《线性代数与线性规划》复习思考题

合集下载

线性代数习题--打印

线性代数习题--打印

第二章思考题、主要概念及内容图解法、图解法的灵敏度分析1. 考虑下面的线性规划问题:max z=2x1+3x2;约束条件:x1+2x2≤6,5x1+3x2≤15,x1,x2≥0.(1) 画出其可行域.(2) 当z=6时,画出等值线2x1+3x2=6.(3) 用图解法求出其最优解以及最优目标函数值.2. 用图解法求解下列线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解.(1) min f=6x1+4x2;约束条件:2x1+x2≥1,3x1+4x2≥3,x1,x2≥0.(2) max z=4x1+8x2;约束条件:2x1+2x2≤10,-x1+x2≥8,x1,x2≥0.(3) max z=3x1-2x2;约束条件:x1+x2≤1,2x1+2x2≥4,x1,x2≥0.(4) max z=3x1+9x2;约束条件:x1+3x2≤22,-x1+x2≤4,x2≤6,2x1-5x2≤0,x1,x2≥03. 将下述线性规划问题化成标准形式:(1) max f=3x1+2x2;约束条件:9x1+2x2≤30,3x1+2x2≤13,2x1+2x2≤9,x1,x2≥0.(2) min f=4x1+6x2;约束条件:3x1-x2≥6,x1+2x2≤10,7x1-6x2=4,x1,x2≥0.(3) min f=-x1-2x2;约束条件:3x1+5x2≤70,-2x1-5x2=50,-3x1+2x2≥30,x1≤0,-∞≤x2≤∞.(提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2-x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.)4. 考虑下面的线性规划问题:min f=11x1+8x2;约束条件:10x1+2x2≥20,3x1+3x2≥18,4x1+9x2≥36,x1,x2≥0.(1) 用图解法求解.(2) 写出此线性规划问题的标准形式.(3) 求出此线性规划问题的三个剩余变量的值.5. 考虑下面的线性规划问题:max f=2x1+3x2;约束条件:x1+x2≤10,2x1+x2≥4,x1+3x2≤24,2x1+x2≤16,x1,x2≥0.(1) 用图解法求解.(2) 假定c2值不变,求出使其最优解不变的c1值的变化范围.(3) 假定c1值不变,求出使其最优解不变的c2值的变化范围.(4) 当c1值从2变为4,c2值不变时,求出新的最优解.(5) 当c1值不变,c2值从3变为1时,求出新的最优解.(6) 当c1值从2变为2 5,c2值从3变为2 5时,其最优解是否变化?为什么?6. 某公司正在制造两种产品,产品Ⅰ和产品Ⅱ,每天的产量分别为30个和120个,利润分别为500元/个和400元/个.公司负责制造的副总经理希望了解是否可以通过改变这两种产品的数量而提高公司的利润.公司各个车间的加工能力和制造单位产品所需的加工工时如表2-4(25页)所示.(1) 假设生产的全部产品都能销售出去,用图解法确定最优产品组合,即确定使得总利润最大的产品Ⅰ和产品Ⅱ的每天的产量.(2) 在(1)所求得的最优产品组合中,在四个车间中哪些车间的能力还有剩余?剩余多少?这在线性规划中称为剩余变量还是松弛变量?(3) 四个车间加工能力的对偶价格各为多少?即四个车间的加工能力分别增加一个加工时数时能给公司带来多少额外的利润?(4) 当产品Ⅰ的利润不变时,产品Ⅱ的利润在什么范围内变化,此最优解不变?当产品Ⅱ的利润不变时,产品Ⅰ的利润在什么范围内变化,此最优解不变?(5) 当产品Ⅰ的利润从500元/个降为450元/个,而产品Ⅱ的利润从400元/个增加为430元/个时,原来的最优产品组合是否还是最优产品组合?如有变化,新的最优产品组合是什么?第四章人力资源的分配问题;生产计划的问题;套裁下料问题;配料问题;投资问题。

运筹学部分课后习题解答

运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。

最优化理论与方法(线性部分)思考题与作业要求

最优化理论与方法(线性部分)思考题与作业要求

最优化理论与方法(线性部分)思考题
1.就你学过的运筹学问题,写出能够建立线性规划模型的问题,并
举例(建立模型)。

2.举例(说明问题、建立模型)论述线性规划在交通、运输、物流
和安全管理中的应用。

3.对一个用单纯形法求解不会产生循环(且能求得最优解)的n个
变量m个约束的线性规划问题,估算一下基本计算次数。

4.简述线性规划求解算法的改进历史。

5.证明课本(清华版运筹学(第三版))2.5题。

6.有人说:“原问题有多重解(多个最优解),对偶问题一定也有多
重解”,此话是否正确?请举一算例。

7.D-W分解算法适合那种类型的线性规划问题?请举一算例。

8.何谓“原始-对偶”单纯形法?请举一算例。

9.何谓有界变量的线性规划问题?如何求解?请举一算例。

10.何谓线性规划的逆问题,分别对“最优解的逆线性规划问题”和
“对目标函数值的线性规划逆最优值问题”举出算例。

11.对同一优化问题,是否存在决策变量一样但所建模型不一样的情
况?请举例;是否存在目标函数中没有决策变量的最优化问题?
12.简述建立线性多目标规划的过程,自选一个实际问题,建立模型
并用图解法和单纯形法求解。

要求每个人所举例题都不一样,否则视为抄袭!。

运筹学钱颂迪答案

运筹学钱颂迪答案

运筹学钱颂迪答案【篇一: 803 运筹学】class=txt>运筹学考试大纲一、考试性质运筹学是我校航空运输管理学院硕士生入学考试的综合考试科目之一,它是我校为招收交通运输规划与管理学科硕士研究生而实施的水平考试,其评价标准是普通高等院校优秀本科毕业生能够达到的及格以上水平,以保证被录取者较好地掌握了必备的专业基础知识。

本门课程主要考试内容包括:线性规划及其对偶理论、运输问题、目标规划、整数规划、动态规划、图与网络分析,注重考察考生是否已经掌握运筹学最基本的理论知识与方法。

二、考试形式与试卷结构1.答卷方式:闭卷、笔试2.答卷时间: 180 分钟3.题型比例:满分 150 分,基本概念 20% ,计算及证明题 80%三、考查要点1.线性规划及对偶理论:单纯形法,改进单纯形法。

线性规划的对偶理论,对偶单纯形法,灵敏度分析;2.运输问题:运输问题的数学模型;用表上作业法求解运输问题;产销不平衡的运输问题及其求解方法;3.目标规划:目标规划的数学模型,目标规划的图解法与单纯形法;4.整数规划:0-1 型整数规划,分支定界解法,割平面解法,指派问题;5.动态规划:动态规划的基本概念和基本方法,动态规划的最优性原理与最优性定理,动态规划与静态规划的关系,动态规划的应用;6.图与网络分析:图与树的基本概念,最短路问题,网络最大流问题,最小费用最大流问题,中国邮路问题,网络计划。

四、主要参考书目1、郭耀煌,李军 .运筹学原理与方法. 成都:西南交通大学出版社,2004 ;2 、钱颂迪主编. 运筹学(修订版). 北京:清华大学出版社,1991 。

【篇二:运筹学大纲(13 、 14 级使用)2014.9 】(理论课程)开课系(部):数理教研部课程编号:380020 、 381703课程类型:专业必修课或学科必修课总学时: 48 或 32学分:3或2适用专业:信息管理与信息系统、投资学、工业工程、工程管理、经济统计学、物流管理开课学期: 3 或 4 或 5先修课程:高等数学、线性代数一、课程简述本课程是以经济活动方面的问题以及解决这类问题的原理和方法作为研究的对象,把经济活动中的问题归结为对应的某种数学模型,运用数学知识等工具求得最合理的工作方案。

线性代数课后习题答案第三章 矩阵的初等变换与线性方程组

线性代数课后习题答案第三章 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. ) ~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201. 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1))⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123;解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010********* 故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B ,求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ,所以⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ,所以⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫⎝⎛---==-4741121BA X .5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A ,求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫ ⎝⎛---011100101010110001~,所以⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式. 例如,⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.000是等于0的2阶子式, 010001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013; 解⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211,矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. )~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301,矩阵的秩为3,070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B . 11.设⎪⎪⎭⎫⎝⎛----=32321321k k k A ,问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r .(1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x xx x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x xx x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫⎝⎛--80311102132124~⎪⎭⎫ ⎝⎛----600034111008331,于是R (A )=2, 而R (B )=3, 故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫⎝⎛--0000000021101201,于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212,即⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k为任意常数).(3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎭⎫⎝⎛-00000010002/102/12/11,于是 ⎪⎪⎩⎪⎪⎨⎧===++-=0212121w z z y y z y x ,即⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x (k 1, k 2为任意常数). (4)⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x .解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎭⎫ ⎝⎛----000007/57/97/5107/67/17/101,于是⎪⎪⎩⎪⎪⎨⎧==--=++=ww z z w z y w z x 757975767171,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1, k 2为任意常数). 14. 写出一个以⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=1042013221c c x为通解的齐次线性方程组. 解 根据已知, 可得⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10420132214321c c x xx x ,与此等价地可以写成⎪⎩⎪⎨⎧==+-=-=2413212211432c x cx c c x c c x ,或 ⎩⎨⎧+-=-=432431432x x x x x x ,或 ⎩⎨⎧=-+=+-04302432431x x x x x x , 这就是一个满足题目要求的齐次线性方程组.15. λ取何值时, 非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x .(1)有唯一解; (2)无解; (3)有无穷多个解? 解⎪⎪⎭⎫⎝⎛=21111111λλλλλB ⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr. (1)要使方程组有唯一解, 必须R (A )=3. 因此当λ≠1且λ≠-2时方程组有唯一解.(2)要使方程组无解, 必须R (A )<R (B ), 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2≠0. 因此λ=-2时, 方程组无解.(3)要使方程组有有无穷多个解, 必须R (A )=R (B )<3, 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2=0. 因此当λ=1时, 方程组有无穷多个解.16. 非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x 当λ取何值时有解?并求出它的解. 解⎪⎪⎭⎫ ⎝⎛----=22111212112λλB ~⎪⎪⎪⎭⎫ ⎝⎛+-----)2)(1(000)1(32110121λλλλ.要使方程组有解, 必须(1-λ)(λ+2)=0, 即λ=1, λ=-2. 当λ=1时,⎪⎪⎭⎫ ⎝⎛----=121111212112B ~⎪⎪⎭⎫ ⎝⎛--000001101101,方程组解为⎩⎨⎧=+=32311xx x x 或⎪⎩⎪⎨⎧==+=3332311x x x x x x , 即⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛001111321k x x x (k 为任意常数).当λ=-2时,⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫ ⎝⎛--000021102101,方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x ,即 ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数).17. 设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x .问λ为何值时, 此方程组有唯一解、无解或有无穷多解? 并在有无穷多解时求解. 解B =⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ~⎪⎪⎭⎫⎝⎛---------)4)(1()10)(1(0011102452λλλλλλλλ.要使方程组有唯一解, 必须R (A )=R (B )=3, 即必须 (1-λ)(10-λ)≠0,所以当λ≠1且λ≠10时, 方程组有唯一解. 要使方程组无解, 必须R (A )<R (B ), 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)≠0, 所以当λ=10时, 方程组无解.要使方程组有无穷多解, 必须R (A )=R (B )<3, 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)=0,所以当λ=1时, 方程组有无穷多解.此时,增广矩阵为B ~⎪⎪⎭⎫ ⎝⎛-000000001221, 方程组的解为⎪⎩⎪⎨⎧==++-=33223211x x x x x x x , 或⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1, k 2为任意常数). 18. 证明R (A )=1的充分必要条件是存在非零列向量a 及非零行向量b T , 使A =ab T .证明 必要性. 由R (A )=1知A 的标准形为)0 , ,0 ,1(001000000001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,即存在可逆矩阵P 和Q , 使)0 , ,0 ,1(001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=PAQ , 或11)0 , ,0 ,1(001--⋅⋅⋅⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅=Q P A .令⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=-0011P a , b T =(1, 0, ⋅⋅⋅, 0)Q -1, 则a 是非零列向量, b T 是非零行向量, 且A =ab T .充分性. 因为a 与b T 是都是非零向量, 所以A 是非零矩阵, 从而R (A )≥1. 因为1≤R (A )=R (ab T )≤min{R (a ), R (b T )}=min{1, 1}=1, 所以R (A )=1.19. 设A 为m ⨯n 矩阵, 证明(1)方程AX =E m 有解的充分必要条件是R (A )=m ; 证明 由定理7, 方程AX =E m 有解的充分必要条件是R(A)=R(A,E m),而| E m|是矩阵(A,E m)的最高阶非零子式,故R(A)=R(A,E m)=m.因此,方程AX=E m有解的充分必要条件是R(A)=m.(2)方程YA=E n有解的充分必要条件是R(A)=n.证明注意,方程YA=E n有解的充分必要条件是A T Y T=E n有解.由(1)A T Y T=E n有解的充分必要条件是R(A T)=n.因此,方程YA=E n有解的充分必要条件是R(A)=R(A T)=n.20.设A为m⨯n矩阵,证明:若AX=AY,且R(A)=n,则X=Y.证明由AX=AY,得A(X-Y)=O.因为R(A)=n,由定理9,方程A(X-Y)=O只有零解,即X-Y=O,也就是X=Y.。

《管理运筹学》(第二版)课后习题参考标准答案

《管理运筹学》(第二版)课后习题参考标准答案

《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0b,≥i决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0bAX,的解,称为可行解。

=X≥基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a x x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。

在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。

本文将介绍一些常见的线性规划题目,并给出详细的答案解析。

一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。

每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。

问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。

二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。

公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。

三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。

仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。

通过线性规划方法求解,得出最优的运输方案,使得总成本最小。

四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。

运筹学课后习题答案

运筹学课后习题答案

运筹学课后习题答案运筹学课后习题答案运筹学是一门研究如何在有限资源下做出最优决策的学科。

它涉及到数学、统计学和计算机科学等多个领域,旨在解决实际问题中的优化和决策难题。

在学习运筹学的过程中,课后习题是巩固知识和理解概念的重要方式。

下面将为大家提供一些运筹学课后习题的答案,希望能对大家的学习有所帮助。

1. 线性规划问题线性规划是运筹学中最基本的问题之一。

它的目标是在给定的约束条件下,找到使目标函数达到最大或最小值的决策变量的取值。

以下是一个线性规划问题的示例及其答案:问题:某公司生产两种产品A和B,每单位产品A的利润为3万元,产品B的利润为4万元。

产品A每单位需要2个工时,产品B每单位需要3个工时。

公司总共有40个工时可用。

如果公司希望最大化利润,应该生产多少单位的产品A和产品B?答案:设产品A的生产单位为x,产品B的生产单位为y。

根据题目中的约束条件可得到以下线性规划模型:目标函数:Maximize 3x + 4y约束条件:2x + 3y ≤ 40x ≥ 0, y ≥ 0通过求解这个线性规划模型,可以得到最优解为x = 10,y = 10。

也就是说,公司应该生产10个单位的产品A和10个单位的产品B,以最大化利润。

2. 项目管理问题项目管理是运筹学的一个重要应用领域。

它涉及到如何合理安排资源、控制进度和降低风险等问题。

以下是一个项目管理问题的示例及其答案:问题:某公司需要完成一个项目,该项目包含5个任务。

每个任务的完成时间和前置任务如下表所示。

为了尽快完成项目,应该如何安排任务的执行顺序?任务完成时间(天)前置任务A 4 无B 6 无C 5 AD 3 BE 7 C, D答案:为了确定任务的执行顺序,可以使用关键路径方法。

首先,计算每个任务的最早开始时间和最晚开始时间。

然后,找到所有任务的最长路径,即关键路径。

关键路径上的任务不能延迟,否则会延误整个项目的完成时间。

根据上表中的信息,可以得到以下关键路径:A → C → E,最长时间为4 + 5 + 7 = 16天因此,任务的执行顺序应为A → C → E。

运筹学课程常见疑难问题及解答

运筹学课程常见疑难问题及解答
由于写对偶问题是本章其他内容的基础,因此需要通过大量
的练习熟练掌握原问题与对偶问题的对应关系。
返回
利用松弛性质求解对偶问题最优解时应注 意什么?
注意给出的线性规划问题是否具备原问题或者对偶问题的标
准形式。对于具备标准形式的线性规划问题,可以直接利用
松弛性质中的描述进行计算。
对于不具备标准形式的线性规划问题,不可以直接利用松弛
以单位矩阵对应的变量作为基变量时,求出的基本解一 定是基本可行解。
迭代时以单位矩阵对应的变量作为基变量,还可以从单
纯形表中直接读出各变量的值。
返回
应用大M法时应注意什么问题?
应用大M法时应注意:
在约束方程中加入人工变量以后,一定要在目标函数中
增加罚函数项;
在求极大的目标函数中,人工变量系数应为-M,相反在
第八章—目标规划
第九章—排队论 第十章—存贮论 第十一章—决策论 第十二章—多目标决策方法 第十三章—在民航应用案例
一般性问题的解答
运筹学在民航运输中的应用情况
参见第十三章内容及平台上的学术文献
如何学好运筹学课程
同一问题求解方法的选择
返回
如何学好运筹学课程?
i=1 m
n m a kj x j b k时, y k 0; a ij yi c j , j 1, , n j=1 的最优解,当且仅当 i=1 m y 0,i 1, , m a y c 时, x 0. i l l il i i=1
返回
什么是满秩矩阵?
如果方阵的行列式非零,则该方阵是满秩矩阵。 某方阵是满秩矩阵时,以该方阵各列作为系数的各变量作为
基变量,其他变量取为常数(计算基本解时取为0)时,则

线性规划题及答案

线性规划题及答案

线性规划题及答案线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。

在线性规划中,我们需要确定一组决策变量的取值,以使得目标函数达到最大或者最小值,同时满足一组线性约束条件。

下面我将为您提供一个线性规划题目及其答案,以便更好地理解线性规划的应用。

题目:某公司生产两种产品A和B,每单位产品A的利润为5元,每单位产品B的利润为8元。

公司有两个车间可供生产,车间1每天生产产品A需要2小时,产品B需要1小时;车间2每天生产产品A需要1小时,产品B需要3小时。

车间1每天可工作8小时,车间2每天可工作10小时。

公司希翼确定每一个车间生产的产品数量,以使得利润最大化。

解答:首先,我们需要定义决策变量。

设x1为车间1生产的产品A的数量,x2为车间1生产的产品B的数量,x3为车间2生产的产品A的数量,x4为车间2生产的产品B的数量。

其次,我们需要建立目标函数。

公司的利润可以表示为:Profit = 5x1 + 8x2 + 5x3 + 8x4。

然后,我们需要建立约束条件。

根据车间1和车间2的工作时间限制,我们可以得到以下两个约束条件:2x1 + x2 ≤ 8 (车间1的工作时间限制)x3 + 3x4 ≤ 10 (车间2的工作时间限制)此外,由于产品数量不能为负数,我们还需要添加非负约束条件:x1, x2, x3, x4 ≥ 0综上所述,我们得到了以下线性规划模型:Maximize Profit = 5x1 + 8x2 + 5x3 + 8x4Subject to:2x1 + x2 ≤ 8x3 + 3x4 ≤ 10x1, x2, x3, x4 ≥ 0接下来,我们可以使用线性规划求解方法来求解该问题。

通过求解器或者手动计算,我们可以得到最优解:x1 = 2,x2 = 4,x3 = 1,x4 = 2利润最大化为:Profit = 5(2) + 8(4) + 5(1) + 8(2) = 58元。

通过以上求解过程,我们可以得出结论:为了使公司的利润最大化,车间1应该生产2个单位的产品A和4个单位的产品B,车间2应该生产1个单位的产品A和2个单位的产品B,此时公司的利润为58元。

《线性代数与线性规划(第四版)(大学本科经济应用数学基础特色教》读书笔记模板

《线性代数与线性规划(第四版)(大学本科经济应用数学基础特色教》读书笔记模板

§5.1线性规划问题的标准形式 §5.2基本线性规划问题的单纯形解法 §5.3一般线性规划问题的单纯形解法 §5.4单纯形解法在实际工作中的应用 习题五
精彩摘录
这是《线性代数与线性规划(第四版)(大学本科经济应用数学基础特色教材系列)》的读书笔记模板,可 以替换为自己的精彩内容摘录。
作者介绍
《线性代数与线性规划》(第四版)共分六章,介绍了经济工作所需要的行列式、矩阵、线性方程组、投入产 出问题、向量及线性规划问题的数学模型、图解法、单纯形解法。本书着重讲解基本概念、基本理论及基本方法, 发扬独立思考的精神,培养解决实际问题的能力与熟练操作运算能力。例题、习题是教材的窗口,集中展示了教 学意图。本书对例题、习题给予高度重视,例题、习题都经过精心设计与编选,它们与概念、理论、方法的讲述 完全配套,其中除计算题与经济应用题外,尚有考查基本概念与基本运算技能的填空题与单项选择题。填空题要 求将正确答案直接填在空白处;单项选择题是指在四项备选答案中,只有一项是正确的,要求将正确备选答案前 面的字母填在括号内。书末附有全部习题答案,便于检查学习效果。
§2.1矩阵的概念与基本运算 §2.2矩阵的秩 §2.3方阵的幂与逆矩阵 §2.4向量组的线性相关性 习题二
§3.1线性方程组的一般解法与解的判别 §3.2齐次线性方程组 §3.3线性方程组解的结构 §3.4投入产出问题 习题三
§4.1线性规划问题的概念 §4.2线性规划问题的数学模型 §4.3两个变量线性规划问题的图解法 §4.4图解法在实际工作中的应用 习题四
这是《线性代数与线性规划(第四版)(大学本科经济应用数学基础特色教材系列)》的读书笔记模板,暂 无该书作者的介绍。
感谢观看
读书笔记
作者给每一个定理都搭配了非常丰富的、简洁易懂的案例,消除了我对线性代数的畏难情绪~。

如何通过线性规划和线性代数解决实际问题

如何通过线性规划和线性代数解决实际问题

添加标题
添加标题
线性规划在解决实际问题中的实际 案例
线性代数和线性规划的相互促进发展
线性代数和线性规 划的结合点
线性代数在解决线 性规划问题中的应 用
线性规划在促进线 性代数理论发展中 的作用
线性代数和线性规 划在实际问题中的 联合解决方案
05 实际案例分析
生产计划优化案例
案例背景:某制造企业面临生产计划安排问题 线性规划模型建立:如何根据市场需求和生产资源限制,制定最优的生产计划 线性代数在优化中的应用:如何使用矩阵运算和线性方程组求解最优解 实际效果:优化后生产计划的实施效果和对企业效益的影响
矩阵的逆与行列 式的计算
矩阵的转置与共 轭
向量运算的应用
向量加法:实现向量的平行四边形法则 向量数乘:实现向量的伸缩变换 向量点乘:实现向量的角度和长度计算 向量叉乘:实现向量的垂直和旋转操作
特征值和特征向量的应用
特征值和特征向量 的定义
在解决实际问题中 的应用场景
具体应用案例及解 析
与线性规划和线性 代数的关联
人工智能与机 器学习结合: 利用机器学习 算法优化线性 规划和线性代
数问题
感谢您的观看
汇报人:
线性代数和线性规划的 结合应用
线性代数在优化问题中的应用
线性代数的基本概念和性 质
线性规划的基本概念和求 解方法
线性代数在优化问题中的 应用实例
线性代数在优化问题中的 优势和局限性
线性规划在解决实际问题中的综合应用
线性代数和线性规划的结合点
线性代数在解决实际问题中的优势
添加标题
添加标题
线性规划在优化问题中的应用
03
线性规划在解决实际问 题中的应用

线性规划常见疑问

线性规划常见疑问

第一章线性规划常见疑问解答1.线性规划——这一运筹学重要分支的开创者是谁?这里,必须谈到两个著名的人物,康托洛维奇和丹捷格。

1939年著名数理经济学者康托洛维奇发表了《生产组织和计划中的数学方法》这一运筹学的先驱性名著,其中已提到类似线性规划的模型和“解乘数求解法”。

但是他的工作直到1960年的《最佳资源利用的经济计算》一书出版后,才得到重视。

1975年,康托洛维奇与T . C . Koopmans 一起获得了诺贝尔经济学奖。

1947年G . B. Dantzig 在研究美国空军军事规划时提出了线性规划的模型和单纯形解法,并很快引起美国著名经济学家Koopmans的注意。

Koopmans为此呼吁当时年轻的经济学家要关注线性规划。

今天,单纯形法及其理论已成为了线性规划的一个重要的部分。

2.线性规划模型的形式是什么?目标函数和约束条件都是线性的。

3.线性规划模型的三要素是什么?就是资源向量b,价值向量c,系数矩阵A(一般都假设A是满秩的)。

其中,资源向量b表示了稀缺资源的种类和限度;价值向量c反映了单位产品(广义)所创造的收益或形成的成本;而系数矩阵A是现有生产技术、生产工艺、管理水平的具体体现。

只要这三个要素确定了,相应的线性规划模型就确定了。

4.线性规划模型的经济意义何在?简言之,线性规划模型对于解决经济学研究的核心问题——资源有效配置有比较重要的意义。

它不仅为宏观或微观的经济研究提供了一个有效的解决问题的平台,而且,(曾经)为经济学家提供了一个解决资源优化配置的新的思路。

不仅如此,线性规划在企业的运作管理、物流管理、财务管理、人力资源管理、战略管理等诸多方面也能为管理者提供科学的决策支持。

5.线性规划的标准形式是怎样的?线性规划的标准形式有三个特点:a)约束条件都是等式;b)等式约束的右端项为非负的常数;c)每个变量都要求取非负数值。

下面是线性规划标准形式的一般表达,6.线性规划标准形的向量矩阵形式是怎样的?线性规划的标准形式如用向量矩阵形式可简洁表述为:7.在将线性规划的一般形式转化为标准形式时,要注意哪几点?要注意两点:一是某一约束条件为“≤”或“≥”形式的不等式时,应“+”一个非负松弛变量或“-”非负松弛变量;二是某个变量不满足非负约束时,这个变量要用一到两个非负的新变量替换,以使标准型中所有的变量均满足非负要求。

《运筹学》习题线性规划部分练习题及答案整理版

《运筹学》习题线性规划部分练习题及答案整理版

《运筹学》线性规划部分练习题一、思考题1.什么是线性规划模型,在模型中各系数的经济意义是什么?2 .线性规划问题的一般形式有何特征?3.建立一个实际问题的数学模型一般要几步?4.两个变量的线性规划问题的图解法的一般步骤是什么?5.求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?6.什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。

7•试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。

8•试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。

9.在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?10.大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢?11 •什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段?二、判断下列说法是否正确。

1.线性规划问题的最优解一定在可行域的顶点达到。

2.线性规划的可行解集是凸集。

3.如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。

4.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。

5 .线性规划问题的每一个基本解对应可行域的一个顶点。

6.如果一个线性规划问题有可行解,那么它必有最优解。

7.用单纯形法求解标准形式(求最小值)的线性规划问题时,与j' 0对应的变量都可以被选作换入变量。

8 .单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。

9.单纯形法计算中,选取最大正检验数二k对应的变量xk作为换入变量,可使目标函数值得到最快的减少。

10 . 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

三、建立下面问题的数学模型1.某公司计划在三年的计划期内,有四个建设项目可以投资:项目I从第一年到第三年年初都可以投资。

(0044)《线性代数》复习思考题及答案

(0044)《线性代数》复习思考题及答案

(0044)《线性代数》复习思考题一、填空题1.选择k , l 使a 13 a 2k a 34 a 42 a 5l 成为5阶行列式中带有正号的项 。

2.排列3712456的逆序数为 。

3.排列n (n -1)...21的逆序数为 。

4.六阶行列式中, a 15 a 23 a 32 a 44 a 51 a 66应取什么符号 。

5.已知A =(a ij )为n 阶矩阵,写出A 2的第k 行第l 列的元素 。

6.已知五阶行列式D 中第二列元素依次为-1,-2,1,0,5,它们的余子式依次为5,3,4,2,1,则D = 。

7.设矩阵A 为三阶矩阵,若已知|A |=m ,求|−m 2A |= 。

8.设3(α1-α)+2(α2+α)=5(α3+α), 其中α1=(2, 0, 1, 13), α2=(0, 2, 5, 1), α3=(4, 1, 5, 1),则α= 。

9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111111111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=150421321B ,求3AB -2A 及A T B 分别为 。

10.方阵⎪⎪⎭⎫⎝⎛5221的逆阵为 。

11.方阵⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos 的逆阵为 。

12.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2110154214321的秩为 。

13.若n 阶矩阵满足A 2-2A -4I =0,则(A +I )-1= 。

14.已知向量α1=(1, 2, 3), α2=(3, 2, 1), α3=(-2, 0, 2), α4=(1, 2, 4), 则3α1+2α2-5α3+4α4= 。

15.设A 为5阶方阵,且|A |=5,则|5A |= ,|A 3|= 。

16.设n 阶矩阵A 满足A 2-2A +3E =O ,则A -1=_______________。

17.设1230,3,1,2,1,1,2,4,3,0,7,13TT Tααα⎛⎫⎛⎫⎛⎫==-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则321,,ααα的一个最大线性无关组为___________________________。

线性代数各章思考题

线性代数各章思考题

《线性代数》思考题线性代数第一章思考题1.余子式与代数余子式有什么特点?它们之间有什么联系?2.行列式有哪些性质?3.计算行列式通常采用的方法有哪些?4.克莱姆法则的适用条件是什么?线性代数第二章思考题1.为什么矩阵乘法不满足交换律?2.矩阵的转置运算有哪些规律?3.什么是对称矩阵?4.方阵的行列式有哪些运算规律?5.什么是伴随矩阵?它有哪些主要性质?6.判断矩阵可逆的常用方法有哪些?7.怎样解矩阵方程?线性代数第三章思考题1.一个非零矩阵的行最简形与行阶梯形有什么区别和联系?2.矩阵的初等变换与初等矩阵有什么关系?3.矩阵的初等行(列)变换有哪些?它有哪些重要的应用?4.在求解有关矩阵的问题时,何时只须化为阶梯形,何时宜化为行最简形?5.求逆矩阵有哪些常用的方法?6.什么是矩阵的秩?求矩阵的秩有几种方法?7.矩阵的秩有哪些重要性质?有哪些主要应用?8.n 元齐次线性方程组0=Ax 有非零解的充要条件是什么?n 元非齐次线性方程组b Ax =有解的充要条件是什么?n 元非齐次线性方程组b Ax =有唯一解,无穷多解的充要条件分别是什么? 9.用初等行变换法求解线性方程组的主要步骤是什么?线性代数第四章思考题1.对于向量组的线性相关、线性无关的概念,给出一些几何上的解释.2.两个矩阵的等价与两个向量组的等价有什么区别和联系?3.向量组的最大无关组有什么重要意义?求向量组的最大无关组有哪些方法?4.证明或判断一个向量组线性相关或线性无关的常用方法有哪些?5.何为齐次线性方程组的基础解系?如何求法?6.齐次线性方程组0=Ax 的通解结构是什么?7.非齐次线性方程组b Ax =的通解结构是什么?线性代数第五章思考题1.什么是正交矩阵?它有哪些重要性质?2.正交变换的重要特性是什么?3.将线性无关向量组正交规范化的施蜜特(Schimidt )正交化过程是什么?4.何为矩阵的特征值、特征向量?矩阵的特征值有哪些主要性质?5.如何求方阵A 的特征值与特征向量?6.何为矩阵相似?相似矩阵有哪些主要性质?7.n 阶矩阵A 可相似对角化的充分必要条件是什么?8.判断矩阵A 是否可对角化的基本方法有哪些?9.实对称矩阵的特征值与特征向量有哪些性质?10.已知n 阶方阵A 可对角化, 如何求可逆矩阵P , 使得),,,(211n AP P λλλ=- diag ?11.实对称矩阵正交相似对角化的步骤是什么?12.用正交变换化二次型Ax x f T =为标准形的主要步骤是什么?13.如何判别二次型Ax x f T =的正定性?2 0 0 6年3月。

09运筹复习思考题

09运筹复习思考题

09运筹学复习思考题:线性规划部分一、线性规划建模1、某农场打算添购一批拖拉机以完成每年三季度的生产任务:春种330公顷,夏管130公顷,秋收470公顷。

可供选择的拖拉机型号、单台市场价格以及拖拉机的使用能力参数如下:问每种拖拉机各购买几台,才能顺利地完成全年的各项生产任务,并且还能保证总的花费最少。

试就这一问题建立数学模型。

2、一宾馆实行昼夜24小时服务,根据过去的业务统计,每天所需要的服务人员数如下表。

若每位服务员每天连续工作8个小时,问如何安排服务人员,才能以最少的人数但最大限度地搞好服务接待。

建立这一问题数学模型。

二、化标准型max f(x) = 2x 1+x 2+3x 3+x 4s.t. x 1 +x 2 +x 3 +x 4≤5 2x 1-x 2+3x 3 =4 -x 1 +x 3 -x 4 ≥-1x 1≥0,x 2≥0, x 3≥0, x 4≥0min f(x) = 2x 1-x 2+2x 3 s.t. -x 1 +x 2 +x 3=4 -x 1 +x 2 -x 3≤6x 1≤0,x 2≥0, x 3无约束三、图解法1、用图解法求解下列线性规划问题。

max f(x)= x 1+3x 2 s.t. x 1+x 2≤10-2x 1+2x 2≤12 x 1≤7x 1≥0,x 2≥02、用图解法求解如下线性规划问题,并分析线性规划问题的解有几种可能情况?Max f(x)= x 1+2x 2 s.t. x 1-x 2≤1x 1+2x 2≤4 x 1≤3x 1≥0, x 2≥0四、求解线性规划问题1、求下列线性规划问题的所有基可行解及最优解。

1234m ax ()234f x x x x x =+++1234111..12234s t x x x x +++≤x 1≥0, x 2≥0,x 3≥0, x 4≥02、找出下列线性规划问题的所有基本解、基本可行解、最优解。

Max Z=10x 1+5x 2 s.t. 3x 1+4x 2≤9 5x 1+2x 2≤8 x 1,x 2≥0五、对偶1、试写出下列线性规划问题的对偶问题,并说明对偶变量的经济含义。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数与线性规划》复习思考题
一、填空题
1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 号;项a 32a 21a 45a 13a 54前 的符号应取 号。

2.行列式
12510
1220141
201---x 中元素x 的代数余子式是 . 3.排列13…(2n -1)24…(2n )的逆序数为 .
5.K= 时,01
0014
3=-k k k
7.已知向量α=(1,2,3),β=(3
1,21,1),设A=αT β,则A= ,α+β= . 8.设A 是3阶方阵,且A 2=0,则A 3= .
9.设A 为3阶矩阵,若已知=-=mA m A 则, .
10.设⎥⎦
⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=4312,2345c B ,且BAC=E (E 为单位阵),则A -1= . 11.向量α=(1,3,5,7),β=(a,b,5,7),若α=β,则a= ,b= .
12.零向量是线性 的,非零向量α是线性 的.
13.α1=(1,1,1)T ,α2=(a ,0,b )T ,α3=(1,3,2)T 。

若α1,α2,α3线性相关,则a ,b 满足 .
14.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 .
15.设η1,η2为方程组A x =b 的两个解,则 是其导出方程组的解。

16.设α0是线性方程组A x =b 的一个固定解,设z 是导出方程组的某个解,则线性方程组A x =b 的任意一个解β可表示为β= .
17.若n 元线性方程组A x =b 有解,R (A )=r ,则当 时,有惟一解;当 时,有无穷多解。

18.A 是m ×n 矩阵,齐次线性方程组A x =0有非零解的充要条件是 .
20.若非齐次线性方程组增广矩阵经初等行变换化为⎥⎦
⎤⎢
⎣⎡-3410011010,那么该方程组的通解是 .
二、选择题
1.5阶行列式的展开式共有[ ]项.
(A )52; (B )5! (C )10; (D )15
2.一个n 维向量α1,α2,…,αs (s >1)线性相关的充要条件是[ ].
(A )含有零向量;
(B )有两个向量的对应分量成比例;
(C )有一个向量是其余向量的线性组合;
(D )每一个向量是其余向量的线性组合.
3.已知矩阵A ,B ,C 满足AC =CB ,其中C =(C ij )s ×n ,则A 与B 分别是[ ].
(A )A s ×s ,B n ×n ; (B )A s ×n ,B n ×s ;
(C )A n ×s ,B n ×n ; (D )A s ×s ,B s ×n .
4.设A ,B 为同阶方阵,则(AB )n 为[ ].
(A )A n B n (B )AB n A n -1 (C )B n A n (D )ABAB …AB
5.初等方阵[ ]
(A )都可以经过初等变换化为单位阵;
(B )所对应的行列式的值为1;
(C )相乘仍为初等方阵;
(D )相加仍为初等方阵.
6.设n 元齐次线性方程组A x =0,若R (A )=r <n ,则基础解系[ ]
(A )惟一存在; (B )共有n -r 个;
(C )含有n -r 个向量 (D )含有无穷多个向量.
7.设A ,B ,C 为n 阶方阵,且ABC=E ,则必成立的等式为[ ].
(A )ACB=E ; (B )CBA=E ; (C )BAC=E ; (D )BCA=E.
8.若线性方程组A x =B 的系数矩阵A 是m ×n 的,且m <n ,则[ ].
(A )A x =B 必有无穷多解; (B )A x =B 一定无解;
(C )A x =0必有非零解; (D )A x =0只有零解.
9.设A 是3阶方阵,且A 2=0,下列各式中,成立的是[ ].
(A )A=0; (B )R (A )=2, (C )A 3=0; (D )|A|≠0
12.
A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211,
B =⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡nn n n n n A A A A A A A A A 212222111211 其中A ij 是a ij 的代数余子式(i,j=1,2,…,n ),则[ ].
(A )A 是B 的伴随矩阵 (B )B 是A 的伴随矩阵
(C )B 是A T 的伴随矩阵 (C )B 不是A T 的伴随矩阵
13.设A 是mxn 矩阵,Ax =0是非齐次线性方程组A x =b 所对应的导出方程组,则下列结
论中,正确的是[ ].
(A )若Ax =0仅有零解;则Ax =b 有惟一解;
(B )若Ax =0有非零解,则Ax =b 有无穷多解;
(C )若Ax =b 有无穷多解,则Ax =0仅有零解;
(D )若Ax =b 有无穷多解,则Ax =0有非零解.
14.设A ,B 均为n 阶可逆矩阵,则[ ].
(A )A +B 可逆 (B )kA 可逆(k 为常数)
(C )AB 可逆 (D )(AB )-1=A -1B -1
15.下列各矩阵中,初等矩阵是[ ]
(A )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100010 (B )⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡002010110
(A )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010201 (D )⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡201010100
三、计算题
1.计算行列式
D n =x
a a a a x a a a
a x a a
a a x
2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列.
3.求方程组的解
⎪⎪⎪⎩
⎪⎪⎪⎨⎧=+--=+++=+=+++65236114
43325343214321424321x x x x x x x x x x x x x x 4.设A =⎥⎥⎥⎦

⎢⎢⎢⎣⎡543022001,求A *和A
-1 5.设
α1=(1,1,2)T ,α2=(1,2,3)T ,α3=(1,3,t )T ①当t 为何值时,α1,α2,α3线性无关? ②当t 为何值时,α1,α2,α3线性相关?并将α3用α1,α2线性表示.
6.求线性方程组
⎪⎩⎪⎨⎧-=++-=+-+-=+-2233473124321
4321421x x x x x x x x x x x 的通解. 四、证明题:
1.设方阵X 满足E X X E x x 2,,022+=--证明都可逆,并求X -1,(X +2E )-
1(注:E 为单位矩阵).。

相关文档
最新文档