广东省深圳市龙岗区2013-2014学年第一学期期末考试九年级数学试卷(word版)

合集下载

2013-2014年上九年级数学期末试卷含答案(新人教版)

2013-2014年上九年级数学期末试卷含答案(新人教版)

2013-2014学年上学期九年级期末试卷(满分120 分数学试题卜,考试时间120分钟,新人教版命题:宋先贵)班级 _______ 姓名 ___________ 考号 __________ 等分 __________题目-一- -二二 三总分目 1-1011 — 18 1920212223 242526得分、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个正确的选项,请把正确答案的代号填在题后括4 .下列事件中必然发生的事件是()A •一个图形平移后所得的图形与原来的图形不全等B . 100件产品中有4件次品,从中任意抽取 5件,至少一件是正品C .不等式的两边同时乘以一个数,结果仍是不等式D •随意翻一一本书的某页,这页的页码一定是偶数得分评卷人号内)1 •下列计算中,正确的是A . <92B. Q 222 .方程xx3 x 3的解是(A . X 1B . X 1=0, X 2= — 33 .下列图形中,是 中心对称图形的疋A B5 .已知O O i 的半径是5cm ,O O 2的半径是3cm , 0i 02= 6cm ,则O O i 和O O 2的位置关系 是( )6 •抛物线y 2x 2 4x 5的对称轴为(A . X 1B . X 1C . X 210.有一张矩形纸片 ABCD , AB = 2.5 , AD = 1.5,将纸片折叠,使 AD 边落在AB 边上,折 痕为AE ,再将△ AED 以DE 为折痕向右折叠,AC 与BC 交于点F (如下图),则CF 的长 为( )A . 0.5B . 0.75C . 1D . 1.25A .外离B .外切C .相交D •内含7.两道单选题都含有 A 、B 、C 、D 四个选择支,瞎猜这两道题恰好全部猜对的概率有B.-C .16&如图,A 、B 、 于()A . 160 °C 三点在O O 上,若/ AOB = 80°,则/ ACBB .C . 40 °D .9 .已知圆锥的底面半径是( )3,母线长为 6,则该圆锥侧面展开后所得扇形的圆心角为A . 180B . 120 °C . 90 °D . 60第8题图211•方程x 4x 0的根是O的直径是6 cm,圆心0到直线AB的距离为6cm, O O与直线AB的位置关系疋得分评卷人、填空题(本大题共8小题,每小题3分,共24分)13 .当时,二次根式..2 3x有意义.14 •某商场在“元旦”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色球各两个。

2023-2024学年广东省深圳市龙岗区龙城初级中学九年级(上)期末数学试卷+答案解析(附后)

2023-2024学年广东省深圳市龙岗区龙城初级中学九年级(上)期末数学试卷+答案解析(附后)

一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是2023-2024学年广东省深圳市龙岗区龙城初级中学九年级(上)期末数学试卷( )A. B. C. D.2.如图,点D 、E 分别是上AB 、AC 边上的中点,为阴影部分.现有一小孩向其投一小石子且已投中,则石子落在阴影部分的概率是( )A. B. C. D.3.已知关于x 的方程没有实数根,则m 的取值范围是( )A.B. C.D.4.关于反比例函数,点在它的图象上,下列说法中错误的是( )A. 当时,y 随x 的增大而增大B. 图象位于第二、四象限C. 点和都在该图象上D. 当时,5.下列命题是真命题的是( )A. 四边相等的四边形是正方形B. 物体在任何光线照射下影子的方向都是相同的C. 如果,则D. 有一个角为的两个等腰三角形相似6.如图,把一根长为的竹竿AB斜靠在石坝旁,量出竿长1m处离地面的高度为,则石坝的高度为( )A. B. C. D.7.在中,,用直尺和圆规在AC上确定点D,使∽,根据作图痕迹判断,正确的是( )A. B.C. D.8.由12个有公共顶点O的直角三角形拼成如图所示的图形,…若,则图中与位似的三角形的面积为( )A. B. C. D.9.定义新运算:a※,例如:4※,4※那么函数※的图象大致是( )A. B. C. D.10.如图,反比例函数图象经过正方形OABC的顶点A,BC边与y轴交于点D,若正方形OABC的面积为12,,则k的值为( )A. 3B.C.D.二、填空题:本题共5小题,每小题3分,共15分。

11.已知正方形ABCD的对角线长为6cm,则正方形ABCD的面积为______12.规定:在实数范围内定义一种运算“◎”,其规则为a◎,方程◎的根为______.13.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?若设这批椽的数量为x株,则可列分式方程为______.14.如图,在中,,,点D是AB的中点,连接CD,将沿射线CA方向平移,在此过程中,的边CD与的边AB、AC分别交于点E、F,当的面积是面积的时,则平移的距离是______ .15.如图,在矩形ABCD中,点E在AD上,若且,,则AB的长为______.三、解答题:本题共7小题,共55分。

深圳龙岗区龙城初级中学九年级上册期末精选试卷检测题

深圳龙岗区龙城初级中学九年级上册期末精选试卷检测题

深圳龙岗区龙城初级中学九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.阅读下面材料:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母d表示,我们可以用公式(1)2n nS na d-=+⨯来计算等差数列的和.(公式中的n表示数的个数,a表示第一个数的值,)例如:3+5+7+9+11+13+15+17+19+21=10×3+10(101)2-×2=120.用上面的知识解决下列问题.(1)计算:2+8+14+20+26+32+38+44+50+56+62+68+74+80+86+92+98+104+110+116(2)某县决定对坡荒地进行退耕还林.从2009年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2009、2010、2011、2012四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.【答案】(1)1180;(2)到2017年,可以将全县所有的坡荒地全部种上树木.【解析】【分析】(1)根据题意,由公式(1)2n nS na d-=+⨯来计算等差数列的和,即可得到答案;(2)根据题意,设再过x年可以将全县所有的坡荒地全部种上树木.列出方程,解方程即可得到答案.【详解】解:(1)由题意,得6d=,20n=,2a=,∵(1)2n nS na d-=+⨯,∴20(201)22062S-=⨯+⨯401140=1180=+;(2)解:设再过x年可以将全县所有的坡荒地全部种上树木.根据题意,得1200x+(1)2x x-×400=25200,整理得:(x﹣9)(x+14)=0,∴x=9或x=﹣14(负值舍去).∴2009+9-1=2017;答:到2017年,可以将全县所有的坡荒地全部种上树木.【点睛】本题考查了一元二次方程的应用,解一元二次方程,以及计算等差数列的和公式,解题的关键是熟练掌握题意,正确找出等量关系,列出方程进行解题.2.已知二次函数y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;【答案】①a的值是﹣2或﹣4;②最大值=13,最小值=9【解析】【分析】①根据题意解一元二次方程即可得到a的值;②根据a≤x≤b,b=﹣3求得a=-4,由此得到一次函数为y=﹣4x﹣3,根据函数的性质当x=﹣4时,函数取得最大值,x=﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a、b的关系得到函数解析式是解题的关键.3.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题4.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P 与点B 重合时,P 1(3,0), 点P 与点B 关于点C 对称时,P 2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数5.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a,b,c的三条线段不能围成三角形.∴△ABC的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a为腰长及底边长两种情况考虑是解题的关键.二、初三数学二次函数易错题压轴题(难)6.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值7.如图,直线l:y=﹣3x+3与x轴,y轴分别相交于A、B两点,抛物线y=﹣x2+2x+b经过点B.(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫' ⎪⎝⎭;②45°【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化.(3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值. 【详解】(1)令x =0代入y =﹣3x+3, ∴y =3, ∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3, ∴二次函数解析式为:y =﹣x 2+2x+3. (2)令y =0代入y =﹣x 2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF 的最大值即可, ∵∠BFM′=90︒, ∴点F 在以BM′为直径的圆上,设直线AM′与该圆相交于点H ,∵点C 在线段BM′上,∴F 在优弧'BM H 上,∴当F 与M′重合时,BF 可取得最大值,此时BM′⊥l 1,∵A (1,0),B (0,3),M′(52,74), ∴由勾股定理可求得:AB =10,M′B =55,M′A =85, 过点M′作M′G ⊥AB 于点G ,设BG =x ,∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2,∴8516﹣(10﹣x )2=12516﹣x 2, ∴x =510, cos ∠M′BG ='BG BM =22,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1∴∠B M′P=∠BCA =90︒,又∵∠M′BG=∠CBA= 45︒∴∠BAC =45︒.【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.8.已知点P(2,﹣3)在抛物线L :y =ax 2﹣2ax+a+k (a ,k 均为常数,且a≠0)上,L 交y 轴于点C ,连接CP .(1)用a 表示k ,并求L 的对称轴及L 与y 轴的交点坐标;(2)当L 经过(3,3)时,求此时L 的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a <0时,若L 在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,求a 的取值范围;(4)点M(x 1,y 1),N(x 2,y 2)是L 上的两点,若t≤x 1≤t+1,当x 2≥3时,均有y 1≥y 2,直接写出t 的取值范围.【答案】(1)k=-3-a ;对称轴x =1;y 轴交点(0,-3);(2)2y=2x -4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2.【解析】【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2a x==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围.【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+∴k=-3-a ;抛物线L 的对称轴为直线-2a x=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3); (2)∵L 经过点(3,3),将该点代入解析式中,∴9a-6a+a+k=3,且由(1)可得k=-3-a ,∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5,∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,∴1<-a-3≤2,∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1,∴就要保证1x 的取值范围要在[-1,3]上,即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去,综上所述:-1≤t ≤2.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.9.如图所示,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的顶点坐标为()3, 6C ,并与y 轴交于点()0, 3B ,点A 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)如图①所示, P 是抛物线上的一个动点,且位于第一象限,连结BP 、AP ,求ABP ∆的面积的最大值;(3)如图②所示,在对称轴AC 的右侧作30ACD ∠=交抛物线于点D ,求出D 点的坐标;并探究:在y 轴上是否存在点Q ,使60CQD ∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)21233y x x =-++;(2)当92n =时,PBA S ∆最大值为818;(3)存在,Q 点坐标为((0,-或,理由见解析【解析】【分析】(1)利用待定系数法可求出二次函数的解析式;(2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看S △PAB=S △BPO+S △APO-S △AOB,设P 21,233n n n ⎛⎫-++ ⎪⎝⎭求出关于n 的函数式,从而求S △PAB 的最大值.(3) 求点D 的坐标,设D 21,233t t t ⎛⎫-++ ⎪⎝⎭,过D 做DG 垂直于AC 于G,构造直角三角形,利用勾股定理或三角函数值来求t 的值即得D 的坐标;探究在y 轴上是否存在点Q ,使60CQD ∠=?根据以上条件和结论可知∠CAD=120°,是∠CQD 的2倍,联想到同弧所对的圆周角和圆心角,所以以A 为圆心,AO 长为半径做圆交y 轴与点Q,若能求出这样的点,就存在Q 点.【详解】解:()1抛物线顶点为()3,6∴可设抛物线解析式为()236y a x =-+将()0,3B 代入()236y a x =-+得 396a =+13a ∴=- ∴抛物线()21363y x =--+,即21233y x x =-++ ()2连接,3, 3OP BO OA ==,PBA BPO PAO ABO S S S S ∆∆∆∆=+-设P 点坐标为21,233n n n ⎛⎫-++ ⎪⎝⎭1133222BPO x S BO P n n ∆=== 2211119323322322PAO y S OA P n n n n ∆⎛⎫==-++=-++ ⎪⎝⎭11933222ABO S OA BO ∆==⨯⨯= 22231991919813222222228PBA S n n n n n n ∆⎛⎫⎛⎫=+-++-=-+=--+ ⎪ ⎪⎝⎭⎝⎭ ∴当92n =时,PBA S ∆最大值为818()3存在,设点D 的坐标为21,233t t t ⎛⎫-++ ⎪⎝⎭ 过D 作对称轴的垂线,垂足为G ,则213,6233DG t CG t t ⎛⎫=-=--++ ⎪⎝⎭30ACD ∠=2DG DC ∴=在Rt CGD ∆中有222243CG CD DG DG DG DG =+=-=)21336233t t t ⎛⎫-=--++ ⎪⎝⎭化简得(1133303t t ⎛⎫---= ⎪⎝⎭13t ∴=(舍去),2333t =+∴点D(333+3,33AG GD ∴==连接AD ,在Rt ADG ∆中229276AD AG GD =+=+=6,120AD AC CAD ∴==∠=Q ∴在以A 为圆心,AC 为半径的圆与y 轴的交点上此时1602CQD CAD ∠=∠= 设Q 点为(0,m), AQ 为A 的半径 则AQ ²=OQ ²+OA ², 6²=m ²+3²即2936m += ∴1233,33m m ==-综上所述,Q 点坐标为()()0,330,33-或故存在点Q ,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.10.如图,抛物线y =ax 2+bx +2经过点A(−1,0),B(4,0),交y 轴于点C ;(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使S △ABC =23S △ABD ?若存在,请求出点D 坐标;若不存在,请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.【答案】(1)213222y x x =-++(2)存在,D (1,3)或(2,3)或(5,3-)(3)10【解析】【分析】 (1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D 到x 轴的距离,即可求得D 点的纵坐标,代入抛物线解析式可求得D 点坐标;(3)由条件可证得BC ⊥AC ,设直线AC 和BE 交于点F ,过F 作FM ⊥x 轴于点M ,则可得BF=BC ,利用平行线分线段成比例可求得F 点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE 和抛物线解析式可求得E 点坐标,则可求得BE 的长.【详解】解:(1)∵抛物线y=ax 2+bx+2经过点A (-1,0),B (4,0),∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为:213222y x x =-++; (2)由题意可知C (0,2),A (-1,0),B (4,0),∴AB=5,OC=2,∴S △ABC =12AB•OC=12×5×2=5, ∵S △ABC =23S △ABD , ∴S △ABD =315522⨯=, 设D (x ,y ), ∴11155222AB y y •=⨯•=, 解得:3y =;当3y =时,2132322y x x =-++=, 解得:1x =或2x =,∴点D 的坐标为:(1,3)或(2,3);当3y =-时,2132322y x x =-++=-, 解得:5x =或2x =-(舍去),∴点D 的坐标为:(5,-3);综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3);(3)∵AO=1,OC=2,OB=4,AB=5,∴22125AC =+=,222425BC =+=,∴222AC BC AB +=,∴△ABC 为直角三角形,即BC ⊥AC ,如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,由题意可知∠FBC=45°,∴∠CFB=45°,∴25CF BC ==∴AO AC OM CF =,即1525OM = 解得:2OM =, ∴OC AC FM AF =,即2535FM = 解得:6FM =,∴点F 为(2,6),且B 为(4,0),设直线BE 解析式为y=kx+m ,则2640k m k m +=⎧⎨+=⎩,解得312k m =-⎧⎨=⎩,∴直线BE解析式为:312y x=-+;联立直线BE和抛物线解析式可得:231213222y xy x x=-+⎧⎪⎨=-++⎪⎩,解得:4xy=⎧⎨=⎩或53xy=⎧⎨=-⎩,∴点E坐标为:(5,3)-,∴22(54)(3)10BE=-+-=.【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.三、初三数学旋转易错题压轴题(难)11.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.12.请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【答案】(17;(25【解析】试题分析:(1)利用旋转的性质,得到全等三角形.(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP2,BE=BP’=1,勾股定理可求得正方形边长.(17(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′2;连接PP′,在Rt△BP′P中,∵BP=BP′2,∠PBP′=90°,∴PP′=2,∠BP′P=45°;在△AP′P中,AP′=1,PP′=2,AP5∵222125+,即AP′2+PP′2=AP2;∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠B PC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB5∴∠BPC=135°5点睛:本题利用题目中的原理迁移解决问题,解题利用了旋转的性质,一般利用正方形,等腰,等边三角形的隐含条件,构造全等三角形,把没办法利用的已知条件转移到方便利用的图形位置,从而求解.13.综合与实践 问题情境在综合与实践课上,老师让同学们以“三角形的旋转”为主题开展教学活动老师给每个小组发了两个等模直角三角形ABC 和DEC ,其中90,2,2ACB DCE AC CD ︒∠=∠===.观案发现(1)将两个等腰直角三角形如图①摆放,设DE 的中点是,F AE 的中点是,H BD 的中点是G ,则HFG ∠=______度;操作证明(2)将图①中的DEC 绕点C 顺时针(逆时针)旋转,使点A C E 、、三点在一条直线上,如图②,其余条件不变,小明通过测量发现,此时FH FG =,请你帮助小明证明这个结论.探究发现(3)将图①中的DEC 绕点C 顺时针(逆时针)旋转,旋转角为()0180αα︒︒<<,DEC 在旋转的过程中,当直线FH 经过点C 时,如图③,请求出线段FG 的长.(4)在旋转过程中,在Rt ABC 和Rt CDE △中,始终有由,AC BC CE CD ⊥⊥,你在图③中还能发现哪两条线段在旋转过程中始终互相垂直?请找出并直接写出这两条线段.【答案】(1)90;(2)证明见解析;(3)31BD =;(4)AD BE ⊥【解析】【分析】(1)根据题意,运用中点的性质找到线段之间的位置关系即可求解;(2)根据旋转的性质及等腰三角形ABC 可知()ACD BCE SAS ∆≅∆,进而通过中位线定理即可得到FH FG =;(3)根据旋转的性质及勾股定理,先求出BF 的长,再由BD BF DF =-即可求出BD 的长;(4)根据旋转的性质及垂直的判定可知AD BE ⊥.【详解】(1),,90CE CD AC BC ECA DCB ==∠=∠=︒,BE AD ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,//,//HF AD FG BE ∴,AD BE ⊥,HF GF ∴⊥, 90HFG ∴∠=︒;(2)证明:如下图,连接AD BE ,,由旋转可知CE CD =,90ECD ACD ∠=∠=︒,又∵AC=BC ,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,F 是DE 的中点,H 是AE 的中点,G 是BD 的中点,11,22FH AD FG BE ∴==, FH FG ∴=;(3)解:由题意可得CF DE CFD CFE ⊥∆∆,,都是等腰直角三角形,2CD =1CF DF ∴==,2BC AC ==,223BF BC CF ∴=-=31BD BF DF ∴=-=,G 是BD 的中点,31DG -∴=31BD BF DF ∴=-=;(4)AD BE ⊥. 连接AD ,由(3)知,CF DE ⊥,∵ECD ∆是等腰直角三角形,∴F 是ED 中点,又∵H是AE中点,∴AD∥HF,∵HF⊥ED,∴AD BE.【点睛】本题主要考查了中的的性质,中位线定理,三角形全等,勾股定理等三角形综合证明,熟练掌握三角形的相关知识点是解决本题的关键.错因分析:(1)不能熟练运用重点的性质找到线段之间的关系;(2)未掌握旋转的性质;(3)不能将题目探究中的发现进行推广.14.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【答案】(1)见解析;(2)①见解析;②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=,∴△BDE的最小周长=CD+4=;②存在,∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;当6<t<10时,由∠DBE=120°>90°,∴此时不存在;当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.15.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG .连接AD ,BE ,两线交于Z ,AD 交BC 于X ,同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形,∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°,∴∠ACD=∠BCE , 在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE ,∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB ,∴∠DXB+∠EBC=90°,∴∠EZA=180°﹣90°=90°,即AD ⊥BE ,∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG ,即FH=FG ,FH ⊥FG ,结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.四、初三数学 圆易错题压轴题(难)16.已知:图1 图2 图3(1)初步思考:如图1, 在PCB ∆中,已知2PB =,BC=4,N 为BC 上一点且1BN =,试说明:12PN PC = (2)问题提出:如图2,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值. (3)推广运用:如图3,已知菱形ABCD 的边长为4,∠B ﹦60°,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC -的最大值. 【答案】(1)详见解析;(2)5;(3)最大值37DG =【解析】【分析】(1)利用两边成比例,夹角相等,证明BPN ∆∽BCP ∆,得到PN BN PC BP =,即可得到结论成立;(2)在BC 上取一点G ,使得BG=1,由△PBG ∽△CBP ,得到12PG PC =,当D 、P 、G 共线时,12PD PC +的值最小,即可得到答案; (3)在BC 上取一点G ,使得BG=1,作DF ⊥BC 于F ,与(2)同理得到12PG PC =,当点P 在DG 的延长线上时,12PD PC -的值最大,即可得到答案. 【详解】(1)证明:∵2,1,4PB BN BC ===,∴24,4PB BN BC =⋅=,∴2PB BN BC =⋅, ∴BN BP BP BC=,。

学年广东省深圳市龙岗区九年级上期末数学试卷

学年广东省深圳市龙岗区九年级上期末数学试卷

2015-2016学年广东省深圳市龙岗区九年级(上)期末数学试卷一、选择题:以下每题只有一个正确的选项,请将答题卡上的正确选项涂黑,每小题3分,共36分.1.(3分)如图所示几何体的俯视图是()A.B.C.D.2.(3分)在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个B.16个C.20个D.25个3.(3分)1m长的标杆直立在水平地面上,它在阳光下的影子长度为0.8m,同一时刻,某电视塔的影子长度为100m,则该电视塔的高度为()A.150m B.125m C.120m D.80m4.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12B.14C.12或14D.以上都不对5.(3分)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.6.(3分)下列命题中,错误的是()A.三角形三边的垂直平分线的交点到三个顶点的距离相等B.两组对角分别相等的四边形是平行四边形C.对角线相等且互相平分的四边形是矩形D.顺次连接菱形各边中点所得的四边形是正方形7.(3分)某旅游景点2015年六月份共接待游客25万人次,八月份共接待游客64万人次,设六至八月每月游客人次的平均增长率为x,则可列方程为()A.25(1+x)2=64B.25(1﹣x)2=64C.64(1+x)2=25D.64(1﹣x)2=258.(3分)一元二次方程ax2+x﹣2=0有两个不相等实数根,则a的取值范围是()A.a B.a=C.a且a≠0D.a且a≠0 9.(3分)将抛物线y=﹣5x2+1先向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为()A.y=﹣5(x+3)2﹣2B.y=﹣5(x+3)2﹣1C.y=﹣5(x﹣3)2﹣2D.y=﹣5(x﹣3)2﹣110.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则tan∠ACD的值为()A.B.C.D.11.(3分)如图,已知A是双曲线y=(x>0)上一点,过点A作AB∥x轴,交双曲线y=﹣(x<0)于点B,若OA⊥OB,则的值为()A.B.C.D.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2﹣4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共4小题,每题3分,共12分,请将答案填入答题卡指定位置上.13.(3分)方程4x(2x+1)=3(2x+1)的解为.14.(3分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.15.(3分)如图,直线y=x﹣1与坐标轴交于A、B两点,点P是曲线y=(x >0)上一点,若△PAB是以∠APB=90°的等腰三角形,则k=.16.(3分)如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棍总数为根.三、解答题:共52分.17.(5分)计算:|tan60°﹣2|+(2015﹣π)0﹣(﹣)﹣2+.18.(6分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上.(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率.19.(6分)某中学九年级学生开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度,如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进20米到达点D,又测得点A的仰角为45°,请根据这些数据,求这幢教学楼的高度.(最后结果精确到1米,参考数据≈1.732)20.(7分)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.21.(9分)如图,已知A(﹣4,n),B(2,﹣4)是反比例函数y=的图象和一次函数y=ax+b的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式ax+b﹣<0的解集.22.(9分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,客房部每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房部每天的最大利润是多少?(3)当x为何值时,客房部每天的利润不低于14000元?23.(10分)如图①,已知二次函数y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C.(1)求△ABC的面积.(2)点M在OB边上以每秒1个单位的速度从点O向点B运动,点N在BC边上以每秒个单位得速度从点B向点C运动,两个点同时开始运动,同时停止.设运动的时间为t秒,试求当t为何值时,以B、M、N为顶点的三角形与△BOC相似?(3)如图②,点P为抛物线上的动点,点Q为对称轴上的动点,是否存在点P、Q,使得以P、Q、C、B为顶点的四边形是平行四变形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2015-2016学年广东省深圳市龙岗区九年级(上)期末数学试卷参考答案与试题解析一、选择题:以下每题只有一个正确的选项,请将答题卡上的正确选项涂黑,每小题3分,共36分.1.(3分)如图所示几何体的俯视图是()A.B.C.D.【解答】解:从上面看中间是一个正方形,左右各一个矩形,故选:D.2.(3分)在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个B.16个C.20个D.25个【解答】解:设盒子中有红球x个,由题意可得:=0.2,解得:x=16,故选:B.3.(3分)1m长的标杆直立在水平地面上,它在阳光下的影子长度为0.8m,同一时刻,某电视塔的影子长度为100m,则该电视塔的高度为()A.150m B.125m C.120m D.80m【解答】解:设电视塔的高度应是x,根据题意得:=,解得:x=125,故选:B.4.(3分)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12B.14C.12或14D.以上都不对【解答】解:解方程x2﹣12x+35=0,得x1=5,x2=7,即第三边的边长为5或7.∵三角形两边的长是3和4,∴1<第三边的边长<7,∴第三边的边长为5,∴这个三角形的周长是3+4+5=12.故选:A.5.(3分)在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选:B.6.(3分)下列命题中,错误的是()A.三角形三边的垂直平分线的交点到三个顶点的距离相等B.两组对角分别相等的四边形是平行四边形C.对角线相等且互相平分的四边形是矩形D.顺次连接菱形各边中点所得的四边形是正方形【解答】解:A、三角形三边的垂直平分线的交点到三个顶点的距离相等,所以A选项为真命题;B、两组对角分别相等的四边形是平行四边形,所以B选项为真命题;C、对角线相等且互相平分的四边形是矩形,所以C选项为真命题;D、顺次连接菱形各边中点所得的四边形是矩形,所以D选项为假命题.故选:D.7.(3分)某旅游景点2015年六月份共接待游客25万人次,八月份共接待游客64万人次,设六至八月每月游客人次的平均增长率为x,则可列方程为()A.25(1+x)2=64B.25(1﹣x)2=64C.64(1+x)2=25D.64(1﹣x)2=25【解答】解:设六至八月每月游客人次的平均增长率为x,依题意得25(1+x)2=64.故选:A.8.(3分)一元二次方程ax2+x﹣2=0有两个不相等实数根,则a的取值范围是()A.a B.a=C.a且a≠0D.a且a≠0【解答】解:∵一元二次方程ax2+x﹣2=0有两个不相等实数根,∴b2﹣4ac=12﹣4a•(﹣2)>0,解得:a>﹣且a≠0,故选:C.9.(3分)将抛物线y=﹣5x2+1先向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为()A.y=﹣5(x+3)2﹣2B.y=﹣5(x+3)2﹣1C.y=﹣5(x﹣3)2﹣2D.y=﹣5(x﹣3)2﹣1【解答】解:把抛物线y=﹣5x2+1向左平移3个单位得到抛物线y=﹣5(x+3)2+1的图象,再向下平移2个单位得到抛物线y=﹣5(x+3)2+1﹣2的图象,即y=﹣5(x+3)2﹣1.故选:B.10.(3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则tan∠ACD的值为()A.B.C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∴∠CDA=90°,∠A+∠B=90°,∴∠A+∠ACD=90°,∴∠B=∠ACD,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,tanB=,∴tanB=,∴tan∠ACD=,故选:A.11.(3分)如图,已知A是双曲线y=(x>0)上一点,过点A作AB∥x轴,交双曲线y=﹣(x<0)于点B,若OA⊥OB,则的值为()A.B.C.D.【解答】解:∵A点在双曲线y=(x>0)上一点,∴设A(,m),∵AB∥x轴,B在双曲线y=﹣(x<0)上,∴设B(﹣,m),∴OA2=+m2,BO2=+m2,∵OA⊥OB,∴OA2+BO2=AB2,∴+m2++m2=(+)2,∴m2=,∴===,∴=,故选:C.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2﹣4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:由开口向上,可得a>0,又由抛物线与y轴交于负半轴,可得c <0,然后由对称轴在y轴右侧,得到b与a异号,则可得b<0,abc>0,故①错误;由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;由抛物线的对称轴为直线x=1,可得b=﹣2a,再由当x=﹣1时y<0,即a﹣b+c <0,3a+c<0,故③正确;根据对称轴和图可知,抛物线与x轴的另一交点在3和4之间,所以当x=4时,y>0,即可得16a+4b+c>0,故④正确,故选:C.二、填空题:本大题共4小题,每题3分,共12分,请将答案填入答题卡指定位置上.13.(3分)方程4x(2x+1)=3(2x+1)的解为x1=﹣,x2=.【解答】解:移项得4x(2x+1)﹣3(2x+1)=0,∴(2x+1)(4x﹣3)=0,∴2x+1=0或4x﹣3=0,∴x1=﹣,x2=.故答案为x1=﹣,x2=.14.(3分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为2.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.15.(3分)如图,直线y=x﹣1与坐标轴交于A、B两点,点P是曲线y=(x >0)上一点,若△PAB是以∠APB=90°的等腰三角形,则k=4.【解答】解:作PC⊥x轴,PD⊥y轴,如图,∴∠COD=∠ODM=∠OCM=90°,∴四边形OCPD是矩形.在△APD和△BPC中,,∴△APD≌△BPC(AAS),∴AD=BC,DP=CP,∴四边形OCPD是正方形,∴OC=OD,∵OA=1,OB=5,设OD=x,则AD=x+1,BC=5﹣x,∵AD=BC,∴x+1=5﹣x,解得:x=2,即OD=OC=2,∴点P的坐标为:(2,2),∴k=xy=4,故答案为:4.16.(3分)如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棍总数为630根.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有3个三角形,需要火柴的根数为:3×(1+2);n=3时,有6个三角形,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.故答案为:630.三、解答题:共52分.17.(5分)计算:|tan60°﹣2|+(2015﹣π)0﹣(﹣)﹣2+.【解答】解:原式=2﹣+1﹣9+3=﹣3﹣.18.(6分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上.(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共产生12种结果,每种结果出现的可能性相同,其中两张牌都是中心对称图形的有2种,即(B,C)(C,B)∴P(两张都是中心对称图形)==.19.(6分)某中学九年级学生开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度,如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进20米到达点D,又测得点A的仰角为45°,请根据这些数据,求这幢教学楼的高度.(最后结果精确到1米,参考数据≈1.732)【解答】解:由已知,可得:∠ACB=30°,∠ADB=45°,∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵tan30°==,∴=,即BC=AB.∵BC=CD+BD,∴AB=CD+AB,即(﹣1)AB=20,∴AB=10(+1)≈27米.答:教学楼的高度为27米.20.(7分)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.【解答】(1)证明:在矩形ABCD中,BC=AD,AD∥BC,∠B=90°,∴∠DAF=∠AEB.∵DF⊥AE,AE=BC,∴∠AFD=90°,AE=AD.∴△ABE≌△DFA;∴AB=DF;(2)解:由(1)知△ABE≌△DFA.∴AB=DF=6.在Rt△ADF中,AF=,∴EF=AE﹣AF=AD﹣AF=2.∴tan∠EDF==.21.(9分)如图,已知A(﹣4,n),B(2,﹣4)是反比例函数y=的图象和一次函数y=ax+b的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式ax+b﹣<0的解集.【解答】解:(1)把B(2,﹣4)代入y=的得m=2×(﹣4)=﹣8,所以反比例函数解析式为y=﹣,把A(﹣4,n)代入y=﹣得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b得,解得.所以一次函数的解析式为y=﹣x﹣2;(2)直线y=﹣x﹣2与x轴交于点C(﹣2,0),S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;(3)不等式kx+b﹣<0的解集为﹣4<x<0或x>2;故答案为:﹣4<x<0或x>2.22.(9分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,客房部每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房部每天的最大利润是多少?(3)当x为何值时,客房部每天的利润不低于14000元?【解答】解:(1)由题意得:y=60﹣;(2)w=(200+x)(60﹣)﹣20×(60﹣)=﹣x2+42x+10800∵w=﹣x2+42x+10800=﹣(x﹣210)2+15210,∴当x=210时,w有最大值,且最大值是15210元;(3)当W=14000时,即﹣(x﹣210)2+15210=14000,解得:x1=100,x2=320,故当100≤x≤320时,每天的利润不低于14000元.23.(10分)如图①,已知二次函数y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C.(1)求△ABC的面积.(2)点M在OB边上以每秒1个单位的速度从点O向点B运动,点N在BC边上以每秒个单位得速度从点B向点C运动,两个点同时开始运动,同时停止.设运动的时间为t秒,试求当t为何值时,以B、M、N为顶点的三角形与△BOC相似?(3)如图②,点P为抛物线上的动点,点Q为对称轴上的动点,是否存在点P、Q,使得以P、Q、C、B为顶点的四边形是平行四变形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)当x=0时,y=3,即C(0,3),当y=0时,﹣x2+2x+3=0,解得x=﹣1,x=3,即A(﹣1,0),B(3,0);S△ABC=AB•OC=×[3﹣(﹣1)]×3=6;(2)若∠BMN=90°,如图1:,BM=(3﹣t),BN=t,BC==3,△BMN∽△BOC,=,即=.t=(3﹣t),解得t=;若∠BNM=90°时,如图2:,BM=(3﹣t),BN=t,BC==3,△BMN∽△BCO,=,即=,3﹣t=×t,解得t=1;综上所述:t=1或t=;(3)如图3:,若CB为对角线,即CP∥QB,CP 1=Q1B=3﹣1=2,y=y C=3,P1(2,3);CB为边,即CB∥PQ,CB=PQ,设P(a,b),D(1,b),Q(1,a+b﹣1).PQ=CB,即(a﹣1)2+(1﹣a)2=18,化简,得a2﹣2a﹣8=0.解得a=﹣2或a=4.当a=﹣2时,b=﹣(﹣2)2+2×(﹣2)+3=﹣5,即P2(﹣2,﹣5);当a=4时,b=﹣42+2×4+3=﹣5,即P3(4,﹣5);综上所述:P1(2,3),P2(﹣2,﹣5),P3(4,﹣5).。

广东省深圳市宝安区2014届九年级上学期期末考试数学试题解析

广东省深圳市宝安区2014届九年级上学期期末考试数学试题解析

2013-2014学年第一学期宝安区期期末调研试卷九年级 数学第一部分:选择题(每题3分,共36分) 1、下列四个几何体中,主视图为三角形的是2、方程x 2=4的解是A .x=0B .x=2C .x=2-D .x 1=2, x 2= 2-3、如图1,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列条件后,不能判定△ABE ≌△ACD 的是A .AD=AEB .BE=CDC .∠AEB=∠ADCD .AB=AC 4、下列点位于反比例函数xy 6-=图象上的是 A .(2,3) B .(2-,3) C .(3,2) D .(3,2--)5、如图2是一个被等分成8个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向绿色区域的概率是 A .81 B .41 C .83 D .216、如图3,在△ABC 中AB=9,AC=6,BC 边上的垂直平分线DE 交AB 、BC 分别于点D 、E ,则△ACD 的周长等于 A .12 B .15 C .18 D .217、为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为20平方米提高到28.8平方米,若每年的年增长率相同,则年增长率为 A .20% B .10% C .2% D .0.2%8、如图4,将矩形ABCD 绕点A 顺时针旋转90o 后,得到矩形AB ’C ’D ’,若CD=8,AD=6,连接CC ’,那么CC ’的长是 A .20 B .102 C .103 D .1009、下列说法不正确的是A .有三个角相等的四边形是矩形B .三个角都相等的三角形是等边三角形C .四条边都相等的四边形是菱形D .等腰梯形的两条对角线相等10、如图5,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为A .1.5米B .2.3米C .3.2米D .7.8米11、方程48142+-x x =0的两根是菱形两条对角线的长,则这个菱形的周长是A .40B .30C .28D .20 12、如图6,已知抛物线x x y l 221:21-=与x 轴分别交于O 、A 两点,它的对称轴为直线x=a ,将抛物线1l 向上平移4个单位长度得到抛物线2l ,则图中两条抛物线、对称轴与y 轴所围成的图形(图中阴影部分)的面积为A .4B .6C .8D .16 二、填空题(每题3分,共12分)13、某口袋中有红色、黄色、黑色的小球共50个,这些小球除颜色外都相同,通过多次试验后发现摸到红色球的频率稳定在20%,则袋中红色球是(答案填到答题卷)个。

龙岗区2012—2013学年第一学期期末初中学业水平测考试试题

龙岗区2012—2013学年第一学期期末初中学业水平测考试试题

龙岗区2012—2013学年第一学期期末初中学业水平测试题九年级数学说明:1. 全卷共三大题,共4页。

考试时间90分钟,满分100分。

2. 本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠。

3. 答题前,请将学校、班级、姓名和考号用规定的笔写在答题卡指定的位置上。

4. 本卷选择题1~12,每小题选出答案后,用2B 铅笔在答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂选其它答案;非选择题13~22,答案必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。

5. 考试结束,请将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图所示,该几何体的俯视图是( )BD2.如图,在直角△ABC 中,∠C=90°,若AB=5,AC=4,则sinB=( )C3.已知粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,则取出黄色粉笔的概率是( ) C4.若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k 的值为( )26.如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数的图象交于A 点和B 点,若C 为x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为( )C29.如图,在直角三角形ABC 中,∠C=90°,AB=10,AC=8,点E 、F 分别为AC 和AB 的中点,则EF=( )10.如图,ABCD 是正方形,G 是BC 上(除端点外)的任意一点,DE ⊥AG 于点E ,BF ∥DE ,交AG 于点F .下列结论不一定成立的是( )212.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论: ①abc >0;②2a+b=0;③a ﹣b+c >0;④9a+3b+c <0. 则其中结论正确选项的是( )二、填空题:本大题共4小题,每小题3分,共12分。

广东省深圳市龙岗区2013-2014学年第一学期期末考试九年级数学试卷(word版)

广东省深圳市龙岗区2013-2014学年第一学期期末考试九年级数学试卷(word版)

D.8 米 )
A . ac< 0 C. 4a+2b+c> 0
B . 2a+b=0 D. 对 于任意 x 均有 ax2+bx ≥a+b
二、填空题(每小题 3 分,满分 12 分)
2
13.一元二次方程 x =3x 的解是: _________ .
14.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉
学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
21.(6 分)现有一块长 20cm,宽 10cm 的长方形铁皮,在它的四个角分别剪去一个大小完全相同的
小正方形,用剩余的部分做成一个底面积为
56cm2 的无盖长方体盒子,请求出剪去的小正方形的边
长.
100 只雀鸟,给它们座
上标记后放回山林;一段时间后,再从中随机捕捉
500 只,其中有标记的雀鸟有 10 只.请你帮助工
作人员估计这片山林中雀鸟的数量约为
_________ .
15.定义运算 “@”的运算法则为: x@y=
,则( 2@6 )@8= _________ .
16.(3 分)反比例函数 y1= , y2= ( k≠0)在第一象限的图象如图,过 y1 上的任意一点 A ,作 x 轴的平行线交 y2 于点 B,交 y 轴于点 C,若 S△AOB=2 ,则 k= _________ .
B. 240 元
C.250 元
10%,则这种商品每件的进价为 D . 300 元
6.如图, △ABC 中, AB=AC=8 , BC=6 ,AD 平分∠BAC 交 BC 于点 D,点 E 为 AC 的中点,连接
DE ,则 △CDE 的周长为(

广东省深圳市龙岗区2014届九年级上学期期末考试数学试题(扫描版,WORD答案)

广东省深圳市龙岗区2014届九年级上学期期末考试数学试题(扫描版,WORD答案)
在Rt△OAG中,OG2+OA2=AG2,
x2+(4 )2=(8﹣x)2,
解得:x=1,
∴OG=1.
23.
解:(1)将B、C两点的坐标代入得 ,
解得: ;
所以二次函数的表达式为:y=x2﹣2x﹣3(3分)
(2)存在点P,使四边形POP′C为菱形;
设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E
若四边形POP′C是菱形,则有PC=PO;
参考答案
一、选择题(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,12小题,每小题3分,共36分)
1.C2.A
3.A4.D
5.B6.B
7.C8.D
9.C10.B
11.B12.C
二、填空题(每小题3分,满分12分)
13.x1=0,x2=3.
14.5000只.
15、 .
16.12.
三、解答题(第17题5分,第18、20题,每题8分,第19、21题每题6分,第22题9分,第23题10分,共52分)
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,
∴BC∥AE,
∵∠BAO=∠COA=90°,
∴CO∥AB,
∴四边形ABCE是平行四边形;
(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,
在Rt△ABO中,
∵∠OAB=90°,∠AOB=30°,BO=8,
∴AO=BO•cos30°=8× =4 ,
根据题意得:(20﹣2x)(10﹣2x)=56,
整理得:(x﹣3)(x﹣12)=0,
解得:x=3或x=12,
经检验x=12不合题意,舍去,
∴x=3,
则剪去小正方形的边长为3cm.

广东深圳龙岗区2023-2024学年上学期九年级期末数学模考试卷及参考答案

广东深圳龙岗区2023-2024学年上学期九年级期末数学模考试卷及参考答案

2023-2024学年第一学期广东省深圳市龙岗区九年级期末模考试卷一.选择题(每题3分,共30分)1 . 如图所示的几何体的主视图为( )A .B .C .D .2. 二次函数y =3(x -1)2+2图象的顶点坐标是( )A .(2,1)B .(-2,-1)C .(-1,2)D .(1,2)3. 从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为( ) A. 13 B. 12 C. 23 D. 344 . 如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A .2B .4C .3D .55. 函数y =﹣2x 2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A .y =﹣2(x ﹣1)2+2B .y =﹣2(x ﹣1)2﹣2C .y =﹣2(x +1)2+2D .y =﹣2(x +1)2﹣2 6 .在同一直角坐标系中,函数y =kx -k 与k y x=(k ≠0)的图象大致是( )A .B .C .D .7 .如图,在A 处测得点P 在北偏东60°方向上,在B 处测得点P 在北偏东30°方向上,若2AB =米,则点P 到直线AB 距离PC 为( )A .3米BC .2米D .1米8. 如图,在ABC 中,8cm AB =,16cm BC =,动点P 从点A 开始沿AB 边运动,速度为2cm/s ;动点Q 从点B 开始沿BC 边运动,速度为4cm/s ;如果P 、Q 两动点同时运动,那么经过( )秒时QBP △与ABC 相似.A .2秒B .4秒C .2或0.8秒D .2或4秒9. 如图,矩形ABCD 的顶点A 、B 分别在反比例函数4y x=()0x >与2y x =−()0x <的图像上, 点C 、D 在x 轴上,AB BD 、分别交y 轴于点E 、F ,则阴影部分的面积等于( )A .103B .2C .116D .5310 .二次函数2(0)y ax bx c a ++≠的部分图象如图所示,图象过点(1,0)−,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x −<<. 其中正确的结论有( )A .1个B .2个C .3个D .4个二.填空题(每题3分,共15分)11. 若23a b =,则a b b += . 12. 在一个不透明的盒子中装有n 个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n 的值大约为_______13. 如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是 .14 .如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,已知斜边DF 保持水平并且边DE 与点B 在同一直线上,若DE =40cm ,EF =20cm .DF 离地面的高度AC =1.5m ,CD =8m ,则树的高度AB = 米.15 .如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B ′处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C ′处,EF 为折痕,连接AC ′.若CF =3,则tan B AC ′′∠= .三.解答题(共55分)16 . ()1011tan 602π− ++−° . 17. 解下列方程:(1)2240x x −−=(2)()()3454x x x −−18. 某中学决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量,促进学生全面健康发展.学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程?(要求必须选修一门且只能选修一门)”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图:请结合上述信息,解答下列问题:(1)共有_______名学生参与了本次问卷调查;(2)“陶艺”在扇形统计图中所对应的圆心角是_______度;(3)小刚和小强分别从“礼仪”“陶艺”“编程”这三门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.19. 图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m =AB ,0.6m BC =,123ABC ∠=°,该车的高度 1.7m AO =.如图2,打开后备箱,车后盖ABC 落在AB C ′′处,AB ′与水平面的夹角27B AD ′∠=°.(1)求打开后备箱后,车后盖最高点B ′到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C ′处经过,有没有碰头的危险?请说明理由.(结果精确到.....001m .,参考数据:sin 270.454°≈,cos 270.891°≈,tan 270.510°≈ 1.732≈) 20. 某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系 如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?21. (1)如图1,ABC 和DEC 均为等边三角形,直线AD 和直线BE 交于点F .填空:①线段AD ,BE 之间的数量关系为________;②AFB ∠的度数为______.(2)如图2所示,ABC 和DEC 均为等腰直角三角形,90ABC DEC AB BC DE EC ∠=∠=°==,,, 直线AD 和直线BE 交于点F ,请判断AFB ∠的度数及线段AD ,BE 之间的数量关系,并说明理由.(3)如图3所示,ABC 和ADE 均为直角三角形,9030ACB AED BAC DAE ∠°=∠=°∠=∠=,,53AB AE ==,,当点B 在线段ED 的延长线上时,求线段BD 和CE 的长度.22. 如图,已知抛物线y =﹣x 2+bx +c 经过点A (﹣1,0),B (3,0),与y 轴交于点C ,点P 是抛物线上一动点,连接PB ,PC .(1)求抛物线的解析式;(2)如图1,当点P 在直线BC 上方时,过点P 作PD 上x 轴于点D ,交直线BC 于点E .若PE =2ED ,求△PBC 的面积;(3)抛物线上存在一点P ,使△PBC 是以BC 为直角边的直角三角形,求点P 的坐标.2023-2024学年第一学期广东省深圳市龙岗区九年级期末模考试卷解析一.选择题(每题3分,共30分)1 . 如图所示的几何体的主视图为()A. B. C. D.【答案】D【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看到的是两个矩形,中间的线是实线,故选:D.2.二次函数y=3(x-1)2+2图象的顶点坐标是()A.(2,1) B.(-2,-1) C.(-1,2) D.(1,2)【答案】D【分析】由顶点式y=3(x-1)2+2可得顶点坐标为(1,2).【详解】解:∵y=3(x-1)2+2,∴抛物线顶点为(1,2).故选:D.3.从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为()A. 13B. 12C.23D.34【答案】B【解析】【分析】根据题意画树状图,再利用概率公式,即可得到答案.【详解】解:根据题意,画树状图如下:∴一共有12种情况,被抽到的2名同学都是男生的情况有6种,61122P ∴,故选:B .4 .如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为()A .2B .4C .3D .5【答案】B【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD :AF=3:5,∴AD :DF=3:2,∵AB ∥CD ∥EF , ∴ADBCDF CE =,即362CE =,解得,CE=4,故选B .5. 函数y =﹣2x 2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A .y =﹣2(x ﹣1)2+2B .y =﹣2(x ﹣1)2﹣2C .y =﹣2(x +1)2+2D .y =﹣2(x +1)2﹣2【答案】B【分析】根据二次函数图像的平移方法“左加右减,上加下减”直接进行求解即可.【详解】解:抛物线y =﹣2x 2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y =﹣2(x ﹣1)2﹣2. 故选:B .6 .在同一直角坐标系中,函数y =kx -k 与k y x =(k ≠0)的图象大致是( ) A .B .C . D .【答案】D【分析】根据k 的取值范围,分别讨论0k >和0k <时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【详解】解:①当0k >时,一次函数y kx k =−经过一、三、四象限,反比例函数的k y x=(k ≠0)的图象经过一、三象限,没有符合条件的选项, ②当0k <时,一次函数y kx k =−经过一、二、四象限,反比例函数的k y x=(k ≠0)的图象经过二、四象限,故D 选项的图象符合要求.故选:D . 7 .如图,在A 处测得点P 在北偏东60°方向上,在B 处测得点P 在北偏东30°方向上,若2AB =米,则点P 到直线AB 距离PC 为( )A .3米B 米C .2米D .1米【答案】B 【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可.【详解】解:设点P 到直线AB 距离PC 为x 米,在Rt APC △中,tan PC AC PAC ==∠,在Rt BPC △中,tan PC BC x PBC ==∠,2=,解得,x =),故选:B .8. 如图,在ABC 中,8cm AB =,16cm BC =,动点P 从点A 开始沿AB 边运动,速度为2cm/s ;动点Q 从点B 开始沿BC 边运动,速度为4cm/s ;如果P 、Q 两动点同时运动,那么经过( )秒时QBP △与ABC 相似.A .2秒B .4秒C .2或0.8秒D .2或4秒【答案】C 【分析】设经过t 秒时, QBP △与ABC 相似,则2cm,82)cm,4(cm AP t BP t BQ t ==−=,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:当BP BQ BA BC =时,BPQ BAC ∽ ,即 824;816t t −=当 BP BQ BC BA=时,BPQ BCA △∽△,即 824,168t t −=然后解方程即可求出答案. 【详解】解:设经过t 秒时, QBP △与ABC 相似,则2cm,82)cm,4(cm AP t BP t BQ t ==−= PBQ ABC ∠=∠ ,∴当 BP BQ BA BC=时,BPQ BAC ∽ , 即 824,816t t −= 解得:2t =当 BP BQ BC BA=时,BPQ BCA △∽△ , 即824,168t t −= 解得:0.8t =综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似故选:C9. 如图,矩形ABCD 的顶点A 、B 分别在反比例函数4y x =()0x >与2y x=−()0x <的图像上, 点C 、D 在x 轴上,AB BD 、分别交y 轴于点E 、F ,则阴影部分的面积等于( )A .103 B .2 C .116 D .53【答案】D【分析】设4A a a(,)、0a >,根据题意:利用函数关系式表示出线段OD OE OC OF EF 、、、、, 然后利用三角形的面积公式计算即可.【详解】解:设点A 的坐标为4A a a (,),0a >.则4OD a OE a==,. ∴点B 的纵坐标为4a.∴点B 的横坐标为2a −. ∴2a OC =. ∴2a BE =. ∵AB CD ∥,∴BEF DOF , ∴12EF BE OF OD ==. ∴1428,3333EF OE OF OE a a====. ∴114122323BEF a S EF BE a ∆=×=××=. 11842233ODF S OD OF a a ∆=×⋅=××=. ∴145333BEF ODF S S S =+=+=阴影 . 故选:D .10 .二次函数2(0)y ax bx c a ++≠的部分图象如图所示,图象过点(1,0)−,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x −<<. 其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①对称轴位于x a ,b 异号,即0ab <.抛物线与y 轴交于正半轴,则0c >.0abc ∴<.故①正确;②∵抛物线开口向下,0a ∴<. ∵抛物线的对称轴为直线12b x a=−=, 2b a ∴=﹣1x =﹣时,0y =,0a b c ∴+﹣=,而2b a =﹣, 3c a ∴=﹣,230b c a a a ∴+﹣=﹣=<,即b c <,故②正确;③1x =﹣时,0y =, 0a b c ∴+﹣=,而2b a =﹣,3c a ∴=﹣,30a c ∴+=.故③正确;④由抛物线的对称性质得到:抛物线与x 轴的另一交点坐标是(3,0).∴当0y >时,13x -<<故④正确.综上所述,正确的结论有4个.故选D .二.填空题(每题3分,共15分)11. 若23a b =,则a b b += . 【答案】53【分析】根据等式性质,在两边都加上1,则问题可解.【详解】解:根据等式的性质,两边都加上1,即可得2113a b +=+,通分得53a b b +=. 故答案为:53.12. 在一个不透明的盒子中装有n 个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n 的值大约为_______【答案】20【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解. 【详解】解:由题意可得,100%=20%4n×, 解得:20n =,经检验20n =是原方程的根,故答案为:1a ≥−且0a ≠.13. 如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是 .【分析】由题意可知,要求出答案首先需要构造出直角三角形,连接AB ,设小正方形的边长为1,可以求出OA 、OB 、AB 的长度,由勾股定理的逆定理可得ABO 是直角三角形,再根据三角函数的定义可以求出答案.【详解】连接AB 如图所示:设小正方形的边长为1,∴2OA =23+1=10,22BA =3+1=10,222OB =4+2=20,∴ABO 是直角三角形,∴BA sin AOB=OB ∠14 .如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,已知斜边DF 保持水平并且边DE 与点B 在同一直线上,若DE =40cm ,EF =20cm .DF 离地面的高度AC =1.5m ,CD =8m ,则树的高度AB = 米.【答案】5.5【分析】根据DEF DCB ∽△△可得DE EF DC BC=,可求得BC 的长,树高AB BC AC =+即可求出树高. 【详解】400.4DE cm m ==,200.2EF cm m ==,8CD m = 90DEF DCB ∠=∠=°,EDF CDB ∠=∠,∴DEF DCB ∽△△ ∴DE EF DC BC= ∴0.40.28BC=∴4BC =,1.5AC =∴4 1.5 5.5AB BC AC =+=+=故答案为:5.5.15 .如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B ′处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C ′处,EF 为折痕,连接AC ′.若CF =3,则tan B AC ′′∠= .【答案】14【分析】连接AF ,设CE =x ,用x 表示AE 、EF ,再证明∠AEF =90°,由勾股定理得通过AF 进行等量代换列出方程便可求得x ,再进一步求出B ′C ′,便可求得结果.【详解】解:连接AF ,设CE =x ,则C ′E =CE =x ,BE =B ′E =10﹣x ,∵四边形ABCD 是矩形,∴AB =CD =8,AD =BC =10,∠B =∠C =∠D =90°,∴AE 2=AB 2+BE 2=82+(10﹣x )2=164﹣20x +x 2, EF 2=CE 2+CF 2=x 2+32=x 2+9,由折叠知,∠AEB =∠AEB ′,∠CEF =∠C ′EF ,∵∠AEB +∠AEB ′+∠CEF +∠C ′EF =180°,∴∠AEF =∠AEB ′+∠C ′EF =90°, ∴AF 2=AE 2+EF 2=164﹣20x +x 2+x 2+9=2x 2﹣20x +173,∵AF 2=AD 2+DF 2=102+(8﹣3)2=125,∴2x 2﹣20x +173=125,解得,x =4或6,当x =6时,EC =EC ′=6,BE =B ′E =8﹣6=2,EC ′>B ′E ,不合题意,应舍去,∴CE =C ′E =4,∴B ′C ′=B ′E ﹣C ′E =(10﹣4)﹣4=2,∵∠B ′=∠B =90°,AB ′=AB =8,∴tan ∠B 'AC ′=''''B C A B =2184=. 故答案为:14. 三.解答题(共55分)16 . ()1011tan 602π− ++−° . 【答案】3【解析】【分析】根据绝对值的意义、负整数指数幂、零指数幂以及特殊角的三角函数值分别计算后, 再根据二次根式加减运算法则求解即可得到答案.()1011tan 602π− ++−°21=++3=.17. 解下列方程:(1)2240x x −−=(2)()()3454x x x −−【答案】(1)11x =21x =(2)14x =,253x = 【分析】(1)根据配方法解一元二次方程即可求解;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:2240x x −−=方程两边同时加上5,即225x x −+=即()215x −=,∴1x −=,解得:11x =+21x =−(2)解:()()3454x x x −−∴()()4350x x −−=, ∴40,350x x −=−=, 解得:14x =,253x =.18. 某中学决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量,促进学生全面健康发展.学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程?(要求必须选修一门且只能选修一门)”的随机问卷调查,并根据调查数据绘制了如下两幅不完整的统计图:请结合上述信息,解答下列问题:(1)共有_______名学生参与了本次问卷调查;(2)“陶艺”在扇形统计图中所对应的圆心角是_______度;(3)小刚和小强分别从“礼仪”“陶艺”“编程”这三门校本课程中任选一门,请用列表法或画树状图法求出两人恰好选到同一门课程的概率.【答案】(1)120(2)99(3)小刚和小强两人恰好选到同一门课程的概率为1 3【分析】(1)用“礼仪”的人数除以占比得到总人数;(2)用“陶艺”的人数除以总人数再乘以360°,即可求解;(3)用画树状图法求得概率即可求解.【详解】(1)解:3025%=120÷(人)故答案为:120.(2)“陶艺”在扇形统计图中所对应的圆心角是33360=99 120×°°,故答案为:99.(3)把“礼仪”“陶艺”“编程”三门校本课程分别记为A 、B 、C共有9种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有3种, ∴小刚和小强两人恰好选到同一门课程的概率为3193=. 19. 图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m =AB ,0.6m BC =,123ABC ∠=°,该车的高度 1.7m AO =.如图2,打开后备箱,车后盖ABC 落在AB C ′′处,AB ′与水平面的夹角27B AD ′∠=°.(1)求打开后备箱后,车后盖最高点B ′到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C ′处经过,有没有碰头的危险?请说明理由.(结果精确到.....001m .,参考数据:sin 270.454°≈,cos 270.891°≈,tan 270.510°≈ 1.732≈) 【答案】(1)车后盖最高点B ′到地面的距离为2.15m(2)没有危险,详见解析【解析】【分析】(1)作B E AD ′⊥,垂足为点E ,先求出B E ′的长,再求出B E AO ′+的长即可;(2)过C ′作C F B E ′′⊥,垂足为点F ,先求得63AB E ′∠=°,再得到60C B F AB C AB E ′′′′′∠=∠−∠=°,再求得cos 600.3B F B C ′′′=⋅°=,从而得出C ′到地面的距离为2.150.3 1.85−=,最后比较即可.【小问1详解】如图,作B E AD ′⊥,垂足为点E在Rt AB E ′△中∵27B AD ′∠=°,1AB AB ′== ∴sin 27B E AB ′°=′∴sin 2710.4540.454B E AB ′′=°≈×=∵平行线间的距离处处相等∴0.454 1.7 2.154 2.15B E AO ′+=+=≈答:车后盖最高点B ′到地面的距离为2.15m .【小问2详解】没有危险,理由如下:过C ′作C F B E ′′⊥,垂足为点F∵27B AD ′∠=°,90B EA ′∠=°∴63AB E ′∠=°∵123AB C ABC ′′∠=∠=°∴60C B F AB C AB E ′′′′′∠=∠−∠=°在Rt B FC ′′ 中,0.6B C BC ′′==∴cos 600.3B F B C ′′′=⋅°=.∵平行线间的距离处处相等∴C ′到地面的距离为2.150.3 1.85−=.∵1.85 1.8>∴没有危险.20. 某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系 如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?【答案】(1)10300y x =−+,1030x ≤≤; (2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元.【解析】【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可.【小问1详解】解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式,可得 1020015150k b k b += +=,解得10300k b =− = 即10300y x =−+, 由题意可得,10x ≥,103000x −+≥,解得1030x ≤≤即10300y x =−+,1030x ≤≤, 【小问2详解】解:设利润为w 元,则2(10)(10300)104003000w x x x x =−−+=−+−,∵100−<,开口向下,对称轴为20x ,1030x ≤≤∴当20x 时,w 有最大值,为1000元,21. (1)如图1,ABC 和DEC 均为等边三角形,直线AD 和直线BE 交于点F .填空:①线段AD ,BE 之间的数量关系为________;②AFB ∠的度数为______.(2)如图2所示,ABC 和DEC 均为等腰直角三角形,90ABC DEC AB BC DE EC ∠=∠=°==,,,直线AD 和直线BE 交于点F ,请判断AFB ∠的度数及线段AD ,BE 之间的数量关系,并说明理由.(3)如图3所示,ABC 和ADE 均为直角三角形,9030ACB AED BAC DAE ∠°=∠=°∠=∠=,,53AB AE ==,,当点B 在线段ED 的延长线上时,求线段BD 和CE 的长度.【答案】(1)①AD BE =;②60AFB ∠=°;(2)45AFB ∠=°;AD =;(3)4BD =−32EC =− 【分析】(1)①根据SAS 证明≌ACD BCE ,即可得出AD BE =;②根据全等三角形的性质得出CAD CBF ∠=∠,设BC 交AF 于点O ,根据AOC BOF ∠=∠, 结合三角形内角和定理,得出60BFO ACO ∠=∠=°即可得出结果;(2)证明ACD BCE ∽△△,可得ADAC BE BC ==CBF CAF ∠=∠,根据三角形的外角得出,AOB AFB CBF ACB CAF =∠+∠=∠+∠∠,即可得结论;(3)根据勾股定理求出4BE ,根据三角函数求出DE =求出4BD BE DE =−BAD CAE ∽,求出cos30EC AC BD AB ==°=32EC =. 【详解】解:(1)①∵ABC 和CDE 均为等边三角形,∴CA CB =,CD CE =,60ACB DCE °∠=∠=, ∴ACB DCB DCE DCB ∠−∠=∠−∠,即ACD BCE ∠=∠, ∴≌ACD BCE ,∴AD BE =;故答案为:AD BE =;②∵≌ACD BCE ,∴CAD CBF ∠=∠, 设BC 交AF 于点O ,∵AOC BOF ∠=∠, ∴60BFO ACO ∠=∠=°, 即60AFB ∠=°. 故答案为:60AFB ∠=°.(2)结论:45AFB ∠=°, AD =.理由如下: ∵90ABC DEC AB BC DE EC ∠=∠=°==,,, ∴45ACD BCD BCE ∠=°+∠=∠,又∵ACDC BC EC ==∴ACD BCE ∽△△,∴ADAC BE BC ==CBF CAF ∠=∠,∴AD =,∵AOB AFB CBF ACB CAF =∠+∠=∠+∠∠,∴45AFB ACB ∠=∠=°.(3)在Rt ABE △中,4BE ,在Rt ADE △中,tan30DE AE AE =°×=∴4BD BE DE =−,∵30DAE BAC ∠=∠=°, ∴BAD CAE ∠=∠, ∵cos30AE AC AD AB==°, ∴ AE AD AC AB=, ∴BAD CAE ∽,∴cos30EC AC BD AB==°=∴32EC ==. 22. 如图,已知抛物线y =﹣x 2+bx +c 经过点A (﹣1,0),B (3,0),与y 轴交于点C ,点P 是抛物线上一动点,连接PB ,PC .(1)求抛物线的解析式;(2)如图1,当点P 在直线BC 上方时,过点P 作PD 上x 轴于点D ,交直线BC 于点E .若PE =2ED ,求△PBC 的面积;(3)抛物线上存在一点P ,使△PBC 是以BC 为直角边的直角三角形,求点P 的坐标.【答案】(1)y =﹣x 2+2x +3;(2)3;(3)点P 的坐标为(1,4)或(﹣2,﹣5)【分析】(1)用待定系数法求解即可;(2)先求得点C 的坐标,再用待定系数法求得直线BC 的解析式;由PE =2ED 可得PD =3ED ,设P (m ,﹣m 2+2m +3),则E (m ,﹣m +3),用含m 的式子表示出PD 和DE ,根据PD =3ED 得出关于m 的方程,解得m 的值,则可得PE 的长,然后按照三角形的面积公式计算即可;(3)分两种情况:①点C 为直角顶点;②点B 为直角顶点.过点C 作直线P 1C ⊥BC ,交抛物线于点P 1,连接P 1B ,交x 轴于点D ;过点B 作直线BP 2⊥BC ,交抛物线于点P 2,交y 轴于点E ,连接P 2C ,分别求得直线P 1C 和直线BP 2的解析式,将它们分别与抛物线的解析式联立,即可求得点P 的坐标.【详解】解:(1)∵抛物线y =﹣x 2+bx +c 经过点A (﹣1,0),B (3,0),∴()2210330b c b c −−−+= −++=, 解得23b c = =, ∴抛物线的解析式为y =﹣x 2+2x +3;(2)在y =﹣x 2+2x +3中,当x =时,y =3,∴C (0,3).设直线BC 的解析式为y =kx +b ,将B (3,0),C (0,3)代入,得:330b k b = +=, 解得13k b =− = , ∴直线BC 的解析式为y =﹣x +3,若PE =2ED ,则PD =3ED ,设P (m ,﹣m 2+2m +3),∵PD 上x 轴于点D ,∴E(m,﹣m+3),∴﹣m2+2m+3=3(﹣m+3),∴m2﹣5m+6=0,解得m1=2,m2=3(舍),∴m=2,此时P(2,3),E(2,1),∴PE=2,∴S△PBC=1×2×3=3.2∴△PBC的面积为3;(3)∵△PBC是以BC为直角边的直角三角形,∴有两种情况:①点C为直角顶点;②点B为直角顶点.过点C作直线P1C⊥BC,交抛物线于点P1,连接P1B,交x轴于点D;过点B作直线BP2⊥BC,交抛物线于点P2,交y轴于点E,连接P2C,如图所示:∵B(3,0),C(0,3),∴OB=OC=3,∴∠BCO=∠OBC=45°.∵P1C⊥BC,∴∠DCB=90°,∴∠DCO=45°,又∵∠DOC=90°,∴∠ODC=45°=∠DCO,∴OD=OC=3,∴D(﹣3,0),∴直线P1C的解析式为y=x+3,联立2233y x xy x=−++=+,解得14xy==或3xy==(舍);∴P1(1,4);∵P1C⊥BC,BP2⊥BC,∴P1C//BP2,∴设直线BP2的解析式为y=x+b,将B(3,0)代入,得0=3+b,∴b=﹣3,∴直线BP2的解析式为y=x﹣3,联立2233y x xy x=−++=−,解得25xy=−=−或3xy==(舍),∴P2(﹣2,﹣5).综上,点P的坐标为(1,4)或(﹣2,﹣5)第24页/共24页。

深圳龙岗区龙城初级中学数学九年级上册期末试卷(带解析)

深圳龙岗区龙城初级中学数学九年级上册期末试卷(带解析)

深圳龙岗区龙城初级中学数学九年级上册期末试卷(带解析)一、选择题1.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.一元二次方程x 2=-3x 的解是( ) A .x =0 B .x =3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 3.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .14.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变5.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-16.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45° B .75°C .105°D .120°7.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定8.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=9.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或610.方程x 2﹣3x =0的根是( ) A .x =0B .x =3C .10x =,23x =-D .10x =,23x =11.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .11 12.下列方程是一元二次方程的是( )A .2321x x =+B .3230x x --C .221x y -=D .20x y +=13.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°14.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣215.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.20.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.21.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .22.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 23.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin BAC B ∠=∠=OC 的最大值为_____.24.已知正方形ABCD边长为4,点P为其所在平面内一点,PD=5,∠BPD=90°,则点A到BP的距离等于_____.25.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2020的值为_____.26.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.27.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.28.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.29.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.30.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.三、解答题31.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y 2x 80=-+. 设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? 32.如图,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在点A 处用高1.5米的测角仪测得古树顶端点H 的仰角HDE ∠为45︒,此时教学楼顶端点G 恰好在视线DH 上,再向前走7米到达点B 处,又测得教学楼顶端点G 的仰角GEF ∠为60︒,点A 、B 、C 点在同一水平线上.(1)计算古树BH 的高度;(2)计算教学楼CG 的高度.(结果精确到0.1米,参考数据:2 1.4≈,3 1.7≈). 33.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.34.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,35.如图,已知△ABC 中,∠ACB =90°,AC =4,BC =3,点M 、N 分别是边AC 、AB 上的动点,连接MN ,将△AMN 沿MN 所在直线翻折,翻折后点A 的对应点为A ′.(1)如图1,若点A ′恰好落在边AB 上,且AN =12AC ,求AM 的长; (2)如图2,若点A ′恰好落在边BC 上,且A ′N ∥AC . ①试判断四边形AMA ′N 的形状并说明理由; ②求AM 、MN 的长;(3)如图3,设线段NM 、BC 的延长线交于点P ,当35AN AB =且67AM AC =时,求CP 的长.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围. 37.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.38.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 39.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P是抛物线上一动点,过P作x轴的垂线,交直线BC于M.设点P的横坐标是t.∆是直角三角形时,求点P的坐标;①当PCMA C M到该直线的距离相等,求直线解析式②当点P在点B右侧时,存在直线l,使点,,=+(,k b可用含t的式子表示).y kx b40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.2.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.3.A解析:A 【解析】 【分析】根据极差的概念最大值减去最小值即可求解. 【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4. 故选A . 【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.4.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280; 故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003;调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003;故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280, 故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确. 故选B. 【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.5.C解析:C 【解析】 【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小. 【详解】解:∵函数的对称轴为x=222b mm a -=-=-, 又∵二次函数开口向上,∴在对称轴的右侧y 随x 的增大而增大,∵x >1时,y 随x 的增大而增大,∴-m≤1,即m ≥-1故选:C .【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.6.C解析:C【解析】【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-12=0,2-cosB=0,即sinA=12, 解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C .【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.7.B解析:B【解析】【分析】利用概率的意义直接得出答案.【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B .【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键. 8.D解析:D【解析】∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12BC,∴△ADE∽△ABC,AD AEAB AC=,∴21()4ADEABCS DES BC==.由此可知:A、B、C三个选项中的结论正确,D选项中结论错误.故选D.9.D解析:D【解析】【分析】分两种情形:当CAN B∠=∠时,CAN CBA∆∆∽,设3CN k=,4BM k=,可得CN ACAC CB=,解出k值即可;当CAN MCB∠=∠时,过点M作MH CB⊥,可得CAN BAC∆∆∽,得出125MH k=,165BH k=,则1685CH k=-,证明ACN CHM∆∆∽,得出方程求解即可.【详解】解:在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴CMB CAB CAN∠>∠>∠,AB=10,CAN CAB∴∠≠∠,设3CN k=,4BM k=,①当CAN B∠=∠时,可得CAN CBA∆∆∽,∴CN ACAC CB=,∴3668k=,32k∴=,6BM∴=.②当CAN MCB∠=∠时,如图2中,过点M作MH CB⊥,可得BMH BAC∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽, ∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4BM ∴=.综上所述,4BM =或6.故选:D .【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.10.D解析:D【解析】【分析】先将方程左边提公因式x ,解方程即可得答案.【详解】x 2﹣3x =0,x (x ﹣3)=0,x 1=0,x 2=3,故选:D .【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.11.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.12.A解析:A【解析】【分析】根据一元二次方程的定义逐一判断即可.【详解】解:A . 2321x x =+是一元二次方程,故本选项符合题意;B . 3230x x --是一元三次方程,故本选项不符合题意;C . 221x y -=是二元二次方程,故本选项不符合题意;D . 20x y +=是二元一次方程,故本选项不符合题意;故选A .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.13.C解析:C【解析】【分析】设∠A 、∠C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A 、∠C 分别为x 、2x ,∵四边形ABCD 是圆内接四边形,∴x +2x =180°,解得,x =60°,即∠A =60°,故选:C .【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.14.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A 、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.15.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题16.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.17.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD ⨯=, 解得:AB=1205060⨯ =100(米). 故答案为100.【点睛】 本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.18.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.19.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=∵CD=CE=5,CN⊥DE,∴∴由勾股定理得,CN=∴sin∠DEC=255 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.20.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,22=4.OB BD故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.21..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴103AD =考点: 1.相似三角形的判定与性质;2.勾股定理.22.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:625-.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.23.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出. 解析:41383+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩, ∴ABC AEO ∆∆,∴tan AC AO B AB AE ∠==, ∵213sin B ∠=, ∴2213313cos 11313B ⎛⎫∠=-= ⎪ ⎪⎝⎭,∴sin 2tan cos 3B B n B ∠∠===∠, ∴23AO AE =, 又∵4AO =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE的最大值为:4,∴OC的最大值为:()28433=. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 24.或【解析】【分析】由题意可得点P 在以D 为圆心,为半径的圆上,同时点P 也在以BD 为直径的圆上,即点P 是两圆的交点,分两种情况讨论,由勾股定理可求BP ,AH 的长,即可求点A 到BP 的距离.【详解】解析:2或2【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3AH)2,∴AH 335+AH335-,若点P在CD的右侧,同理可得AH=3352,综上所述:AH 335+335-.【点睛】本题是正方形与圆的综合题,正确确定点P是以DBD为直径的圆的交点是解决问题的关键.25.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.26.【解析】【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△ AFD等高,得,由,即可解出.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵E是▱解析:2 5【解析】【分析】△ABF和△ABE等高,先判断出23ABFABES AFS AE∆∆==,进而算出6ABCD ABFS S∆=,△ABF和△ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.27.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.28.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:AH=22224223OA OH-=-=∴AB=43∴四边形ABCD的面积=AB×GH=434=163⨯.故答案为:163.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.29.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r 1=3a 同理:扇形DEF 的弧长为:120241803a a ππ⋅⋅= 则r 2=23ar 1:r 2点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.30.【解析】【分析】x (x ﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y =﹣(x ﹣2019)(x ﹣2022),然解析:【解析】【分析】x (x ﹣3)=0得A 1(3,0),再根据旋转的性质得OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,所以抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y =0时,x (x ﹣3)=0,解得x 1=0,x 2=3,则A 1(3,0),∵将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……∴OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,∴抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),把P (2020,m )代入得m =﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题31.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.32.(1)8.5米;(2)18.0米【解析】【分析】(1)先根据题意得出DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,可求出HE 的长度,进而可计算古树BH 的高度;(2)作HJ ⊥CG 于G ,设HJ=GJ=BC=x ,在Rt △EFG 中,利用特殊角的三角函数值求出x 的值,进而求出GF ,最后利用 CG=CF+FG 即可得出答案.【详解】解:(1)由题意:四边形ABED 是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH 的高度为8.5米.(2)作HJ ⊥CG 于G .则△HJG 是等腰直角三角形,四边形BCJH 是矩形,设HJ=GJ=BC=x .在Rt △EFG 中,tan60°=73GF x EF x +== ∴7(31)2x =, ∴3x ≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教学楼CG 的高度为18.0米.【点睛】本题主要考查解直角三角形,能够数形结合,构造出直角三角形是解题的关键. 33.8+83【解析】【分析】 过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 843BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.34.(1)b=2或b=10-;(2)x 1=x 2=2;【解析】【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:△=(b+2)2-4(6-b )=0,∴28200b b +-=解得:b=2或b=10-.(2)当b=2时,此时x 2-4x+4=0,∴2(2)0x -=,∴x 1=x 2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.35.(1)52;(2)①菱形,理由见解析;②AM=209,MN=4109;(3)1.【解析】【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得'MAAB=CMCA,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2222435AC BC+=+=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴ANAC=AMAB,∵AN=12 AC∴12=5AM,∴AM=52.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠MNA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,。

2013-2014学年广东省深圳市南山区九年级(上)期末数学试卷

2013-2014学年广东省深圳市南山区九年级(上)期末数学试卷

2013-2014学年广东省深圳市南山区九年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)一元二次方程3x2﹣x=0的解是()A.x=0 B.x1=0,x2=3 C.x1=0,x2=D.x=2.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形3.(3分)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是()A.球B.圆柱C.圆锥D.棱锥4.(3分)在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22m B.20m C.18m D.16m5.(3分)下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.有一个角是直角的平行四边形是正方形D.一组邻边相等的矩形是正方形6.(3分)直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是()A.4.8 B.5 C.3 D.107.(3分)若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点()A.(2,6) B.(2,﹣6)C.(4,﹣3)D.(3,﹣4)8.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7 B.(x﹣2)2﹣1 C.(x+2)2+7 D.(x+2)2﹣19.(3分)一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30°B.45°C.60°D.75°10.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A. B.C.D.11.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是AM,MR的中点,则EF的长随着M点的运动()A.变短B.变长C.不变D.无法确定12.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.B.5 C.D.二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上.)13.(3分)如图所示,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为cm.14.(3分)如图,△OPQ是边长为2的等边三角形,若正比例函数的图象过点P,则它的解析式是.15.(3分)小明有道数学题不会,想打电话请教老师,可是他只想起了电话号码的前6位(共7位数的电话),那么他一次打通电话的概率是.16.(3分)一个平行四边形的两边分别是4.8cm和6cm,如果平行四边形的高是5cm,面积是cm2.三、解答题(本大题有7题,其中17题8分,18题8分,19题8分,20题6分,21题8分,22题6分,23题8分,共52分)17.(8分)解下列方程:(1)x2﹣2x﹣3=0 (2)(x﹣1)2﹣2x(x﹣1)=0.18.(8分)(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?(2)如果两楼之间相距MN=20m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?此时,你的视角α是多少度?19.(8分)已知反比例函数y=(m为常数)的图象经过点A(﹣1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.20.(6分)如图,在平行四边形ABCD纸片中,AC⊥AB,AC与BD相交于O,将纸△ABC沿对角线AC翻转180°,得到△AB′C,(1)问以A、C、D、B′为顶点的四边形是什么形状的四边形?证明你的结论;(2)若四边形ABCD的面积为20cm2,求翻转后纸片重叠部分的面积(即△ACE 的面积).21.(8分)某厂工业废气年排放量为400万立方米,为改善锦州市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到256万立方米,如果每期治理中废气减少的百分率相同.(1)求每期减少的百分率是多少?(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后需投入多少万元?22.(6分)两个警察抓两个小偷,目击者说:两个小偷分别躲藏在六个房间中的两间,但不知道他们到底躲藏在哪两间.而如果警察冲进了无人的房间,那么小偷就会趁机逃跑.如果两个警察随机地冲进两个房间抓小偷,(1)至少能抓获一个小偷的概率是多少?(2)两个小偷全部抓获的概率是多少?请简单说明理由.23.(8分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?2013-2014学年广东省深圳市南山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)一元二次方程3x2﹣x=0的解是()A.x=0 B.x1=0,x2=3 C.x1=0,x2=D.x=【分析】本题可对方程提取公因式x,得到()()=0的形式,则这两个相乘的数至少有一个为0,由此可以解出x的值.【解答】解:∵3x2﹣x=0即x(3x﹣1)=0解得:x1=0,x2=.故选C.【点评】本题考查一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.2.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.3.(3分)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是()A.球B.圆柱C.圆锥D.棱锥【分析】本题中球的三视图中不可能有三角形,圆柱的三视图中也不可能由三角形,棱锥的俯视图不可能是圆,因此选择C.【解答】解:根据三视图的知识,依题意,该几何体的主视图、左视图以及俯视图分别是三角形、三角形和圆形,故该几何体可能为圆锥.故选C.【点评】本题考查由三视图确定几何体的形状,通过排除法即可得出正确结果.4.(3分)在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22m B.20m C.18m D.16m【分析】利用在同一时刻身高与影长成比例计算.【解答】解:根据题意可得:设旗杆高为x.根据在同一时刻身高与影长成比例可得:=,故x=20.故选:B.【点评】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度,体现了方程的思想.5.(3分)下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.有一个角是直角的平行四边形是正方形D.一组邻边相等的矩形是正方形【分析】分别根据矩形的判定以及正方形的判定判定各选项进而得出答案.【解答】解:A、对角线互相垂直的矩形是正方形,此选项正确不合题意;B、对角线相等的菱形是正方形,此选项正确不合题意;C、有一个角是直角的平行四边形是矩形形,此选项不正确符合题意;D、一组邻边相等的矩形是正方形,此选项正确不合题意.故选:C.【点评】此题主要考查了正方形的判定,熟练根据①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2,进行判定是解题关键.6.(3分)直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是()A.4.8 B.5 C.3 D.10【分析】根据直角三角形中勾股定理的运用,根据两直角边可以计算斜边的长度,根据面积法计算斜边的高.【解答】解:两直角边为6、8,设斜边高线为h,则该直角三角形的斜边长为=10.根据面积法计算可得:S=×6×8=×10×h,解得h=4.8.故选A.【点评】本题考查了勾股定理的运用,考查了三角形面积的计算,根据面积法计算斜边上的高是解题的关键.7.(3分)若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点()A.(2,6) B.(2,﹣6)C.(4,﹣3)D.(3,﹣4)【分析】根据反比例函数图象上点的坐标特征,将点(3,4)代入反比例函数,求得m2+2m﹣1值,然后再求函数图象所必须经过的点.【解答】解:∵点(3,4)是反比例函数图象上一点,∴点(3,4)满足反比例函数,∴4=,即m2+2m﹣1=12,∴点(3,4)是反比例函数为y=上的一点,∴xy=12;A、∵x=2,y=6,∴2×6=12,故本选项正确;B、∵x=2,y=﹣6,∴2×(﹣6)=﹣12,故本选项错误;C、∵x=4,y=﹣3,∴4×(﹣3)=﹣12,故本选项错误;D、∵x=3,y=﹣4,∴3×(﹣4)=﹣12,故本选项错误;故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.8.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7 B.(x﹣2)2﹣1 C.(x+2)2+7 D.(x+2)2﹣1【分析】在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数﹣4的一半的平方;可将常数项3拆分为4和﹣1,然后再按完全平方公式进行计算.【解答】解:x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1.故选B.【点评】在对二次三项式进行配方时,一般要将二次项系数化为1,然后将常数项进行拆分,使得其中一个常数是一次项系数的一半的平方.9.(3分)一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30°B.45°C.60°D.75°【分析】作梯形的两条高线,证明△ABE≌△DCF,则有BE=FC,然后判断△ABE 为等腰直角三角形求解.【解答】解:如图,作AE⊥BC、DF⊥BC,四边形ABCD为等腰梯形,AD∥BC,BC﹣AD=12,AE=6,∵四边形ABCD为等腰梯形,∴AB=DC,∠B=∠C,∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD为矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC﹣AD=BC﹣EF=2BE=12,∴BE=6,∵AE=6,∴△ABE为等腰直角三角形,∴∠B=∠C=45°.故选B.【点评】根据等腰梯形的性质,结合全等三角形求解.10.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A. B.C.D.【分析】先根据函数y=的图象经过(1,﹣1)求出k的值,然后求出函数y=kx ﹣2的解析式,再根据一次函数图象与坐标轴的交点坐标解答.【解答】解:∵图象经过(1,﹣1),∴k=xy=﹣1,∴函数解析式为y=﹣x﹣2,所以函数图象经过(﹣2,0)和(0,﹣2).故选A.【点评】主要考查一次函数y=kx+b的图象.当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.11.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是AM,MR的中点,则EF的长随着M点的运动()A.变短B.变长C.不变D.无法确定【分析】易得EF为三角形AMR的中位线,那么EF长恒等于定值AR的一半.【解答】解:∵E,F分别是AM,MR的中点,∴EF=AR,∴无论M运动到哪个位置EF的长不变,故选C.【点评】本题考查三角形中位线等于第三边的一半的性质.12.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.B.5 C.D.【分析】根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.【解答】解:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:,解得a+b=2,即△ABC的周长=OC+AC=2.故选:A.【点评】本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上.)13.(3分)如图所示,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为4cm.【分析】要求点D到AB的距离,利用角的平分线上的点到角的两边的距离相等可知,只要求得D到AC的距离即可,而D到AC的距离就是CD的值.【解答】解:∵∠C=90°,AD平分∠BAC,∴CD是点D到AB的距离,∵CD=10﹣6=4,∴点D到AB的距离为4.故答案为:4.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题前,要有分析过程,培养自己的分析能力.14.(3分)如图,△OPQ是边长为2的等边三角形,若正比例函数的图象过点P,则它的解析式是.【分析】过点P作PD⊥x轴于点D,由等边三角形的性质可知OD=OQ=1,再根据勾股定理求出PD的长,故可得出P点坐标,再利用待定系数法求出直线OP 的解析式即可.【解答】解:过点P作PD⊥x轴于点D,∵△OPQ是边长为2的等边三角形,∴OD=OQ=×2=1,在Rt△OPD中,∵OP=2,OD=1,∴PD===,∴P(1,),设直线OP的解析式为y=kx(k≠0),∴=k,∴直线OP的解析式为y=x.故答案为:y=x.【点评】本题考查的是用待定系数法求正比例函数的解析式,先根据题意得出点P的坐标是解答此题的关键.15.(3分)小明有道数学题不会,想打电话请教老师,可是他只想起了电话号码的前6位(共7位数的电话),那么他一次打通电话的概率是.【分析】由共有10个数字,即有10种等可能的结果,他一次打通电话的只有1种情况,利用概率公式即可求得答案.【解答】解:∵共有10个数字,即有10种等可能的结果,他一次打通电话的只有1种情况,∴他一次打通电话的概率是:.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)一个平行四边形的两边分别是4.8cm和6cm,如果平行四边形的高是5cm,面积是24cm2.【分析】依据在直角三角形中斜边最长,先判断出5厘米高的对应底边是4.8厘米,进而利用平行四边形的面积公式即可求解.【解答】解:4.8×5=24(平方厘米);答:这个平行四边形的面积是24平方厘米.故答案为:24.【点评】此题主要考查了平行四边形的面积求法,解答此题的关键是:先确定出已知高的对应底边,即可求其面积.三、解答题(本大题有7题,其中17题8分,18题8分,19题8分,20题6分,21题8分,22题6分,23题8分,共52分)17.(8分)解下列方程:(1)x2﹣2x﹣3=0(2)(x﹣1)2﹣2x(x﹣1)=0.【分析】(1)分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0,x+1=0,x1=3,x2=﹣1.(2)(x﹣1)2﹣2x(x﹣1)=0,(x﹣1)(x﹣1﹣2x)=0,x﹣1=0,x﹣1﹣2x=0,x1=1,x2=﹣1.【点评】本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.18.(8分)(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?(2)如果两楼之间相距MN=20m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?此时,你的视角α是多少度?【分析】(1)连接点A与M楼的顶点,则可得出能否看到后面那座高大的建筑物;(2)构造直角三角形,设AM=x,则根据=,可得出AM的长度,继而也可求出视角α的度数.【解答】解:(1)所作图形如下:所以能看见后面的大楼,因为大楼没有处在盲区.(2)由题意得,MN=20m,FM=10m,EN=30m,设AM=x,则=,即=,解得:x=10,即AM=10米.tanα===,可得α=30°.答:当你至少与M楼相距10m时,才能看到后面的N楼,此时,你的视角α=30°.【点评】此题考查了盲区、视角的知识,关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.(8分)已知反比例函数y=(m为常数)的图象经过点A(﹣1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.【分析】(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,则△CBD∽△CAE,运用相似三角形知识求出CD的长即可求出点C的横坐标.【解答】解:(1)∵图象过点A(﹣1,6),∴=6,解得m=2.故m的值为2;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,由题意得,AE=6,OE=1,即A(﹣1,6),∵BD⊥x轴,AE⊥x轴,∴AE∥BD,∴△CBD∽△CAE,∴=,∵AB=2BC,∴=,∴=,∴BD=2.即点B的纵坐标为2.当y=2时,x=﹣3,即B(﹣3,2),设直线AB解析式为:y=kx+b,把A和B代入得:,解得,∴直线AB解析式为y=2x+8,令y=0,解得x=﹣4,∴C(﹣4,0).【点评】由于今年来各地中考题不断降低难度,中考考查知识点有向低年级平移的趋势,反比例函数出现在解答题中的频数越来约多.20.(6分)如图,在平行四边形ABCD纸片中,AC⊥AB,AC与BD相交于O,将纸△ABC沿对角线AC翻转180°,得到△AB′C,(1)问以A、C、D、B′为顶点的四边形是什么形状的四边形?证明你的结论;(2)若四边形ABCD的面积为20cm2,求翻转后纸片重叠部分的面积(即△ACE 的面积).【分析】(1)以A、C、D、B′为顶点的四边形是矩形,根据平行四边形的性质以及已知条件求证出四边形ACDB′是平行四边形,进而求出四边形ACDB′是矩形;(2)根据矩形的性质以及平行四边形的性质求出△ACD的面积,因为△AEC和△EDC可以看作是等底等高的三角形,所以S△AEC =S△ACD=5cm2.【解答】(1)以A、C、D、B′为顶点的四边形是矩形,理由如下:四边形ABCD是平行四边形.∴AB平行且等于CD.∵△AB′C是由△ABC翻折得到的,AB⊥AC,∴AB=AB′,点A、B、B′在同一条直线上.∴AB′∥CD,∴四边形A CDB′是平行四边形.∵B′C=BC=AD.∴四边形ACDB′是矩形;(2)由四边形ACDB′是矩形,得AE=DE.∵S▱ABCD=20cm2,∴S△ACD=10cm2,∴S△AEC =S△ACD=5cm2.【点评】本题综合应用平行四边形、三角形面积公式、平行四边形中图形的面积关系,解题的关键是发现△ACE的面积为矩形面积的四分之一.21.(8分)某厂工业废气年排放量为400万立方米,为改善锦州市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到256万立方米,如果每期治理中废气减少的百分率相同.(1)求每期减少的百分率是多少?(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后需投入多少万元?【分析】(1)本题为平均变化率问题,可按照增长率的一般规律进行解答.增长率问题的一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.根据这个关系来列出方程,求出百分率是多少.(2)根据(1)中得出的百分率,分别求出第一期和第二期的投资,然后相加得出两期的总投资即可.【解答】解:(1)设每期减少的百分率是x,根据题意得400(1﹣x)2=256,解得x1=0.2,x2=1.8(舍去),所以每期减少的百分率为20%.(2)根据题意有400×0.2×3=240(万元),(400﹣400×0.2)×0.2×4.5=288(万元),∴240+288=528(万元),答:两期治理完成后需要投入528万元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).22.(6分)两个警察抓两个小偷,目击者说:两个小偷分别躲藏在六个房间中的两间,但不知道他们到底躲藏在哪两间.而如果警察冲进了无人的房间,那么小偷就会趁机逃跑.如果两个警察随机地冲进两个房间抓小偷,(1)至少能抓获一个小偷的概率是多少?(2)两个小偷全部抓获的概率是多少?请简单说明理由.【分析】(1)设房间号为1、2、3、4、5、6,其中假设两个小偷分别躲藏1、2,再用列举法展示所有15种等可能的结果数,然后根据概率公式求解;(2)找出两个小偷全部抓获的结果数,然后根据概率公式求解.【解答】解:(1)设房间号为1、2、3、4、5、6,其中假设两个小偷分别躲藏1、2,任意取两个,共有15种等可能的结果数:1、2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6;其中至少能抓获一个小偷占9种,所以至少能抓获一个小偷的概率==;(2)两个小偷全部抓获的结果数占1种,即1,2,所以两个小偷全部抓获的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.(8分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=2,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)直接利用求根公式计算即可;(2)参照(1)中的解法解题即可;(3)解法同上,利用根的判别式列不等关系可求m,n满足的条件.【解答】解:(1)由上可知(x﹣2)(2x﹣3)=0∴x1=2,x2=;(2)设所求矩形的两边分别是x和y,由题意,得消去y化简,得2x2﹣3x+2=0∵△=9﹣16<0∴不存在矩形B;(3)(m+n)2﹣8mn≥0.设所求矩形的两边分别是x和y,由题意,得消去y化简,得2x2﹣(m+n)x+mn=0△=(m+n)2﹣8mn≥0即(m+n)2﹣8mn≥0时,满足要求的矩形B存在.【点评】此类题目要读懂题意,准确的找到等量关系列方程组,要会灵活运用根的判别式在不解方程的情况下判断一元二次方程的解的情况.。

广东省深圳市龙岗区九年级(上)期末数学试卷

广东省深圳市龙岗区九年级(上)期末数学试卷

2011-2012学年广东省深圳市龙岗区九年级(上)期末数学试卷一、仔细地选一选(每小题3分,共30分)1.(3分)(2012•银海区一模)sin30°的值是()A.B.C.D.12.(3分)(2011•烟台)从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.3.(3分)(2011•东莞)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.4.(3分)(2011•菏泽)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折5.(3分)(2011•衡阳)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5cm,则坡面AB的长是()A.10m B.m C.15m D.m6.(3分)(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)7.(3分)下面给出的条件中,能判定一个四边形是平行四边形的是()A.一组邻角互补,一组对角相等B.一组对边平行,一组邻角相等C.一组对边相等,一组对角相等D.一组对边相等,一组邻角相等8.(3分)(2011•济宁)在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A.1B.C.D.9.(3分)(2010•哈尔滨)反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A.k<3 B.k≤3 C.k>3 D.k≥3 10.(3分)(2011•芜湖)二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()A.B.C.D.二、认真填一填(每小题3分,共18分)11.(3分)小亮和他弟弟在阳光下散步,小亮的身高为1.75米,他的影子长2米.若此时他的弟弟的影子长为1.6米,则弟弟的身高为_________米.12.(3分)顺次连接矩形四条边的中点,所得到的四边形一定是_________形.13.(3分)如图,∠AOP=∠BOP=15°,PD⊥OB于点D,PC∥OB,交OA于点C.若PD=6,则OC=_________.14.(3分)如图,等边三角形ABC的边长为4,P是三角形内角任意一点,过点P作三边的垂线PD、PE、PF,垂足分别为D、E、F.则PD+PE+PF=________、、15.(3分)如图,双曲线y=交矩形OABC的边分别于点D、E,若BD=2AD,且四边形ODBE的面积为8,则k=_________.16.(3分)(2011•肇庆)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是_________.三、细心算一算(6分)17.(6分)(﹣1)2+2cos45°+(π﹣3.14)0﹣()﹣2.四、勇敢闯一闯(第19、20题,每题6分,第18、21、22题,每题8分,第23题10分,共46分)18.(8分)(2011•肇庆)如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为,求AC的长.19.(6分)(2011•淮安)图1为平地上一幢建筑物与铁塔图,图2为其示意图.建筑物AB与铁塔CD都垂直于地面,BD=30m,在A点测得D点的俯角为45°,测得C点的仰角为60°.求铁塔CD的高度.20.(6分)(2011•南充)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌,(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜.这是个公平的游戏吗?请说明理由.21.(8分)商场某种商品平均每天可销售32件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品降价1元,商场平均每天可多售出2件,请问:(1)每件商品降价多少元时,商场日盈利可达2160元?(2)每件商品降价多少元时,商场日盈利的最大值是多少?22.(8分)(2011•衡阳)如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的图象交于点C和点D(﹣1,a).(1)求直线AB和反比例函数的解析式.(2)求∠ACO的度数.(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少时,OC′⊥AB,并求此时线段AB’的长.23.(10分)(2011•绵阳)已知抛物线y=x2﹣2x+m﹣1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.(1)求m的值;(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形.。

深圳龙岗区实验学校初中部九年级上册期末数学数学试卷

深圳龙岗区实验学校初中部九年级上册期末数学数学试卷

深圳龙岗区实验学校初中部九年级上册期末数学数学试卷一、选择题1.已知3sin 2α=,则α∠的度数是( ) A .30° B .45°C .60°D .90°2.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20203.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个4.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A .10 B .310C .13D .10 5.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定6.下列方程有两个相等的实数根是( ) A .x 2﹣x +3=0 B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=07.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .168.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .9.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .1510.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8911.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-12.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+313.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .14B .13C .12D .2314.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④15.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.17.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.18.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.19.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 20.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.21.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 22.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.23.抛物线21(5)33y x =--+的顶点坐标是_______. 24.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.25.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.26.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.27.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 28.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD 5,∠BPD =90°,则点A 到BP 的距离等于_____.29.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.30.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________.三、解答题31.如图,AC 为圆O 的直径,弦AD 的延长线与过点C 的切线交于点B ,E 为BC 中点,AC= 43,BC=4.(1)求证:DE 为圆O 的切线; (2)求阴影部分面积.32.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E . (1)求∠DAC 的度数; (2)若AC =6,求BE 的长.33.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.34.如图,已知抛物线214y x bx c =++经过ABC 的三个顶点,其中点(0,3)A ,点(12,15)-B ,//AC x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交与点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,直接写出点Q的坐标;若不存在,请说明理由.35.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.四、压轴题36.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),一次函数23y x b=-+的图像与边OC、AB分别交于点D、E,并且满足OD BE=,M是线段DE上的一个动点(1)求b的值;(2)连接OM,若ODM△的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.37.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.38.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.39.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)40.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据特殊角三角函数值,可得答案. 【详解】 解:由3sin α=,得α=60°, 故选:C . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.3.C解析:C 【解析】 【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可. 【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点, 把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确; 对称轴为直线x =﹣1,即:﹣2ba=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的; 由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确; 故选C . 【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.4.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.5.B解析:B 【解析】 【分析】利用概率的意义直接得出答案. 【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12,前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12,故选:B.【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键.6.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.7.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.8.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.9.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 10.C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】 本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.11.D解析:D 【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°, ∵AD ⊥BC ,∴BD=CD=1,33∴△ABC 的面积为12BC•AD=1232⨯3 S 扇形BAC =2602360π⨯=23π, ∴莱洛三角形的面积S=3×23π﹣3﹣3, 故选D .【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键. 12.A解析:A【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.13.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,14.B解析:B【解析】【分析】①由于AC与BD不一定相等,根据圆周角定理可判断①;②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;③先由垂径定理得到A为CE的中点,再由C为AD的中点,得到CD AE,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽, ∴AP AF AB AD=, AP AD AF AB ∴⋅=⋅,CAF BAC ∠=∠,90AFC ACB ∠=∠=︒,ACF ABC∽,∴∆∆可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2CAQ CBA∴∆∆=⋅,AC CQ CBAP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.15.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.18.y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.19.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160:80x=:10,解得x20=.故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.21.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 22.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA 上取使,∵,∴,在△和△QOC 中,,【解析】【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA上取'C使'OC OC=,∵90AOC POQ∠=∠=︒,∴'POC QOC∠=∠,在△'POC和△QOC中,''OP OQPOC QOCOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△'POC≌△QOC(SAS),∴'PC QC=∴当'PC最小时,QC最小,过'C点作''C P⊥AB,∵直线l:28y x=+与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵'4OC OC OB===,∴22228445AB OA OB++=''4AC OA OC=-=.∵'''OB C Psin BAOAB AC∠==,''445C P=,∴4''55C P=∴线段CQ455455【点睛】本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.23.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 24.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12,∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.25.4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n 行n 个数,故前n 个数字的个数为:1+2+3+…+n =(1)2n n +, ∵当n =63时,前63行共有63642⨯=2016个数字,2020﹣2016=4, ∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.26.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°27.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.28.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解析:3352+或3352-【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH 2+(AH )2,∴AH AH , 若点P 在CD 的右侧,同理可得AH =2,综上所述:AH =2或2. 【点睛】本题是正方形与圆的综合题,正确确定点P 是以D BD 为直径的圆的交点是解决问题的关键.29.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y =x 2﹣2x ﹣3,设y =0,∴0=x 2﹣2x ﹣3,解得:x 1=3,x 2=﹣1,即A 点的坐标是(﹣1,0),B 点的坐标是(3,0),∵y =x 2﹣2x ﹣3,=(x ﹣1)2﹣4,∴顶点C 的坐标是(1,﹣4),∴△ABC 的面积=12×4×4=8, 故答案为8.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.30.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.三、解答题31.(1)证明见解析;(2)S 阴影2π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S 阴影=2S △ECO -S扇形COD 即可求解.【详解】(1)连接DC 、DO.因为AC为圆O直径,所以∠ADC=90°,则∠BDC=90°,因为E为Rt△BDC斜边BC中点,所以DE=CE=BE=12 BC,所以∠DCE=∠EDC,因为OD=OC,所以∠DCO=∠CDO.因为BC为圆O 切线,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE为圆O的切线.(2)S阴影=2S△ECO-S扇形COD=3-2π【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.32.(1)30°;(2)3【解析】【分析】(1)由题意证明△CDE≌△COE,从而得到△OCD是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得333.【详解】解:连接OA,OC。

深圳布吉深圳外国语龙岗分校初三数学九年级上册期末试题及答案

深圳布吉深圳外国语龙岗分校初三数学九年级上册期末试题及答案

深圳布吉深圳外国语龙岗分校初三数学九年级上册期末试题及答案一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .13.抛物线223y x x =++与y 轴的交点为( ) A .(0,2) B .(2,0)C .(0,3)D .(3,0)4.若x=2y ,则xy的值为( ) A .2B .1C .12D .135.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42B .45C .46D .486.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .3C .6D .97.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-8.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠BB .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 9.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .410.一元二次方程x 2﹣3x =0的两个根是( ) A .x 1=0,x 2=﹣3 B .x 1=0,x 2=3 C .x 1=1,x 2=3 D .x 1=1,x 2=﹣3 11.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .112.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+313.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 14.如图,△ABC 中,∠C =90°,∠B =30°,AC 7,D 、E 分别在边AC 、BC 上,CD =1,DE ∥AB ,将△CDE 绕点C 旋转,旋转后点D 、E 对应的点分别为D ′、E ′,当点E ′落在线段AD ′上时,连接BE ′,此时BE ′的长为( )A .23B .33C .27D .3715.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.若53x y x +=,则yx=______. 18.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”). 19.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.20.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 21.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.22.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.23.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.24.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.25.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.26.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.27.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.28.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________. 29.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。

附答案版龙岗区九年级期末质量检测模拟试题

附答案版龙岗区九年级期末质量检测模拟试题

2012-2013学年上学期龙岗区九年级期末质量检测模拟试题一说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共8页。

考试时间120分钟,满分150分。

2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁。

不能折叠。

3.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。

4.本卷1—38题为选择题,每小题选出答案后,用2B铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干挣后,再选涂其它答案:39-48题为非选择题,答案必须用规定的笔,按作答题目的序号,写在答题卡非选择题答题区内。

5.考试结束,请将本试卷和答题卡一并交回。

6.可能用到的相对原子质量:H—1,Ca—40,C—12,O—16,Mn—55,Fe—56第一部分选择题本部分38小题,每小题2分,共76分。

每小题只有一个选项符合题意1.下列叙述中可称为一个群落的是()A.龙岗新生公园里的所有生物B.凤凰山国家矿石公园中的所有矿石C.龙城公园里的一片池塘D.龙岗龙潭公园里的所有柳树2.关于遗传,下列说法不正确的是()A.遗传和变异都是普遍存在的生命现象B.染色体是由DNA和蛋白质组成的C.基因工程可使动植物定向产生新的性状D.禁止近亲结婚可完全避免遗传病的发生3.现在的家长都不愿孩子受罪,一旦孩子感冒发烧,家长就给孩子大量使用的抗生素,这使得细菌的耐药性不断增强。

关于细菌越来越强的耐药性,用达尔文的观点解释正确的是()A.由于环境的改变,细菌发生了大量的变异B.由于自然选择,使得对抗生素有耐药性的细菌保留下来,并大量繁殖C.细菌对抗生素产生了隔离D.细菌产生了定向的遗传和变异4.一切人员入境时必须进行检疫,其目的是:A.控制传染源 B.计划免疫 C.切断传播途径 D.保护易感人群5.下列各项物质或结构中,属于抗原的是( )①输入到A 型血患者体内的B型血细胞②接种到健康人体内的乙肝病毒疫苗③自身免疫器官产生的免疫细胞④移植到烧伤患者面部的自身腿部皮肤A.①② B.③④ C.①②④ D.①②③④6.下列说法不正确的是:A.发现有人煤气中毒,立即打开门窗,将其转移到通风处,拨打“120”后进行人工呼吸B.被毒蛇咬伤后,尽可能在伤口的远心端5~10厘米处,用带、绳、手帕或止血带结扎,并保持安静C.用指压止血法抢救较大动脉出血的伤员时,要压迫伤口的近心端动脉D.抢救上岸后的溺水者的第一步是清除口鼻内异物,然后控水处理。

广东省深圳市龙岗区九年级(上)期末数学试卷

广东省深圳市龙岗区九年级(上)期末数学试卷

九年级(上)期末数学试卷题号 一二三四总分得分一、选择题(本大题共 12 小题,共 分)1. 已知反比率函数y=- 12x 的图象上,那么以下各点中,在此图象上的是( )A. (3,4)B. (-2,6)C. (-2,-6)D. (-3,-4)2. 方程 x 2=3x 的解为()A. x=3B.C. x1=0 ,x2=-3D. 3. 如图几何体的主视图是()x=0x1=0 , x2=3A. B. C. D.4. 某省 2013 年的快递业务量为 1.5 亿件,得益于电子商务发展和法治环境改良等多重要素,快递业务迅猛发展. 若 2015 年的快递业务量达到4.5 亿件.设 2014 年与 2013 年这两年的均匀增加率为x ,则以下方程正确的选项是()A. B. C.D.5.在同一时辰,身高 1.6m 的小强, 在太阳光芒下影长是,旗杆的影长是 6m ,则旗杆高为()A.B. 6mC. 8mD. 9m6. 一元二次方程2)x -x+1=0 的根的状况是(A. 无实数根B. 有两不等实数根C. 有两相等实数根D. 有一个实数根7.△ABC 与 △A ′B ′C ′是位似图形,且 △ABC 与 △A ′B ′C ′位似比是 1: 2,已知 △ABC 的面积是 10,则 △A ′B ′C ′的面积是( )A. 10B. 20C. 40D. 808. 按序连结一个四边形的各边中点, 获取了一个正方形, 则这个四边形最可能是 ()A. 平行四边形B. 菱形C. 矩形D. 正方形9.如图,在 Rt △ABC 中, ∠C=90 °,D 是斜边 AB 上的中点,已 知 CD=2, AC=3,则 sinB 的值是()A. 23B. 34C. 35D. 45A.B. 反比率函数y=kx(k ≠ 0)的图象的对称轴只有 1 条将二次函数y=x2 的图象向上平移 2 个单位,获取二次函数y=(x+2)2的图象C.两个正六边形必定相像D.菱形的对角线相互垂直且相等11.如图,点 O 是正方形 ABCD 对角线的交点,以 BO 为边结构菱形 BOEF 且 F 点在 AB 上,连结 AE,则tan∠EAD 的值为()A.25B.22C.2-1D.2-212.如图是二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)图象的一部分,对称轴为直线 x=-1 ,经过点( 1,0),且与 y 轴的交点在点(0, -2)与( 0, -3)之间.下列判断中,正确的选项是()A.b2<4acB.2a+b=0C.a-3b+c>0D.43<b<2二、填空题(本大题共 4 小题,共12.0 分)13.若 ab=35 ,则 a+bb 的值是 ______ .14.一个不透明的盒子里装有 120 个红、黄两种颜色的小球,这些球除颜色外其余完整同样,每次摸球前先将盒子里的球摇匀随意摸出一个球记下颜包后再放回盒子,通过大批重复摸球试验后发现,摸到黄球的频次稳固在,那么预计盒子中红球的个数为 ______.15.如图,已知正比率函数y=kx(k≠0)和反比率函数y=mx(m≠0)的图象订交于点 A(-2,1)和点 B,则不等式 kx< mx 的解集是______.16.如图,在△ABC 中,AB=AC,tan∠ACB=2 ,D 在△ABC内部,且 AD=BD ,∠ADB=90°,连结 CD ,若 AB=2 5,则△BCD 的面积为 ______.三、计算题(本大题共 1 小题,共 5.0 分)17.计算:12 -2cos30 -tan60° +°(-1)2018.四、解答题(本大题共 6 小题,共47.0 分)18.从两副完整同样的扑克牌中,抽出两张黑桃 6 和两张黑桃10,现将这两四张扑克牌反面向上放在桌子上,并洗匀.( 1)从中随机抽取一张扑克牌,是黑桃 6 的概率是多少?(2)请利用画树状或列表的方法,求从中随机抽取的两张扑克牌能成为一对的概率.19. 为加速城乡对接,建设全域漂亮农村,某地域对 A 、B 两地间的公路进行改建.如图,A、B 两地之间有一座山.汽车本来从 A 地到 B 地需门路 C 地沿折线 ACB 行驶,现开通地道后,汽车可直接沿直线 AB 行驶.已知 AC =20 千米,∠A=30°,∠B=45°.( 1)开通地道前,汽车从 A 地到 B 地大概要走多少千米?( 2)开通地道后,汽车从 A 地到 B 地大概能够少走多少千米?(结果精准到 1 千米)(参照数据: 2 ≈, 3≈)20.如图,已知反比率函数y=mx ( x> 0)的图象与一次函数y=kx+4 的图象交于 A 和 B(6, 1)两点.(1)求反比率函数与一次函数的分析式;21.某商铺经销一种销售成本为每千克40 元的水产品,规定试销时期销售单价不低于成本价.据试销发现,月销售量y(千克)与销售单价x(元)切合一次函数y=-10x+1000.若该商铺获取的月销售收益为W 元,请回答以下问题:( 1)请写出月销售收益W 与销售单价x 之间的关系式(关系式化为一般式);( 2)在使顾客获取优惠的条件下,要使月销售收益达到8000 元,销售单价应定为多少元?( 3)若赢利不得高于70%,那么销售单价定为多少元时,月销售收益达到最大?22.如图 1,矩形 OABC 的边 OA、OC 分别在 x 轴、y 轴上,B 点坐标是(8,4),将△AOC 沿对角线 AC 翻折得△ADC, AD 与 BC 订交于点 E.(1)求证:△CDE≌△ABE;(2)求 E 点坐标;(3)如图 2,若将△ADC 沿直线 AC 平移得△A′D′C′(边 A′C′一直在直线 AC 上),能否存在四边形 DD ′C′C 为菱形的状况?若存在,请直接写出点 C′的坐标;若不存在,请说明原因.23.如图 1,抛物线 y=-x2+kx+c 与 x 轴交于 A 和 B( 3, 0)两点,与 y 轴交于点 C( 0,3),点 D 是抛物线的极点.( 1)求抛物线的分析式和极点 D 的坐标;( 2)点 P 在 x 轴上,直线DP 将△BCD 的面积分红1: 2 两部分,恳求出点P 的坐标;( 3)如图 2,作 DM ⊥x 轴于 M 点,点 Q 是 BD 上方的抛物线上一点,作QN⊥BD 于 N 点,能否存在 Q 点使得△DQN ∽△DBM ?若存在,请直接写出 Q 坐标;若不存在,请说明原因.答案和分析1.【答案】 B【分析】解:A .把 x=3 代入 y= 得:y= =-4,即A 项错误, B .把 x=-2 代入 y= 得:y= =6,即B 项正确, C .把 x=-2 代入 y= 得:y= =6,即C 项错误, D .把 x=-3 代入 y= 得:y==4,即D 项错误,应选:B .挨次把各个 选项的横坐标代入反比率函数 y=的分析式中,获取纵坐标的值,即可获取答案.本题考察了反比率函数 图象上点的坐 标特色,正确掌握代入法是解 题的重点.2.【答案】 D【分析】解:∵x 2-3x=0,∴x (x-3)=0,则 x=0 或 x-3=0,解得:x=0 或 x=3,应选:D .因式分解法求解可得.本题主要考察解一元二次方程的能力,熟 练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,联合方程的特色 选择合适、简易的方法是解 题的重点.3.【答案】 A【分析】解:由图可得,几何体的主视图是:依照从该几何体的正面看到的图形,即可获取主视图.本题主要考察了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.【答案】C【分析】解:设 2014 年与 2013 年这两年的均匀增长率为 x,由题意得:2(1+x),应选:C.2依据题意可得等量关系:2013 年的快递业务量×(1+增加率)=2015年的快递业务量,依据等量关系列出方程即可.本题主要考察了由实质问题抽象出一元二次方程,关键是掌握均匀变化率的方法,若设变化前的量为 a,变化后的量为 b,均匀变化率为 x,则经过两次变2为 a 1±x化后的数目关系()=b.5.【答案】C【分析】解:设旗杆高为 hm,由题意得,=,解得 h=8,即旗杆的高度为 8m.应选:C.设旗杆高为 hm,依据同时同地物高与影长成正比列式计算即可得解.本题考察了相像三角形的应用,熟记同时同地物高与影长成正比是解题的关键.6.【答案】A【分析】解:△=b 2 2 ××,()-4ac= -1 -4 1 1=-3∵-3<0,∴原方程没有实数根.先计算出根的判别式△的值,依据△的值就能够判断根的状况.本题考察了一元二次方程ax2+bx+c=0(a≠0,a,b,c 为常数)的根的鉴别式△=b 2-4ac.当△>0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△<0 时,方程没有实数根.7.【答案】C【分析】解:∵△ABC 与△A′B′是C′位似图形,且△ABC 与△A′B′位C′似比是 1:2,∴△ABC ∽△A′ B′,C相′似比为 1:2,2∴=()=,∵△ABC 的面积是 10,∴△A′ B′的C面′积是 40,应选:C.依据位似变换的性质获取△ABC ∽△A′B′,C′依据相像三角形的面积比等于相似比的平方是解题的重点.本题考察的是位似变换,掌握位似变换的观点、相像三角形的面积比等于相似比的平方是解题的重点.8.【答案】D【分析】解:如图点 E,F,G,H 分别是四边形 ABCD 各边的中点,且四边形 EFGH 是正方形.∵点 E,F,G,H 分别是四边形各边的中点,且四边形EFGH 是正方形.∴EF=EH,EF⊥EH ,∵BD=2EF,AC=2EH ,∴AC=BD ,AC ⊥BD ,即四边形 ABCD 知足对角线相等且垂直,选项 D 知足题意.利用连结四边形各边中点获取的四 边形是正方形,则联合正方形的性 质及三角形的中位 线的性质进行剖析,从而不难求解.本题考察了利用三角形中位 线定理获取新四 边形各边与相应线段之间的数量关系和地点.娴熟掌握特别四 边形的判断是解 题的重点.9.【答案】 B【分析】解:∵∠C=90°,D 是斜边 AB 上的中点,∴AB=2CD=4 ,∴sinB== ,应选:B .依据直角三角形的性 质求出 AB ,依据正弦的定义计算即可.本题考察的是直角三角形的性 质,锐角三角函数的定 义,掌握在直角三角形中,斜边上的中线等于斜边的一半是解 题的重点.10.【答案】 C【分析】解:反比率函数 y=(k ≠0)的图象的对称轴是 y=x 和 y=-x ,有两条,应选项 A错误;将二次函数 y=x 2 的图象向上平移 2 个单位,获取二次函数 y=x 2+2,应选项 B错误;两个正六 边形对应角相等,对应边成比率,应选项 C 正确;菱形的对角线相互垂直但不必定相等,故 选项 D 错误 .应选:C .依据反比率函数,二次函数,多 边形相像,菱形等知识对选项进 行逐一判断即可得出 结论.本题考察了反比率函数,二次函数,多边形相像,菱形等知识,娴熟掌握它们的性质是解题的重点.11.【答案】 C【分析】解:如图,设 OE 与 AD 交于 M ,AC 与 EF 交于 N ,∵四边形 ABCD 是正方形,∴AC ⊥BD ,∠OAB= ∠DAO=45°,∵四边形 BOEF 是菱形,∴BO ∥FE ,OE ∥AB ,∴OE ⊥AD ,EF ⊥AO ,∠EON=∠OAB=45°,∠NFA= ∠ABO=45°, ∴△EON ,△AFN ,△OMA 是等腰直角三角形,设 MO=AM=x ,则 AO=BO=OE=x ,∴EM= ( -1)x ,∴tan ∠EAD== -1,应选:C .如图,设 OE 与 AD 交于 M ,AC 与 EF 交于 N ,依据正方形的性质获取 AC ⊥BD ,∠OAB= ∠DAO=45°,依据菱形的性质获取 BO ∥FE ,OE ∥AB ,推出△EON ,△AFN ,△OMA 是等腰直角三角形, 设 MO=AM=x ,则 AO=BO=OE=x ,根据三角函数的定 义即可获取 结论.本题考察了正方形的性 质,菱形的性质,等腰直角三角形的判断和性 质,三角函数的定 义,正确的辨别图形是解题的重点.12.【答案】 D【分析】解:∵对称轴为直线 x=-1,经过点(1,0),∴抛物 线与 x 轴的另一个交点 为(-3,0),∴△=b 2-4ac > 0,∴b 2> 4ac ,故A 选项错误 ;∴2a-b=0,故B 选项错误 ;∵抛物线的张口向上,∴a >0,当 x=-3 时,9a-3b+c < 0,∴-3b+c < -9a ,∴a-3b+c <-9a+a=-8a < 0, ∴a-3b+c <0,故C 选项错误 ;∵抛物 线与 y 轴的交点在点(0,-2)与(0,-3)之间,∴-3<c <-2 ,当 x=1 时,a+b+c=0,∴c=-a-b ,∵a= b ,∴c=- b ,∴-3<- b <-2,∴ < b < 2,故 D 选项正确,应选:D .依据抛物 线与 x 轴有两个交点故获取 b 2>4ac ,故A 选项错误 ;依据对称轴方程获取 2a-b=0,故B 选项错误 ;由抛物线的张口向上,获取 a >0,当 x=-3 时,9a-3b+c <0,获取a-3b+c <0,故C 选项错误 ;因为抛物线与 y 轴的交点在点(0,-2)与(0,-3)之间,获取-3<c < -2,当x=1 时,a+b+c=0,求得c=-a-b ,获取a= b ,解不等式组获取 < b < 2,故D 选项正确.本题考察二次函数 图象与系数的关系、抛物 线与 x 轴的交点,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性 质解答.13.【答案】 85【分析】解:∵=,∴a= b ,第11 页,共 18页∴==.故答案为:.依据比率的性质用 b 表示出 a,而后辈入比率式进行计算即可得解.本题考察了比率的性质,依据比率的性质用 b 表示出 a 是解题的重点.14.【答案】72【分析】解:设盒子中红球的个数为 x,依据题意,得:,解得:x=72,即盒子中红球的个数为 72,故答案为:72.依据利用频次预计概率得摸到黄球的频次稳固在,从而可预计摸到黄球的概率,依据概率公式列方程求解可得.本题考察了利用频次预计概率:大批重复实验时,事件发生的频次在某个固定地点左右摇动,而且摇动的幅度愈来愈小,依据这个频次稳固性定理,可以用频次的集中趋向来预计概率,这个固定的近似值就是这个事件的概率.当实验的全部可能结果不是有限个或结果个数好多,或各样可能结果发生的可能性不相等时,一般经过统计频率来预计概率.15.【答案】-2<x<0或x>2【分析】解:∵正比率函数 y=kx (k≠0)和反比率函数 y=(m≠0)的图象订交于点A(-2,1),和点B,∴B(2,-1),∴不等式 kx <的解集是-2<x<0或x>2,故答案为:-2< x< 0 或 x >2.依据对于原点对称的点的坐标特色求得 B(2,-1),而后依据函数的图象的交点坐标即可获取结论.本题考察了反比率函数与一次函数的交点问题,重点是注意掌握数形 联合思想的应用.16.【答案】 2【分析】解:过 A 作 AH ⊥BC 于 H ,过 D 作 DG ⊥BC 于 G ,∵AB=AC=2,tan ∠ACB= =2,∴设 AH=2x ,CH=x ,∴AC== x=2 ,∴x=2,∴AH=4 ,CH=BH=2 , ∴BC=4,过 D 作 DE ⊥AH 于 E ,则四边形 DEHG 是矩形,∴∠EDG=∠DGH= ∠DEH=90°, ∴∠ADE= ∠BDG ,在 △ADE 与△BDG 中,,∴△ADE ≌△BDG (AAS ), ∴AE=BG ,∵∠ADB=90°, ∴BD=AB=,设 DG=x ,∴BG=AH=4-x ,∵BD 2=DG 2+BG 2,2 2∴10=x +(4-x ),∴x=1 或 x=3(不合题意舍去),∴DG=1,∴△BCD 的面积= ×4×1=2,故答案为:2.过 A 作 AH ⊥BC 于 H ,过 D 作 DG ⊥BC 于 G ,设 AH=2x ,CH=x ,依据勾股定理获取 AC=过则四边= x=2 ,获取BC=4 , D 作 DE⊥AH 于 E,形 DEHG 是矩形,依据矩形的性质获取∠EDG=∠DGH=∠DEH=90°,依据全等三角形的性质获取 AE=BG ,求得 BD=AB= ,设 DG=x ,依据勾股定理和三角形的面积公式即可获取结论.本题考察了等腰三角形的判断与性质、全等三角形的判断与性质、三角形面积的计证问题的关键,并利用方程的思算;明三角形全等得出 AH=BG 是解决想解决问题.17.【答案】解:原式=23-2×32-3+1=1 .【分析】先计算每一项的值,再计算即可.本题主要考察了实数运算,正确化简各数是解题重点.18.【答案】解:(1)随机抽取一张扑克牌是黑桃 6 的概率 =24=12 ;( 2)设两张黑桃 6 分别为: a, b,两张黑桃10 分别为 m, n,画树状图以下:共有 12 种状况,成对的有ba, ab, mn, nm,则从中随机抽取的两张扑克牌能成为一对的概率为:412 =13 .【分析】(1)依据两张黑桃 6 和两张黑桃 10,共4 张扑克牌,再依据概率公式即可得出答案;(2)先画树状图得出全部可能出现的结果,再从此中抽取两张扑克牌成为一对的占 4 种,而后利用概率公式求解即可.本题考察了列表法与树状图法:先经过树状图法展现一个实验发生的全部等可能的结果,再从中找出某事件发生的结果数,而后依据概率公式:概率 =所讨状况数与总状况数之比,求这个事件的概率.19.【答案】解:(1)作CD⊥AB于D点,由题意可知: AC=20 ,∠A=30°,∠B=45°,∴CD =12 AC=10,∵∠B=45 °,∴△BCD 是等腰直角三角形,∴BD =CD =10 ,BC= CD=102,∴ 2∴AC+BC =20+102 ,即开通地道前,汽车从 A 地到 B 地大概要走( 20+10 2)千米;(2)由( 1)知 CD=10 ,∵CD ⊥AB,∠B=45 °,∴△BCD 是等腰直角三角形,∴CD =BD =10 ,∵AD =32 AC=103,∴AB=103 +10 ≈ 17.3+10=27.,3∵AC+BC =20+102 ≈∴≈7,答:开通地道后,汽车从 A 地到 B 地大概能够少走7 千米.【分析】(1)过点 C 作 AB 的垂线 CD,垂足为 D,在直角△ACD 中,解直角三角形求出CD,从而解答即可;(2)在直角△CBD 中,解直角三角形求出 BD,再求出 AD ,从而求出答案.本题考察认识直角三角形的应用,求三角形的边或高的问题一般能够转变为解直角三角形的问题,解决的方法就是作高线.20.【答案】解:(1)将B(6,1)代入y=mx得:m=6,即反比率函数的分析式为:y=6x ;将 B(6, 1)代入 y=kx+4 得: 1=6k+4,解得: k=-12 ,即一次函数的分析式为 y=-12x+4 ;( 2)解 y=6xy=-12x+4得:x1=2y1=3,x2=6y2=1,∴A( 2, 3),作 AE⊥x 轴于 E, BF ⊥x 轴于 F,则 AE=3 , BF=1,设直线 y=-12x+4 与 x 轴交于 C 点,由 y=-12 x+4=0 得 x=8,即 C( 8, 0),∴S△AOB=S△AOC -S△BOC =12 ×8×3-12 ×8×1=8.【分析】(1)先把B 点坐标代入 y= 与一次函数 y=kx+4 中,求出 m,k 的值即可;(2)分别过点 A 、B 作 AE⊥x 轴,BF⊥x 轴,垂足分别是 E、F 点.直线 AB 交 x 轴于 C 点,S△AOB =S△AOC -S△BOC,由三角形的面积公式能够直接求得结果.本题考察了反比率函数与一次函数的交点问题:先由点的坐标求函数分析式,而后解由分析式 构成的方程 组求出交点的坐 标,表现了数形联合的思想.21.【答案】 解:( 1)依据题意得, W=( x-40)( -10x+1000)2=-10 x +1000x+400x-40000 2=-10 x +1400x-40000;( 2)当 W=-10x 2 +1400x-40000=8000 时,获取 x 2-140x+4800=0 , 解得: x 1=60 ,x 2=80, ∵使顾客获取优惠,∴x=60.答:销售单价应定为 60 元,( 3) W=-10x 2+1400x-40000 =-10 ( x-70) 2+9000∵赢利不得高于 70%,即 x-40 ≤ 40 × 70%, ∴x ≤ 68.∴当 x=68 时, W 最大 =8960 . 答:销售单价定为68 元时,月销售收益达到最大.【分析】(1)依据题意依据获取函数分析式;(2)解方程即可获取结论;(3)把函数分析式化为极点式,依据二次函数的性 质即可获取 结论 .本题考察二次函数的 应用,解答本题的重点是明确题意,列出相应的函数关系式,利用二次函数的性 质和数形联合的思想解答.22.【答案】 解:( 1)证明: ∵四边形 OABC 为矩形,∴AB=OC , ∠B=∠AOC=90 °, ∴CD =OC=AB , ∠D =∠AOC=∠B ,又 ∠CED =∠ABE , ∴△CDE ≌△ABE ( AAS ), ∴CE=AE ;( 2) ∵B ( 8, 4),即 AB=4, BC=8.∴设 CE=AE=n ,则 BE=8- n ,222可得( 8-n ) +4 =n , 解得: n=5, ∴E ( 5, 4);( 3)设点 C 在水平方向上向左挪动 m 个单位,则在垂直方向上向上挪动了 m2 个单位,则点 C ′坐标为( -m , 4+12 m ), 则 ∵四边形 DD ′C ′C 为菱形,2 2 +m 2 2 2∴CC ′= ( -m( 12 = 54 m =CD =64 ,))解得: m=± ,855故点 C ′的坐标为( - 855 , 4+455 )或( 855 , 4-455 ). 【分析】(1)用角角边定理即可证明;(2)设 CE=AE=n ,则 BE=8-n,利用勾股定理即可求解;(3)设点 C 在水平方向上向左移动 m 个单位,则在垂直方向上向上移动了个单位,利用 CC′=CD,即可求解.本题为一次函数综合题,主要考察图形平移、三角形全等等知识点,难度不大.23.【答案】解:(1)将B(3,0)、C(0,3)代入y=-x2+kx+c得:-9+3b+c=0c=3 ,解得: b=2c=3 ,∴抛物线表达式为: y=-x2 +2x+3,则点 D 的坐标为( 1, 4);( 2)取 BC 的三平分点 E、 F,作 EG⊥x 轴于点 G, FH ⊥x 轴于点 H,∵B( 3, 0)∴由平行线分线段成比率的性质可得:OG=GH=HB =1.由 B(3, 0)、 C( 0,3)可得 BC 的直线表达式为:y=-x+3,∴E( 1, 2)、 F( 2, 1),∴P1坐标为( 1, 0),由 D( 1, 4)、 F ( 2, 1)得 DF 的直线表达式为: y=-3x+7,当 y=0 时, x=73 ,即点 P 坐标为( 73, 0),故点 P 的坐标为( 1, 0)或( 73 ,0);( 3)存在,原因:设点 Q 坐标为( m,n), n=-x2+2x+3,延伸 QN 交 DM 于点 Q′,∵△DQN ∽△DBM ,∴∠MDB =∠BDQ ,而 DN⊥QN,∴DQ ′=DQ,直线 BD 表达式中的k 值为: -2,故直线QQ′表达式中的k 值为 12 ,将点 Q 的坐标代入一次函数表达式并解得,直线 QQ 的表达式为: y=12 x+(n-12 m),则点 Q′的坐标为( 1, 12+n-12 m),DQ 2=( m-1)2 +( n-4)2=( m-1)2( m2-2m+2),DQ ′=4- 12 -n+12m,由 DQ′=DQ ,解得: m=74 ,故点 Q 的坐标为( 74 ,5516 ).【分析】(1)将B(3,0)、C(0,3)代入y=-x 2+kx+c,即可求解;(2)取BC 的三平分点 E、F,作EG⊥x 轴于点 G,FH⊥x 轴于点 H,由平行线分线段成比率的性质即可求解;(3)由△DQN∽△DBM ,得∠MDB= ∠BDQ ,而DN ⊥QN,故:DQ′=DQ,即可求解.主要考察了二次函数的分析式的求法和与几何图形联合的综合能力的培养.要会利用数形联合的思想把代数和几何图形联合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

广东省深圳市龙岗区九年级数学上学期期末考试试题(含解析) 新人教版

广东省深圳市龙岗区九年级数学上学期期末考试试题(含解析) 新人教版

广东省深圳市龙岗区2016届九年级数学上学期期末考试试题一、选择题:以下每题只有一个正确的选项,请将答题卡上的正确选项涂黑,每小题3分,共36分.1.如图所示几何体的俯视图是()A.B.C.D.2.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个B.16个C.20个D.25个3.1m长的标杆直立在水平地面上,它在阳光下的影子长度为0.8m,同一时刻,某电视塔的影子长度为100m,则该电视塔的高度为()A.150m B.125m C.120m D.80m4.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12 B.14 C.12或14 D.以上都不对5.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.6.下列命题中,错误的是()A.三角形三边的垂直平分线的交点到三个顶点的距离相等B.两组对角分别相等的四边形是平行四边形C.对角线相等且互相平分的四边形是矩形D.顺次连接菱形各边中点所得的四边形是正方形7.某旅游景点2015年六月份共接待游客25万人次,八月份共接待游客64万人次,设六至八月每月游客人次的平均增长率为x,则可列方程为()A.25(1+x)2=64 B.25(1﹣x)2=64 C.64(1+x)2=25 D.64(1﹣x)2=258.一元二次方程ax2+x﹣2=0有两个不相等实数根,则a的取值范围是()A.a B.a=C.a且a≠0D.a且a≠09.将抛物线y=﹣5x2+1先向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为()A.y=﹣5(x+3)2﹣2 B.y=﹣5(x+3)2﹣1 C.y=﹣5(x﹣3)2﹣2 D.y=﹣5(x﹣3)2﹣110.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则tan∠ACD的值为()A.B.C.D.11.如图,已知A是双曲线y=(x>0)上一点,过点A作AB∥x轴,交双曲线y=﹣(x<0)于点B,若OA⊥OB,则的值为()A.B.C.D.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2﹣4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题:本大题共4小题,每题3分,共12分,请将答案填入答题卡指定位置上.13.方程4x(2x+1)=3(2x+1)的解为.14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.15.如图,直线y=x﹣1与坐标轴交于A、B两点,点P是曲线y=(x>0)上一点,若△PAB是以∠APB=90°的等腰三角形,则k= .16.如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棍总数为根.三、解答题:共52分.17.计算:|tan60°﹣2|+0﹣(﹣)﹣2+.18.如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上.(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率.19.某中学2016届九年级学生开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度,如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进20米到达点D,又测得点A的仰角为45°,请根据这些数据,求这幢教学楼的高度.(最后结果精确到1米,参考数据≈1.732)20.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.21.如图,已知A(﹣4,n),B(2,﹣4)是反比例函数y=的图象和一次函数y=ax+b的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式ax+b﹣<0的解集.22.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,客房部每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房部每天的最大利润是多少?(3)当x为何值时,客房部每天的利润不低于14000元?23.如图①,已知二次函数y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C.(1)求△ABC的面积.(2)点M在OB边上以每秒1个单位的速度从点O向点B运动,点N在BC边上以每秒个单位得速度从点B向点C运动,两个点同时开始运动,同时停止.设运动的时间为t秒,试求当t为何值时,以B、M、N为顶点的三角形与△BOC相似?(3)如图②,点P为抛物线上的动点,点Q为对称轴上的动点,是否存在点P、Q,使得以P、Q、C、B为顶点的四边形是平行四变形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.广东省深圳市龙岗区2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题:以下每题只有一个正确的选项,请将答题卡上的正确选项涂黑,每小题3分,共36分.1.如图所示几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看中间是一个正方形,左右各一个矩形,故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.2.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A.12个B.16个C.20个D.25个【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:设盒子中有红球x个,由题意可得:=0.2,解得:x=16,故选B.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系.3.1m长的标杆直立在水平地面上,它在阳光下的影子长度为0.8m,同一时刻,某电视塔的影子长度为100m,则该电视塔的高度为()A.150m B.125m C.120m D.80m【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设电视塔的高度应是x,根据题意得:=,解得:x=125,故选:B.【点评】此题主要考查了相似三角形的应用,利用相似比,列出方程,通过解方程求出电视塔的高度,体现了方程的思想.4.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.12 B.14 C.12或14 D.以上都不对【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】首先利用因式分解法求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣12x+35=0,得x1=5,x2=7,即第三边的边长为5或7.∵三角形两边的长是3和4,∴1<第三边的边长<7,∴第三边的边长为5,∴这个三角形的周长是3+4+5=12.故选A.【点评】本题考查了解一元二次方程﹣因式分解法,三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.5.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】勾股定理;锐角三角函数的定义.【专题】压轴题;网格型.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.【点评】本题考查了锐角三角函数的定义以及勾股定理的知识,此题比较简单,关键是找出与角B 有关的直角三角形.6.下列命题中,错误的是()A.三角形三边的垂直平分线的交点到三个顶点的距离相等B.两组对角分别相等的四边形是平行四边形C.对角线相等且互相平分的四边形是矩形D.顺次连接菱形各边中点所得的四边形是正方形【考点】命题与定理.【分析】根据三角形外心的性质对A进行判断;根据平行四边形的判定方法对B进行判断;根据矩形的判定方法对C进行判断;根据三角形中位线性质和菱形的性质对D进行判断.【解答】解:A、三角形三边的垂直平分线的交点到三个顶点的距离相等,所以A选项为真命题;B、两组对角分别相等的四边形是平行四边形,所以B选项为真命题;C、对角线相等且互相平分的四边形是矩形,所以C选项为真命题;D、顺次连接菱形各边中点所得的四边形是矩形,所以D选项为假命题.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.某旅游景点2015年六月份共接待游客25万人次,八月份共接待游客64万人次,设六至八月每月游客人次的平均增长率为x,则可列方程为()A.25(1+x)2=64 B.25(1﹣x)2=64 C.64(1+x)2=25 D.64(1﹣x)2=25【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】本题依题意可知七月份的人数=25(1+x),则八月份的人数为:25(1+x)(1+x).再令25(1+x)(1+x)=64,即可得出答案.【解答】解:设六至八月每月游客人次的平均增长率为x,依题意得25(1+x)2=64.故选A.【点评】此题主要考查了由实际问题抽象出一元二次方程中增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,x为增长或减少的百分率.增加用+,减少用﹣.8.一元二次方程ax2+x﹣2=0有两个不相等实数根,则a的取值范围是()A.a B.a=C.a且a≠0D.a且a≠0【考点】根的判别式;一元二次方程的定义.【分析】根据已知得出b2﹣4ac=12﹣4a•(﹣2)>0,求出即可.【解答】解:∵一元二次方程ax2+x﹣2=0有两个不相等实数根,∴b2﹣4ac=12﹣4a•(﹣2)>0,解得:a>﹣且a≠0,故选C.【点评】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的根的判别式是b2﹣4ac,当b2﹣4ac>0时,方程有两个不相等的实数根,当b2﹣4ac=0时,方程有两个相等的实数根,当b2﹣4ac<0时,方程没有实数根.9.将抛物线y=﹣5x2+1先向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为()A.y=﹣5(x+3)2﹣2 B.y=﹣5(x+3)2﹣1 C.y=﹣5(x﹣3)2﹣2 D.y=﹣5(x﹣3)2﹣1【考点】二次函数图象与几何变换.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:把抛物线y=﹣5x2+1向左平移3个单位得到抛物线y=﹣5(x+3)2+1的图象,再向下平移2个单位得到抛物线y=﹣5(x+3)2+1﹣2的图象,即y=﹣5(x+3)2﹣1.故选B.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AC=4,BC=3,则tan∠ACD的值为()A.B.C.D.【考点】解直角三角形.【分析】根据在Rt△ABC中,∠ACB=90°,CD⊥AB于D,可以得到∠B与∠ACD的关系,由AC=4,BC=3,可以求得∠B的正切值,从而可以得到∠ACD的正切值.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∴∠CDA=90°,∠A+∠B=90°,∴∠A+∠ACD=90°,∴∠B=∠ACD,∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,tanB=,∴tanB=,∴tan∠ACD=,故选A.【点评】本题考查解直角三角形,解题的关键是找出与所求角相等的角,然后根据相等的角的正切值相等,进行等量代换解答本题.11.如图,已知A是双曲线y=(x>0)上一点,过点A作AB∥x轴,交双曲线y=﹣(x<0)于点B,若OA⊥OB,则的值为()A.B.C.D.【考点】相似三角形的判定与性质;反比例函数图象上点的坐标特征.【分析】首先根据A、B点所在位置设出A、B两点的坐标,再利用勾股定理表示出AO2,BO2以及AB的长,再表示出,进而可得到.【解答】解:∵A点在双曲线y=(x>0)上一点,∴设A(,m),∵AB∥x轴,B在双曲线y=﹣(x<0)上,∴设B(﹣,m),∴OA2=+m2,BO2=+m2,∵OA⊥OB,∴OA2+BO2=AB2,∴+m2++m2=(+)2,∴m2=,∴===,∴=,故选C.【点评】此题主要考查了反比例函数图象上点的坐标特点,以及勾股定理的应用,关键是表示出A、B两点的坐标.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc<0;②b2﹣4ac>0;③3a+c<0;④16a+4b+c>0.其中正确结论的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;由抛物线与x轴有两个交点判断即可;由抛物线的对称轴为直线x=1,可得b=﹣2a,然后把x=﹣1代入方程即可求得相应的y的符号;根据对称轴和图可知,抛物线与x轴的另一交点在3和4之间,所以当x=4时,y>0,即可得16a+4b+c >0.【解答】解:由开口向上,可得a>0,又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b<0,abc>0,故①错误;由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;由抛物线的对称轴为直线x=1,可得b=﹣2a,再由当x=﹣1时y<0,即a﹣b+c<0,3a+c<0,故③正确;根据对称轴和图可知,抛物线与x轴的另一交点在3和4之间,所以当x=4时,y>0,即可得16a+4b+c >0,故④正确,故选:C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共4小题,每题3分,共12分,请将答案填入答题卡指定位置上.13.方程4x(2x+1)=3(2x+1)的解为x1=﹣,x2=.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先进行移项得到4x(2x+1)﹣3(2x+1)=0,再把方程左边分解得到(2x+1)(4x﹣3)=0,则方程转化为2x+1=0或4x﹣3=0,然后解两个一次方程即可.【解答】解:移项得4x(2x+1)﹣3(2x+1)=0,∴(2x+1)(4x﹣3)=0,∴2x+1=0或4x﹣3=0,∴x1=﹣,x2=.故答案为x1=﹣,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为 2 .【考点】含30度角的直角三角形.【专题】计算题.【分析】过P作PE垂直与OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PC与OA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=∠CP O,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.【点评】此题考查了含30°角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.15.如图,直线y=x﹣1与坐标轴交于A、B两点,点P是曲线y=(x>0)上一点,若△PAB是以∠APB=90°的等腰三角形,则k= 4 .【考点】全等三角形的判定与性质;反比例函数图象上点的坐标特征.【分析】根据全等三角形的判定与性质,可得AD=BC,DP=CP,根据AD=BC,可得关于x的方程,根据解方程,可得x,根据待定系数法,可得函数解析式.【解答】解:作PC⊥x轴,PD⊥y轴,如图,∴∠COD=∠ODM=∠OCM=90°,∴四边形OCPD是矩形.在△APD和△BPC中,,∴△APD≌△BPC(AAS),∴AD=BC,DP=CP,∴四边形OCPD是正方形,∴OC=OD,∵OA=1,OB=5,设OD=x,则AD=x+1,BC=5﹣x,∵AD=BC,∴x+1=5﹣x,解得:x=2,即OD=OC=2,∴点P的坐标为:(2,2),∴k=xy=4,故答案为:4.【点评】本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质得出AD=BC是解题关键,又利用了待定系数法求函数解析式.16.如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)根时,需要的火柴棍总数为630 根.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有3个三角形,需要火柴的根数为:3×(1+2);n=3时,有6个三角形,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.故答案为:630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.三、解答题:共52分.17.计算:|tan60°﹣2|+0﹣(﹣)﹣2+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用特殊角的三角函数值及绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用二次根式性质化简即可得到结果.【解答】解:原式=2﹣+1﹣9+3=﹣3﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀后放在桌面上.(1)小红从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明从这四张纸牌中随机摸出两张,用树状图或表格法,求摸出的两张牌面图形都是中心对称图形的概率.【考点】列表法与树状图法.【分析】(1)直接根据概率公式计算即可.(2)首先画出树状图或列表列出可能的情况,再根据中心对称图形的概念可知,当摸出圆和平行四边形时为中心对称图形,除以总情况数即可.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:A B C DA (A,B)(A,C)(A,D)B (B,A)(B,C)(B,D)C (C,A)(C,B)(C,D)D (D,A)(D,B)(D,C)共产生16种结果,每种结果出现的可能性相同,其中两张牌都是中心对称图形的有2种,即(B,C)(C,B)∴P(两张都是中心对称图形)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.19.某中学2016届九年级学生开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度,如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进20米到达点D,又测得点A的仰角为45°,请根据这些数据,求这幢教学楼的高度.(最后结果精确到1米,参考数据≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=BC﹣BD=60构造方程关系式,进而可解,即可求出答案.【解答】解:由已知,可得:∠ACB=30°,∠ADB=45°,∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵tan30°==,∴=,即BC=AB.∵BC=CD+BD,∴AB=CD+AB,即(﹣1)AB=20,∴AB=10(+1)≈27米.答:教学楼的高度为27米.【点评】本题考查了仰角与俯角的应用,要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形.20.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.【考点】矩形的性质;全等三角形的判定与性质;锐角三角函数的定义.【专题】几何综合题;压轴题.【分析】(1)根据矩形的对边平行且相等得到AD=BC=AE,∠DAF=∠EAB.再结合一对直角相等即可证明△ABE≌△DFA;然后根据全等三角形的对应边相等证明AB=DF;(2)根据全等三角形的对应边相等以及勾股定理,可以求得DF,EF的长;再根据勾股定理求得DE 的长,运用三角函数定义求解.【解答】(1)证明:在矩形ABCD中,BC=AD,AD∥BC,∠B=90°,∴∠DAF=∠AEB.∵DF⊥AE,AE=BC,∴∠AFD=90°,AE=AD.∴△ABE≌△DFA;∴AB=DF;(2)解:由(1)知△ABE≌△DFA.∴AB=DF=6.在Rt△ADF中,AF=,∴EF=AE﹣AF=AD﹣AF=2.∴tan∠EDF==.【点评】本题综合考查了矩形的性质、全等三角形的判定与性质及锐角三角函数的定义.熟练运用矩形的性质和判定,能够找到证明全等三角形的有关条件;运用全等三角形的性质求得三角形中的边,再根据锐角三角函数的概念求解.21.如图,已知A(﹣4,n),B(2,﹣4)是反比例函数y=的图象和一次函数y=ax+b的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出不等式ax+b﹣<0的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把B(2,﹣4)代入y=得到k=﹣8,再把A(﹣4,n)代入y=﹣可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=﹣x﹣2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,即使ax+b﹣<0.【解答】解:(1)把B(2,﹣4)代入y=的得m=2×(﹣4)=﹣8,所以反比例函数解析式为y=﹣,把A(﹣4,n)代入y=﹣得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b得,解得.所以一次函数的解析式为y=﹣x﹣2;(2)直线y=﹣x﹣2与x轴交于点C(﹣2,0),S△AOB=S△AO C+S△BOC=×2×2+×2×4=6;(3)不等式kx+b﹣<0的解集为﹣4<x<0或x>2;故答案为:﹣4<x<0或x>2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了观察函数图象的能力以及用待定系数法确定一次函数的解析式.22.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,客房部每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房部每天的最大利润是多少?(3)当x为何值时,客房部每天的利润不低于14000元?【考点】二次函数的应用.【分析】(1)根据题意可得房间每天的入住量=60个房间﹣每个房间每天的定价增加的钱数÷10;(2)支出费用为20×(60﹣),则利润w=(60﹣)﹣20×(60﹣),利用配方法化简可求最大值;(3)根据题意列方程即可得到结论.【解答】解:(1)由题意得:y=60﹣;(2)w=(60﹣)﹣20×(60﹣)=﹣x2+42x+10800∵w=﹣x2+42x+10800=﹣(x﹣210)2+15210,∴当x=210时,w有最大值,且最大值是15210元;(3)当W=14000时,即﹣(x﹣210)2+15210=14000,解得:x1=100,x2=320,故当100≤x≤320时,每天的利润不低于14000元.【点评】此题考查二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.23.如图①,已知二次函数y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C.(1)求△ABC的面积.(2)点M在OB边上以每秒1个单位的速度从点O向点B运动,点N在BC边上以每秒个单位得速度从点B向点C运动,两个点同时开始运动,同时停止.设运动的时间为t秒,试求当t为何值时,以B、M、N为顶点的三角形与△BOC相似?(3)如图②,点P为抛物线上的动点,点Q为对称轴上的动点,是否存在点P、Q,使得以P、Q、C、B为顶点的四边形是平行四变形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C的坐标,根据三角形的面积公式,可得答案;(2)根据两角相等的两个三角形相似,可得△BMN与△BOC的关系,根据相似三角形的性质,可得关于t的方程,根据解方程,可得答案;(3)根据对边平行且相等的四边形是平行四边形,可得①BQ=PC或②BC=PQ;根据BQ∥PC,BQ=PC,可得P点坐标;根据PQ=BC,可得关于a的方程,根据解方程,可得a的值,根据自变量与函数值的对应关系,可得P点坐标.【解答】解:(1)当x=0时,y=3,即C(0,3),当y=0时,﹣x2+2x+3=0,解得x=﹣1,x=3,即A(﹣1,0),B(3,0);S△ABC=AB•OC=×[3﹣(﹣1)]×3=6;(2)若∠BMN=90°,如图1:,BM=(3﹣t),BN=t,BC==3,△BMN∽△BOC,=,即=.t=(3﹣t),解得t=;若∠BNM=90°时,如图2:,BM=(3﹣t),BN=t,BC==3,△BMN∽△BCO,=,即=,3﹣t=×t,解得t=1;综上所述:t=1或t=;(3)如图3:,若CB为对角线,即CP∥QB,CP1=Q1B=3﹣1=2,y=y C=3,P1(2,3);CB为边,即CB∥PQ,CB=PQ,设P(a,b),D(1,b),Q(1,a+b﹣1).PQ=CB,即(a﹣1)2+(1﹣a)2=18,化简,得a2﹣2a﹣8=0.解得a=﹣2或a=4.当a=﹣2时,b=﹣(﹣2)2+2×(﹣2)+3=﹣5,即P2(﹣2,﹣5);当a=4时,b=﹣42+2×4+3=﹣5,即P3(4,﹣5);综上所述:P1(2,3),P2(﹣2,﹣5),P3(4,﹣5).【点评】本题考查了二次函数综合题,(1)利用自变量与函数值的对应关系得出A、B、C的坐标是解题关键;(2)利用相似三角形的性质得出关于t的方程是解题关键,要分类讨论,以防遗漏;(3)利用平行四边形的对边相等得出关于a的方程是解题关键,要分类讨论,以防遗漏.。

2014年广东省深圳市龙岗区中考模拟考试数学试题及答案范文

2014年广东省深圳市龙岗区中考模拟考试数学试题及答案范文

2014年深圳市龙岗区中考模拟考试数学试题第一部分 选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的) 1.2014的相反数是( ) A .2014B .2014-C .20141D .20141-2.“辽宁号”航母的满载排水量为67500吨,数据67500用科学记数法表示为( ) A .210675⨯B .21075.6⨯C .41075.6⨯D .51075.6⨯3.下列图形中,既是..轴对称图形又是..中心对称图形的是( )A B C D4.下图是由八个完全相同的小正方体组成的几何体,其主视图是( )正面 A B C D 5.下列计算中,正确..的是( ) A .9132=- B .()332-=-C .326m m m =÷D .()222b a b a -=-6.已知⊙O 1与⊙O 2的半径R 、r 分别是方程01272=+-x x 的两根,且圆心距1=d ,那么⊙O 1与⊙O 2的位置关系是( ) A .外离B .外切C .相交D .内切7.已知一个多边形的每一个内角都等于135°,则这个多边形是( )A .正六边形B .正八边形C .正十边形D .正十二边形D8.下列命题中,错误..的是( ) A .平行四边形的对角线互相平分B .对角线相等的四边形是矩形C .一组对边平行,一组对角相等的四边形是平行四边形D .顺次连接等腰梯形各边中点所得的四边形为菱形9.某中学九(1)班学生为希望工程捐款,该班50名学生的捐款情况统计如图1所示,则他们捐款金额的众数和中位数分别是( ) A .16,15 B .15,16 C .20,10D .10,20图1 图210.如图2,在边长为9的等边△ABC 中,BD =3,∠ADE =60°,则AE 的长为( ) A .6B .7C .7.5D .811.如图3,菱形OABC 的顶点A 在x 轴的正半轴上,顶点C 的坐标为(3,4).反比例函数xky =(x >0)的图象经过顶点B ,则k 的值为( ) A .32 B .24C .20D .12图3 图412.如图4,在Rt ABC △中,︒=∠90C ,6=AC ,8=BC ,⊙O 为ABC △的内切圆,点D 是斜边AB 的中点,则ODA ∠tan 的值为( ) A .2 B C .34D .2第二部分 非选择题填空题(本题共4小题,每小题3分,共12分) 13.分式方程312-=x x 的解为______________. 14.如图5,已知圆锥的底面半径OA =3cm ,高SO =4cm ,则该圆锥的侧面积为 ______________cm 2.15.如图6,交警为提醒广大司机前方道路塌陷在路口设立了警示牌.已知立杆AD 的高度是3m ,从侧面B 点测得警示牌顶端C 点和底端D 点的仰角分别是60°和45°.那么警示牌CD 的高度为______________ m .16.如图7,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市龙岗区2013-2014学年第一学期期末考试
九年级数学试卷
一、选择题(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,12小题,每小题3分,共36分)
1.若反比例函数y=﹣的图象经过点A(2,m),则m的值是()
A.﹣2 B.2C.﹣D.
2.在Rt△ABC轴,∠C=90°,a=4,b=3,则cosA的值是()
A.B.C.D.
3.如图,由几个小正方体组成的立体图形的左视图是()
4.一个口袋轴装有3个红球,4个绿球,2个黄球,每个球除颜色外其它都相同,搅匀后随机地从中摸出一个球不是红球的概率是()
A.B.C.D.
5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()
A.200元B.240元C.250元D.300元
6.如图,△ABC中,AB=AC=8,BC=6,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()
A.10 B.11 C.12 D.13
7.下列命题中,不正确的是()
A.对角线相等的平行四边形是矩形
B.有一个角为60°的等腰三角形是等边三角形
C.直角三角形斜边上的高等于斜边的一半
D.正方形的两条对角线相等且互相垂直平分
8.)将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.﹣5 B.5C.3D.﹣3
9.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()
A.三边中线的交点B.三条角平分线的交点
C.三边中垂线的交点D.三边上高的交点
10.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()
A.BA=BC B.A C、BD互相平分C.A C=BD D.AB∥CD
11.如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A 的高度AB为()
A.3米B.4.5米C.6米D.8米
12.如图为二次函数y=ax2+bx+c的图象,则下列说法中错误的是()
A.ac<0 B.2a+b=0
C.4a+2b+c>0 D.对于任意x均有ax2+bx≥a+b
二、填空题(每小题3分,满分12分)
13.一元二次方程x2=3x的解是:_________.
14.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们座上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有10只.请你帮助工作人员估计这片山林中雀鸟的数量约为_________.
15.定义运算“@”的运算法则为:x@y=,则(2@6)@8=_________.
16.(3分)反比例函数y1=,y2=(k≠0)在第一象限的图象如图,过y1上的任意一点A,作x 轴的平行线交y2于点B,交y轴于点C,若S△AOB=2,则k=_________.
三、解答题(第17题5分,第18、20题,每题8分,第19、21题每题6分,第22题9分,第23题10分,共52分)
17.(5分)计算:.
18.(8分)解下列一元二次方程.
(1)x2﹣5x+1=0;
(2)3(x﹣2)2=x(x﹣2).
19.(6分)如图,河对岸有古塔AB.小敏在C处测得塔顶A的仰角为30°,向塔前进20米到达D.在D处测得A的仰角为45°,则塔高是多少米?
20.(8分)我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,胡老师一共调查了_________名同学,其中女生共有_________名;(2)将上面的条形统计图补充完整;
(3)为了共同进步,胡老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
21.(6分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.
22.(9分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
23.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C 为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.
广东省深圳市龙岗区2013-2014学年第一学期期末考试
九年级数学试卷参考答案
一、选择题(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,12小题,每小题3分,共36分)
1.C2.A
3.A4.D
5.B6.B
7.C8.D
9.C10.B
11.B12.C
二、填空题(每小题3分,满分12分)
13.x1=0,x2=3.
14.5000只.
15、.
16.12.
三、解答题(第17题5分,第18、20题,每题8分,第19、21题每题6分,第22题9分,第23题10分,共52分)
17.解:原式=3﹣+﹣1=2.
18.解:(1)这里a=1,b=﹣5,c=1,
∵△=25﹣4=21,
∴x=;
(2)方程变形得:3(x﹣2)2﹣x(x﹣2)=0,
分解因式得:(x﹣2)(3x﹣6﹣x)=0,
解得:x1=2,x2=3.
19.解:在Rt△ABD中,
∵∠ADB=45°,∴BD=AB.
在Rt△ABC中,
∵∠ACB=30°,∴BC=AB.
设AB=x(米),
∵CD=20,∴BC=x+20.
∴x+20=x
∴x==10(+1).
即铁塔AB的高为10(+1)米.
20.解:(1)调查学生数为3÷15%=20(人),
“D”类别学生数为20×(1﹣25%﹣15%﹣50%)=2(人),其中男生为2﹣1=1(人),
调查女生数为20﹣1﹣4﹣3﹣1=11(人),
故答案为:20,11;
(2)补充条形统计图如图所示;
(3)根据胡老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:
利用图表可知所选两位同学恰好是一位男同学和一位女同学的概率为.
21.解:设剪去的小正方形的边长为xcm,
根据题意得:(20﹣2x)(10﹣2x)=56,
整理得:(x﹣3)(x﹣12)=0,
解得:x=3或x=12,
经检验x=12不合题意,舍去,
∴x=3,
则剪去小正方形的边长为3cm.
22.(1)证明:∵Rt△OAB中,D为OB的中点,
∴DO=DA,
∴∠DAO=∠DOA=30°,∠EOA=90°,
∴∠AEO=60°,
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,
∴BC∥AE,
∵∠BAO=∠COA=90°,
∴CO∥AB,
∴四边形ABCE是平行四边形;
(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,
在Rt△ABO中,
∵∠OAB=90°,∠AOB=30°,BO=8,
∴AO=BO•cos30°=8×=4,
在Rt△OAG中,OG2+OA2=AG2,
x2+(4)2=(8﹣x)2,
解得:x=1,
∴OG=1.
23.解:(1)将B、C两点的坐标代入得,
解得:;
所以二次函数的表达式为:y=x2﹣2x﹣3(3分)
(2)存在点P,使四边形POP′C为菱形;
设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E
若四边形POP′C是菱形,则有PC=PO;
连接PP′,则PE⊥CO于E,
∴OE=EC=
∴y=;(6分)
∴x2﹣2x﹣3=
解得x1=,x2=(不合题意,舍去)
∴P点的坐标为(,)(8分)
(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),易得,直线BC的解析式为y=x﹣3
则Q点的坐标为(x,x﹣3);
S四边形ABPC=S△ABC+S△BPQ+S△CPQ
=AB•OC+QP•BF+QP•OF
=
=(10分)
当时,四边形ABPC的面积最大
此时P点的坐标为,四边形ABPC的面积的最大值为.(12分)。

相关文档
最新文档