材料成型 第二章重难点复习题解答
材料成形原理重难点复习题
簇周围是一些
的原子。由于“能量起伏”,一部分金属原子(离子)从某个团簇中 出
去,同时又会有另一些原子 到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子
团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随 和 发生着改变,这种现
象称为结构起伏。
7、在特定的温度下,虽然“能量起伏”和“结构起伏”的存在,但对于某一特定的液体,其团簇
细有关)越大。 4、下面哪一种说法的是正确的? A、两个熔点不同的高的物质,熔点高的物质其表面张力必定比熔点低的物质高。 B、当溶质的原子体积小于溶剂原子体积,作为合金元素加入则降低整个系统的能量;而当溶质 的原子体积大于溶剂原子体积,作为合金元素加入则降低整个系统的能量。 C、一定温度下,dσ/dc<0 时,元素浓度的增加将引起表面张力的降低,则单位面积上的吸附量 Γ >0,为正吸附,此时为表面活性元素。 D、奥氏体钢熔体的表面张力随 Ni 的增加而下降。
第一章
一、填空题
练习一
1、液体的表观特征有:
(1)类似于 体,液体最显著的性质是具有 性,即不能够象固体那样承受剪切应力;
(2)类似于 体,液体可完全占据容器的空间并取得容器 的形状;
(3)类似于固体,液体具有 表面;
(4)类似于固体,液体可压缩性很 。
2、按液体结构和内部作用力分类,液体可分为原子液体、分子液体及离子液体三类。其中,液态 金属属于 液体,各种简单及复杂的熔盐属于 液体。
,界面能越小,界面张力就越小。两相间的界面张力的溶质元素,由于造成合金表面双电层的电荷密度大,从而造成对表面压力大,
而使整个系统的表面张力
。
9.
二、选择题
1、下面哪些因素的变化可以同时降低液体的粘度? A、提高液体温度、降低原子间距、加入产生负的混合热的 合 金 元 素 或 加入表面活性元素; B、提高液体温度、增大原子间距、加入产生正的混合热的 合 金 元 素 或 加入非表面活性元素; C、提高液体温度、增大原子间距、加入产生正的混合热的 合 金 元 素 或 加入表面活性元素; D、降低液体温度、增大原子间距、加入产生正的混合热的 合 金 元 素 或 加入表面活性元素。
《材料成形原理》重点及答案
、名词解释1表面张力一表面上平行于表面切线方向且各方向大小相等的张力。
表面张力是由于物体在表面上的质点受力不均匀所致。
2粘度-表面上平行于表面切线方向且各方向大小相等的张力。
或作用于液体表面的应力T 大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。
3表面自由能(表面能)—为产生新的单位面积表面时系统自由能的增量。
4液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。
5液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。
6铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。
7不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场稳定温度场-不随时间而变的温度场(即温度只是坐标的函数):8温度梯度一是指温度随距离的变化率。
或沿等温面或等温线某法线方向的温度变化率。
9溶质平衡分配系数K0 —特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。
10均质形核和异质形核—均质形核(Homogeneous nucleation):形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称自发形核”。
非均质形核(Hetergeneous nucleation):依靠外来质点或型壁界面提供的衬底进行生核过程,亦称异质形核”。
11、粗糙界面和光滑界面 -从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。
粗糙界面在有些文献中也称为非小晶面光滑界面一从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。
也称为小晶面”或小平面”。
12成分过冷”与热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的成分过冷”。
材料成型原理复习题答案
《材料成形原理》复习题(铸)第二章液态金属的结构和性质1.粘度。
影响粘度大小的因素?粘度对材料成形过程的影响?1)粘度:是液体在层流情况下,各液层间的摩擦阻力。
其实质是原子间的结合力。
2)粘度大小由液态金属结构决定与温度、压力、杂质有关:(1)粘度与原子离位激活能U成正比,与相邻原子平衡位置的平均距离的三次方成反比。
(2)温度:温度不高时,粘度与温度成反比;当温度很高时,粘度与温度成正比。
(3)化学成分:杂质的数量、形状和分布影响粘度;合金元素不同,粘度也不同,接近共晶成分,粘度降低。
(4)材料成形过程中的液态金属一般要进行各种冶金处理,如孕育、变质、净化处理等对粘度有显著影响。
3)粘度对材料成形过程的影响(1)对液态金属净化(气体、杂质排出)的影响。
(2)对液态合金流动阻力与充型的影响,粘度大,流动阻力也大。
(3)对凝固过程中液态合金对流的影响,粘度越大,对流强度G越小。
2.表面张力。
影响表面张力的因素?表面张力对材料成形过程及部件质量的影响?1)表面张力:是金属液表面质点因受周围质点对其作用力不平衡,在表面液膜单位长度上所受的紧绷力或单位表面积上的能量。
其实质是质点间的作用力。
2)影响表面张力的因素(1)熔点:熔沸点高,表面张力往往越大。
(2)温度:温度上升,表面张力下降,如Al、Mg、Zn等,但Cu、Fe相反。
(3)溶质元素(杂质):正吸附的表面活性物质表面张力下降(金属液表面);负吸附的表面非活性物质表面张力上升(金属液内部)。
(4)流体性质:不同的流体,表面张力不同。
3)表面张力影响液态成形整个过程,晶体成核及长大、机械粘砂、缩松、热裂、夹杂及气泡等铸造缺陷都与表面张力关系密切。
3.液态金属的流动性。
影响液态金属的流动性的因素?液态金属的流动性对铸件质量的影响?1)液态金属的流动性是指液态金属本身的流动能力。
2)影响液态金属的流动性的因素有:液态金属的成分、温度、杂质含量及物理性质有关,与外界因素无关。
高分子材料成型加工考试重点及部分习题答案
高分子材料成型加工考试重点及部分习题答案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
工程材料及成型技术期末考试复习要点+答案
工程材料及成型技术复习要点第二章材料的性能1、材料静态、动态力学性能有哪些?静态力学性能有弹性、刚性、强度、塑性、硬度等;动态力学性能有冲击韧性、疲劳强度、耐磨性等。
2、材料的工艺性能有哪些?工艺性能有铸造性能、压力加工性能、焊接性能、热处理性能、切削加工性能等。
3、钢制成直径为30mm的主轴,在使用过程中发现轴的弹性弯曲变形过大用45钢,试问是否可改用40Cr或通过热处理来减少变形量?为什么?答:不可以;因为轴的弹性弯曲变形过大是轴的刚度低即材料的弹性模量过低和轴的抗弯模量低引起的。
金属材料的弹性模量E主要取决与基体金属的性质,与合金化、热处理、冷热加工等关系不大(45钢和40Cr弹性模量差异不大)。
4、为什么疲劳裂纹对机械零件存在着很大的潜在危险?第三章金属的结构与结晶1、金属常见的晶体结构有哪些?体心立方晶格、面心立方晶格、密排六方晶格。
2、实际金属的晶体缺陷有哪些?它们对金属的性能有何影响?有点缺陷、线缺陷、面缺陷;点缺陷的存在(使周围原子间的作用失去平衡,原子需要重新调整位置,造成晶格畸变,从而)使材料的强度和硬度提高,塑性和韧性略有降低,金属的电阻率增加,密度也发生变化,此外也会加快金属中的扩散进程。
线缺陷也就是位错,位错的增多,会导致材料的强度显著增加;但是,塑性变形主要位错运动引起的,因此阻碍位错运动是金属强化重要途径。
面缺陷存在,会产生晶界和亚晶界,其原子排列不规则,晶格畸变大,晶界强度和硬度较高、熔点较低、耐腐蚀性较差、扩散系数大、电阻率较大、易产生內吸附、相变时优先形核等。
3、铸锭的缺陷有哪些?有缩孔和疏松、气孔、偏析。
4、如何控制晶粒大小?增大过冷度、变质处理、振动和搅拌。
5、影响扩散的因素有哪些?温度、晶体结构、表面及晶体缺陷(外比内快)。
间隙、空位、填隙、换位四种扩散机制6、为什么钢锭希望尽量减少柱状晶区?柱状晶区是由外往内顺序结晶的,组织较致密,有明显的各向异性,进行塑性变形时柱状晶区易出现晶间开裂。
材料加工成型 课后习题答案
习题参考答案《材料成形》部分第1章铸造填空题:1、熔模铸造;压力铸造;金属型铸造;陶瓷型铸造;消失模铸造;2、缩孔;缩松;3、铸造性能;工艺;4、收缩;如缩孔、缩松、变形、开裂;5、模样;6、热应力;收缩应力;7、拉;压;8、液态收缩;凝固收缩;固态收缩;9、充型能力;充型能力;10、向下;向上;补缩;单项选择题:1、①2、③3、②4、②5、①多项选择题:1、②、③、⑤2、③、3、①、②、⑤4、①、③结构改错题:1、答:不合理。
大平面应朝下,如下图所示。
2、答:(a):分型面应为简单平面,使造型工艺大大简化;(b):防止缩孔产生,壁厚应尽量均匀3、答:(a)图A-A截面改为加强筋型。
(b)图上表面改掉不必要的外凸缘结构,使三箱造型变为二箱造型,简化铸造工艺。
(c)图将厚大的截面处改成壁厚均匀的结构,避免热节处易产生的缩孔、缩松等缺陷;另外,避免壁厚不均易产生应力变形甚至产生裂纹等缺陷。
4、答:(a)铸件的结构应尽量避免过大的水平壁。
浇注时铸件朝上的水平面易产生气孔、砂眼、夹渣等缺陷。
将图中过的大水平面改为倾斜的表面。
(b)凸台和筋的设计应便于造型和起模。
图中的凸台必须用活块或外砂芯才能取出模样。
改后图形为:5、答:(a)图的两个斜凸台在造型时影响起模,需采用活快。
因此,应设计成向上的直凸台,简化造型工艺,减低成本、提高生产效率。
(b)图原设计需用两个型芯,其中的型芯1为悬臂型芯、下芯时必须使用芯撑,型芯的固定、排气和清理都比较困难。
将两个连通成一体,则便于造型时型芯的稳固支撑、安放、排气和铸造后的清理方便。
简答题: 1、答: 起始阶段两杆处于塑性阶段,冷却到t 1-t 2阶段后,细杆进入弹性状态而粗干仍处于塑性,导致在横杆的作用下将对粗干产生压应力,细杆受到拉应力。
这时粗杆将产生压塑变形,使粗细两杆收缩趋于一致,应力将消失。
继续冷却T2-T3,此时两杆均进入弹性状态,粗杆温度高,产生较大收缩,而细杆温度低,收缩以几乎停止。
材料成形技术基础习题答案
第二章铸造4、试分析题图1-1所示铸件:(1)哪些是自由收缩?哪些是受阻收缩?(2)受阻收缩的铸件形成哪一类铸造应力?(3)各部分应力属于什么性质(拉应力、压应力)6、下列铸件宜选用哪类铸造合金?说明理由车床床身:铸铁成本低,强度高,减震吸震摩托车发动机:铝合金质量比较轻柴油机曲轴:铸钢(铁)强度好自来水龙头:铜合金、铝合金、不锈钢耐腐蚀气缸套:铸铁耐磨、耐高温轴承衬套:铜合金、铝合金用于滑动轴承材料9、下列铸件大批量生产时采用什么铸造方法为宜?铝合金活塞:金属型铸造缝纫机头:砂型铸造汽轮机叶片:熔模铸造发动机铜背钢套:离心铸造车床床身:砂型铸造煤气管道:离心铸造或连续铸造齿轮滚刀:熔模铸造11、题图1-3铸件的分型面有几种方案?哪种方案较合理?为什么?选方案1,加一个环状型芯,减少分型数。
选方案1选方案1,都在一个砂箱,自带砂垛。
选方案1选方案1选方案1选方案112、题图1-4所示为零件单件小批生产时的分型面和造型方法。
请画出铸造工艺图采用主视图上下底面分型方案,在一个砂箱。
俯视图方案易错箱。
14、修改题图1-5中铸件结构,使之合理。
第三章锻压3、你所知道的锻压加工方法有哪些?其原理和工艺特点以及应用范围如何?答:锻压加工方法主要有锻造和冲压。
锻造:锻造的主要方法有自由锻、胎模锻、模锻。
原理:是在加工设备及工(模)具作用下,使坯料、铸锭产生局部或全部塑性变形,以获得一定尺寸、形状和质量的锻件的加工方法。
工艺特点:能获得一定的锻造流线组织,性能得到极大改善。
锻件精度不高,表面质量不好。
应用范围:主要用于各种重要的、承受重载荷的机器零件或毛坯,如机床的主轴和齿轮、内燃机的连杆、起重机的吊钩等。
冲压:可分为分离工序和成形工序两大类。
分离工序有冲裁(落料和冲孔)、剪切、切边、切口、剖切。
成形工序主要有弯曲、拉深、翻边、成形、旋压等。
原理:板料在冲压设备及模具作用下,通过塑性变形产生分离或成形而获得制件的加工方法。
材料成型技术基础(第2版)课后答案
第一章金属液态成形1. ①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2. 浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3. 缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5. 定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。
材料成型复习题及答案-2
材料成型基础复习题2-1 判断题(正确的画O,错误的画×)1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。
提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。
因此,浇注温度越高越好。
(×)2.合金收缩经历三个阶段。
其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。
(O)3.结晶温度范围的大小对合金结晶过程有重要影响。
铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。
(O)4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。
(O)5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。
所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。
(×)6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。
共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。
因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。
(×)7.气孔是气体在铸件内形成的孔洞。
气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。
(O)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。
(O)2-2 选择题1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。
A.减弱铸型的冷却能力;B.增加铸型的直浇口高度;C.提高合金的浇注温度;D.A、B和C;E.A和C。
2.顺序凝固和同时凝固均有各自的优缺点。
为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。
《材料成形原理》重点及答案
二、简答题2 液态金属表面张力的影响因素1)表面张力与原子间作用力的关系:原子间结合力u0↑→表面内能↑→表面自由能↑→表面张力↑2)表面张力与原子体积(δ3)成反比,与价电子数Z成正比3)表面张力与温度:随温度升高而下降4)合金元素或微量杂质元素对表面张力的影响。
向系统中加入削弱原子间结合力的组元,会使u0减小,使表面内能和表面张力降低。
5 简述Jackson因子与界面结构的关系Jackson因子α可视为固—液界面结构的判据:凡α≤2的物质,晶体表面有一半空缺位置时自由能降低,此时的固—液界面形态被称为粗糙界面,大部分金属属于此类;凡属α>5的物质凝固时界面为光滑面,有机物及无机物属于此类;α=2~5的物质,常为多种方式的混合,Bi、Si、Sb等属于此类。
7 写出成分过冷判别式(在“固相无扩散,液相为有限扩散”条件下),讨论溶质原始含量C0、晶体生长速度R、界面前沿液相中的温度梯度GL对成分过冷程度的影响,并以图示或文字描述它们对合金单相固溶体结晶形貌的影响。
答:成分过冷判别式为:00(1)L lG m C KR K-<;(1)随着C0增加,成分过冷程度增加;(2)随着R增加,成分过冷程度增加;(3)随着GL减小,成分过冷程度增加;如图所示,当C0一定时,GL减小,或R增加,晶体形貌由平面晶依次发展为胞状树枝晶、柱状树枝晶、等轴树枝晶;而当GL、R一定时,随C0的增加晶体形貌也同样由平面晶依次发展为胞状树枝晶、柱状树枝晶、等轴树枝晶。
8 层片状共晶的形核和长大方式形成具有两相沿着径向并排生长的球形共生界面双相核心的“双相形核”,领先相表面一旦出现第二相,则可通过这种彼此依附、交替生长的“搭桥”方式产生新的层片来构成所需的共生界面,而不需要每个层片重新生核。
9. 铸件的凝固组织可分为几类,它们分别描述铸件凝固组织的那些特点?铸件的凝固组织可分为宏观和微观两方面。
宏观组织主要是指铸态晶粒的形状、尺寸、取向和分布情况;微观组织主要描述晶粒内部的结构形态,如树枝晶、胞状晶等亚结构组织等。
材料成形基础复习题答案
材料成形基础复习题答案一、填空题1. 材料成形过程中,金属的塑性变形是通过______实现的。
2. 材料成形时,金属的流动方向与作用力方向之间的关系称为______。
3. 材料成形过程中,金属的塑性变形程度通常用______来衡量。
4. 在材料成形中,金属的塑性变形能力与______、______和______等因素有关。
5. 材料成形时,金属的塑性变形通常伴随着______和______的产生。
二、选择题1. 材料成形过程中,金属的塑性变形是通过以下哪种方式实现的?A. 弹性变形B. 塑性变形C. 断裂D. 疲劳答案:B2. 材料成形时,金属的流动方向与作用力方向之间的关系称为:A. 应力状态B. 应变状态C. 变形状态D. 力的方向答案:C3. 材料成形过程中,金属的塑性变形程度通常用以下哪种方式衡量?A. 应力B. 应变C. 硬度D. 韧性答案:B4. 在材料成形中,金属的塑性变形能力与以下哪些因素有关?A. 温度B. 应变速率C. 材料成分D. 以上都是答案:D5. 材料成形时,金属的塑性变形通常伴随着以下哪些现象的产生?A. 热能B. 变形能C. 弹性能D. 以上都是答案:B三、简答题1. 简述材料成形过程中金属塑性变形的基本机制。
答:材料成形过程中金属塑性变形的基本机制包括位错运动、晶界滑移、孪晶形成等。
这些机制共同作用,使金属在受到外力作用下发生塑性变形,而不发生断裂。
2. 描述材料成形中金属流动方向与作用力方向之间的关系。
答:在材料成形中,金属的流动方向与作用力方向之间的关系是复杂的。
通常,金属的流动方向会沿着作用力方向的垂直方向进行,但具体流动路径会受到材料性质、模具设计、成形工艺等多种因素的影响。
3. 说明材料成形中金属塑性变形程度的衡量方法。
答:材料成形中金属塑性变形程度通常通过应变来衡量。
应变是描述材料变形程度的物理量,可以通过测量材料在成形前后的尺寸变化来计算得出。
4. 阐述材料成形中金属塑性变形能力的影响因素。
材料成型基础复习试题(含答案)
试卷1一、思考题1.什么是机械性能?(材料受力作用时反映出来的性能)它包含哪些指标?(弹性、强度、塑性、韧性、硬度等)各指标的含意是什么?如何测得?2.硬度和强度有没有一定的关系?为什么? (有,强度越高,硬度越高)为什么?(都反映材料抵抗变形及断裂的能力)3.名词解释:过冷度,晶格,晶胞,晶粒与晶界,同素异晶转变,固溶体,金属化合物,机械混合物。
4.过冷度与冷却速度有什么关系?对晶粒大小有什么影响? (冷却速度越大过冷度越大,晶粒越细。
)5.晶粒大小对金属机械性能有何影响?常见的细化晶粒的方法有哪些? (晶粒越细,金属的强度硬度越高,塑韧性越好。
孕育处理、提高液体金属结晶时的冷却速度、压力加工、热处理等)6.说明铁素体、奥氏体、渗碳体和珠光体的合金结构和机械性能。
7.默绘出简化的铁碳合金状态图,并填人各区域内的结晶组织。
8.含碳量对钢的机械性能有何影响?二、填表说明下列符号所代表的机械性能指标三、填空1. 碳溶解在体心立方的α-Fe中形成的固溶体称铁素体,其符号为F ,晶格类型是体心立方,性能特点是强度低,塑性好。
2. 碳溶解在面心立方的γ-Fe中形成的固溶体称奥氏体,其符号为 A ,晶格类型是面心立方,性能特点是强度低,塑性高。
3. 渗碳体是铁与碳的金属化合物,含碳量为6.69%,性能特点是硬度高,脆性大。
4. ECF称共晶线线,所发生的反应称共晶反应,其反应式是得到的组织为 L(4.3%1148℃)=A(2.11%)+Fe3C 。
5. PSK称共析线线,所发生的反应称共析反应,其反应式是A(0.77%727 ℃)=F(0.0218%)+ Fe3C 得到的组织为珠光体。
6. E是碳在γ-Fe中的最大溶解度点,P是碳在α-Fe中的最大溶解度点, A l线即 PSK ,A3线即 GS , A cm线即 ES 。
7. 45钢在退火状态下,其组织中珠光体的含碳量是 0.77% 。
8.钢和生铁在成分上的主要区别是钢的含碳量小于2.11%,生铁2.11-6.69% 在组织上的主要区别是生铁中有莱氏体,钢中没有,在性能上的主要区别是钢的机械性能好,生铁硬而脆。
材料成型工艺学二复习思考题
材料成型⼯艺学⼆复习思考题第⼀章熔模铸造1.熔模铸造的特点是什么?普通熔模铸造件机械性能较差的主要原因是什么?优点:精度⾼,形状、合⾦⽆限制缺点:铸件性能不好,⼯艺复杂成本⾼,铸件尺⼨、批量受限制普通熔模铸造机械性能较差的主要原因是:铸态且为热浇(保证轮廓清晰),晶粒粗⼤2.简述熔模铸造的⼯艺过程。
3.熔模铸造中的“模”⽤什么材料制成,熔模铸造中对模料有何要求?通常使⽤的模料分为哪⼏类?各有何基本特点?熔模铸造中的“模”⽤“蜡”制成的。
制模材料的性能不单应保证⽅便的制得尺⼨精确和表⾯光洁度⾼、强度好、重量轻的熔模,它还应为型壳的制造和获得良好的铸件创造条件,所以模料的性能应能满⾜以下要求:(1)、熔点要适中,通常希望60-100℃(2)、要求模料有良好的流动性和成型性(3)、⼀定的强度,表⾯硬度和韧性,防⽌变形损失。
(4)、⾼的软化点(5)、⼩⽽稳定的膨胀系数,保证制得的熔模尺⼨精确。
(6)、与耐⽕涂料有较好的润湿性,即使涂料有良好的涂挂性,⽽且与模料和耐⽕涂料不应该起化学作⽤。
(7)、其它:焊接强度⾼,⽐重⼩,灰份少,复⽤性好,价格便宜,来源丰实,对⼈体⽆害。
通常使⽤的模料有以下⼏类:(1)、蜡基模料。
特点:强度⾼、刚性好、熔点适中,但流动性、润湿性、膨胀系数⼤。
(2)、松⾹基模料。
特点:能与⽯蜡很好互溶。
软化点⾼、收缩率低,但黏度⼤,流动性差(3)、其他模料。
如聚苯⼄烯模料。
具有较⾼的强度,热稳定性好,收缩⼩及灰尘少,聚苯⼄烯制模⼯艺复杂,不宜制作薄壁及形状复杂的熔模,且熔模的表⾯光洁度差。
4.模料配制需要遵循哪些原则?蜡基模料配制有⼏种⽅式?原则:A应根据各组分的互溶性来确定加料顺序B严格控制温度上限和⾼温停留时间及合适的熔化装置⽅式:旋转浆叶搅拌法、活塞搅拌法5.回收的蜡基模料性能会发⽣哪些变化?造成回收模料性能变坏的原因是什么?在循环使⽤时,模料的性能会变坏:脆性增⼤,灰尘增多,流动性下降,收缩率增⼤,颜⾊由⽩变褐,原因:(1)蜡基模料中硬脂酸变质(发⽣皂化反应)(2)砂和涂料的污染(3)熔失熔模时过热,⽯蜡烧坏、氧化变质6.哪⼏种处理⽅法可以使旧的蜡基模料的性能得到⼀定程度的恢复?(1)盐酸(硫酸)处理法(2)活性⽩⼟处理法(3)电解法7.熔模铸造的型壳是如何制造的(由哪三个基本步骤组成)?熔模铸造制造⼀般铸件时型壳需要涂挂⼏层?型壳的制造⼯艺:涂覆涂料→撒砂→⼲燥硬化8.熔模铸造制造型壳时可以采⽤哪⼏种粘结剂,各种粘结剂有何特点?它们的硬化机理是什么,⼯业上分别采⽤什么⽅法硬化?第⼀种是硅酸⼄脂⽔解液。
材料成形设计基础 第二章 习题
习题2-1.什么是最小阻力定律?为什么闭式滚挤或拔长模膛可以提高滚挤或拔长效率?2-2.纤维组织是怎样形成的?它的存在有何利弊?2-3.硬化指数对冷塑性成形有何影响?2-4.判断以下说法是否正确?为什么?(1)金属的塑性越好,变形抗力越大,金属可锻性也越好。
(2)为了提高钢材的塑性变形能力,可以采用降低变形速度或在三向压应力下变形等工艺。
(3)为了消除锻件中的纤维组织,可以用热处理的方法达到。
2-5.锻造起模时,将长度为75mm的圆钢拔长到165mm,此时锻造比是多少?将直径为50mm、高120mm的圆棒锻到60mm高,其锻造比是多少?能将直径为50mm 高180mm的圆钢镦粗到60mm高吗?为什么?2-6.“趁热打铁”含意何在?2-7.许多重要的工件为什么要在锻造过程中安排有镦粗工序?2-8.如图2-79所示带头部的轴类零件,其生产方法很多,在单件小批量生产条件下,若法兰头直径D较小,轴杆L较长时,应如何锻造?若法兰头直径D较大,轴杆L较短时,又应如何锻造?图2-79 第2-8题图2-9.图2-80所示锻件,在单件小批量生产时,其结构是否适于自由锻的工艺要求?请修改不当之处?图2-80 第2-9题图2-10.产生如图2-81所示的镦粗裂纹是什么原因?应如何避免?图2-81 第2-10题图2-11.锻造为什么要进行加热?如何选择锻造温度范围?2-12.模锻时,如何合理确定分模面的位置?2-13.模锻与自由锻有何区别?2-14.预锻模膛与制坯模膛有何不同?2-15.改正图2-82模锻零件结构的不合理处。
图2-82 第2-15题图2-16.图2-83所示三种不同结构的连杆,当采用锤上模锻制造时,请确定最合理的分模面位置,并画出模锻件图。
图2-83 第2-16题图2-17.板料冲压有哪些特点?主要的冲压工序有哪些?2-18.间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响?2-19.分析图2-84所示冲压件结构是否合理?并提出改进建议。
材料成型 第二章重难点复习题解答
第二章凝固温度场第一节传热基本原理一、填空1. 温度梯度指温度随距离的变化率,对于一定温度场,沿等温面或等温线法线方向的温度梯度最大,图形上沿着该方向的等温面(或等温线)最密集。
2. 根据传热学的基本理论,热量传递的基本方式有热传导、热对流和热辐射三种。
在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传输称为热传导。
3. 铸造过程中液态金属在充型时与铸型间的热量交换以热对流为主,铸件在铸型中的凝固、冷却过程以热传导为主。
4. 不仅在空间上变化并且也随时间变化的温度场称为不稳定温度场。
熔焊时焊件各部位的温度随热源的施加及移动而变,属于不稳定温度场,又称之为焊接热循环。
5. 傅里叶定律是热传导过程的数学模型,求解该偏微分方程的主要方法有解析方法与数值方法,后者是用计算机程序来求解数学模型的近似解,最常用的数值解法是差分法和有限元法。
6. 在求解热传导过程中的温度场时需要根据具体问题给出导热体的边界条件,一般将边界条件分为三类,其中以换热边界条件最为常见。
对于不稳定温度场的求解,除了边界条件之外,还要提供导热体的初始条件。
二、单选题:1. 熔焊过程中热源与焊件间的热量传递方式属于:(4)(1)热传导(2)热对流(3)热辐射(4)以上全部2. 熔焊过程中熔池内部的热量传递以( 2 )方式为主。
(1)热传导(2)热对流(3)热辐射(4)以上全部3. 熔焊过程中焊件内部的热量传递以( 1 )方式为主。
(1)热传导(2)热对流(3)热辐射(4)以上全部4. 熔焊过程中焊件表面与周围空气介质之间的热量传递方式属于:(4)(1)热传导(2)热对流(3)热辐射(4)以上全部三、简答1. 右图为某平板熔焊过程中焊件表面的温度分布状况,标出其最大温度梯度方向,并指出当前热源位置与移动方向。
答: 最大温度梯度方向: AB 方向; 当前热源位置:A 点上方;热源移动方向:AB 方向。
工程材料及成型技术复习要点及答案
工程材料及成型技术复习要点及答案1、按照零件成形的过程中质量m 的变化,可分为哪三种原理?举例说明。
按照零件由原材料或毛坯制造成为零件的过程中质量m的变化,可分为三种原理△m<0(材料去除原理);△m=0(材料基本不变原理);△m>0(材料累加成型原理)。
2、顺铣与逆铣的定义及特点。
顺铣:铣刀对工件的作用力在进给方向上的分力与工件进给方向相同的铣削方式。
逆铣;铣刀对工件的作用力在进给方向上的分力与工件进给方向相反的铣削方式。
顺铣时,每个刀的切削厚度都就是有小到大逐渐变化的逆铣时,由于铣刀作用在工件上的水平切削力方向与工件进给运动方向相反,所以工作台丝杆与螺母能始终保持螺纹的一个侧面紧密贴合。
而顺铣时则不然,由于水平铣削力的方向与工件进给运动方向一致,当刀齿对工件的作用力较大时,由于工作台丝杆与螺母间间隙的存在,工作台会产生窜动,这样不仅破坏了切削过程的平稳性,影响工件的加工质量,而且严重时会损坏刀具。
逆铣时,由于刀齿与工件间的摩擦较大,因此已加工表面的冷硬现象较严重。
顺铣时的平均切削厚度大,切削变形较小,与逆铣相比较功率消耗要少些。
3、镗削与车削有哪些不同?车削使用范围广,易于保证零件表面的位置精度,可用于有色金属的加工、切削平稳、成本低。
镗削就是加工外形复杂的大型零件、加工范围广、可获得较高的精度与较低的表面粗糙度、效率低,能够保证孔及孔系的位置精度。
4、特种加工在成形工艺方面与切削加工有什么不同?(1)加工时不受工件的强度与硬度等物理、机械性能的制约,故可加工超硬脆材料与精密微细零件。
(2)加工时主要用电能、化学能、声能、光能、热能等去除多余材料,而不就是靠机械能切除多余材料。
(3)加工机理不同于切削加工,不产生宏观切屑,不产生强烈的弹塑性变形,故可获得很低的表面粗糙度,其残余应力、冷作硬化、热影响度等也远比一般金属切削加工小。
工程材料及成型技术复习要点及答案(4) 加工能量易于控制与转换,故加工范围广、适应性强。
材料成型复习题(答案)
一、1落料和冲孔:落料和冲孔又称冲裁,是使坯料按封闭轮廓分离。
落料是被分离的部分为所需要的工件,而留下的周边是废料;冲孔则相反。
2 焊接:将分离的金属用局部加热或加压,或两者兼而使用等手段,借助于金属内部原子的结合和扩散作用牢固的连接起来,形成永久性接头的过程。
3顺序凝固:是采用各种措施保证铸件结构各部分,从远离冒口的部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固,在向冒口方向顺序凝固,使缩孔移至冒口中,切除冒口即可获得合格零件的铸造工艺同时凝固:是指采取一些工艺措施,使铸件个部分温差很小,几乎同时进行凝固获得合格零件的铸造工艺4.缩孔、缩松液态金属在凝固过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,而细小而分散的孔洞称为分散性缩孔,简称缩松。
5.直流正接:将焊件接电焊机的正极,焊条接其负极;用于较厚或高熔点金属的焊接。
直流反接:将焊件接电焊机的负极,焊条接其正极;用于轻薄或低熔点金属的焊接。
6 自由锻造:利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件的成形过程。
模型锻造:它包括模锻和镦锻,它是将加热或不加热的坯料置于锻模模膛内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的锻造成型过程。
7.钎焊:利用熔点比钎焊金属低的钎料作填充金属,适当加热后,钎料熔化将处于固态的焊件连接起来的一种方法。
8.金属焊接性:金属在一定条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性。
9,粉末冶金:是用金属粉末做原料,经压制后烧结而制造各种零件和产品的方法。
二、1、铸件中可能存在的气孔有侵入气孔、析出气孔、反应气孔三种。
2、金属粉末的基本性能包括成分、粒径分布、颗粒形状和大小以及技术特征等。
3、砂型铸造常用的机器造型方法有震实造型、微震实造型、高压造型、抛砂造型等。
材料成形技术基础(问答题答案整理)
第二章铸造成形问答题:1.合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法:(1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质;(2)铸型性质:较小铸型与金属液的温差;(3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统;(4)铸件结构:改进不合理的浇注结构。
2.影响合金收缩的因素有哪些?答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力)3.分别说出铸造应力有哪几类?答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同)(2)相变应力(固态相变、比容变化)(3)机械阻碍应力4.铸件成分偏析分为几类?产生的原因是什么?答:铸件成分偏析的分类:(1)微观偏析晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。
(因为不平衡结晶)晶界偏析:(原因:①两个晶粒相对生长,相互接近、相遇;②晶界位置与晶粒生长方向平行。
)(2)宏观偏析正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度)逆偏析产生偏析的原因:结晶速度大于溶质扩散的速度5.铸件气孔有哪几种?答:侵入气孔、析出气孔、反应气孔6.如何区分铸件裂纹的性质(热裂纹和冷裂纹)?答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。
七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。
(ΣF内<ΣF横<F直下端<F直上端)开放式浇注系统:从浇口杯底孔到内浇道的截面逐渐加大,阻流截面在直浇道上口的浇注系统。
(ΣF内>ΣF横>F直下端>F直上端)8.浇注位置和分型面选择的基本原则有哪些?答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷)(2)铸件的宽大平面朝下或倾斜浇注;(3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章凝固温度场第一节传热基本原理一、填空1. 温度梯度指温度随距离的变化率,对于一定温度场,沿等温面或等温线法线方向的温度梯度最大,图形上沿着该方向的等温面(或等温线)最密集。
2. 根据传热学的基本理论,热量传递的基本方式有热传导、热对流和热辐射三种。
在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传输称为热传导。
3. 铸造过程中液态金属在充型时与铸型间的热量交换以热对流为主,铸件在铸型中的凝固、冷却过程以热传导为主。
4. 不仅在空间上变化并且也随时间变化的温度场称为不稳定温度场。
熔焊时焊件各部位的温度随热源的施加及移动而变,属于不稳定温度场,又称之为焊接热循环。
5. 傅里叶定律是热传导过程的数学模型,求解该偏微分方程的主要方法有解析方法与数值方法,后者是用计算机程序来求解数学模型的近似解,最常用的数值解法是差分法和有限元法。
6. 在求解热传导过程中的温度场时需要根据具体问题给出导热体的边界条件,一般将边界条件分为三类,其中以换热边界条件最为常见。
对于不稳定温度场的求解,除了边界条件之外,还要提供导热体的初始条件。
二、单选题:1. 熔焊过程中热源与焊件间的热量传递方式属于:(4)(1)热传导(2)热对流(3)热辐射(4)以上全部2. 熔焊过程中熔池内部的热量传递以( 2 )方式为主。
(1)热传导(2)热对流(3)热辐射(4)以上全部3. 熔焊过程中焊件内部的热量传递以( 1 )方式为主。
(1)热传导(2)热对流(3)热辐射(4)以上全部4. 熔焊过程中焊件表面与周围空气介质之间的热量传递方式属于:(4)(1)热传导(2)热对流(3)热辐射(4)以上全部三、简答1. 右图为某平板熔焊过程中焊件表面的温度分布状况,标出其最大温度梯度方向,并指出当前热源位置与移动方向。
答: 最大温度梯度方向: AB 方向; 当前热源位置:A 点上方;热源移动方向:AB 方向。
第二节 铸造过程温度场一、下面各题的选项中,哪一个是错误的:1. 在推导半无限大平板铸件凝固过程温度场的求解方程时进行了如下简化:(2)(1)热量沿着铸件与铸型的接触界面的法线方向一维热传导; (2)铸件与铸型内部的温度始终为均温; (3)不考虑凝固过程中结晶潜热的释放; (4)不考虑铸件与铸型界面热阻。
2. 使用半无限大平板铸件凝固过程温度场的求解方程时:(1) (1)铸件一侧的温度梯度始终高于铸型中的温度梯度; (2)铸件与铸型的蓄热系数始终不变;(3)铸件与铸型的接触界面的温度始终不变; (4)铸件向铸型一侧的散热速率逐渐降低。
3. 对于无限大平板铸件的凝固时间计算:(1) (1)没考虑铸件与铸型接触界面的热阻; (2)考虑了铸件凝固潜热的释放;(3)凝固时间是指从浇注开始至铸件凝固完毕所需要的时间; (4)凝固层厚度取铸件板厚的一半。
二、简答1. 已知某半无限大板状铸钢件的热物性参数为:导热系数λ=46.5 W/(m ·K), 比热容C=460.5 J/(kg ·K), 密度ρ=7850 kg/m3,取浇铸温度为1570℃,铸型的初始温度为20℃。
用描点作图法绘出该铸件在砂型和金属型铸模(铸型壁均足够厚)中浇铸后0.02h 、0.2h 时刻的温度分布状况并作分析比较。
铸型的有关热物性参数见表2-2。
解:(1)砂型: 1111ρλc b ==12965 2222ρλc b ==639界面温度: 21202101b b T b T b T i ++==1497℃铸件的热扩散率: ρλc a=1=1.3⨯10-5 m 2/s根据公式 ()⎪⎪⎭⎫ ⎝⎛-+=t a xT T T T ii 11012erf 分别计算出两种时刻铸件中的温度分布状况见表1。
表1 铸件在砂型中凝固时的温度分布与铸型表面距离(m ) 0 0.02 0.04 0.06 0.08 0.10 温度 (℃)t=0.02h 时 1497 1523 1545 1559 1566 1569 t=0.20h 时149715051513152115281535根据表1结果做出相应温度分布曲线见图1。
(2)金属型: 1111ρλc b ==12965 2222ρλc b ==15434界面温度: 21202101b b T b T b T i ++==727.6℃同理可分别计算出两种时刻铸件中的温度分布状况见表2与图2。
表2 铸件在金属型中凝固时的温度分布与铸型表面距离(m ) 0 0.02 0.04 0.06 0.08 0.10 温度 (℃)t=0.02h 时 727.6 1030 1277 1438 1520 1555 t=0.20h 时727.6823915100510801159(3) 分析:采用砂型时,铸件金属的冷却速度慢,温度梯度分布平坦,与铸型界面处的温度高,而采用金属铸型时相反。
原因在于砂型的蓄热系数b 比金属铸型小得多。
图1 铸件在砂型中凝固时的温度分布曲线 图2 铸件在金属型中凝固时的温度分布曲线t=0.02h t=0.0h2.右图为大平板纯铝铸件在不同凝固工艺条件下的凝固曲线,分析它们间的凝固条件差别。
答:(1)线1与线2之间铸型散热能力不同;(2)线2与线3之间浇注温度不同;(3)线4为激冷下的凝固过程。
3. 右图为200mm厚度的25#钢大平板铸件分别在金属型与砂型中的动态凝固曲线,根据图形说明两种情况下的:(1)凝固方式;(2)凝固时间;(3)凝固过程中最宽的固液两相区;(4)距铸件表面50mm处的起始凝固时刻及凝固结束用时;(5)凝固组织差别;(6)如果铸件两侧的铸型分别采用金属型与砂型,会出现什么情况?解:(1)凝固方式:金属型---逐层凝固方式;砂型---- 体积凝固方式或中间凝固方式;(2)凝固时间:金属型---11min;砂型--- 47min ;(3)凝固过程中最宽的固液两相区:近30min 时刻,约80mm×2=160mm宽;(4)距铸件表面50mm处的起始凝固时刻:金属型---5min;砂型---17min;至凝固结束用时:金属型---7min;砂型---42min;(5)凝固组织:金属型---柱状晶;砂型---外层柱状晶,内部等轴晶;(6)靠金属型一侧的凝固速度较快,最终凝固的对合面靠近砂型一侧。
4. 在砂型中浇铸尺寸为300⨯300⨯20 mm的纯铝板。
设铸型的初始温度为20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在铸件凝固期间保持不变。
浇铸温度为670℃,金属与铸型材料的热物性参数见下表:热物性材料导热系数λW/(m·K)比热容CJ/(kg·K)密度ρkg/m3热扩散率am2/s结晶潜热J/kg纯铝212 1200 2700 6.5⨯10-5 3.9⨯105砂型 0.739 1840 1600 2.5⨯10-7试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度ξ ,并作出τξ-曲线; (2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间; (3)分析差别。
解:(1) 代入相关已知数解得:2222ρλc b =,=1475 ,()()[]S i T T c L T T b K -+ρπ-=10112022 = 0.9433 (m s m /)根据公式Kξτ=计算出不同时刻铸件凝固层厚度s 见下表,τξ-曲线见下图。
τ (s) 0 20 40 60 80 100 120 ξ (mm)4.226.007.318.449.4310.3(2) 利用“平方根定律”计算出铸件的完全凝固时间:取ξ =10 mm , 代入公式解得: τ=112.4 (s) ; 利用“折算厚度法则”计算铸件的完全凝固时间:11A V R = = 8.824 (mm) 2⎪⎭⎫⎝⎛=K R τ = 87.5 (s)(3)采用“平方根定律”计算出的铸件凝固时间比“折算厚度法则”的计算结果要长,这是因为“平方根定律”的推导过程假设铸件仅沿板厚方向一维散热,而“折算厚度法则”考虑了铸件的三维方向散热。
5. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。
解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球<A 块<A 板<A 杆根据 K R=τ 与 11A V R = τξ-关系曲线所以凝固时间依次为: t 球>t 块>t 板>t 杆。
6.造时底座的最后凝固部位,并估计凝固终了时间。
解:将底座分割成A 、B 、C 、D 四类规则几何体。
查表2-3得:K=0.72(m in cm /)对A 有:R A = V A /A A =1.23cmτA =R A ²/K A ²=2.9min对B 有: R B = V B /A B =1.33cmτB =R B ²/K B ²=3.4min对C 有:R C = V C /A C =1.2cmτC =R C ²/K C ²=2.57min对D 有:R D = V D /A D =1.26cmτD =R D ²/K D ²=3.06min因此最后凝固部位为底座中肋B 处,凝固终了时间为3.4分钟。
第三节 熔焊过程温度场一、填空1. 熔焊热源具有能量密度 高 、作用时间 短 的特点,可以使焊件局部温度 迅速上升 ,产生 熔化 。
通常熔焊热源相对于焊件以一定速度 移动 ,焊件上不同部位随着与热源距离的接近与远离而经历一次 温度上升与下降 的热循环。
2. 采用解析法求解焊接温度场时,根据焊件的几何特征将热源在焊件上的 作用部位 简化成 点 、 线 、 面 三类,之后热量以 热传导 方式向四周母材传播。
3. 采用相同的焊接规范在不同厚度的试板表面堆焊,随着板厚的增加,焊件的最高加热温度 降低 ,熔池的体积 减小 ,冷却速度 加快 。
4. 当电弧功率一定时,增大焊接速度,相同温度等温线椭圆所包围的范围 显著减小 ,椭圆的 长轴 被拉长;当焊接速度一定时,增大电弧功率,相同等温线椭圆所包围的面积 增大 ,而椭圆的形态 变化不大 。
二、改错1. 对于厚板的焊接,可以将热源功率视为作用于一个点上,该点位于热源正下方的焊件表面,之后热量沿板厚方向进行热传导。
(改为“沿三维方向”)2. 对于薄板的焊接,可以将热源功率视为作用于热源正下方的焊件表面,之后热量沿板厚方向进行热传导。
(改为“热源正下方的垂直于焊件表面的一条线上”)3. 薄板或杆件的焊接,由于焊件的比表面积比厚板时大,因此表面散热作用较强,冷却速度较快。
(严重出错!应当改为“薄板或杆件焊接时,由于焊件自身对焊接加热区的散热能力减弱,因此冷却速度比厚大件要慢”)4. 当电弧功率与焊接速度成比例增大时,由于单位长度焊件上的热输入(即焊接线能量)保持不变,因此在焊件中所形成的温度场相同。