x-y=0.设所求圆的方程为(x-a)2+(y-b)2=r 2.由题意,知O(0,0),A(0,6)在此圆上,且圆心M(a,b)在直线x-y=0上,则有⎪⎩⎪⎨⎧=-=-+-=-+-,0,)6()0(,)0()0(222222b a r b a r b a 解得⎪⎩⎪⎨⎧===.23,3,3r b a于是所求圆的方程是(x-3)2+(y-3)2=18.点评:求圆的方程,一般可从圆的标准方程和一般方程入手,至于选择哪一种方程形式更恰当,要根据题目的条件而定,总之要让所选择的方程形式使解题过程简单.例2 已知⊙O 方程为x 2+y 2=4,定点A(4,0),求过点A 且和⊙O 相切的动圆圆心的轨迹方程. 活动:教师引导学生回顾学过的知识,两圆外切,连心线长等于两圆半径之和,两圆内切,连心线长等于两圆半径之差,由此可得到动圆圆心在运动中所应满足的几何条件,然后将这个几何条件坐标化,即得到它的轨迹方程.解:设动圆圆心为P(x,y),因为动圆过定点A,所以|PA|即为动圆半径.当动圆P 与⊙O 外切时,|PO|=|PA|+2;当动圆P 与⊙O 内切时,|PO|=|PA|-2.综合这两种情况,得||PO|-|PA||=2.将此关系式坐标化,得|2222)4(y x y x +--+|=2.化简可得(x -2)232y -=1. 点评:解题的过程就是实现条件向结论转化的过程,对于圆与圆,要综合平面几何知识、解析几何、代数知识,将条件转化成我们熟悉的形式,利用常规思路去解,求点的轨迹更要注意平面几何的知识运用.知能训练1.已知圆C 1:x 2+y 2+2x+8y-8=0,圆C 2:x 2+y 2-4x-4y-2=0,判断两圆的位置关系.解法一:圆C 1与圆C 2的方程联立得到方程组⎪⎩⎪⎨⎧=---+=-+++)2(,0244)1(,08822222y x y x y x y x①-②得x+2y-1=0③,由③得y=21x -,把上式代入①并整理得x 2-2x-3=0④. 方程④的判别式Δ=(-2)2-4×1×(-3)=16>0,所以方程④有两个不相等的实数根,即圆C 1与圆C 2相交.解法二:把圆C 1:x 2+y 2+2x+8y-8=0,圆C 2:x 2+y 2-4x-4y-2=0,化为标准方程,得(x+1)2+(y+4)2=25与(x-2)2+(y-2)2=10,圆C 1的圆心是点(-1,-4),半径长r 1=5;圆C 2的圆心是点(2,2),半径长r 2=10.圆C 1圆C 2的连心线的长为22)24()21(--+--=35,圆C 1、圆C 2的半径长之和为r 1+r 2=5+10,半径长之差为r 1-r 2=510-.而510-<35<5+10,即r 1-r 2<35<r 1+r 2,所以圆C 1与圆C 2相交.点评:判断两圆的位置关系一般情况下,先化为标准方程,再利用几何法判断较为准确直观.2.求经过原点,且过圆x 2+y 2+8x-6y+21=0和直线x-y+5=0的两个交点的圆的方程. 解法一:由⎩⎨⎧=+-=+-++,05,0216822y x y x y x 求得交点(-2,3)或(-4,1). 设所求圆的方程为x 2+y 2+Dx+Ey+F=0.因为(0,0),(-2 3),(-4,1)三点在圆上,所以⎪⎩⎪⎨⎧=++-+=++-+=,04116,03294,0F E D F E D F 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.519,59,0D E F 所以所求圆的方程为x 2+y 2+519x 59-y=0. 解法二:设过交点的圆系方程为:x 2+y 2+8x-6y+21+λ(x -y+5)=0(λ为参数).将原点(0,0)代入上述方程得λ=521-.则所求方程为:x 2+y 2+519x 59-=0. 拓展提升求以圆C 1:x 2+y 2-12x-2y-13=0和圆C 2:x 2+y 2+12x+16y-25=0的公共弦为直径的圆的方程.解法一:联立两圆方程⎪⎩⎪⎨⎧=-+++=---+,0251612,0132122222y x y x y x y x 相减得公共弦所在直线方程为4x+3y-2=0.解方程组⎩⎨⎧=---+=-+,013212,023422y x y x y x 得两圆交点坐标A (-1,2),B (5,-6),因为所求圆以AB 为直径,所以圆心是AB 的中点M (2,-2),圆的半径为r=21|AB|=5. 于是圆的方程为(x-2)2+(y+2)2=25.解法二:设所求圆的方程为:x 2+y 2-12x-2y-13+λ(x 2+y 2+12x+16y-25)=0(λ为参数). 得圆心C()1(21212λλ+--,)1(2216λλ+--),即(λλ+-166,λλ+-181). 因为圆心C 应在公共弦AB 所在直线上,所以4·λλ+-166+3·λλ+-181-2=0,解得λ=21. 所以所求圆的方程为x 2+y 2-4x+4y-17=0.点评:解法一体现了求圆的相交弦所在直线方程的方法;解法二采取了圆系方程求待定系数,解法比较简练.课堂小结本节课主要学习了圆与圆的位置关系,判断方法:几何方法和代数方法.作业习题2-2 A 组5;B 组2、3.设计感想这堂课是建立在初中已经对圆与圆的位置关系有个粗略地了解的基础上,对这个位置关系的了解进一步深化,而且前一堂课学习过直线与圆的位置关系,圆与圆的位置关系的研究和直线与圆的位置关系的研究方法是类似的,所以可以用类比的思想来引导学生自主地探究圆与圆的位置关系.作为解析几何的一堂课,判断圆与圆的位置关系,体现的正是解析几何的思想:用代数方法处理几何问题,用几何方法处理代数问题.所以在教材处理上,对判断两圆位置关系用了代数和几何两种方法,两种方法贯穿始终,使学生对解析几何的本质有所了解.。
人教版高中数学必修2第四章圆与方程-《4.2直线与圆的位置关系》教案(2)
4.2.1 直线与圆的位置关系
一、教学目标
1、知识与技能
(1)理解直线与圆的位置的种类;
(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;
(3)会用点到直线的距离来判断直线与圆的位置关系.
2、过程与方法
设直线l,圆C,圆的半径为r,圆心到直线的距离为d,则:
(1)当r
d>时,直线l与圆C相离;
(2)当r
d=时,直线l与圆C相切;
(3)当r
d<时,直线l与圆C相交;
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.二、教学重点、难点:
重点:直线与圆的位置关系的几何图形及其判断方法.
难点:用坐标法判直线与圆的位置关系.
三、教学设想。
人教版高中数学必修2第四章第二节圆与圆的位置关系
人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT )
人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT )
学完一节课或一个内容, 应当及时小结,梳理知识
请同学们谈谈这节课 有哪些收获?
人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT )
把上式代入①
x2 2x 3 0 ④
(2)2 41 (3) 16
消元得一元 二次方程
所以方程④有两个不相等的实根用x1,Δ判x2 断两 把x1,x2代入方程③得到y1,y2 圆的位置关 所以圆C1与圆C2有两个不同的交点 系
A(x1,y1),B(x2,y2)
人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT )
人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT )
作业: 教材P133 A组 第9 、10 题。
人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT )
人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT ) 人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT )
2009.7.22 上午,五 百年一遇的罕见日全 食在天空上演。此次 日全食从日食初亏到 复圆长达2个多小时, 日全食的持续时间最 长可达6分钟左右。 这是1814年-2309 年间中国境内可观测 到的持续时间最长的 一次日全食活动。这 也是世界历史上覆盖 人口最多的一次日全
食。
两点间距离公式 | P1P2 | (x2 x1)2 ( y2 y 1)2
人教版高中数学必修2第四章第二节圆 与圆的 位置关 系(共1 7张PPT )
重庆市大学城第一中学校高中数学必修二教案:4-2-2 圆
3、已知以(-4,3)为圆心的圆与x2+y2=1相切,求圆C的方程.
4、求过点A(0,6)且与圆x2+y2+10x+10y=0切于原点的圆的方程。
5、求与点A(1,2)的距离为1,且与点B(3,1)的距离为2的直线共有条。
反思总结
3.情感态度与价值观:通过观察图形,理解并掌握圆与圆的位置关系,培养数形结合的思想.
重点目标
知识与技能
难点目标
过程与方法
导入示标
目标三导
学做思一:圆与圆的位置关系
两个大小不等的圆,其位置关系有内含、内切、相交、外切、外离等五种,在平面几何中,这些位置关系是如何判定的?
学做思二:判断圆和圆的位置关系的方法
1.知识建构
2.能力提高
3.课堂体验
课后练习
1,求直线 :2x-y-2=0被圆C:(x-3)2+y2=9所截得的弦长
2,圆(x-1)2+(y-1)2=4关于直线L:x-2y-2=0对称的圆的方程
3,赵州桥的跨度是37. 4m,圆拱高约7.2m,求拱圆的方程
4,某圆拱桥的水面跨度20m,拱高船能否从桥下通过?
(1)几何法(2)代数法
学做思三:已知两圆C1:x2+y2+D1x+E1y+F1=0和
C2:x2+y2+D2x+E2y+F2=0,用上述方法判断两个圆位置关系的操作步骤如何?
达标检测
1、判断下列两圆的位置关系:
(1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16
高一数学(人教版)必修2导学案:4.2.2圆和圆的位置关系(无答案)
4.2.2圆和圆的位置关系导学案【课前预习导读】一.学习目标:了解两个圆相离(外离、内含),两个圆相切(外切、内切),两圆相交、圆心距等念.二.重点:理解两圆的位置关系,d(圆心距)、r1、r2等量关系的等价条件并灵活应用三.难点:探索两个圆之间的五种关系的等价条件及应用它们解题.四.【自主预习】1.初中学过的平面几何中,圆与圆的位置关系有几种?你能用图示演示一下吗?2.仔细研究例3,回答:如何根据圆的方程判断它们之间的位置关系?五【基础自测】1、如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有().A.内切、相交B.外离、相交C.外切、外离D.外离、内切2、下列说法正确的是()A.没有公共点的两圆叫两圆外离 B.相切两圆的圆心距必须经过切点C.相交两圆的交点关于连心线对称D.若⊙O1、⊙O2的半径为R、r,圆心距为d,当两圆同心时,R-r>d3、.已知两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过O2,则四边形O1AO2B是()A.平行四边形B.菱形C.矩形D.正方形【课堂探究导学】六.探究新知探究1、两个圆的位置关系有外离、外切、相交、内切、内含.合作探究,完成表格位置关系图形交点个数d与R、r的关系两圆相离两圆相交两圆相切探究2 如何根据圆的方程,判断它们之间的位置关系例题精讲 判断下列两圆的位置关系:2222(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与222226706270x y x x y y ++-=++-=()与 规律总结巩固提高:已知圆1C :2224x y mx y +-++250m -=,圆2C :2222x y x my +--+230m -=,m 为何值时,(1)圆1C 与圆2C 相外切?(52m m =-=或)(2)圆1C 与圆2C 相内含?(21m -<<-).课堂小结课堂检测1. 判断下列两个圆的位置关系:2222(1)(3)(2)1(7)(1)36x y x y -++=-+-=与; 2222(2)2232030x y x y x y x y +-+=+--=与3.2.若圆222x y m +=与圆2268x y x y ++-110-=相交,求实数m 的取值范围.3. 已知圆1C :222210x y kx k +-+-=和圆2C :2222(1)20x y k y k k +-+++=,则当它们圆心之间的距离最短时,两圆的位置关系如何?【课后巩固导学】1.已知01r <,则两圆222x y r +=与22(1)(1)2x y -++=的位置关系是 .相交2. 两圆2220x y x +-=与2240x y y +-=的公共弦长.3. 两圆2222440,2120x y x y x y x ++-=++-=相交于A ,B 两点,则直线AB 的方程是 .4.已知两圆2260x y x +-=与224x y y m +-=,则m 时,两圆相切.5.已知以C (-4,3)为圆心的圆与圆221x y +=相切,求圆C 的方程.6.已知点(5,4)P ,圆C :2268110x y x y +---=,过P 作圆D ,使C 与D 相切,并且使D 的圆心坐标是正整数,求圆D 的标准方程.。
高中数学 第四章 圆与圆的位置关系复习导学案 新人教版必修2
必修2 第四章§4-3 圆与圆的位置关系【课前预习】阅读教材P 129-132完成下面填空1. 两圆的的位置关系(1)设两圆半径分别为12,r r ,圆心距为d若两圆相外离,则 ,公切线条数为若两圆相外切,则 ,公切线条数为若两圆相交,则 , 公切线条数为若两圆内切,则 ,公切线条数为若两圆内含,则 ,公切线条数为(2) 设两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,若两圆相交,则两圆的公共弦所在的直线方程是2.圆系方程①以点),(00y x C 为圆心的圆系方程为②过圆0:22=++++F Ey Dx y x C 和直线0:=++c by ax l 的交点的圆系方程为③过两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C 的交点的圆系方程为 (不表示圆2C )【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1. 已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为( )A.2(2)x ++2(2)y -=1B.2(2)x -+2(2)y +=1C.2(2)x ++2(2)y +=1D.2(2)x -+2(2)y -=12.两个圆1C :2222x y x y +++-2=0与2C :2242x y x y +--+1=0的公切线有且仅有( ).A .1条B .2条C .3条D .4条3.圆1C :22()(2)x m y -++=9与圆2C :2(1)x ++2()y m -=4外切,则m 的值为( ).A. 2B. -5C. 2或-5D. 不确定4.两圆:x 2 + y 2 + 6 x + 4y = 0及x 2+y 2 + 4x + 2y – 4 =0的公共弦所在直线方程为强调(笔记):【课中35分钟】边听边练边落实5. 已知圆1C :22660x y x +--=①,圆2C :22460x y y +--=②(1)试判断两圆的位置关系;(2)求公共弦所在的直线方程.6. 求经过两圆22640x y x ++-=和226280x y y ++-=的交点,并且圆心在直线40x y --=上的圆的方程.7. 求圆22x y +-4=0与圆2244120x y x y +-+-=的公共弦的长.8. 有一种大型商品,A 、B 两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:每单位距离,A 地的运费是B 地运费的3倍.已知A 、B 两地相距10千米,顾客购物的标准是总费用较低,求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民如何选择购货地.强调(笔记):【课末5分钟】 知识整理、理解记忆要点 1. 2.3.4.【课后15分钟】 自主落实,未懂则问1.已知两圆相交于两点)1,(),3,1(-m B A ,两圆圆心都在直线0=+-c y x 上,则c m +的值是( )A .-1B .2C .3D .02.若圆1)()(222+=-+-b b y a x 始终平分圆4)1()1(22=+++y x 的周长,则实数b a ,应满足的关系是( )A .03222=---b a aB .05222=+++b a aC .0122222=++++b a b aD .01222322=++++b a b a 3. 在平面内,与点)2,1(A 距离为1, 与点)1,3(B 距离为2的直线共有( )条A.1条B. 2条C. 3条D. 4条4. 船行前方的河道上有一座圆拱桥,在正常水位时,拱圈最高点距水面为9m ,拱圈内水面宽22m .船只在水面以上部分高6.5m 、船顶部宽4m ,故通行无阻.近日水位暴涨了2.7m ,船已经不能通过桥洞了.船员必须加重船载,降低船身.试问船身必须降低多少,才能顺利地通过桥洞?5. 实数,x y 满足222410x y x y ++-+=, 求下列各式的最大值和最小值:(1)4y x -;(2)2x y -.。
高一数学必修2人教A导学案4.2.2圆与圆的位置关系
4.2.2 圆与圆的位置关系【教学目标】1.能根据给定圆的方程,判断圆与圆的位置关系.2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.【教学重难点】教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系.【教学过程】㈠复习导入、展示目标问题:如何利用代数与几何方法判别直线与圆的位置关系?前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系.㈡检查预习、交流展示1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢?㈢合作探究、精讲精练探究一:用圆的方程怎样判断圆与圆之间的位置关系?例1.已知圆C 1:013222=++++y x yx ,圆C 2:023422=++++y x yx ,是判断圆C 1与圆C 2的位置关系.解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一)圆C1的方程配方,得4923)1(22=+⎪⎭⎫ ⎝⎛++y x . 圆心的坐标是⎪⎭⎫⎝⎛--23,1,半径长231=r .圆C 2的方程配方,得41723)2(22=+⎪⎭⎫ ⎝⎛++y x . 圆心的坐标是⎪⎭⎫ ⎝⎛--23,2,半径长2172=r .连心线的距离为1,217321+=+r r ,231721-=-r r . 因为217312317+<<-, 所以两圆相交. (法二)方程013222=++++y x yx 与023422=++++y x yx 相减,得21=x 把21=x 代入013222=++++y x yx ,得011242=++y y因为根的判别式016144>-=∆,所以方程011242=++y y有两个实数根,因此两圆相交.点评:巩固用方程判断圆与圆位置关系的两种方法.变式2222(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距5.d ==因为 12d r r =+,所以两圆外切.㈣反馈测试 导学案当堂检测㈤总结反思、共同提高判断两圆的位置关系的方法:(1)由两圆的方程组成的方程组有几组实数解确定;(2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系.【板书设计】一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点; (4)内切,一个交点; (5)内含,无交点.二.判断圆与圆位置关系的方法 例1变式【作业布置】导学案课后练习与提高4.2.2 圆与圆的位置关系课前预习学案一.预习目标回忆圆与圆的位置关系有几种及几何特征,初步了解用圆的方程判断圆的位置关系的方法.二.预习内容1.圆与圆的位置关系有哪几种呢?2.如何判断圆与圆之间的位置关系呢?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.能根据给定圆的方程,判断圆与圆的位置关系.2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.学习重点:能根据给定圆的方程,判断圆与圆的位置关系.学习难点:用坐标法判断两圆的位置关系. 二.学习过程探究:用圆的方程怎样判断圆与圆之间的位置关系?例1.已知圆C 1:013222=++++y x yx ,圆C 2:023422=++++y x yx ,是判断圆C 1与圆C 2的位置关系.变式2222(1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系.三.反思总结判断两圆的位置关系的方法:四.当堂检测 1.圆0222=-+x y x和0422=++y y x 位置关系是( )A .相离B .外切C .相交D .内切2.两圆012422=++-+y x y x 和014422=--++y x y x 的公切线有_____条. 3.求圆0422=-+y x 和0124422=-+-+y x y x 的公共弦的长.课后练习与提高1.若直线0=++a y x 与圆a y x =+22相切,则a 为( )A.0或2B.2.2 .无解 2.两圆094622=+-++y x y x 和01912622=-+-+y x y x 的位置关系是( )A.外切 B.内切 C.相交 D.外离 3.已知圆22:()(2)4(0):30.C x a x a l x y l C -+-=>-+=及直线当直线被截得 的弦长为32时,则a =( )A .2B .22-C .12-D .12+4.两圆094622=+-++y x y x 和01912622=-+--+y x y x 的公切线有___条5.一圆过圆0222=-+x yx 和直线032=-+y x 的交点,且圆心在y 轴上,则这个圆的方程是________________.6.已知圆C 与圆0222=-+x y x 相外切,并且与直线03=+y x 相切于点)3,3(-Q ,求圆C 的方程.。
人教版数学高一必修2学案 4.2.2-4.2.3 圆与圆的位置关系 直线与圆的方程
4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用目标定位 1.掌握圆与圆的位置关系及判定方法.2.能利用直线与圆的位置关系解决简单的实际问题.3.理解坐标法解决几何问题的一般步骤.自 主 预 习1.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r 1、r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下: 位置关系 外离外切相交内切内含图示d 与r 1、r 2的关系 d >r 1+r 2d =r 1+r 2|r 1-r 2|< d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.⎭⎬⎫圆C 1方程圆C 2方程――→消元一元二次方程⎩⎨⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含2.用坐标方法解决平面几何问题的“三步曲”:即 时 自 测1.判断题(1)两圆无公共点,则两圆外离.( ×)(2)两圆有且只有一个公共点,则两圆内切和外切.(√)(3)设两圆的圆心距为l,两圆半径长分别为r1,r2,则当|r1-r2|<l<r1+r2时,两圆相交.(√)(4)两圆外切时,有三条公切线:两条外公切线,一条内公切线.(√)提示(1)两圆无公共点,则两圆外离和内含.2.圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系为()A.相离B.相交C.外切D.内切解析圆O1的圆心坐标为(1,0),半径长r1=1;圆O2的圆心坐标为(0,2),半径长r2=2;1=r2-r1<|O1O2|=5<r1+r2=3,即两圆相交.答案 B3.圆x2+y2+4x-4y+7=0与圆x2+y2-4x+10y+13=0的公切线的条数是()A.1B.2C.3D.4解析两圆的圆心坐标和半径分别为(-2,2),(2,-5),1,4,圆心距d=(-2-2)2+(2+5)2>8,1+4=5<8,∴两圆相离,公切线有4条.答案 D4.两圆x2+y2=r2与(x-3)2+(y+1)2=r2(r>0)外切,则r的值是________.解析由题意可知(3-0)2+(-1-0)2=2r,∴r=10 2.答案10 2类型一与两圆相切有关的问题【例1】求与圆x2+y2-2x=0外切且与直线x+3y=0相切于点M(3,-3)的圆的方程.解设所求圆的方程为(x-a)2+(y-b)2=r2(r>0),则(a-1)2+b2=r+1,①b +3a -3=3,② |a +3b |2=r .③ 联立①②③解得a =4,b =0,r =2,或a =0,b =-43,r =6,即所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 规律方法 两圆相切时常用的性质有:(1)设两圆的圆心分别为O 1、O 2,半径分别为r 1、r 2, 则两圆相切⎩⎪⎨⎪⎧内切⇔|O 1O 2|=|r 1-r 2|外切⇔|O 1O 2|=r 1+r 2(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦).【训练1】 求与圆(x -2)2+(y +1)2=4相切于点A (4,-1)且半径为1的圆的方程.解 设所求圆的圆心为P (a ,b ),则 (a -4)2+(b +1)2=1.①(1)若两圆外切,则有(a -2)2+(b +1)2=1+2=3,②联立①②,解得a =5,b =-1,所以,所求圆的方程为(x -5)2+(y +1)2=1; (2)若两圆内切,则有(a -2)2+(b +1)2=|2-1|=1,③联立①③,解得a =3,b =-1,所以,所求圆的方程为(x -3)2+(y +1)2=1. 综上所述,所求圆的方程为(x -5)2+(y +1)2=1或(x -3)2+(y +1)2=1. 类型二 与两圆相交有关的问题(互动探究)【例2】 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0. (1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度. [思路探究]探究点一 当两圆相交时,其公共弦所在直线的方程是什么? 提示 两圆的方程相减即可得公共弦所在直线的方程. 探究点二 如何求公共弦长?提示 (1)代数法:将两圆的方程联立,求出两交点的坐标,利用两点间的距离公式求弦长.(2)几何法:求出公共弦所在的直线方程,半径、弦心距、半弦长构成直角三角形的三边长,利用勾股定理求弦长. 解 (1)将两圆方程配方化为标准方程, C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,则圆C 1的圆心为(1,-5),半径r 1=52, 圆C 2的圆心为(-1,-1),半径r 2=10.又∵|C 1C 2|=25,r 1+r 2=52+10,r 1-r 2=52-10, ∴r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x -2y +4=0. (3)法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离 d =|1-2×(-5)+4|1+(-2)2=35,∴公共弦长l =2r 21-d 2=250-45=2 5.法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎨⎧x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎨⎧x =-4,y =0,或⎩⎨⎧x =0,y =2.即A (-4,0),B (0,2).所以|AB |=(-4-0)2+(0-2)2=25, 即公共弦长为2 5.规律方法 1.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. 2.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.【训练2】 已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.解 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎨⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解, ①-②得:3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+(-4)2=95. ∴|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245. 类型三 直线与圆的方程的应用【例3】 一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解 以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为x7+y4=1,即4x+7y-28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|28|42+72=2865,而半径r=3,∴d>r,∴直线与圆相离,所以轮船不会受到台风的影响.规律方法解决直线与圆的方程的实际应用题时应注意以下几个方面:【训练3】台风中心从A地以20千米/时的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为()A.0.5小时B.1小时C.1.5小时D.2小时解析以台风中心A为坐标原点建立平面直角坐标系,如图,则台风中心在直线y=x上移动,又B(40,0)到y=x的距离为d=202,由|BE|=|BF|=30知|EF|=20,即台风中心从E 到F 时,B 城市处于危险区内,时间为t =20千米20千米/时=1小时.故选B.答案 B [课堂小结]1.判断圆与圆位置关系的方式通常有代数法和几何法两种,其中几何法较简便易行、便于操作.2.直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,要善于利用其解决一些实际问题,关键是把实际问题转化为数学问题;要有意识用坐标法解决几何问题,用坐标法解决平面几何问题的思维过程:1.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A.(1,0)和(0,1) B.(1,0)和(0,-1) C.(-1,0)和(0,-1)D.(-1,0)和(0,1)解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0;解得⎩⎪⎨⎪⎧x =0,y =-1或⎩⎪⎨⎪⎧x =-1,y =0.答案 C2.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( ) A.x +y -1=0 B.2x -y +1=0 C.x -2y +1=0D.x -y +1=0解析 直线AB 的方程为:4x -4y +1=0,因此它的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),即两圆连心线. 答案 A3.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A 、B 两点,则直线AB 的方程是________.解析 ⎩⎪⎨⎪⎧x 2+y 2=10,x 2+y 2-2x -6y =10⇒2x +6y =0,即x +3y =0.答案 x +3y =04.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,当m 的取值满足什么条件时,圆C 1与圆C 2相切?解 对于圆C 1与圆C 2的方程,化为标准方程得C 1:(x -m )2+(y +2)2=9,C 2:(x +1)2+(y -m )2=4,所以两圆的圆心分别为C 1(m ,-2),C 2(-1,m ),半径分别为r 1=3,r 2=2,且|C 1C 2|=(m +1)2+(m +2)2.当圆C 1与圆C 2相外切时,则|C 1C 2|=r 1+r 2,即(m +1)2+(m +2)2=3+2,解得m =-5或m =2.当圆C 1与圆C 2相内切时,则|C 1C 2|=|r 1-r 2|,即(m +1)2+(m +2)2=|3-2|,解得m =-1或m =-2. 综上可知,当m =-5或m =2或m =-1或m =-2时,两圆相切.基 础 过 关1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.相离解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交. 答案 B2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( ) A.21B.19C.9D.-11解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m .又圆C1:x2+y2=1,∴|C1C2|=5.又∵两圆外切,∴5=1+25-m,解得m=9.答案 C3.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过()A.1.4米B.3.5米C.3.6米D.2米解析建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h,则A(0.8,h -3.6)半圆所在圆的方程为:x2+(y+3.6)2=3.62把A(0.8,h-3.6)代入得0.82+h2=3.62.∴h=40.77≈3.5(米).答案 B4.两圆x2+y2-x+y-2=0和x2+y2=5的公共弦长为________.解析由⎩⎪⎨⎪⎧x2+y2-x+y-2=0,x2+y2=5,①②②-①得两圆的公共弦所在的直线方程为x-y-3=0,∴圆x2+y2=5的圆心到该直线的距离为d=|-3|1+(-1)2=32,设公共弦长为l,∴l=25-⎝⎛⎭⎪⎫322= 2.答案 25.已知圆C1:x2+y2=4和圆C2:x2+y2+4x-4y+4=0关于直线l对称,则直线l的方程为________.解析圆C2可化为(x+2)2+(y-2)2=4,则圆C1,C2的圆心为C1(0,0),C2(-2,2),所以C 1C 2的中点为(-1,1),kC 1C 2=2-0-2-0=-1,所以所求直线的斜率为1,所以直线l 的方程为y -1=x +1,即x -y +2=0. 答案 x -y +2=06.求与圆O :x 2+y 2=1外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,半径为2的圆的方程.解 设所求圆的圆心为C (a ,b ),则所求圆的方程为 (x -a )2+(y -b )2=4.∵两圆外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,∴|OC |=1+2=3,|CP |=2.∴⎩⎨⎧a 2+b 2=9,⎝ ⎛⎭⎪⎫a +122+⎝ ⎛⎭⎪⎫b +322=4,解得⎩⎪⎨⎪⎧a =-32,b =-332.∴圆心C 的坐标为⎝ ⎛⎭⎪⎫-32,-332, 故所求圆的方程为⎝ ⎛⎭⎪⎫x +322+⎝⎛⎭⎪⎫y +3322=4. 7.已知圆C 1:x 2+y 2-10x -10y =0和圆C 2:x 2+y 2+6x -2y -40=0.求: (1)它们的公共弦所在直线的方程; (2)公共弦长.解 (1)由⎩⎨⎧x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,两方程相减,得公共弦所在直线方程为2x +y -5=0. (2)圆x 2+y 2-10x -10y =0的圆心C 1的坐标为(5,5), 半径r =52,又点C 1到相交弦的距离d =|2×5+5-5|22+12=2 5. ∴公共弦长为2(52)2-(25)2=230.能 力 提 升8.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于( )A.4B.4 2C.8D.8 2解析 ∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2,即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根,整理得x 2-10x +17=0,∴a +b =10,ab =17.∴(a -b )2=(a +b )2-4ab =100-4×17=32,∴|C 1C 2|=(a -b )2+(a -b )2=32×2=8.答案 C9.以圆C 1:x 2+y 2+4x +1=0与圆C 2:x 2+y 2+2x +2y +1=0相交的公共弦为直径的圆的方程为( )A.(x -1)2+(y -1)2=1B.(x +1)2+(y +1)2=1C.⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45D.⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -652=45 解析 两圆方程相减得公共弦所在直线的方程为x -y =0,因此所求圆的圆心的横、纵坐标相等,排除C ,D 选项,画图(图略)可知所求圆的圆心在第三象限,排除A.故选B.答案 B10.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是________.解析 曲线化为(x -6)2+(y -6)2=18,其圆心C 1(6,6)到直线x +y -2=0的距离为d =|6+6-2|2=5 2.过点C 1且垂直于x +y -2=0的直线为y -6=x -6,即y =x ,所以所求的最小圆的圆心C 2在直线y =x 上,如图所示,圆心C 2到直线x+y-2=0的距离为52-322=2,则圆C2的半径长为 2.设C2的坐标为(x0,x0),则|x0+x0-2|2=2,解得x0=2(x0=0舍去),所以圆心坐标为(2,2),所以所求圆的标准方程为(x-2)2+(y-2)2=2.答案(x-2)2+(y-2)2=211.已知隧道的截面是半径为4 m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m,高为3 m的货车能不能驶入这个隧道?假设货车的最大宽度为a m,那么要正常驶入该隧道,货车的限高为多少?解以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立如图所示的平面直角坐标系,那么半圆的方程为x2+y2=16(y≥0).将x=2.7代入,得y=16-2.72=8.71<3,所以,在离中心线2.7 m处,隧道的高度低于货车的高度.因此,货车不能驶入这个隧道.将x=a代入x2+y2=16(y≥0)得y=16-a2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a2m.探究创新12.已知圆C1:x2+y2-4x-2y-5=0与圆C2:x2+y2-6x-y-9=0.(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;(3)在平面上找一点P,过点P引两圆的切线并使它们的长都等于6 2.(1)证明 圆C 1:(x -2)2+(y -1)2=10,圆C 2:(x -3)2+⎝ ⎛⎭⎪⎫y -122=734. ∵|C 1C 2|=(2-3)2+⎝ ⎛⎭⎪⎫1-122=52. 且732-10<52<732+10,∴圆C 1与圆C 2相交.(2)解 联立两圆方程,得⎩⎨⎧x 2+y 2-4x -2y -5=0,x 2+y 2-6x -y -9=0, ∴两圆公共弦所在的直线方程为2x -y +4=0.(3)解 设P (x ,y ),由题意,得⎩⎨⎧2x -y +4=0,x 2+y 2-6x -y -9=(62)2,解方程组,得点P 的坐标为(3,10)或⎝ ⎛⎭⎪⎫-233,-265.。
高中数学新人教版必修2教案4.2.2 圆与圆的位置关系.doc
课 后 反 思
4
4
3
教师课时教案
问题与情境及教师活动
学生活动
10.教师总结:
设两圆的连心线长为 l ,则判别圆与圆的位置关系的依据有以下几点: (1)当 l r1 r2 时,圆 C1 与圆 C2 相离;
(2)当 l r1 r2 时,圆 C1 与圆 C2 外切;
教 (3)当 | r1 r2 | l r1 r2 时,圆 C1 与圆 C2 相交;
学 (4)当 l | r1 r2 | 时,圆 C1 与圆 C2 内切;
(5)当 l | r1 r2 | 时,圆 C1 与
(1)通过两个圆的位置关系的判断,你学到了什么?
学
(2)判断两个圆的位置关系有几种方法?它们的特点是什么?
小
结
(3)如何利用两个圆的相交弦来判断它们的位置关系?
重点 用坐标法判断圆与圆的位置关系.
难点 用坐标法判断圆与圆的位置关系.
教
问题与情境及教师活动
学生活动
1
过程与方法: 学 1. 初中学过的平面几何中,圆与圆的位置关系有几类?
过
教师:引导学生回忆、举例,并对学生活动进行评价;
学生:回顾知识点时,可互相交流.
程 2.判断两圆的位置关系,你有什么好的方法吗?
4.根据你所画出的图形,可以直观判断两个圆的位置关系.如何
把这些直观的事实转化为数学语言呢?
教师课时教案
教
问题与情境及教师活动
学生活动
2
学 师:启发学生利用图形的特征,用代数的方法来解决几何问题. 过 生:观察图形,并通过思考,指出两圆的交点,可以转化为两个圆的方
程联立方程组后是否有实数根,进而利用判别式求解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章第二节圆与圆的位置关系
三维目标
1.理解圆与圆的位置关系的几种分类和判断方法;
2. 能根据给定圆的方程,判断两圆的位置关系;
3. 能求相交两圆的公共弦所在的直线方程和公共弦长;
4. 深入理解数形结合的数学思想;类比思想.
___________________________________________________________________________ 目标三导 学做思1
问题1.请画出两圆的所有位置关系。
问题2. 类比直线与圆的位置关系的判断方法,你能找出判断两圆位置关系的方法些?
代数法
几何法
【学做思2】
1. 已知圆221:2880C x y x y +++-=,圆0244:222=---+y x y x C ,试判断圆1C 与圆2C 的关系?
【总结】你能总结出判断两圆位置关系的方法和步骤吗?并比较两种方法的优劣?
2. 已知两圆221:420C x y x y +-+=和圆222:240C x y y +--=的交点为A ,B
(1)求弦AB 所在的直线方程; (2)求AB 的长; (3)求过A ,B 两点且圆心在直线:2410l x y +-=上的圆的方程.
【思考】从这题你对求两圆的公共弦所在的直线方程有什么体会?
*3. 已知圆A :x 2+y 2-2x -2y -2=0.
(1)若直线l :ax +by -4=0平分圆A 的周长,求原点O 到直线l 的距离的最大值;
(2)若圆B 平分圆A 的周长,圆心B 在直线y =2x 上,求符合条件且半径最小的圆B 的方程.
达标检测
*1. 若圆222x y a +=与圆2260x y ay ++-=的公共弦长为32,则a 的值为
A.2± B .2 C .2- D .无解
2. 圆C 1:(x +1)2+(y -3)2=25,圆C 2与圆C 1关于点(2,1)对称,则圆C 2的方程是( )
A.(x -3)2+(y -5)2=25
B.(x -5)2+(y +1)2=25
C.(x -1)2+(y -4)2=25
D.(x -3)2+(y +2)2=25
3. 若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围( )
A .(4,6)
B .[4,6)
C .(4,6]
D .[4,6]
4. 已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则求圆C 2的标准方程。
5.已知过点M (3,3--)的直线l 被圆021422=-++y y x 所截得的弦长为54,求直线l 的方程.。