蛋白质的分解代谢
蛋白质的分解代谢习题及参考答案
第八章蛋白质的分解代谢一、名词解释1.蛋白质的互补作用:几种营养价值较低的蛋白质混合食用,互相补充必需氨基酸的种类和数量,从而提高蛋白质在体内的利用率;2.蛋白质的腐败作用:未经消化的少量蛋白质及少局部消化产生的氨基酸或小肽均可能不被吸收,肠道细菌对这局部蛋白质或未吸收的消化产物进展分解;3.非必需氨基酸:机体需要且能够完全由机体合成的氨基酸;4.蛋白质的生理价值:进入人体的蛋白质保存率和百分比,吸收和利用程度;5.外肽酶:能水解蛋白质的氨基或末端肽键的蛋白质水解酶;6.内肽酶:能水解肽链内部位置肽键的蛋白质水解酶;7.氮正平衡:食入氮量大于排泄氮量,表示体内蛋白质合成量大于分解量;8.氮负平衡:食入氮量小于排泄氮量,表示体内蛋白质合成量小于分解量;9.氮总平衡:食入氮量等于排泄氮量;10.γ-谷氨酰基循环:氨基酸的吸收是在γ-谷氨酰转移酶〔结合在细胞膜上〕的催化下,通过谷胱氨酸〔GSH〕作用而转入细胞的;11.泛素:是一种由76个氨基酸构成的多肽,分子量8.45kD;12.必需氨基酸:机体需要,却不能自身合成或合成量很少的氨基酸,不能满足需求,必须由食物供给;13.转氨酶:催化转氨基作用的酶;14.转氨基作用:氨基酸的α-氨基与α-酮酸的酮基,在转氨酶的作用下相互交换,生成新的相应氨基酸和α-酮酸过程的作用;15.联合脱氨基作用:转氨作用和脱氨作用想偶联;16.鸟氨酸循环:精氨酸在精氨酸酶的作用下水解生成尿素和鸟氨酸,后者经膜载体转运到线粒体,再参与尿素合成循环;17.丙氨酸-葡萄糖循环:丙氨酸和葡萄糖反复地在肌肉和肝之间进展氨的转运循环过程;18.一碳单位:主要由于丝氨酸、甘氨酸、组氨酸、甲硫氨酸以及色氨酸的代谢生成。
二、填空题1.根据蛋白酶作用肽键的位置,蛋白酶可分为内肽酶和外肽酶两类,胰蛋白酶则属于内肽酶。
2. 蛋白质在细胞内降解需要与泛素有关的3 种重要酶参与,这三种酶是:泛素活化酶E1、泛素结合酶E2和泛素连接酶E3。
蛋白质分解代谢
-谷氨酰基循环
细胞膜 细胞外
细胞内
COOH CHNH2 CH2 CH2 C NH
-谷氨酰 氨基酸
COOH CH
-谷氨 酸环化 转移酶
氨基酸 COOH
H2NCH R
COOH
H2NCH R
氨基酸
γ-谷 氨酰 基转 移酶
O 半胱氨酰甘氨酸
(Cys-Gly)
谷胱甘肽 甘氨酸 GSH
⑵ 肽链内切酶:如胰蛋白酶、糜蛋白酶、弹性蛋白酶等。
• 产生的寡肽再经寡肽酶(oligopeptidase),如氨 基肽酶及二肽酶等的作用,水解为氨基酸。
• 95%的食物蛋白质在肠中完全水解为氨基酸。
p284 表11-3胃肠道中重要的蛋白水解酶的一些特性
• 名称 来源 水解肽键的特异性 分子量 最适PH
增加15 -25
为了能长期保持总氮平衡,我国营养学会推荐成人每日蛋白质需要量为80g 。
4.食物蛋白质的互补作用
• 不同的食物蛋白质所含必需氨基酸的种类、 数量都不相同,若把几种营养价值较低的蛋 白质混合食用,它们所含的必需氨基酸互相 补充,从而提高蛋白质的营养价值,称为蛋 白质的互补作用。
• 高营养剂:水解蛋白、复合氨基酸液
1.酶原和酶原的激活
胃蛋白酶原 胃酸或胃蛋白酶 胃蛋白酶 + 六个多肽
胰蛋白酶原
肠激酶及胰蛋白酶
胰蛋白酶 + 六肽
糜蛋白酶原 弹性蛋白酶原 羧基肽酶
胰蛋白酶
糜蛋白酶原 弹性蛋白酶原+2 二肽 羧基肽酶
2.蛋白水解酶的作用的特异性
• 有两种类型的消化酶:
⑴ 肽链外切酶:如羧肽酶A、羧肽酶B、氨基肽酶、二肽 酶等;
蛋白质分解代谢过程
消化系统疾病
消化酶缺乏
蛋白质的消化需要特定的酶来分解,如果缺乏这些酶,蛋白质无 法被有效消化,可能导致消化不良、腹胀、腹泻等症状。
肠道炎症
肠道炎症可能影响蛋白质的消化和吸收,导致营养不足和生长迟缓。
肠易激综合征
肠易激综合征是一种功能性肠道疾病,可能导致腹痛、腹泻和便秘 等症状,影响蛋白质的消化和吸收。
氨基酸代谢异常
苯丙酮尿症
苯丙酮尿症是一种常见的氨基酸代谢异常, 由于缺乏苯丙氨酸羟化酶,导致苯丙氨酸无 法正常代谢,可能出现智力发育迟缓、癫痫 等症状。
枫糖尿症
枫糖尿症是由于支链氨基酸代谢异常引起的 ,可能出现神经系统损害、生长迟缓等症状
。
肥胖与糖尿病
要点一
肥胖
过多的蛋白质摄入可能导致肥胖,肥胖又与多种健康问题 相关,如心血管疾病、糖尿病等。
要点二
糖尿病
蛋白质摄入过多可能增加肾脏负担,长期高蛋白饮食可能 增加患糖尿病的风险。糖尿病患者的蛋白质代谢也可能出 现异常,影响身体健康。
感谢您的观看
THANKS
03
主动运输需要消耗能量,能量来源于细胞内的ATP水解。ATP水解后释放的能量 用于驱动载体蛋白的构象变化,从而完成氨基酸的转运。
氨基酸的分类与转运
氨基酸的分类
中性氨基酸
酸性氨基酸
碱性氨基酸
氨基酸根据其侧链基团的性质 可以分为中性、酸性、碱性氨 基酸等不同类型。不同类型氨 基酸在细胞内的转运方式和作 用也有所不同。
蛋白质分解代谢过程
目录
CONTENTS
• 蛋白质的消化 • 氨基酸的吸收 • 蛋白质分解后的代谢途径 • 蛋白质分解代谢过程中的调节 • 蛋白质分解代谢过程中的疾病与健康问
生化教案蛋白质分解代谢
一、教学目标1. 让学生了解蛋白质分解代谢的概念和重要性。
2. 使学生掌握蛋白质分解代谢的过程和途径。
3. 培养学生对生化知识的兴趣和探究能力。
二、教学内容1. 蛋白质分解代谢的概念2. 蛋白质分解代谢的过程3. 蛋白质分解代谢的途径4. 蛋白质分解代谢的意义5. 蛋白质分解代谢与人体健康的关系三、教学重点与难点1. 教学重点:蛋白质分解代谢的过程和途径,蛋白质分解代谢的意义。
2. 教学难点:蛋白质分解代谢的具体步骤和机制。
四、教学方法1. 采用问题驱动法,引导学生思考蛋白质分解代谢的重要性。
2. 使用案例分析法,让学生了解蛋白质分解代谢在实际生活中的应用。
3. 利用多媒体教学,展示蛋白质分解代谢的过程和途径。
4. 开展小组讨论,培养学生合作学习和探究能力。
五、教学过程1. 导入:通过提问方式引导学生思考蛋白质分解代谢的概念和重要性。
2. 讲解:介绍蛋白质分解代谢的过程和途径,解释蛋白质分解代谢的意义。
3. 案例分析:分析实际生活中的蛋白质分解代谢实例,让学生加深理解。
4. 互动环节:开展小组讨论,让学生分享自己的观点和疑问。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂问答:通过提问方式检查学生对蛋白质分解代谢概念的理解。
2. 小组讨论:评估学生在小组讨论中的参与程度和思考深度。
3. 作业批改:检查学生对蛋白质分解代谢过程和途径的掌握情况。
4. 期中考试:设置有关蛋白质分解代谢的试题,评估学生的综合运用能力。
七、教学拓展1. 邀请生化专家进行讲座,让学生更加深入地了解蛋白质分解代谢的研究动态。
2. 组织学生参观实验室,实际操作蛋白质分解代谢的相关实验。
3. 推荐阅读资料,让学生拓展知识面,了解蛋白质分解代谢在其他领域的应用。
八、教学反思1. 反思教学内容:检查教学内容是否全面、深入,是否符合学生的认知水平。
2. 反思教学方法:评估所采用的教学方法是否有效,是否有利于学生的学习。
生物化学第11章 蛋白质的分解代谢
生物化学第11章蛋白质的分解代谢第十一章蛋白质的分解代谢课外练习题一、名词解释1、氮平衡;2、一碳单位;3、转氨基作用;4、联合脱氨基作用;5、必须氨基酸;6、生糖氨基酸;7、尿素循环。
二、符号辨识1、GPT;2、GOT;三、填空1、蛋白质消化吸收的主要部位是(),肠液中的肠激酶可激活()酶原。
2、体内主要的转氨酶是()转氨酶和()转氨酶,其辅酶是()。
3、体内氨的主要代谢去向是在()内合成尿素,经()排出。
4、肝脏通过()循环将有毒的氨转变为无毒的()。
5、谷氨酰胺是体内氨的()、()和()形式。
6、氨在血液中的运输形式是()和()。
7、胃液中胃蛋白酶可激活胃蛋白酶原,此过程称为()作用。
8、转氨酶的辅酶是(),它与接受底物脱下的氨基结合转变为()。
9、体内不能合成而需要从食物供应的氨基酸称为()氨基酸。
10、人体先天性缺乏()羟化酶可引起苯丙酮酸尿症;而缺乏()酶可引起白化病。
四、判别正误1、蛋白质在人体内消化的主要器官是胃和小肠。
()2、蛋白质的生理价值主要取决于必须氨基酸的种类、数量和比例。
()3、L-谷氨酸脱氢酶不仅是L-谷氨酸脱氨的主要的酶,同时也是联合脱氨基作用不可缺少的重要的酶。
()4、尿素的合成和排出都是由肝脏来承担的。
()5、磷酸吡哆醛只作为转氨酶的辅酶。
()6、体内血氨升高的主要原因往往是肝功能障碍引起的。
()7、谷氨酸是联合脱氨基作用的重要中间代谢物,若食物中缺乏时可引起脱氨基作用障碍。
() 8、人体内若缺乏维生素B6、维生素PP、维生素B12和叶酸,均会引起氨基酸代谢障碍。
() 9、在体内,半胱氨酸除作为蛋白质组成成分外,仅是产生硫酸根的主要来源。
() 10、氨基酸的降解能导致糖的合成。
()五、单项选择1、食物蛋白质的互补作用是指()。
A、糖与蛋白质混合食用,提高营养价值;B、脂肪与蛋白质混合食用,提高营养价值;C、几种蛋白质混合食用,提供营养价值;D、糖、脂肪和蛋白质混合食用,提高营养价值; 2、必须氨基酸不包括()。
第十一章 蛋白质代谢(一)
胺的代谢
大多数胺类对动物有毒,去向: 1)随尿排出; 2)在胺氧化酶作用下可进一步氧化分解:
合成尿素
氨
新氨基酸
糖 葡萄糖或糖原
甘油三酯
脂肪
氨
磷酸丙糖
基
α-磷酸甘油
脂肪酸
酸
磷酸烯醇丙酮酸
、 丙氨酸 糖 半胱氨酸
丙酮酸
及 丝氨酸
异亮氨酸 乙酰CoA
乙酰乙酰CoA
酮体
脂 苏氨酸
亮氨酸
肪 色氨酸 代 谢
色氨酸 草酰乙酸
亮氨酸 赖氨酸
柠檬酸
酪氨酸 色氨酸 苯丙氨酸
的 联
天冬氨酸 天冬酰胺
TAC
CO2
系
延胡索酸
α-酮戊二酸
三、氨基酸的一般代谢
生物合成 蛋白质
氨基酸 脱氨 氨、α-酮酸
分解代谢 脱羧 CO2、胺能源
三大代谢
氨基酸代谢概况
食物蛋白质
消化吸收
合成
组织蛋白质
分解
尿素
氨 a-酮酸
脱氨基
氨基酸代谢库
酮体 氧化供能 糖
代谢转变
脱羧基
体内合成氨基酸 (非必需aa)
其它含氮化合物( 嘌呤、嘧啶等)
胺类
(一)脱氨基作用
(一)胃内消化: 1、胃蛋白酶(pepsin): 胃蛋白酶元→胃酸( H+) → 胃蛋白酶
2、胃酶作用:
蛋白质 胃蛋白酶 小分子肽→肠道 胃酶作用于:Phe(苯丙), Tyr(酪), Trp(色).( 芳香族)
Glu(谷), Gln(谷氨酰胺).(酸性氨基酸)。
(二)小肠消化
1、来自胰腺的酶: 1)内肽酶:水解pro内部肽键。 胰蛋白酶:Lys(赖)、Arg(精)羧基端肽键;(碱性) 糜蛋白酶:Phe(苯丙)、Tyr(酪)、Trp(色)肽键(芳香族) 弹性蛋白酶:Val(缬)、Leu(亮)、Ser(丝)、Ala(丙)肽
蛋白质的分解代谢
2.肠激酶
胰蛋白酶原
胰蛋白酶
糜蛋白酶原
糜蛋白酶
弹性蛋白酶原 羧基肽酶原
弹性蛋白酶 羧基肽酶
➢ 寡肽酶(氨基肽酶及二肽酶)
氨基肽酶
内肽酶
羧基肽酶
氨基酸 + 蛋白水解酶作用示意图
二肽酶
氨基酸
二、氨基酸的吸收
• 吸收部位:主要在小肠 • 吸收形式:氨基酸 • 吸收机制:耗能的主动吸收过程
蛋白质的吸收
在糖和脂肪等物质充分供应的条件下,为维持氮的总平衡,至 少必需摄入的蛋白质的量,称为~。成人每日最低蛋白质需要量为 30~50g,我国营养学会推荐成人每日蛋白质需要量为70~80g。
3. 蛋白质的营养价值
①必需氨基酸(essential amino acid)
指体内需要但自身不能合成,或合成不能满足需要的,必 须由食物供给的氨基酸,共有8种:赖、色、苯丙、蛋、苏、亮、 异亮及缬氨酸。另有两种半必需氨基酸:精氨酸、组氨酸
•其余10种氨基酸utrition value)
蛋白质的营养价值取决于必需氨基酸的种类、含 量和比例。衡量蛋白质营养价值高低的指标是蛋白质的 生理价值。
③蛋白质的互补作用
指营养价值较低的蛋白质混合食用,其必需氨基酸 可以互相补充而提高营养价值。
谷类:色氨酸多,赖氨酸少 豆类:色氨酸少,赖氨酸多
某些物质结构与神经递质结构相似,可取代正常神
经递质从而影响脑功能,称假神经递质。
CH2NH2 CH2
CH2NH2 H C OH
CH2NH2 CH2
CH2NH2 H C OH
苯乙胺
苯乙醇胺
OH 酪胺
OH β-羟酪胺
β-羟酪胺和苯乙醇胺结构类似儿茶酚胺,它们可取代儿 茶酚胺与脑细胞结合,但不能传递神经冲动,使大脑发生 异常抑制而昏迷,临床称为肝昏迷。
蛋白质体内代谢过程
蛋白质体内代谢过程蛋白质是生命体内的重要分子,扮演着许多关键角色,比如构建细胞结构、催化生化反应、传递信号等。
蛋白质的代谢过程是指蛋白质在生物体内的合成、降解和调控等一系列反应。
本文将从蛋白质的合成、降解和调控三个方面,详细介绍蛋白质体内的代谢过程。
一、蛋白质的合成蛋白质的合成主要发生在细胞的核糖体中。
首先,基因在DNA中转录成mRNA,然后mRNA通过核孔进入细胞质,与核糖体结合。
核糖体沿着mRNA链上的密码子进行扫描,根据密码子对应的三联密码子,选择适当的氨基酸,由tRNA携带,并通过肽键连接起来,形成一个多肽链。
多肽链不断延长,直到遇到终止密码子,合成过程终止。
最后,多肽链经过蛋白质折叠和修饰,最终形成具有特定功能的蛋白质。
二、蛋白质的降解蛋白质的降解主要发生在细胞的溶酶体和蛋白酶体中。
溶酶体是一种含有多种水解酶的细胞器,负责降解细胞内的蛋白质和其他有机物。
蛋白质首先被降解为小的多肽链,然后进一步降解为氨基酸。
氨基酸可以被再利用,用于新的蛋白质合成或能量供应。
蛋白酶体则是细胞中的一个特殊结构,主要负责选择性地降解一些特定的蛋白质。
蛋白酶体通过识别蛋白质上的特定标记,将其降解为氨基酸或小的多肽链。
三、蛋白质的调控蛋白质的合成和降解需要受到精密的调控,以维持细胞内蛋白质的平衡。
在蛋白质的合成过程中,转录调控和翻译后修饰是两个重要的环节。
转录调控通过调节基因的转录水平来控制蛋白质的合成。
转录因子和启动子等调控元件参与其中,调控基因的表达。
翻译后修饰包括蛋白质的折叠、磷酸化、甲基化等,可以影响蛋白质的结构和功能。
蛋白质的降解过程主要受到泛素-蛋白酶体系统的调控。
泛素是一种小分子蛋白,可以与目标蛋白质结合,标记其为降解的目标。
被泛素标记的蛋白质被泛素酶体识别并降解。
泛素-蛋白酶体系统是细胞内最重要的蛋白质降解途径之一。
蛋白质体内的代谢过程是一个复杂而精密的系统,涉及到许多细胞器、分子和调控因子的相互作用。
蛋白质分解及氨基酸代谢
非必需氨基酸是指体内需要的,但不是必须要从食物中摄 取,可以在体内通过一定的途径合成的氨基酸。 食物蛋白质的营养价值的高低,主要决定于其所含必需氨 基酸的种类、数量以及其相互比例是否与人体内的蛋白质 相似。 实际上评定食物蛋白质的营养价值还应包括食物蛋白质含 量、蛋白质的消化率、蛋白质的利用率三个方面。
ATP
过小肠粘膜的刷状缘γ-上谷的氨载酰半体胱蛋氨白酸转运ADP吸+Pi收。已证实的
AA AA
AA
AA
① γ氨-谷基氨酸酰载转体肽蛋酶白目前有④6种肽。酶
② γ-谷氨酰环化转移酶 ⑤ γ-谷氨酰半胱氨酸合成酶
③ 5-氧脯氨酸酶(一)主动⑥转谷运胱甘吸肽收合成酶
三、蛋白质的腐败
腐败作用是指食物中未被消化的蛋白质及未被吸收的氨基 酸和小肽在大肠下部受肠道细菌的作用,发生一些化学变 化、产生一系列产物的过程。 腐败作用是细菌本身对氨基酸及蛋白质的代谢作用。 腐败产物中有些是有一定营养价值的,如维生素K、泛酸、 生物素、叶酸等;其他大多数腐败产物对人体有害,如胺 类、酚类、吲哚、硫化氢、氨等。
第一节
蛋白质的生理功能 和营养作用
一、蛋白质在生命过程中的主要生理功能
维持组织的结构、生长、更新和修补有重要作用; 代谢中可以产生一些生理活性物质,参与接受和传递信 息、调节机体的生长和分化; 某些蛋白质具有特殊的生理功能; 某些蛋白质可以起到生物催化作用和免疫保护作用; 蛋白质也可以提供能量。
氨基酸代谢库的来源与去路
脱氨基
NH3
消化吸收 食物蛋白质
氨
基
组织蛋白质 降解
酸
代
谢
合成氨基酸
库
α-酮酸
脱羧基 转化或参与合成
合成Biblioteka 尿素 糖、酮体 氧化供能 氨基酸 胺类 某些含氮化合物 组织蛋白质
蛋白质代谢途径
蛋白质代谢途径
蛋白质代谢途径是指蛋白质在人体内被分解、合成和转化的过程。
蛋白质的代谢主要包括两
个方面:一是蛋白质的分解,即蛋白质被分解成氨基酸;二是蛋白质的合成,即氨基酸通过
翻译作用重新组合成新的多肽链或蛋白质。
具体来说,摄入体内的蛋白质不断分解成为氨基酸、多肽及含氮废物等,含氮废物随尿排出
体外,氨基酸分解代谢的最主要反应是脱氨基作用,脱氨后生成α-酮酸,经氨基化生成非必
需氨基酸,转变成碳水化合物及脂类,氧化供给能量。
蛋白质分解的同时也不断在体内合
成,生成人体所需要的蛋白质。
Classified as Internal。
生物化学蛋白质的代谢分解
解约20克蛋白质,由于食物蛋白质与人体蛋白质组成有质的 差异,不可能全部被利用,因此,成人每天至少需要补充30~50 克食物蛋白质才能维持氮的总平衡,这是蛋白质的最低生理需 要量,要长期维持氮的总平衡,我国营养学会推荐正常成人每 日蛋白质需要量为80克,
转氨基的作用机制
转氨酶的辅酶都是维生素B6的磷酸酯,即磷酸吡哆醛, 磷酸吡哆醛和磷酸吡哆胺的相互转变,起着传递氨基的作用,
生理意义:转氨基作用不仅是体内多数氨基酸脱氨基 的重要方式,也是体内合成非必需氨基酸和氨基酸互变 的重要途径之一,另外,转氨基作用还是联合脱氨基的 重要组成环节,
正常情况下,转氨酶主要存在于组织细胞内,血清中转氨酶 的活性很低,肝组织中GPT的活性最高,心肌组织中GOT 的活性最高,
生理意义: 1、使肌肉中有毒的氨以无毒的丙氨酸形式输 出,
2、为肝脏提供合成尿素的氮源和糖异生的原 料,而肝糖异生产生的葡萄糖既为肌肉组织提 供能量又为肌肉排氨再循环提供了丙酮酸,
谷氨酰胺的运氨作用
部位:脑、肌肉组织细胞的线粒体内 作用:将氨运至肝、肾 酶:谷氨酰胺合成酶、谷氨酰胺酶 反应:不可逆,耗能
二、氨的代谢:
体内代谢产生的氨以及肠道吸收的氨进入血液形成 血氨,氨具有毒性,中枢神经系统对氨的毒性极为敏感,
生理情况下,氨的来源和去路始终保持动态平衡,体内 的 血氨浓度很低,一般不超过47~60μmol/L 1mg/L ,
对于严重肝病患者,其尿素合成能力降低,致使血氨增 高,过量的氨进入脑组织造成脑功能紊乱,常与肝性脑 病的发病有关,
四、氨基酸的脱羧基作用
有些氨基酸在脱羧酶的作用下可进行脱羧基作用,生成相应的胺 类,
生物化学第十一章蛋白质的分解代谢
目录
(三)蛋白酶体: 存在于细胞核和胞浆内,主要降解异常蛋白质和短寿蛋白
质
26S蛋白 质酶体
20S的核心 2个α环:7个α亚基 颗粒(CP) 2个β环:7个β亚基
19S的调节颗粒(RP) : 18个亚基, 6 个亚基具有ATP酶活性
目录
目录
三、细胞内蛋白质降解过程
泛素介导的蛋白质降解过程
泛素与选择性被降解蛋白质形成共价连接,并使 其激活,即泛素化,包括三种酶参与的3步反应, 并需消耗ATP。
CHNH2 CH2 CH2 C NH
γ-谷氨酰 氨基酸
COOH CH
γ-谷氨 酰环化 转移酶
氨基酸 COOH
H2NCH R
COOH
H2NCH R
氨基酸
γ-谷 氨酰 基转 移酶
O
半胱氨酰甘氨酸 (Cys-Gly)
谷胱甘肽 GSH
甘氨酸
R
5-氧脯氨酸
肽酶 半胱氨酸
5-氧脯 氨酸酶
ATP ADP+Pi
γ-谷氨酰
通过此种方式并未产生游离的氨。
目录
(三)联合脱氨基作用 定义 两种脱氨基方式的联合作用,使氨基酸 脱下α-氨基生成α-酮酸的过程。
目录
转氨基偶联氧化脱氨基作用
氨基酸
转氨酶
α-酮酸
α-酮戊二酸
谷氨酸
NH3+NADH+H+
L-谷氨酸脱氢酶
H2O+NAD+
此种方式既是氨基酸脱氨基的主要方式,也 是体内合成非必需氨基酸的主要方式。
(CH2)2 COOH
α-酮戊二酸
催化酶:
存在于肝、脑、肾中 辅酶为 NAD+ 或NADP+
体内蛋白质分解代谢的最终产物
体内蛋白质分解代谢的最终产物一、概述蛋白质是构成生物体的重要组成部分,它们参与到体内的许多重要生理活动中。
蛋白质分解代谢是蛋白质在体内被分解并代谢的过程,其最终产物对人体健康至关重要。
本文将介绍体内蛋白质分解代谢的最终产物及其对人体健康的影响。
二、蛋白质分解代谢的过程1. 蛋白质分解蛋白质在体内首先被水解酶分解成氨基酸,这是蛋白质分解代谢的第一步。
氨基酸是蛋白质的基本组成单元,其在体内具有多种重要生理功能。
2. 氨基酸代谢氨基酸在体内经过一系列酶促反应,被转化为其他物质,包括能量物质和合成物质。
其中重要的产物包括尿素、谷氨酸、丙酮酸等。
三、体内蛋白质分解代谢的最终产物1. 尿素尿素是氨基酸代谢的最终产物之一,它由肝脏合成,并通过肾脏排出体外。
尿素的主要作用是将体内产生的过量氨基酸转化为较为稳定的尿素,从而维持体内氮平衡。
2. 谷氨酸谷氨酸是氨基酸代谢的重要产物,它参与到体内许多代谢途径中,包括糖异生、丙酮酸循环等。
谷氨酸还是脑内的重要神经递质,对维持神经系统的正常功能至关重要。
3. 丙酮酸丙酮酸是氨基酸代谢的重要产物之一,它可用于肌肉运动时的能量供应,也可以通过丙酮酸循环转化为葡萄糖,参与到血糖的调节过程中。
四、体内蛋白质分解代谢产物对人体健康的影响1. 尿素及氮平衡尿素的产生和排泄对维持体内氮平衡起着重要作用,它能够帮助人体排出多余的氮负荷,维持血液中氨基酸的平衡。
如果氮平衡失调,可能导致氮中毒等健康问题。
2. 谷氨酸及神经系统功能谷氨酸是体内重要的神经递质之一,它参与到神经系统的正常功能中。
如果谷氨酸代谢失调,可能导致神经系统功能异常,出现头晕、记忆力下降等症状。
3. 丙酮酸及能量供应丙酮酸作为能量供应物质,如果其产生不足或过多,可能导致人体能量供应不足或代谢异常,从而影响体内代谢平衡。
五、结语体内蛋白质分解代谢的最终产物对人体健康有着重要影响,其平衡与否关系着人体的正常生理功能。
通过了解体内蛋白质分解代谢的最终产物及其影响,可以更好地维护人体健康。
蛋白质分解代谢产物
蛋白质分解代谢产物
蛋白质分解代谢产物是指蛋白质经过一系列化学反应分解后的产物。
蛋白质是人体构成细胞、组织和器官的重要物质之一,在新陈代谢过程中,蛋白质会被分解为氨基酸,然后再通过一系列代谢反应生成能量或合成其他生物分子。
在蛋白质分解的过程中,产生的代谢产物包括氨、尿素、尿酸、肌酸、甘氨酸、谷氨酸等。
这些代谢产物对人体健康有着重要的影响,例如尿素是人体代谢产物的主要成分之一,如果肝脏和肾脏功能异常,尿素积累在体内会引起尿毒症,严重时会危及生命。
因此,了解蛋白质分解代谢产物的生成和代谢过程对于维护人体健康具有重要意义。
- 1 -。
蛋白质的分解代谢
蛋白质在体内先水解成氨基酸再进一步代谢,氨基酸代谢是蛋白质代谢的中心内容。
六、氨基酸的一般代谢:(1)氨基酸代谢库:分布于全身的游离氨基酸。
氨基酸的三个来源:食物蛋白的消化吸收、组织蛋白的降解、利用α酮酸和NH3合成非必需氨基酸。
四条去路:合成组织蛋白、脱氨基生成α酮酸和NH3、脱羧基生成胺类和CO2、通过特殊代谢途径生成一些重要的生物活性物质(肾上腺素、甲状腺激素等)。
(2)氨基酸脱氨基:生成α酮酸和NH3,方式:转氨基反应、氧化脱氨基作用、联合脱氨基作用(最主要)及其他脱氨基作用。
1、转氨基:由转氨酶(VitB6的活性形式磷酸吡哆醛、胺作辅酶)催化,反应可逆,只发生氨基转移不产生游离的NH3.除赖氨酸、脯氨酸、羟脯氨酸外,大多数氨基酸都可进行此反应,将氨基转移给α酮戊二酸,生成谷氨酸和相应的α酮酸;不同的氨基酸由不同的转氨酶催化,重要的转氨酶有丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST)。
正常情况下,转氨酶主要存在于组织细胞内(以肝和心中活性最高),而在血清中活性很低,急性肝炎患者血清ALT活性显著升高;心梗者血清AST活性显著升高。
2、氧化脱氨基:在L谷氨酸脱氢酶和氨基酸氧化酶,氨基酸氧化脱氢、水解脱氨基,生成NH3和α酮酸。
L谷氨酸脱氢酶的特点:体内分布广(肌组织除外)、活性高,能催化L谷氨酸氧化脱氨基,生成NH3和α酮戊二酸;以NAD+或NADP+(VitPP的活性形式)为辅酶的不需氧脱氢酶,所产生的NADH可通过氧化磷酸化推动合成ATP;所催化的反应可逆,其逆反应是细胞内合成谷氨酸的反应;是一种变构酶,活性受ADP、GTP等物质的变构调节。
3、联合脱氨基:在转氨酶和L谷氨酸脱氢酶的催化下,氨基酸可将氨基转给α酮戊二酸,生成谷氨酸,谷氨酸再氧化脱氨基。
反应可逆,其逆反应是体内合成非必需氨基酸的主要途径,主要在肝脏和肾脏中进行。
肌肉组织中,L谷氨酸脱氢酶活性低,可通过嘌呤核苷酸循环(可看作是另一种形式的联合脱氨基)将氨基酸脱氨基。
蛋白质体内代谢过程
蛋白质体内代谢过程
蛋白质是生命体内最基本的分子之一,扮演着许多生物学过程中重要的角色。
蛋白质的合成和降解是维持细胞内稳态的重要因素。
蛋白质的代谢过程是指蛋白质的合成、降解和修饰过程。
蛋白质的合成是指在细胞内通过翻译作用将 mRNA 转录成的核
酸信息转化为氨基酸序列,从而组成一条多肽链。
该过程需要依赖于核糖体、tRNA 和多种辅助因子的协同作用。
在合成过程中,氨基酸被逐一加入到多肽链上,并在此过程中形成了肽键。
蛋白质的降解是指通过蛋白酶将蛋白质分解成小分子氨基酸。
这个过程可以通过细胞自身的蛋白酶系统进行,也可以通过泛素-蛋白酶体途径完成。
泛素-蛋白酶体途径是指在蛋白质上附加泛素,从而标记它们为待降解的物质,并将其送入蛋白酶体进行降解。
蛋白质的降解也可以提供氨基酸来供能或生合成其他生物分子所需的氨基酸。
蛋白质的修饰是指在蛋白质合成过程中或者完成后对蛋白质进
行的一系列化学修饰。
这些修饰包括磷酸化、甲基化、酰化、糖基化等,可以调控蛋白质的结构和功能。
例如,磷酸化可以改变蛋白质的电荷状态和构象,从而改变它们的相互作用和信号传导。
糖基化则可以影响蛋白质的分泌和稳定性。
在细胞内,蛋白质的代谢过程密切关联着细胞的生长、分化、应激反应、免疫应答等重要生物学过程。
对蛋白质代谢过程的深入研究,有助于人们更好地理解生命的本质和疾病的发生机制。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)胺类的生成
蛋白质
R H C NH2
蛋白酶
氨基酸
氨基酸脱羧酶
脱羧基作用
胺类(amines)
COOH
RCH2NH2
+ CO2
氨基酸
组氨酸 色氨酸 酪氨酸 赖氨酸 苯丙氨酸
碱性氨基酸转运蛋白
亚氨基酸转运蛋白
β 氨基酸转运蛋白
二肽转运蛋白 三肽转运蛋白
氨基酸进入细胞的主动转运机制
+ K 外 Na + N a + 氨基酸
膜
内 ATP + K A DP Na + + Pi Na + 氨基酸
2.γ -谷氨酰基循环对氨基酸的转运作用
γ -谷氨酰基循环(γ -glutamyl cycle) 过程: • 谷胱甘肽对氨基酸的转运 • 谷胱甘肽再合成
在一定程度上,蛋白质的质量比数量更为重要
4. 蛋白质的互补作用
不同来源的蛋白质混合食用,其必需氨基 酸可以互相补充而提高营养价值。 提高食物蛋白质营养价值的方法
*优先补充动物性蛋白 *不同类型食物的混合饮食 谷类 赖氨酸 色氨酸 少 多 豆类 多 少
第二节 蛋白质的消化、吸收和腐败
一、食物蛋白质的消化 食物蛋白质消化成氨基酸和寡肽后被吸收 蛋白质被消化成氨基酸和寡肽
细胞外
细胞膜
细胞内
COOH CHNH2 CH2 CH2 C NH
γ-谷氨酰 氨基酸
氨基酸
COOH
γ-谷氨 酰环化 转移酶
COOH CH R
H2NCH R
COOH H2NCH R
氨基酸
O
半胱氨酰甘氨酸 (Cys-Gly)
γ-谷 氨酰 基转 移酶
5-氧脯氨酸 肽酶 5-氧脯 氨酸酶 谷氨酸 ATP ADP+Pi ATP ADP+Pi
(dipeptidase)等,最终产物为氨基酸。
二、氨基酸和肽的吸收
吸收部位:主要在小肠 吸收形式:氨基酸、寡肽、二肽 吸收机制:耗能的主动吸收过程
1. 主动吸收
载体蛋白与氨基酸、 Na+ 组成三联体,由 ATP 供能将氨基酸、 Na+ 转入细胞内, Na+ 再由钠泵排
出细胞。
中性氨基酸转运蛋白 酸性氨基酸转运蛋白 七种转运蛋白 (transporter)
其余12种氨基酸体内可以合成,称为营养非必需 氨基酸。
营养必需氨基酸决定蛋白质的营养价值
2.蛋白质的营养评价
蛋白质的营养价值是指食物蛋白质在体内
的利用率,取决于必需氨基酸的数量及种类(量
质比) 。
3.蛋白质的生理需要量
成人每日蛋白质最低生理需要量为30g~50g, 我国营养学会推荐成人每日蛋白质需要量为80g。
谷胱甘肽 GSH
甘氨酸半胱氨酸 γ-谷氨酰 Nhomakorabea胱氨酸 合成酶
ADP+Pi ATP
谷胱甘肽 合成酶
γ-谷氨酰半胱氨酸
γ-谷氨酰基循环过程
肽的吸收
利用肠粘膜细胞上的二肽或三肽转运体系
此种转运也是耗能的主动吸收过程
吸收作用在小肠近端较强,肽的吸收甚至
先于游离氨基酸。
三、蛋白质的腐败作用
蛋白质的腐败作用(putrefaction)
催化(酶)、免疫(抗原及抗体)、运动(肌
肉)、物质转运(载体)、凝血(凝血系统)等。
3.蛋白质可作为能源物质氧化供能
每克蛋白质在体内氧化分解可释放16kJ (4.1 kcal)的能量,人体每日18%能量由蛋白质提供。
二、氮平衡
可以反映体内蛋白质代谢的概况。 氮平衡(nitrogen balance) 摄入食物的含氮量与排泄物(尿与粪)中含氮量 之间的关系。
肠道细菌对未被消化的蛋白质及其消化产 物所起的分解作用。 腐败作用的产物大多有害,如胺、氨、 苯酚、吲哚等;也可产生少量的脂肪酸及维 生素等可被机体利用的物质。
(一)氨的生成
未被吸收的氨基酸
脱氨基作用 氨 (ammonia)
渗入肠道的尿素
尿素酶
降低肠道pH,NH3转变为NH4+以胺盐形式排出, 可减少氨的吸收,这是酸性灌肠的依据。
氮总平衡:摄入氮 = 排出氮(正常成人) 氮正平衡:摄入氮 > 排出氮(儿童、孕妇等) 氮负平衡:摄入氮 < 排出氮(饥饿、消耗性疾
病患者)
三、蛋白质的营养价值
1.营养必需氨基酸(essential amino acid)
指体内需要而又不能自身合成,必须由食 物供给的氨基酸,共有8种:Val、Ile、Leu、 Thr、Met、Lys、Phe、Trp。
蛋白水解酶作用示意图
氨基肽酶
NH
内肽酶
NH
5
羧基肽酶
6
二肽酶
氨基酸 + 氨基酸
消化道内几种蛋白酶的专一性
羧肽酶 羧肽酶
氨肽酶 (Phe.Tyr.Trp) (Arg.Lys)
(Glu. Asp)
(脂肪族)
胃蛋白酶
胰凝 乳蛋 白酶
弹性 蛋白 酶
胰蛋白酶
蛋白酶原的激活
胰蛋白酶原
肠激酶 (enterokinase)
(二)小肠中的消化
胰酶及其作用 胰酶是消化蛋白质的主要酶,最适pH为 7.0左右,包括内肽酶和外肽酶。 内肽酶(endopeptidase) 水解蛋白质肽链内部的一些肽键,如胰蛋白酶、
糜蛋白酶、弹性蛋白酶。 外肽酶(exopeptidase)
自肽链的末段开始,每次水解一个氨基酸残基,
如羧基肽酶(A、B) 、氨基肽酶。
胰蛋白酶 (trypsin)
糜蛋白 酶原 糜蛋白酶 (chymotrypsin) 羧基肽酶原 (A或B) 弹性蛋 白酶原 弹性蛋白酶 (elastase)
羧基肽酶(A或B) (carboxypeptidase)
小肠粘膜细胞对蛋白质的消化作用
主要是寡肽酶(oligopeptidase)的作用,例
如氨基肽酶(aminopeptidase)及二肽酶
蛋白质消化的生理意义
由大分子转变为小分子,便于吸收。
消除种属特异性和抗原性,防止过敏、
毒性反应。
(一)胃中消化
胃蛋白酶原
(pepsinogen)
胃酸、胃蛋白酶
胃蛋白酶 + 多肽碎片
(pepsin)
胃蛋白酶的最适pH为1.5~2.5,对蛋白质肽键 的作用特异性较差,主要水解由芳香族氨基酸、 蛋氨酸和亮氨酸所形成的肽键,产物主要为多 肽及少量氨基酸。
第九章 蛋白质降解与氨基酸代谢
主要内容
一、蛋白质的营养作用 二、蛋白质的消化、吸收与腐败
三、细胞内蛋白质的降解
四、氨基酸的一般代谢 五、氨的代谢 六、个别氨基酸的代谢 七、一碳单位
第一节
蛋白质的营养作用
一、体内蛋白质具有多方面的重要功能
1.蛋白质维持细胞组织的生长、更新和修补
2.蛋白质参与体内多种重要的生理活动