荆州市2016年中考数学试卷

合集下载

2016年荆州市中考数学真题(含答案)

2016年荆州市中考数学真题(含答案)

2016年湖北省荆州市中考真题一、选择题(每小题3分,共30分)1.(3分)比0小1的有理数是()A.﹣1 B.1 C.0 D.22.(3分)下列运算正确的是()A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D.m•2m2=m23.(3分)如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55°B.65°C.75°D.85°4.(3分)我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A.7,6 B.6,5 C.5,6 D.6,65.(3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元6.(3分)如图,过⊙O外一点P引⊙O的两条切线P A、PB,切点分别是A、B,OP交⊙O于点C,点D是上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°7.(3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B.C.D.8.(3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.49.(3分)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.67410.(3分)如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B 逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.(3分)将二次三项式x2+4x+5化成(x+p)2+q的形式应为.12.(3分)当a=﹣1时,代数式的值是.13.(3分)若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线上,则a的值为.14.(3分)若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.15.(3分)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为11°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为米.(参考数据:tan 78°12′≈4.8)16.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.17.(3分)请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).18.(3分)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.三、解答题(本大题共7小题,共66分)19.(7分)计算:.20.(8分)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:组别分数段频数(人)频率1 50≤x<60 30 0.12 60≤x<70 45 0.153 70≤x<80 60 n4 80≤x<90 m 0.45 90≤x<100 45 0.15请根据以图表信息,解答下列问题:(1)表中m=,n=;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.21.(8分)如图,将一张直角三角形ABC 纸片沿斜边AB 上的中线CD 剪开,得到△ACD ,再将△ACD 沿DB 方向平移到△A ′C ′D ′的位置,若平移开始后点D ′未到达点B 时,A ′C ′交CD 于E ,D ′C ′交CB 于点F ,连接EF ,当四边形EDD ′F 为菱形时,试探究△A ′DE 的形状,并判断△A ′DE 与△EFC ′是否全等?请说明理由.22.(9分)为更新果树品种,某果园计划新购进A 、B 两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A 种苗的单价为7元/棵,购买B 种苗所需费用y (元)与购买数量x (棵)之间存在如图所示的函数关系.(1)求y 与x 的函数关系式;(2)若在购买计划中,B 种苗的数量不超过35棵,但不少于A 种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.(10分)如图,A 、F 、B 、C 是半圆O 上的四个点,四边形OABC 是平行四边形,∠F AB =15°,连接OF 交AB 于点E ,过点C 作OF 的平行线交AB 的延长线于点D ,延长AF 交直线CD 于点H . (1)求证:CD 是半圆O 的切线; (2)若DH =6﹣3,求EF 和半径OA 的长.24.(12分)已知在关于x 的分式方程①和一元二次方程(2﹣k )x 2+3mx +(3﹣k )n =0②中,k 、m 、n 均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.25.(12分)阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?参考答案一、选择题(每小题3分,共30分)1.A【解析】由题意可得:0﹣1=﹣1,故比0小1的有理数是:﹣1.故选A.2.B【解析】A、m6÷m2=m4,故此选项错误;B、3m2﹣2m2=m2,正确;C、(3m2)3=27m6,故此选项错误;D、m•2m2=m3,故此选项错误;故选B.3.B【解析】∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°,故选B.4.D【解析】平均数为:=6,数据6出现了3次,最多,故众数为6,故选D.5.C【解析】设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.6.C【解析】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选C.7.D【解析】∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.8.A【解析】∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD =DE=BD,∵BC=3,∴CD=DE=1,故选A.9.B【解析】∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n +1(张),根据题意得:3n+1=2017,解得:n=672,故选B.10.C【解析】设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k =x•y=3•2=6.故选C.二、填空题(每小题3分,共24分)11.(x+2)2+1【解析】x 2+4x+5=x 2+4x +4+1=(x +2)2+1.故答案为(x+2)2+1.12.【解析】∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴====;故答案为.13.3【解析】∵12x m﹣1y2与3xy n+1是同类项,∴m﹣1=1,n+1=2,解得m=2,n=1,∴P(2,1).∵点P(m,n)在双曲线上,∴a﹣1=2,解得a=3.故答案为3.14.一【解析】∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限,故答案为一.15.58【解析】如图所示:过C作CE⊥AB于点E,∵∠CDB=90°,∠EBD=90°,∴四边形EBDC是矩形,∴BE=DC,∵∠ECB=11°48′,∴∠EBC=78°12′,则tan78°12′===4.8,解得:EC=48(m),∵∠AEC=45°,则AE=EC,且BE=DC=10m,∴此塑像的高AB约为:AE+EB=58(米).故答案为58.16.4π【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为4π.17.解:如图所示.AE=BE,DE=EF,AD=CF.18.﹣1或2或1【解析】∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为﹣1或2或1.三、解答题(本大题共7小题,共66分)19.解:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.20.解:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为:120,0.2;(2)补全的频数分布直方图如图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x <90这一组;(4)由题意可得,,即这名选手恰好是获奖者的概率是0.55.21.解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD ∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.22.解:(1)设y与x 的函数关系式为:y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=8x;当20≤x时,把(20,160),(40,288)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=6.4x+32.综上可知:y与x的函数关系式为y=.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元).23.解:(1)连接OB,∵OA=OB=OC,∵四边形OABC 是平行四边形,∴AB =OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠F AD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.24.解:(1)∵关于x 的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△>0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m (5m+4)>0,则m>0或m<﹣;∵x1、x2是整数,k、m都是整数,∵x 1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠﹣1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)|m|≤2成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x 1、x2,∴x1+x2=﹣==﹣m,x1x2==n,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×n=(﹣1)2,m2﹣4n=1,n=①,△=(3m)2﹣4(2﹣k)(3﹣k)n=9m2﹣48n≥0②,把①代入②得:9m2﹣48×≥0,m2≤4,则|m|≤2,∴|m|≤2成立.25.解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x ﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA ′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.如图,当点A′在平行于x轴的D点的特征线时,设A ′(p,3),则OA′=OA=4,OE=3,EA′==,∴A′F=4﹣,设P(4,c)(c >0),,在Rt △A ′FP中,(4﹣)2+(3﹣c)2=c2,∴c=,∴P(4,)∴直线OP解析式为y=x,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.。

2016年湖北省荆州市中考数学试卷及答案

2016年湖北省荆州市中考数学试卷及答案

A.3 B.4 C.6 D.8 二、填空题(每小题 3 分,共 24 分) 11.将二次三项式 x2+4x+5 化成(x+p)2+q 的形式应为 12.当 a=

. .
﹣1 时,代数式
的值是
13.若 12xm 1y2 与 3xyn+1 是同类项,点 P(m,n)在双曲线
上,则 a 的值为

14.若点 M(k﹣1,k+1)关于 y 轴的对称点在第四象限内,则一次函数 y=(k﹣1)x+k 的图象不 经过第 象限. 15.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上 C 处测得塑像底部 B 处的俯角为 18°48′,测得塑像顶部 A 处的仰角为 45°,点 D 在观测点 C 正下方城墙底的地面上, 若 CD=10 米,则此塑像的高 AB 约为 米(参考数据:tan78°12′≈4.8) .
23.如图,A、F、B、C 是半圆 O 上的四个点,四边形 OABC 是平行四边形,∠ FAB=15°,连接 OF 交 AB 于点 E,过点 C 作 OF 的平行线交 AB 的延长线于点 D,延长 AF 交直线 CD 于点 H. (1)求证:CD 是半圆 O 的切线; (2)若 DH=6﹣3 ,求 EF 和半径 OA 的长.
2016 年湖北省荆州市中考数学试卷
一、选择题(每小题 3 分,共 30 分) 1.比 0 小 1 的有理数是( ) A.﹣1 B.1 C.0 D.2 2.下列运算正确的是( ) A.m6÷m2=m3B.3m2﹣2m2=m2C. (3m2)3=9m6D. m•2m2=m2 )
3.如图,AB∥ CD,射线 AE 交 CD 于点 F,若∠ 1=115°,则∠ 2 的度数是(

2016年湖北省荆州市中考数学试卷(有答案)

2016年湖北省荆州市中考数学试卷(有答案)

2016年湖北省荆州市中考数学试卷一、选择题(每小题3分,共30分)1.比0小1的有理数是()A.﹣1 B.1 C.0 D.22.下列运算正确的是()A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D.m•2m2=m23.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55° B.65° C.75° D.85°4.我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A.7,6 B.6,5 C.5,6 D.6,65.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元6.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC 的余弦值是()A.2 B.C.D.8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.49.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.67410.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B 逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.将二次三项式x2+4x+5化成(x+p)2+q的形式应为.12.当a=﹣1时,代数式的值是.13.若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线上,则a的值为.14.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.15.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为米(参考数据:tan78°12′≈4.8).16.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.17.请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).18.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.三、解答题(本大题共7小题,共66分)19.计算:.20.为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:组别分数段频数(人)频率1 50≤x<60 30 0.12 60≤x<70 45 0.153 70≤x<80 60 n4 80≤x<90 m 0.45 90≤x<100 45 0.15请根据以图表信息,解答下列问题:(1)表中m=,n=;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.21.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB 于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.24.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.25.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?2016年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.比0小1的有理数是()A.﹣1 B.1 C.0 D.2【分析】直接利用有理数的加减运算得出答案.【解答】解:由题意可得:0﹣1=﹣1,故比0小1的有理数是:﹣1.故选:A.【点评】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.下列运算正确的是()A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D.m•2m2=m2【分析】分别利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则、单项式乘以单项式运算法则分别分析得出答案.【解答】解:A、m6÷m2=m4,故此选项错误;B、3m2﹣2m2=m2,正确;C、(3m2)3=27m6,故此选项错误;D、m•2m2=m3,故此选项错误;故选:B.【点评】此题主要考查了同底数幂的除法运算以及合并同类项、积的乘方运算、单项式乘以单项式等知识,熟练应用相关运算法则是解题关键.3.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55° B.65° C.75° D.85°【分析】根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.【解答】解:∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°,故选B.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.4.我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A.7,6 B.6,5 C.5,6 D.6,6【分析】根据众数定义确定众数;应用加权平均数计算这组数据的平均数.【解答】解:平均数为:=6,数据6出现了3次,最多,故众数为6,故选D.【点评】此题考查了加权平均数和众数的定义,属基础题,难度不大.5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.6.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°【分析】根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.【解答】解;如图,由四边形的内角和定理,得∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得∠AOC=∠BOC=50°.由圆周角定理,得∠ADC=∠AOC=25°,故选:C.【点评】本题考查了切线的性质,切线的性质得出=是解题关键,又利用了圆周角定理.7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC 的余弦值是()A.2 B.C.D.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【解答】解:∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1,故选A.【点评】本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.【点评】本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.10.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B 逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8【分析】先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C 的坐标,点C的横纵坐标之积即为k值.【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故选C..【点评】本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C的坐标,然后根据点C的横纵坐标之积等于k值求解即可.二、填空题(每小题3分,共24分)11.将二次三项式x2+4x+5化成(x+p)2+q的形式应为(x+2)2+1.【分析】直接利用完全平方公式将原式进行配方得出答案.【解答】解:x2+4x+5=x2+4x+4+1=(x+2)2+1.故答案为:(x+2)2+1.【点评】此题主要考查了配方法的应用,正确应用完全平方公式是解题关键.12.当a=﹣1时,代数式的值是.【分析】根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可.【解答】解:∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴===;故答案为:.【点评】此题考查了分式的值,用到的知识点是完全平方公式、平方差公式和分式的化简,关键是对给出的式子进行化简.13.若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线上,则a的值为3.【分析】先根据同类项的定义求出m、n的值,故可得出P点坐标,代入反比例函数的解析式即可得出结论.【解答】解:∵12x m﹣1y2与3xy n+1是同类项,∴m﹣1=1,n+1=2,解得m=2,n=1,∴P(2,1).∵点P(m,n)在双曲线上,∴a﹣1=2,解得a=3.故答案为:3.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第一象限.【分析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.【解答】解:∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限,故答案为:一.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.15.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为58米(参考数据:tan78°12′≈4.8).【分析】直接利用锐角三角函数关系得出EC的长,进而得出AE的长,进而得出答案.【解答】解:如图所示:由题意可得:CE⊥AB于点E,BE=DC,∵∠ECB=18°48′,∴∠EBC=78°12′,则tan78°12′===4.8,解得:EC=48(m),∵∠AEC=45°,则AE=EC,且BE=DC=10m,∴此塑像的高AB约为:AE+EB=58(米).故答案为:58.【点评】此题主要考查了解直角三角形的应用,根据题意得出EC的长是解题关键.16.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为:4π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.17.请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).【分析】沿AB的中点E和BC的中点F剪开,然后拼接成平行四边形即可.【解答】解:如图所示.AE=BE,DE=EF,AD=CF.【点评】本题考查了图形的剪拼,操作性较强,灵活性较大,根据三角形的中位线定理想到从AB、BC的中点入手剪开是解题的关键.18.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为﹣1或2或1.【分析】直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.【点评】此题主要考查了抛物线与x轴的交点,正确得出关于a的方程是解题关键.三、解答题(本大题共7小题,共66分)19.计算:.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.【解答】解:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.20.为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:组别分数段频数(人)频率1 50≤x<60 30 0.12 60≤x<70 45 0.153 70≤x<80 60 n4 80≤x<90 m 0.45 90≤x<100 45 0.15请根据以图表信息,解答下列问题:(1)表中m=120,n=0.2;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.【分析】(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;(2)根据(1)中的m的值,可以将补全频数分布直方图;(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.【解答】解:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,故答案为:120,0.2;(2)补全的频数分布直方图如右图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得,,即这名选手恰好是获奖者的概率是0.55.【点评】本题考查频数分布直方图、频数分布表、中位数、概率公式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【分析】(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=6.4x+32.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).【点评】此题主要考查了一次函数的应用,根据一次函数的增减性得出费用最省方案是解决问题的关键.23.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB 于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.24.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,x2﹣3x+2=0,(x﹣1)(x﹣2)=0,x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2,m2﹣4=1,m2=5,m=±,∴|m|≤2不成立.【点评】本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.25.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?【分析】(1)根据特征线直接求出点D的特征线;(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可.【解答】解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.【点评】此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,特征线的理解,解本题的关键是用正方形的性质求出点D的坐标.。

湖北省荆州市沙市第五中学2016届中考数学第16课数据的.

湖北省荆州市沙市第五中学2016届中考数学第16课数据的.
第16课 数据的收集 与整理
要点梳理
1.数据收集的途径 1.数据收集的途径 2.数据整、实验 ________________________等. (1)直接手段:________________________等. (2)间接途径:查阅文献资料、使用互联网查询 _____________________________等. (2)间接途径:_____________________________等.
要点梳理
4.众数与中位数
在一组数据中,出现次数最多的那个数据叫做这组数 众数 .将一组数据按大、小依次排列,把排在正 据的________ 中位数 .但中位数并不一定是数据 中间的一个数据称为________ 中的一个数.当数据的个数是偶数个时,最中间有两个数, 这两个数的平均数就是这组数据的中位数;如果数据的个 数是奇数个时,中位数是正中间的那个数.
基础自测
1. (滨洲) 以下问题,不适合用全面调查的是( B ) A.了解全班同学每周体育锻炼的时间 B.鞋厂检查生产的鞋底能承受的弯折次数 C.学校招聘教师,对应聘人员面试 D.黄河三角洲中学调查全校 753 名学生的身高
解析 不同的情况调查的方式不同,数量大的应选择抽 样调查,数是小的应选择全面调查. A.数量不大,应选择全面调查; B.数量较大,具有破坏性的调查,应选择抽样调查; C.事关重大,调查往往选用普查; D.数量不是很大,应选择全面调查.故选 B.
基础自测
2. (扬州) 某校在开展“爱心捐助”的活动中,初三一班六 名同学捐款的数额分别为:8,10,10,4,8,10(单位: 元),这组数据的众数是 ( A ) A.10 B.9 C.8 D.4
解析 由题意得,所给数据中,出现次数最多的为 10, 即这组数据的众数为 10.

湖北省荆州市中考数学试题 (解析版)

湖北省荆州市中考数学试题 (解析版)

2016年湖北省荆州市中考数学试题(解析版)work Information Technology Company.2020YEAR2016年湖北荆州中考数学试题一、选择题(每小题3分,共30分)1.比0小1的有理数是()A.﹣1 B.1 C.0 D.2【答案】A【解析】试题分析:直接利用有理数的加减运算得出答案.由题意可得:0﹣1=﹣1,故比0小1的有理数是:﹣1.考点:有理数的加减运算2.下列运算正确的是()A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D. m•2m2=m2【答案】B考点:(1)、同底数幂的除法运算;(2)、合并同类项;(3)、积的乘方运算;(4)、单项式乘以单项式3.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()A.55° B.65° C.75° D.85°【答案】B【解析】试题分析:根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°考点:平行线的性质4.我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是()A.7,6 B.6,5 C.5,6 D.6,6【答案】D【解析】试题分析:根据众数定义确定众数;应用加权平均数计算这组数据的平均数.平均数为: =6,数据6出现了3次,最多,故众数为6考点:(1)、加权平均数;(2)、众数5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元【答案】C考点:一元一次方程的应用6.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°【答案】C【解析】试题分析:根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.如图,由四边形的内角和定理,得:∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得:∠AOC=∠BOC=50°.由圆周角定理,得:∠ADC=∠AOC=25°考点:(1)、切线的性质;(2)、圆周角定理7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.【答案】D考点:勾股定理8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【答案】A【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671 B.672 C.673 D.674【答案】B点:图形的变化问题10.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8【答案】C考点:反比例函数图象上点的坐标特征二、填空题(每小题3分,共24分)11.将二次三项式x2+4x+5化成(x+p)2+q的形式应为.【答案】(x+2)2+1【解析】试题分析:直接利用完全平方公式将原式进行配方得出答案.x2+4x+5=x2+4x+4+1=(x+2)2+1.考点:配方法的应用12.当a=﹣1时,代数式的值是.【答案】【解析】试题分析:根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可.∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴===;考点:(1)、完全平方公式;(2)、平方差公式;(3)、分式的化简13.若12x m﹣1y2与3xy n+1是同类项,点P(m,n)在双曲线上,则a的值为.【答案】3【解析】试题分析:先根据同类项的定义求出m、n的值,故可得出P点坐标,代入反比例函数的解析式即可得出结论.∵12x m﹣1y2与3xy n+1是同类项,∴m﹣1=1,n+1=2,解得m=2,n=1,∴P(2,1).∵点P(m,n)在双曲线上,∴a﹣1=2,解得a=3.考点:反比例函数图象上点的坐标特点14.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一15.全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为米(参考数据:tan78°12′≈4.8).【答案】58【解析】试题分析:直接利用锐角三角函数关系得出EC的长,进而得出AE的长,进而得出答案.如图所示:由题意可得:CE⊥AB于点E,BE=DC,∵∠ECB=18°48′,∴∠EBC=78°12′,则tan78°12′===4.8,解得:EC=48(m),∵∠AEC=45°,则AE=EC,且BE=DC=10m,∴此塑像的高AB约为:AE+EB=58(米).考点:解直角三角形的应用16.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.【答案】4π考点:三视图17.请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).【答案】答案见解析【解析】试题分析:沿AB的中点E和BC的中点F剪开,然后拼接成平行四边形即可.如图所示.AE=BE,DE=EF,AD=CF.考点:图形的剪拼18.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.【答案】﹣1或2或1考点:抛物线与x轴的交点三、解答题(本大题共7小题,共66分)19.计算:.【答案】5【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.试题解析:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.考点:实数的运算20.为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:组别分数段频数(人)频率1 50≤x<60 30 0.12 60≤x<70 45 0.153 70≤x<80 60 n4 80≤x<90m 0.45 90≤x<10045 0.15请根据以图表信息,解答下列问题:(1)表中m= ,n= ;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.【答案】(1)、m=120;n=0.2;(2)、答案见解析;(3)、第一组;(4)、0.55考点:(1)、频数分布直方图;(2)、频数分布表;(3)、中位数;(4)、概率公式21.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【答案】△A′DE是等腰三角形;证明过程见解析.考点:(1)、平移的性质;(2)、菱形的性质;(3)、全等三角形的判定和性质;(4)、直角三角形斜边中线定理22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【答案】(1)、y=6.4x+32;(2)、137元.考点:一次函数的应用23.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【答案】(1)、证明过程见解析;(2)、EF=2-3;OA=2.【解析】试题分析:(1)、连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)、根据平行线的考点:(1)、切线的判定;(2)、平行四边形的性质;(3)、直角三角形的性质;(4)、等边三角形的判定和性质24.已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【答案】(1)、k≥﹣1且k≠1且k≠2;(2)、x=0、1、2、3;(3)、不成立;理由见解析.【解析】试题分析:(1)、先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)、先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可;(3)、根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.试题解析:(1)、∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k), x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2, m2﹣4=1, m2=5, m=±,∴|m|≤2不成立.考点:一元二次方程的根与系数的关系25.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?【答案】(1)、x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)、y=(x﹣2)2+3;(3)、或【解析】试题分析:(1)、根据特征线直接求出点D的特征线;(2)、由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;(3)、分平行于x轴和y轴两种情况,由折叠的性质计算即可.试题解析:(1)、∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;∴MN==,∴抛物线需要向下平移的距离=3﹣=.当点A′在平行于x轴的D点的特征线时,考点(1)、折叠的性质;(2)、正方形的性质;(3)、特征线的理解。

荆州市历年中考数学试题

荆州市历年中考数学试题

3
满足 AE∶EC=2∶3。那么,tan∠ADE 是(

B
D
C
第 9 题图 洪湖市乌林镇中心学校 曾庆敏
A、
3 5
B、
2 3
C、
1 2
D、
1 3
10.有一张矩形纸片 ABCD,其中 AD=4cm,上面有一个以 AD 为直径的半园,正好与对边 BC 相切, 如图(甲)。将它沿 DE 折叠,是 A 点落在 BC 上,如图(乙)。这时,半圆还露在外面的部分(阴影部 D 分)的面积是( ) A D 1 E B、 ( π+ 3 )cm2 A、 (π- 2 3 )cm2 C、 (
yb1ooyxxca1llaa图1图2备用第25题图洪湖市乌林镇中心学校曾庆敏洪湖市乌林镇中心学校曾庆敏洪湖市乌林镇中心学校曾庆敏洪湖市乌林镇中心学校曾庆敏洪湖市乌林镇中心学校曾庆敏2007年湖北省荆州市中考数学试题第卷选择题和填空题共42分一
荆州市 2006 年初中升学考试
数学试题
注意事项: 请先阅读下列注意事项,弄清答卷要求: 1. 全卷共 8 页,分为卷Ⅰ和卷Ⅱ,卷Ⅰ(1-2 页) ,卷Ⅱ(3-8 页) 。 2. 卷Ⅰ为选择题,每小题后面的四个选项中,只有一个正确,将正确答案的代号在 卷Ⅱ的答题卡中对应的位置用 2B 铅笔“墨黑” ,答在卷Ⅰ上无效。卷Ⅱ为非选择题,直接 在试卷上作答。本卷满分为 120 分,时间为 120 分钟。 认真审题,沉着思考,严谨解答,你一定能取得好成绩!
x
A、第一、三象限 B、第二、四象限 C、第一、四象限 D、第二、三象限 06.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是
A
B
第 6 题图
C
D ) 是无理数 输出 y

2016年荆州市初中毕业班调研考试数学试题与答案

2016年荆州市初中毕业班调研考试数学试题与答案

荆州市2016年初中毕业班调研考试数学试题一、选择题(每小题3分,共30分)1.下列四个实数:-1,0,,31,其中最小的是A.-1B.0C.D.312. (2012东营)下图能说明∠1>∠2的是A.B.C.D.3.计算2)62()35)(35(+-+-的结果是A.-6B.326-- C.-10-34 D.-6-344.用配方法将函数322-+-=xxy写成顶点式正确的是A.4)1(2---=xy B.2(1)4y x=-+-C.2(1)2y x=--- D.2(1)2y x=-+-5. (2011潍坊)如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格空白的两个小正方形涂黑.得到新的图形(阴影部分),其中不是..轴对称图形的是( )甲、乙两班举行跳绳比赛,参赛选手每分钟跳绳的次数经统计计算后填入下表:班级参加人数中位数方差平均次数甲35 169 6.32 155乙35 171 4.54 155②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),③甲班的成绩的波动情况比乙班的成绩的波动大。

上述结论正确的是()A. ①②③B. ①②C. ②③D. ①③7. (2015•)如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2)B.(2,4),(3,1)C.(2,2),(3,1)D.(3,1),(2,2)8.(2015)等腰三角形三边长分别为2a b、、,且a b、是关于x的一元二次方程2610x x n-+-=的两根,则n的值为()A.9 B. 10 C. 9或10 D. 8或109. 课外读物上看到这样一个不等式:231+>xx,大家都说没学过这种不等式的解法.小聪根据不等式的特点,决定用“几何画板”来求解,在同一直角坐标系中输入两个函数,画出的图象如图,则这个不等式的解集是A.311<<-x B.311>-<xx或 C.311<<-<xx或 D.1-<x10.(2015•)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则第5题图第7题图第9题图第10题图tan ∠ABC 的值是( ) A .2 B .C .D .二.填空题(每小题3分,共24分)11.计算:(-41)-1 +(π-3)0-2)3(-= ▲ . 12. 如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的部,四边形OABC 为平行四边形, 则∠OAD+∠OCD= ▲ .13. (2015•)如图,已知矩形ABCD 的边长分别为a ,b ,连接其对边中点,得到四个 矩形,顺次连接矩形AEFG 各边中点,得到菱形l 1;连接矩形FMCH 对边中点,又得到四个矩形,顺次连接矩形FNPQ 各边中点,得到菱形l 2;…如此操作下去,得到菱形l n ,则l n 的面积是 ▲ . 14. 形如n m 2±的化简,只要我们找到两个数a 、b 使a+b=m ,ab=n ,这样m b a =+22)()(,n b a =⋅,那么便有n m 2±=2()a b a b ±=±(a>b ).例如:化简743+=1227+=2(43)23+=+根据上述材料中例题的方法化简:42213- = ▲ .15.(2012•缙云县模拟)如图点A ,点B 是反比例函数y=上两点,直线y=x+1过这两点,且AC ∥x 轴,AC ⊥BC 于点C ,则阴影部分面积(用k 的代数式表示)为 ▲ . 16. (2015•)如图,△ABC 和△DBC 是两个具有公共边的全等三角形,AB=AC=3cm .BC=2cm ,将△DBC 沿射线BC 平移一定的距离得到△D 1B 1C 1,连接AC 1,BD 1.如果四边形ABD 1C 1是矩形,那么平移的距离为 ▲ cm .17. (2012东营)某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm . 18. (2010)如图,已知二次函数y=423412++-x x 的图象与y 轴交于点A ,与x 轴交于B 、C 两点,其对称轴与x 轴交于点D ,连接AC .若E 是线段AC 上一点,且使得△EDC 为等腰三角形,则点E 的坐标是 ▲ . 三、解答题(共7小题,66分)第12题图第13题图 第15题图 第17题图 第18题图19.(7分)(2009)先将代数式21111x x x x ⎛⎫⎛⎫-÷+ ⎪ ⎪+-⎝⎭⎝⎭化简,再从33x -<<的围选取一个合适的整数x 代入求值. 20.(8分)(2015•随州)为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有 人,将条形图补充完整;(2)扇形图中m= ,n= ;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.21. (8分)(2015•)如图,小华站在河岸上的G 点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C 的俯角是∠FDC=30°,若小华的眼睛与地面的距离DG 是1.5米,BG=1米,BG 平行于AC 所在的直线,迎水坡AB 的坡度i=1:0.75,坡长AB=10米,点A 、B 、C 、D 、F 、G 在同一平面,求此时小船在C 处到岸边的距离CA 的长(,结果精确到0.1).22.(9分)(2014年一模)已知关于x 的一元二次方程mx 2-3(m+1)x+2m+3=0. (1)如果该方程有两个不相等的实数根,求m 的取值围;(2)在(1)的条件下,当关于x 的抛物线y=mx 2-3(m+1)x+2m+3与x 轴交点的横坐标都是整数,且|x|<4时,求m 的整数值.23(10分)(2011)如图①,一矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)线段AG 与C ′G 是否相等?请说明理由;(2)如图②,再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于M ,请探求AG 与EM 的长.24.(12分)(2012•聊城)某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得3502万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?25.(12分)(2011潍坊)如图,y关于x的二次函数3()(3)3y x m x mm=-+-图象的顶点为M,图象交x轴于A.B两点.交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(3 0-,),连接ED.(0m>)(1) 写出A、B、D三点的坐标;(2) 当m为何值时,M点在直线ED上?判定此时直线ED与圆的位置关系;(3) 当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m 的函数图象的示意图.荆州市2016年初中毕业班调研考试数学试题参考答案与试题解析1.C2.C3.D4.C5.D6.A7.B8.B9.C 10.D 11.-612.解析:根据同圆中同弧所对的圆周角是圆心角的一半,所以∠AOC=2∠D;又因为四边形OABC是平行四边形,所以∠B=∠AOC;圆接四边形对角互补,∠B+∠D=180°,所以∠D= 60°,连接OD,则OA=OD,OD=OC,∠OAD=∠ODA,∠OCD=∠ODC,即有∠OAD+∠OCD=60°. 13. ()2n+1ab14.67-15.2k 16.717. 当圆柱形饮水桶的底面半径最大时,圆外接于△ABC;连接外心与B点,可通过勾股定理即可求出圆的半径:②①如图,连接OB ,当⊙O 为△ABC 的外接圆时圆柱形饮水桶的底面半径的最大。

中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题

中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题

专题15 应用题1.(2016某某省某某市第22题)“六一”期间,小X购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型10 12B型15 23(1)小X如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小X设计一个进货方案,并求出其所获利润的最大值.【答案】(1)A文具为40只,B文具60只;(2)各进50只,最大利润为500元.【解析】试题分析:(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式的应用.2.(2016某某省某某市第23题)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书书本类别A类B类进价(单位:元)18 12备注1、用不超过16800元购进A、B两类图书共1000本;2、A类图书不少于600本;…(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【答案】(1)、A类图书的标价为27元,B类图书的标价为18元;(2)、当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【解析】试题解析:(1)、设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)、设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大. 考点:(1)、一次函数的应用;(2)、分式方程的应用;(3)、一元一次不等式组的应用3.(2016某某省某某市第21题)(8分)荔枝是某某特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)、求桂味和糯米糍的售价分别是每千克多少元;(2)、如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.【答案】(1)、桂味售价为每千克15元,糯米味售价为每千克20元;(2)、购买桂味4千克,糯米味8千克是,总费用最少.试题解析:(1)、设桂味售价为每千克x 元,糯米味售价为每千克y 元,根据题意得:⎩⎨⎧=+=+5529032y x y x解得:⎩⎨⎧==2015y x答:桂味售价为每千克15元,糯米味售价为每千克20元。

湖北省荆州市中考数学试卷

湖北省荆州市中考数学试卷

湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)下列实数中最大的数是()A.3 B.0 C.D.﹣42.(3分)中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()A.18×104 B.1.8×105C.1.8×106D.18×1053.(3分)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.10°4.(3分)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、35.(3分)下列根式是最简二次根式的是()A.B.C.D.6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.(3分)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元8.(3分)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)29.(3分)如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为()A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+300010.(3分)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)化简(π﹣3.14)0+|1﹣2|﹣+()﹣1的结果是.12.(3分)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m﹣7n的算术平方根是.13.(3分)若关于x的分式方程=2的解为负数,则k的取值范围为.14.(3分)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个点.15.(3分)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y 轴的对称点落在平移后的直线上,则b的值为.16.(3分)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是.17.(3分)如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.18.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比=32,tan∠DOE=,则BN的例函数y=(x<0)的图象交AB于点N,S矩形OABC长为.三、解答题(本大题共7小题,共66分)19.(10分)(1)解方程组:(2)先化简,再求值:﹣÷,其中x=2.20.(8分)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.21.(8分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.22.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D 处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)23.(10分)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.24.(10分)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.25.(12分)如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.2017年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)(2017•荆州)下列实数中最大的数是()A.3 B.0 C.D.﹣4【分析】将各数按照从大到小顺序排列,找出最大数即可.【解答】解:各数排列得:3>>0>﹣4,则实数找最大的数是3,故选A【点评】此题考查了实数大小比较,正确排列出大小顺序是解本题的关键.2.(3分)(2017•荆州)中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()A.18×104 B.1.8×105C.1.8×106D.18×105【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:180000=1.8×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•荆州)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.10°【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【解答】解:由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D.【点评】本题主要考查了平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,同位角相等.4.(3分)(2017•荆州)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、3【分析】根据中位数、平均数和众数的概念求解即可.【解答】解:∵共10人,∴中位数为第5和第6人的平均数,∴中位数=(3+3)÷3=5;平均数=(1×2+2×2+3×4+6×2)÷10=3;众数是一组数据中出现次数最多的数据,所以众数为3;故选A.【点评】本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•荆州)下列根式是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式.6.(3分)(2017•荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.7.(3分)(2017•荆州)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设出未知数,根据题中的关键描述语列出方程求解.【解答】解:设小慧同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.8.(3分)(2017•荆州)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)2【分析】根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.【解答】解:如图,设折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10﹣x)2.故选D.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.9.(3分)(2017•荆州)如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为()A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+3000【分析】根据给出的几何体的三视图可知几何体是由一个圆柱和一个长方体组成,从而利用三视图中的数据,根据体积公式计算即可.【解答】解:由三视图可知,几何体是由一个圆柱和一个长方体组成,圆柱底面直径为20,高为8,长方体的长为30,宽为20,高为5,故该几何体的体积为:π×102×8+30×20×5=800π+3000,故选:D.【点评】本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键.10.(3分)(2017•荆州)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④【分析】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;【解答】解:①由x2﹣2x﹣8=0,得(x﹣4)(x+2)=0,解得x1=4,x2=﹣2,∵x1≠2x2,或x2≠2x1,∴方程x2﹣2x﹣8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,∴x1+x2=﹣a=±3,∴a=±3,故②正确;③关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,∴x2=2x1,∵抛物线y=ax2﹣6ax+c的对称轴是直线x=3,∴抛物线y=ax2﹣6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=﹣,x2=﹣,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;故选C.【点评】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•荆州)化简(π﹣3.14)0+|1﹣2|﹣+()﹣1的结果是2.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+2﹣1﹣2+2=2,故答案为:2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.12.(3分)(2017•荆州)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m﹣7n 的算术平方根是4.【分析】根据同类项定义可以得到关于m、n的二元一次方程,即可求得m、n 的值即可解题.【解答】解:∵单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,∴4=m﹣n,2m+n=2,解得:m=2,n=﹣2,∴m﹣7n=16,∴m﹣7n的算术平方根==4,故答案为4.【点评】本题考查了同类项的定义,考查了二元一次方程的求解,考查了算术平方根的定义,本题中求得m、n的值是解题的关键.13.(3分)(2017•荆州)若关于x的分式方程=2的解为负数,则k的取值范围为k<3且k≠1.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为负数确定出k的范围即可.【解答】解:去分母得:k﹣1=2x+2,解得:x=,由分式方程的解为负数,得到<0,且x+1≠0,即≠﹣1,解得:k<3且k≠1,故答案为:k<3且k≠1【点评】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.(3分)(2017•荆州)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有135个点.【分析】仔细观察图形,找到图形变化的规律的通项公式,然后代入9求解即可.【解答】解:第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点;第三个图形有3+6+9=3×(1+2+3)=18个点;…第n个图形有3+6+9+…+3n=3×(1+2+3+…+n)=个点;当n=9时,=135个点,故答案为:135.【点评】本题考查了图形的变化类问题,解题的关键是能够找到图形的变化规律,然后求解.15.(3分)(2017•荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A(﹣1,2)关于y轴的对称点是(1,2),∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.【点评】本题考查了一次函数图象与几何变换,关于y轴对称的点坐标特征,一次函数图象上点的坐标特征,熟练记忆函数平移规律是解题关键.16.(3分)(2017•荆州)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是60°或120°.【分析】连接OB,则AB=OA=OB故可得出△AOB是等边三角形,所以∠ADC=60°,∠AD′C=120°,据此可得出结论.【解答】解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.17.(3分)(2017•荆州)如图,在5×5的正方形网格中有一条线段AB,点A 与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.【分析】以AB为边作正方形ABCD,正方形ABEF,连接AC,BD交于O,连接AE,BF交于O′,过O,O′作直线OO′于是得到结论.【解答】解:如图所示,直线OO′即为所求.【点评】本题考查了作图﹣应用与设计作图,正方形的性质,线段的垂直平分线的性质,正确的作出图形是解题的关键.18.(3分)(2017•荆州)如图,在平面直角坐标系中,矩形OABC的顶点A、C 分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O 顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经=32,tan∠DOE=,过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC则BN的长为3.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE==,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为y=﹣,然后确定N点坐标,最后计算BN的长.=32,【解答】解:∵S矩形OABC∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE==,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM==,而OC=AB=4,∴MC=2,∴M(﹣2,4),把M(﹣2,4)代入y=得k=﹣2×4=﹣8,∴反比例函数解析式为y=﹣,当x=﹣8时,y=﹣=1,则N(﹣8,1),∴BN=4﹣1=3.故答案为3.【点评】本题考查了旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了反比例函数图象上点的坐标特征和解直角三角形.三、解答题(本大题共7小题,共66分)19.(10分)(2017•荆州)(1)解方程组:(2)先化简,再求值:﹣÷,其中x=2.【分析】(1)根据代入消元法可以解答此方程;(2)根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)将①代入②,得3x+2(2x﹣3)=8,解得,x=2,将x=2代入①,得y=1,故原方程组的解是;(2)﹣÷===,当x=2时,原式=.【点评】本题考查分式的化简求值、解二元一次方程,解答本题的关键是明确它们各自的计算方法.20.(8分)(2017•荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC 沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.【点评】此题主要考查了平移的性质、矩形的性质、全等三角形的判定;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.21.(8分)(2017•荆州)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为56人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.【分析】(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;(2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;(3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)总人数为14÷28%=50人,B等人数为50×40%=20人.条形图补充如下:(2)该年级足球测试成绩为D等的人数为700×=56(人).故答案为56;(3)画树状图:共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,所以恰好选到甲、乙两个班的概率是=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.22.(8分)(2017•荆州)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB 的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)【分析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.【解答】解:如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i==,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,过点E作EG⊥AB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4•tan37°,则AB=AG+BG=4•tan37°+3.5=3+3.5,故旗杆AB的高度为(3+3.5)米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题和坡度坡比问题,掌握仰角俯角和坡度坡比的定义,并根据题意构建合适的直角三角形是解题的关键.23.(10分)(2017•荆州)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.【分析】(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;(2)由于二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,又△=(k﹣5)2﹣4(1﹣k)=(k﹣3)2+12>0,所以抛物线的顶点在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口向上,由此可以得出关于k的不等式组,解不等式组即可求解;(3)设方程的两个根分别是x1,x2,根据题意得(x1﹣3)(x2﹣3)<0,根据一元二次方程根与系数的关系求得k的取值范围,再进一步求出k的最大整数值.【解答】(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根;(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=(k﹣3)2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1•x2=1﹣k≥0,解得k≤1,即k的取值范围是k≤1;(3)解:设方程的两个根分别是x1,x2,根据题意,得(x1﹣3)(x2﹣3)<0,即x1•x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1•x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<.则k的最大整数值为2.【点评】本题考查了抛物线与x轴的交点,二次函数的图象和性质,二次函数与一元二次方程的关系,根的判别式,根与系数的关系,综合性较强,难度适中.24.(10分)(2017•荆州)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.【分析】(1)根据函数图象,利用待定系数法求解可得;(2)设日销售利润为w,分1≤t≤40和41≤t≤80两种情况,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时x的值,结合函数图象即可得出答案;(4)依据(2)中相等关系列出函数解析式,确定其对称轴,由1≤t≤40且销售利润随时间t的增大而增大,结合二次函数的性质可得答案.【解答】解:(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤x≤80,t为整数);(2)设日销售利润为w,则w=(p﹣6)y,①当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,=2450;∴当t=30时,w最大②当41≤t≤80时,w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,=2301,∴当t=41时,w最大∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤40时,w=﹣(t﹣30)2+2450,。

湖北省荆州市中考数学试题.doc

湖北省荆州市中考数学试题.doc

湖北省荆州市初中升学考试数学真题注意事项:1.本卷满分为1考试时间为1.2.本卷是试题卷,不能答题,答题必须写在答题卡上,解题中的辅助线和标注角的字母、符号等务必添在答题卡的图形上.3.在答题卡上答题,选择题必须用2B..铅笔填涂,非选择题必须用0.5毫米黑色..签字笔或黑色墨水..钢笔作答. ★ 祝 考 试 顺 利 ★一、选择题(每小题3分,共30分)1.温度从-2°C 上升3°C 后是A .1°CB . -1°C C .3°CD .5°C2.分式112+-x x 的值为0,则 A..x=-1 B .x=1 C .x=±1 D .x=03.下面计算中正确的是A .532=+ B .()111=-- C . ()2010201055=- D . x 32x •=x 64.一根直尺EF 压在三角板30°的角∠BAC 上,与两边AC ,AB 交于M 、N.那么∠CME+∠BNF 是A .150°B .180°C .135° D.不能确定5.△ABC 中,∠A=30°,∠C=90°,作△ABC 的外接圆.如图,若 的长为12cm ,那么 的长是A .10cmB .9cmC .8cmD .6cm6.在电子显微镜下测得一个圆球体细胞的直径是5×105-cm.,3102⨯个这样的细胞排成的细胞链的长是A .cm 210-B .cm 110-C .cm 310-D .cm 410-7.函数x y =1,34312+=x y .当21y y >时, x 的范围是A..x <-1 B .-1<x <2C .x <-1或x >2D .x >28、某个长方体主视图是边长为1cm 的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是9.若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则 E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位10.如图,直线l是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A ,B 在函数x k y =的图象上. 那么k 的值是A .3B .6C.12 D .415二、填空题(每小题4分,共24分)11.分解因式 x(x-1)-3x+4= . 12.如图,在平行四边形ABCD 中,∠A=130°,在AD 上取DE=DC ,则∠ECB 的度数是 .13.用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是 .14.有如图的8张纸条,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼出的图案.(画出的两个图案不能全等)15.如图,在△ABC 中,∠B=45°,cos ∠C=53,AC=5a , 则△ABC 的面积用含a的式子表示是 .16.屏幕上有四张卡片,卡片上分别有大写的英文字母“A ,Z ,E ,X ”,现已将字母隐藏.只要用手指触摸其中一张,上面的字母就会显现出来.某同学任意触摸其中2张,上面显现的英文字母都是中心对称图形的概率是 .三、解答题(共66分)17.(6分)计算:()21182010---+ 18.(7分)解方程:13321++=+x x x x 19.(7分)如图,将正方形ABCD 中的△ABD 绕对称中心O旋转至△GEF 的位置,EF 交AB 于M ,GF 交BD 于N .请猜想BM 与FN 有怎样的数量关系?并证明你的结论.8分),世博会在我国的上海举行,在网上随机调取了5月份中的某10天持票入园参观的人数,绘成下面的统计图.根据图中的信息回答下列问题:(1)求出这10天持票入园人数的平均数、中位数和众数;(2)不考虑其它因素的影响,以这10天的数据作为样本,估计在世博会开馆的184天中,持票入园人数超过..30万人的有多少天?21.(8分)已知:关于x 的一元二次方程()01222=+-+k x k x 的两根21,x x 满足02221=-x x ,双曲线x k y 4=(x >0)经过Rt △OAB 斜边OB 的中点D ,与直角边AB 交于C (如图),求OBC △S .22.(8分)如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连结BO 、ED ,有BO ∥ED ,作弦EF ⊥AC于G ,连结DF .(1)求证:AB 为⊙O 的切线;(2)若⊙O 的半径为5,sin ∠DFE=53, 求EF 的长.23.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?24.(12分)如图,直角梯形OABC 的直角顶点O 是坐标原点,边OA ,OC 分别在x 轴、y 轴的正半轴上,OA ∥BC ,D 是BC 上一点,BD=41OA=2,AB=3,∠OAB=45°,E 、F 分别是线段OA 、AB 上的两动点,且始终保持∠DEF=45°.(1)直接写出....D 点的坐标;(2)设OE=x ,AF=y ,试确定y 与x 之间的函数关系;(3)当△AEF 是等腰三角形时,将△AEF 沿EF 折叠,得到△EF A ',求△EF A '与五边形OEFBC 重叠部分的面积.。

湖北省荆州市中考数学真题试题

湖北省荆州市中考数学真题试题

荆州市 初中升学考试数学试题一.选择题:1.下列等式成立的是A .│-2│=2B .(2-1)0 =0C .(-12)1-=2 D .-(-2)=-22.如图,AB ∥CD ,∠ABE =60°,∠D =50°,则∠E 的度数为 A .30° B .20° C .10° D .40°3.解分式方程2132x x x-=++时,去分母后可得到 A .x (2+x )-2(3+x )=1 B . x (2+x )-2=2+xC . x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x4.计算1143823+-的结果是 A .3+2B . 3C .33D . 3-25.四川雅安发生地震灾害后,某中学九(1)班学生积极捐款献爱心,如图所示是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是 A .20,10 B .10,20 C .16,15 D .15,16第5题图 第6题 第8题6.如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,角∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF :S 四边形BDEF 为 A .3:4 B .1:2 C .2:3 D .1:37.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条直线的交点坐标,则这两条直线的解析式是 进球数 0 1 234 5 人数15x y32A .y =x +9与y =3x +3 B . y =-x +9与y =3x +3C . y =-x +9与y =-23x +223D . y =x +9与y =-23x +2238.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB 'C ',点B 经过的路径为弧BB ',若角∠BAC =60°,AC =1,则图中阴影部分的面积是A .2π B .3π C .4π D . π9.将一边长为2的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是A .1B .32C .12D .2310.如图,在平面直角坐标系中,直线y =-3x +3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD 沿x 轴负方向平FEDCB A第2题图xyDCB移a 个单位长度后,点C 恰好落在双曲线上则a 的值是 A .1 B .2 C .3 D .4 二.填空题:11.分解因式a 3-ab 2=12.如图,在高度是21米的小山A 处没得建筑物CD 顶部C 处的仰角为30°,底部D 处的俯角为何45°,则这个建筑物的高度 米(结果可保留根号)第12题图 第13题图 第14题图13.如图,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O 为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4. 14如图,△ABC 是斜边AB 的长为3的等腰直角三角形,在△ABC 内作第1个内接正方形A 1B 1D 1E 1(D 1、E 1在AB 上,A 1、B 1分别在AC 、BC 上),再在△A 1B 1C 内接同样的方法作第2个内接正方形A 2B 2D 2E 2,…如此下去,操作n 次,则第n 个小正方形A n B n D n E n 的边长是 。

2016年湖北省荆门市中考数学试卷

2016年湖北省荆门市中考数学试卷

2016年湖北省荆门市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,有且只有一个答案是正确的)1. 2的绝对值是()A.2B.−2C.12D.−12【答案】A【考点】绝对值【解析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵2>0,∴|2|=2.故选:A.2. 下列运算正确的是()A.a+2a=2a2B.(−2ab2)2=4a2b4C.a6÷a3=a2D.(a−3)2=a2−9【答案】B【考点】合并同类项幂的乘方与积的乘方同底数幂的除法完全平方公式【解析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等余平方和减积的二倍,可得答案.【解答】A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、差的平方等于平方和减积的二倍,故D错误;3. 要使式子√x−12有意义,则x的取值范围是()A.x>1B.x>−1C.x≥1D.x≥−1C【考点】二次根式有意义的条件【解析】直接利用二次根式有意义的条件进而得出x−1≥0,求出答案.【解答】有意义,要使式子√x−12故x−1≥0,解得:x≥1.则x的取值范围是:x≥1.4. 如图,△ABC中,AB=AC,AD平分∠BAC.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.10【答案】C【考点】等腰三角形的性质:三线合一勾股定理【解析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD.∵AB=5,AD=3,∴BD=√AB2−AD2=4,∴BC=2BD=8.故选C.5. 在平面直角坐标系中,若点A(a, −b)在第一象限内,则点B(a, b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【考点】点的坐标【解析】根据各象限内点的坐标特征解答即可.解:∵点A(a, −b)在第一象限内,∴a>0,−b>0,∴b<0,∴点B(a, b)所在的象限是第四象限.故选D.6. 如图是由5个大小相同的小正方体拼成的几何体,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三种视图的面积相等【答案】B【考点】简单组合体的三视图【解析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图的面积是4;从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积为3;从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,俯视图的面积是4,所以左视图面积最小.故选B.7. 化简xx2+2x+1÷(1−1x+1)的结果是()A.1 x+1B.x+1xC.x+1D.x−1【答案】A【考点】分式的混合运算【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解:原式=x(x+1)2÷xx+1=x(x+1)2⋅x+1x=1x+1,故选A8. 如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B.C. D.【答案】A【考点】动点问题【解析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解答】当P点由A运动到B点时,即0≤x≤2时,y=12×2x=x,当P点由B运动到C点时,即2<x<4时,y=12×2×2=2,符合题意的函数关系的图象是A;9. 已知3是关于x的方程x2−(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )A.7B.10C.11D.10或11【答案】D【考点】三角形三边关系解一元二次方程-因式分解法一元二次方程的解等腰三角形的判定与性质【解析】把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=3代入方程得9−3(m+1)+2m=0,解得m=6,则原方程为x2−7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选D.10. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=−7D.x1=−1,x2=7【答案】D【考点】二次函数的性质解一元二次方程-因式分解法【解析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx =7,求出x的值即可.【解答】∵二次函数y=x2+mx的对称轴是x=3,∴−m=3,解得m=−6,2∴关于x的方程x2+mx=7可化为x2−6x−7=0,即(x+1)(x−7)=0,解得x1=−1,x2=7.11. 如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()AD C.AB=AF D.BE=AD−DFA.△AFD≅△DCEB.AF=12【答案】B【考点】矩形的性质全等三角形的判定【解析】先根据已知条件判定判定△AFD≅△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90∘,AD // BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≅△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30∘,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≅△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≅△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC−EC,∴BE=AD−DF,故(D)正确;故选(B)12. 如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90∘的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )A.12cmB.6cmC.3√2cmD.2√3cm【答案】C【考点】圆锥的计算【解析】圆的半径为12,求出AB的长度,用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.【解答】解:AB=2=2=12√2(cm),∴BĈ=90π×12√2180=6√2π,∴圆锥的底面圆的半径=6√2π÷(2π)=3√2(cm).故选C.二、填空题(本题共5小题,每小题3分,共15分)分解因式:(m+1)(m−9)+8m=________.【答案】(m+3)(m−3)【考点】因式分解-运用公式法【解析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m−9)+8m,=m2−9m+m−9+8m,=m2−9,=(m+3)(m−3).故答案为:(m+3)(m−3).为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有________台.【答案】16【考点】一元一次方程的应用——工程进度问题【解析】设购置的笔记本电脑有x台,则购置的台式电脑为(100−x)台.根据笔记本电脑的台数比台式电脑的台数的14还少5台,可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为(100−x)台,依题意得:x=14(100−x)−5,即20−54x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.【答案】35【考点】列表法与树状图法【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到一男一女的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为P(一男一女)=1220=35,故答案为:35.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90∘,∠B=30∘,AB=8cm,则CF=________cm.【答案】2√3【考点】解直角三角形旋转的性质勾股定理【解析】利用旋转的性质得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90∘,再利用直角三角形的性质得出FC的长.【解答】解:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90∘,∠B=30∘,∴∠D=∠CAB=60∘,∴∠DCA=60∘,∴∠ACF=30∘,可得∠AFC=90∘,∵AB=8cm,∴AC=4cm,在Rt△ACF中,AC=4,则AF=2,则由勾股定理得FC2=AC2−AF2=12,则AC=2√3cm.故答案为:2√3.图象上的一点,连接AO并延长交双曲线的另如图,已知点A(1, 2)是反比例函数y=kx一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是________.【答案】(−3, 0)或(5, 0)或(3, 0)或(−5, 0)【考点】反比例函数图象上点的坐标特征等腰三角形的性质【解析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x, 0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.【解答】∵反比例函数y=k图象关于原点对称,x∴A、B两点关于O对称,∴O为AB的中点,且B(−1, −2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x, 0),∵A(1, 2),B(−1, −2),∴AB=√[1−(−1)]2+[2−(−2)]2=2√5,PA=√(x−1)2+22,PB=√(x+1)2+(−2)2,当PA=AB时,则有√(x−1)2+22=2√5,解得x=−3或5,此时P点坐标为(−3, 0)或(5, 0);当PB=AB时,则有√(x+1)2+(−2)2=2√5,解得x=3或−5,此时P点坐标为(3, 0)或(−5, 0);综上可知P点的坐标为(−3, 0)或(5, 0)或(3, 0)或(−5, 0),三、解答题(本题共7小题,共69分)(1)计算:|1−√3|+3tan30∘−(√3−5)0−(−13)−1.(2)解不等式组{2x+1>0①2−x2≥x+33②.【答案】解:(1)原式=√3−1+3×√33−1−(−3)=√3−1+√3+3=2;(2)解①得x>−12,解②得x≤0,则不等式组的解集是−12<x≤0.【考点】解一元一次不等式组实数的运算零指数幂、负整数指数幂负整数指数幂特殊角的三角函数值【解析】(1)首先去掉绝对值符号,计算乘方,代入特殊角的三角函数值,然后进行加减计算即可;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)原式=√3−1+3×√33−1−(−3)=√3−1+√3+3=2;(2)解①得x>−12,解②得x≤0,则不等式组的解集是−12<x≤0.如图,在Rt△ABC中,∠ACB=90∘,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90∘后得CF,连接EF.(1)补充完成图形;(2)若EF // CD,求证:∠BDC=90∘.【答案】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90∘,∴∠DCE+∠ECF=90∘,∵∠ACB=90∘,∴∠DCE+∠BCD=90∘,∴∠ECF=∠BCD,∵EF // DC,∴∠EFC+∠DCF=180∘,∴∠EFC=90∘,在△BDC和△EFC中,{DC=FC∠BCD=∠ECFBC=EC,∴△BDC≅△EFC(SAS),∴∠BDC=∠EFC=90∘.【考点】旋转的性质【解析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS 得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90∘,∴∠DCE+∠ECF=90∘,∵∠ACB=90∘,∴∠DCE+∠BCD=90∘,∴∠ECF=∠BCD,∵EF // DC,∴∠EFC+∠DCF=180∘,∴∠EFC=90∘,在△BDC和△EFC中,{DC=FC∠BCD=∠ECFBC=EC,∴△BDC≅△EFC(SAS),∴∠BDC=∠EFC=90∘.秋季新学期开学时,某中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:90≤x≤100c0.2请根据上述统计图表,解答下列问题:(1)在表中,a=________,b=________,c=________;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等级,请你估计全校七年级的800名学生中,“优秀”等级的学生约有多少人?【答案】0.1,0.3,18(2)由(1)知c=18,则补全的频数分布直方图如图所示,(3)七年级学生的平均成绩为65×9+75×36+85×27+95×1890=81,故七年级学生的平均成绩为81分.(4)在调查的90人中,“优秀”等次的有27+18=45人,调查人数的9045=12,则全校七年级的800名学生中,成绩达到“优秀”的有800×12=400人.【考点】频数(率)分布直方图用样本估计总体频数(率)分布表加权平均数【解析】本题考查了通过频数(率)分布表求表中的未知数,了解频数和频率之间的关系即可. 主要通过频数(率)分布表来补充频数(率)分布直方图.根据加权平均数的定义和表格中的数据可以求得七年级学生的平均成绩;主要是通过“优秀”等次人数在样本中的占比来估计总体的“优秀”等次的人数.【解答】解:(1)由表格分数段“70≤x≤80”可知,本次调查的总人数为360.4=90人,则a=990=0.1,b=2790=0.3,c=90×0.2=18.故答案为:0.1;0.3;18.(2)由(1)知c=18,则补全的频数分布直方图如图所示,(3)七年级学生的平均成绩为65×9+75×36+85×27+95×1890=81,故七年级学生的平均成绩为81分.(4)在调查的90人中,“优秀”等次的有27+18=45人,调查人数的9045=12,则全校七年级的800名学生中,成绩达到“优秀”的有800×12=400人.如图,天星山山脚下西端A处与东端B处相距800(1+√3)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45∘,东端的坡角是30∘,小军的行走速度为√22米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?【答案】小明的行走速度是1米/秒.【考点】解三角形的实际应用【解析】过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.【解答】过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,∵∠A=45∘,CD⊥AB,∴AD=CD=x米,∴AC=√2x.在Rt△BCD中,∵∠B=30∘,∴BC=CDsin30=x12=2x,∵小军的行走速度为√22米/秒.若小明与小军同时到达山顶C处,∴√2x√22=2xa,解得a=1米/秒.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.【答案】证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC // FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;证明:连接BC,在Rt△ACE中,AC=2+EC2=√22+11=√5,∵AB是⊙O的直径,∴∠BCA=90∘,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴CAAB =AEAC,∴√5AB =√5∴AB=5,∴AO=2.5,即⊙O的半径为2.5.【考点】角平分线的性质切线的判定【解析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC // FD,再证得OC⊥CE,即可证得结论;(2)证明:连接BC,由圆周角定理得到∠BCA=90∘,再证得△ABC∽△ACE,根据相似三角形的性质即可证得结论.【解答】证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC // FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;证明:连接BC,在Rt△ACE中,AC=√AE2+EC2=√22+11=√5,∵AB是⊙O的直径,∴∠BCA=90∘,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴CAAB =AEAC,∴√5AB =√5,∴AB=5,∴AO=2.5,即⊙O的半径为2.5.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?【答案】解:(1)W=250x+200(30−x)+150(34−x)+240(6+x)=140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台,(3)W=(250−a)x+200(30−x)+150(34−x)+240(6+x)=(140−a)x+ 12540,=10740元.所以当a=200时,W=−60x+12540,此时x=30时,W最小此时的方案为:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台.【考点】一次函数的应用一元一次不等式的运用【解析】(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30−x吨,B城运往C乡的化肥为34−x吨,B城运往D乡的化肥为40−(34−x)吨,从而可得出W与x大的函数关系.(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可;(3)根据题意得到W=(140−a)x+12540,所以当a=200时,y=−60x+12540,=10740元.于是得到结论.此时x=30时,W最小【解答】解:(1)W=250x+200(30−x)+150(34−x)+240(6+x)=140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台,(3)W=(250−a)x+200(30−x)+150(34−x)+240(6+x)=(140−a)x+ 12540,=10740元.所以当a=200时,W=−60x+12540,此时x=30时,W最小此时的方案为:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台.如图,直线y=−√3x+2√3与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和√3个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.【答案】解:(1)在直线y=−√3x+2√3中,令y =0可得0=−√3x +2√3,解得x =2, 令x =0可得y =2√3,∴ A 为(2, 0),B 为(0, 2√3);(2)由(1)可知OA =2,OB =2√3, ∴ tan ∠ABO =OA OB=√33, ∴ ∠ABO =30∘, ∵ 运动时间为t 秒, ∴ BE =√3t , ∵ EF // x 轴,∴ 在Rt △BEF 中,EF =BE ⋅tan ∠ABO =√33BE =t ,BF =2EF =2t ,在Rt △ABO 中,OA =2,OB =2√3, ∴ AB =4,∴ AF =4−2t ;(3)相似.理由如下:当四边形ADEF 为菱形时,则有EF =AF , 即t =4−2t ,解得t =43,∴ AF =4−2t =4−83=43,OE =OB −BE =2√3−√3×43=2√33,如图,过G 作GH ⊥x 轴,交x 轴于点H ,则四边形OEGH 为矩形, ∴ GH =OE =2√33,又EG // x 轴,抛物线的顶点为A ,∴ OA =AH =2,在Rt △AGH 中,由勾股定理可得AG 2=GH 2+AH 2=(2√33)2+22=163,又AF ⋅AB =43×4=163,∴ AF ⋅AB =AG 2,即AFAG =AGAB ,且∠FAG =∠GAB , ∴ △AFG ∽△AGB ; (4)存在,∵ EG // x 轴,∴∠GFA=∠BAO=60∘,又G点不能在抛物线的对称轴上,∴∠FGA≠90∘,∴当△AGF为直角三角形时,则有∠FAG=90∘,又∠FGA=30∘,∴FG=2AF,∵EF=t,EG=4,∴FG=4−t,且AF=4−2t,∴4−t=2(4−2t),解得t=43,即当t的值为43秒时,△AGF为直角三角形,此时OE=OB−BE=2√3−√3t=2√3−√3×43=2√33,∴E点坐标为(0, 2√33),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x−2)2,把E点坐标代入可得2√33=4a,解得a=√36,∴抛物线解析式为y=√36(x−2)2,即y=√36x2−2√33x+2√33.【考点】二次函数综合题【解析】(1)在直线y=−√3x+2√3中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30∘,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到AFAG =AGAB,可判定△AFG与△AGB相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90∘,又∠AFG=∠OAF= 60∘,由(2)可知AF=4−2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.【解答】解:(1)在直线y=−√3x+2√3中,令y=0可得0=−√3x+2√3,解得x=2,令x=0可得y=2√3,∴A为(2, 0),B为(0, 2√3);(2)由(1)可知OA=2,OB=2√3,∴tan∠ABO=OAOB =√33,∴ ∠ABO =30∘,∵ 运动时间为t 秒,∴ BE =√3t ,∵ EF // x 轴,∴ 在Rt △BEF 中,EF =BE ⋅tan ∠ABO =√33BE =t ,BF =2EF =2t ,在Rt △ABO 中,OA =2,OB =2√3,∴ AB =4,∴ AF =4−2t ;(3)相似.理由如下:当四边形ADEF 为菱形时,则有EF =AF ,即t =4−2t ,解得t =43, ∴ AF =4−2t =4−83=43,OE =OB −BE =2√3−√3×43=2√33,如图,过G 作GH ⊥x 轴,交x 轴于点H ,则四边形OEGH 为矩形,∴ GH =OE =2√33,又EG // x 轴,抛物线的顶点为A ,∴ OA =AH =2,在Rt △AGH 中,由勾股定理可得AG 2=GH 2+AH 2=(2√33)2+22=163, 又AF ⋅AB =43×4=163,∴ AF ⋅AB =AG 2,即AF AG =AG AB ,且∠FAG =∠GAB ,∴ △AFG ∽△AGB ; (4)存在,∵ EG // x 轴,∴ ∠GFA =∠BAO =60∘,又G 点不能在抛物线的对称轴上,∴ ∠FGA ≠90∘,∴ 当△AGF 为直角三角形时,则有∠FAG =90∘,又∠FGA =30∘,∴ FG =2AF ,∵EF=t,EG=4,∴FG=4−t,且AF=4−2t,∴4−t=2(4−2t),解得t=43,即当t的值为43秒时,△AGF为直角三角形,此时OE=OB−BE=2√3−√3t=2√3−√3×43=2√33,∴E点坐标为(0, 2√33),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x−2)2,把E点坐标代入可得2√33=4a,解得a=√36,∴抛物线解析式为y=√36(x−2)2,即y=√36x2−2√33x+2√33.。

【精校】2016年湖北省荆门市中考真题数学

【精校】2016年湖北省荆门市中考真题数学

2016年湖北省荆门市中考真题数学一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,有且只有一个答案是正确的)1. 2的绝对值是( )A.2B.-2C.1 2D.-1 2解析:∵2>0,∴|2|=2.答案:A.2. 下列运算正确的是( )A.a+2a=2a2B.(-2ab2)2=4a2b4C.a6÷a3=a2D.(a-3)2=a2-9解析:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、差的平方等余平方和减积的二倍,故D错误.答案:B.3. 要使式子2有意义,则x的取值范围是( )A.x>1B.x>-1C.x≥1D.x≥-1有意义,解析:要使式子2故x-1≥0,解得:x≥1.则x的取值范围是:x≥1.答案:C.4. 如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )A.5B.6C.8D.10解析:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴,∴BC=2BD=8.答案:C.5. 在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限解析:∵点A(a ,-b)在第一象限内,∴a >0,-b >0,∴b <0,∴点B(a ,b)所在的象限是第四象限.答案:D.6. 由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是( )A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等解析:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图的面积是4; 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积为3; 从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,俯视图的面积是4,左视图面积最小,故B 正确.答案:B.7. 化简211211x x x x ÷-⎛⎫ ⎪⎝++⎭+的结果是( ) A.11x + B.1x x + C.x+1D.x-1解析:原式=()()22111111xx x x x x x x x +÷=⋅=++++.答案:A.8. 如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.解析:当P点由A运动到B点时,即0≤x≤2时,y=12×2x=x,当P点由B运动到C点时,即2<x<4时,y=12×2×2=2,符合题意的函数关系的图象是A.答案:A.9. 已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )A.7B.10C.11D.10或11解析:把x=3代入方程得9-3(m+1)+2m=0,解得m=6,则原方程为x 2-7x+12=0,解得x 1=3,x 2=4,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11;②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10.综上所述,该△ABC 的周长为10或11.答案:D.10. 若二次函数y=x 2+mx 的对称轴是x=3,则关于x 的方程x 2+mx=7的解为( )A.x 1=0,x 2=6B.x 1=1,x 2=7C.x 1=1,x 2=-7D.x 1=-1,x 2=7解析:∵二次函数y=x 2+mx 的对称轴是x=3,∴-2m =3,解得m=-6, ∴关于x 的方程x 2+mx=7可化为x 2-6x-7=0,即(x+1)(x-7)=0,解得x 1=-1,x 2=7. 答案:D.11. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE=DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A.△AFD≌△DCEB.AF=12ADC.AB=AFD.BE=AD-DF解析:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC-EC,∴BE=AD-DF,故(D)正确.答案:B.12. 如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )A.12cmB.6cm解析:作OD ⊥AC 于点D ,连接OA ,∴∠OAD=45°,AC=2AD ,∴AC=2(OA ×cos45°cm ,∴90180π⨯π∴圆锥的底面圆的半径π÷(2πcm.答案:C.二、填空题(本题共5小题,每小题3分,共15分)13. 分解因式:(m+1)(m-9)+8m=_____.解析:(m+1)(m-9)+8m ,=m 2-9m+m-9+8m ,=m 2-9,=(m+3)(m-3).答案:(m+3)(m-3).14. 为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的14还少5台,则购置的笔记本电脑有_____台. 解析:设购置的笔记本电脑有x 台,则购置的台式电脑为(100-x)台,依题意得:x=14(100-x)-5,即20-54x=0, 解得:x=16.∴购置的笔记本电脑有16台.答案:16.15. 荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是_____. 解析:画树状图如下:由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为P(一男一女)=123 205.答案:35.16. 两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=_____cm.解析:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°答案:17. 如图,已知点A(1,2)是反比例函数y=k x图象上的一点,连接AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点;若△PAB 是等腰三角形,则点P 的坐标是_____.解析:由对称性可知O 为AB 的中点,则当△PAB 为等腰三角形时只能有PA=AB 或PB=AB ,设P 点坐标为(x ,0),可分别表示出PA 和PB ,从而可得到关与x 的方程,可求得x ,可求得P 点坐标.答案:(-3,0)或(5,0)或(3,0)或(-5,0).三、解答题(本题共7小题,共69分)18. (1)计算:|+3tan30°-5)0-(-13)-1. (2)解不等式组2102323x x x +⎧⎪⎨-+≥⎪⎩>①②. 解析:(1)首先去掉绝对值符号,计算乘方,代入特殊角的三角函数值,然后进行加减计算即可;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 答案:(1)原式+3=2; (2)解①得x >-12, 解②得x ≤0,则不等式组的解集是-12<x ≤0.19. 如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.解析:(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF 为直角,由EF 与CD 平行,得到∠EFC 为直角,利用SAS 得到三角形BDC 与三角形EFC 全等,利用全等三角形对应角相等即可得证.答案:(1)补全图形,如图所示;(2)由旋转的性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD ,∵EF ∥DC ,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC 和△EFC 中,DC FC BCD ECF BC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.20. 秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:请根据上述统计图表,解答下列问题:(1)在表中,a=_____,b=_____,c=_____;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解析:(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值;(2)根据(1)中c的值,可以将频数分布直方图补充完整;(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;(4)根据表格中的数据可以求得“优秀”等次的学生数.答案:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18.(2)补全的频数分布直方图如下图所示,(3)∵96536752785189590⨯+⨯+⨯+⨯=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.21. 如图,天星山山脚下西端A处与东端B处相距米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为2米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?解析:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论. 答案:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴x.在Rt △BCD 中,∵∠B=30°,∴BC=1302CD x sin =︒=2x ,∵小军的行走速度为2米/秒.若小明与小军同时到达山顶C 处,2 x a ,解得a=1米/秒. 答:小明的行走速度是1米/秒.22. 如图,AB 是⊙O 的直径,AD 是⊙O 的弦,点F 是DA 延长线的一点,AC 平分∠FAB 交⊙O 于点C ,过点C 作CE ⊥DF ,垂足为点E.(1)求证:CE 是⊙O 的切线;(2)若AE=1,CE=2,求⊙O 的半径.解析:(1)证明:连接CO ,证得∠OCA=∠CAE ,由平行线的判定得到OC ∥FD ,再证得OC ⊥CE ,即可证得结论;(2)证明:连接BC ,由圆周角定理得到∠BCA=90°,再证得△ABC ∽△ACE ,根据相似三角形的性质即可证得结论.答案:(1)证明:连接CO ,∵OA=OC ,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:连接BC,在Rt△ACE中,==∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴CA AE AB AC=,∴AB=,∴AB=5,∴AO=2.5,即⊙O的半径为2.5.23. A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?解析:(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30-x吨,B城运往C乡的化肥为34-x吨,B城运往D乡的化肥为40-(34-x)吨,从而可得出W与x大的函数关系.(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可;(3)根据题意得到W=(140-a)x+12540,所以当a=200时,y最小=-60x+12540,此时x=30时y最小=10740元.于是得到结论.答案:(1)W=250x+200(30-x)+150(34-x)+240(6+x)=140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台,(3)W=(250-a)x+200(30-x)+150(34-x)+240(6+x)=(140-a)x+12540,所以当a=200时,y最小=-60x+12540,此时x=30时y最小=10740元.此时的方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D 城36台.24. 如图,直线与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x 轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.(1)求点A,点B的坐标;(2)用含t的代数式分别表示EF和AF的长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.解析:(1)在直线中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长;(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到AF AGAG AB,可判定△AFG与△AGB相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4-2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.答案:(1)在直线中,令y=0可得,解得x=2,令x=0可得∴A 为(2,0),B 为(0,;(2)由(1)可知OA=2,∴tan ∠ABO=3OA OB =, ∴∠ABO=30°,∵运动时间为t 秒,∴t ,∵EF ∥x 轴,∴在Rt △BEF 中,EF=BE ·tan ∠,BF=2EF=2t ,在Rt △ABO 中,OA=2,,∴AB=4,∴AF=4-2t ;(3)相似.理由如下:当四边形ADEF 为菱形时,则有EF=AF ,即t=4-2t ,解得t=43,∴AF=4-2t=4-8433=,OE=OB-BE=43=, 如图,过G 作GH ⊥x 轴,交x 轴于点H ,则四边形OEGH为矩形,∴GH=OE=3,又EG∥x轴,抛物线的顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2)2+22=163,又AF·AB=43×4=163,∴AF·AB=AG2,即AF AGAG AB=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∵EG∥x轴,∴∠GFA=∠BAO=60°,又G点不能在抛物线的对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4-t,且AF=4-2t,∴4-t=2(4-2t),解得t=43,即当t的值为43秒时,△AGF为直角三角形,此时OE=OB-BE=433==,∴E点坐标为(0,3),∵抛物线的顶点为A,∴可设抛物线解析式为y=a(x-2)2,把E 点坐标代入可得3=4a ,解得a=6,∴抛物线解析式为y=6(x-2)2,即2x x +考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

荆州市2016年初中升学考试数学试题
一、选择题(每小题3分,共30分)
1. 比0小1的有理数是
A.-1
B.1
C. 0
D.2
2.下列运算正确的是
A.623m m m ÷=
B.22232m m m -=
C. ()32639m
m = D.22122m m m = 3.如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=0115,则∠2的度数是 A. 055 B. 065 C. 0
75 D. 085
第3题图 第6题图 第7题图
4.我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是
A.7,6
B. 6,5
C. 5,6
D. 6,6
5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为
A.120元
B.100元
C. 80元
D.60元
6.如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧ABC 上不与点A 、点C 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是
A.15°
B.20°
C. 25°
D.30°
7.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中∠ABC 的余弦值是
A. 2
B. 255
C. 12
D. 55 8.如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC =3,则DE 的长为
A.1
B.2
C. 3
D.4
第8题图 第10题图
9.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为
A.671
B.672
C. 673
D.674
10. 如图,在Rt △AOB 中,的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A O B '',若反比例函数k y x =的图象恰好经过斜边A B '的中点C ,4,tan 2ABO S BAO =∠=,则k 的值为
A.3
B.4
C. 6
D.8
二、填空题(每小题3分,共24分)
11.将二次三项式245x x ++化成()2
x p q ++的形式应为 ▲ . 12.当21,21a b =+=-时,代数式22
22
2a ab b a b -+-的值是 ▲ . 13.若1212m x y -与13n xy +是同类项,点(),P m n 在双曲线1a y x
-=上,则a 的值为 ▲ . 14.若点()1,1M k k -+关于y 轴的对称点在第四象限内,则一次函数()1y k x k =-+的图象不经过第 ▲ 象限.
15.全球最大的关公塑像矗立在荆州古城东门外,如图,张三同学在东门城墙上C 处测得塑像底部B 处的俯角为01848',测得塑像顶部A 处的仰角为0
45,点D 在观测点C 正下方城墙底的地面上,若CD =10米,则此塑像的高AB 约为 ▲ 米(参考数据:0
tan 7812 4.8'≈).
第15题图 第16题图 第1题图
16.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据计算这个几何体的表面积为 ▲ 2
cm .
17.请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形,(只要求用一种方法画出图形,把相等的线段作相同的标记).
18.若函数()2142y a x x a =--+的图象与x 轴有且只有一个交点,则a 的值为 ▲ . 三、解答题(本大题共7小题,共66分)
19.(本题满分7分)计算:()011
129()4122
π--- 20. (本题满分8分)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:
组别分数段频数(人)频率
1 50≤x﹤60 30 0.1
2 60≤x﹤7045 0.15
3 70≤x﹤8060 n
4 80≤x﹤90m0.4
5 90≤x﹤10045 0.15
请根据以上图表信息,解答下列问题:
(1)表中m=▲,n=▲;
(2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.
21.(本题满分8分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到
'''的位置,若平移开始后点D'未到达点B时,△ACD,再将△ACD沿DB方向平移到△A C D
'
A C''交CD于E,D C''交CB于点F,连接EF,当四边形EDD F'为菱形时,试探究△A DE
'与△EFC'是否全等?请说明理由.
的形状,并判断△A DE
A
22.(本题满分9分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
23.(本题满分10分)如图,A 、F 、B 、C 是半圆O 上的四个点,四边形OABC 是平行四边形,∠FAB =15°,连接OF 交AB 于点E ,过点C 作OF 的平行线交AB 的延长线于点D ,延长AF 交直线CD 于点H.
(1)求证:CD 是半圆O 的切线;
(2)若DH =633-,求EF 和半径OA 的长.
24.(本题满分12分)已知在关于x 的分式方程121
k x -=-①和一元二次方程()()22330k x mx k n -++-=②中,k 、m 、n 均为实数,方程①的根为非负数.
(1)求k 的取值范围;
(2)当方程②有两个整数根1x 、2x ,k 为整数,且2,1k m n =+=时,求方程②的整数根;
(3)当方程②有两个实数根1x 、2x ,满足()()()()112212x x k x x k x k x k -+-=--,且k 为负整数时,试判断m ≤2是否成立?请说明理由.
25.(本题满分12分)阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M (1,3)的特征线有: 1,3,2,4x y y x y x ===+=-+.
问题与探究:如图,在平面直角坐标系中有正方形OABC ,点B 在第一象限,A 、C 分别在x 轴和y 轴上,抛物线()214
y x m n =-+经过B 、C 两点,顶点D 在正方形内部. (1)直接写出点D (),m n 所有的特征线;
(2)若点D 有一条特征线是1y x =+,求此抛物线的解析式;
(3)点P 是AB 边上除点A 外的任意一点,连接OP ,将△OAP 沿着OP 折叠,点A 落在点A '的位置,当点A '在平行于坐标轴的D 点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP 上?
第25题图 第25题备用图。

相关文档
最新文档