高三数学第二学期函数的概念与基本初等函数多选题单元达标检测试卷
新高考新题型——数学函数的概念与基本初等函数多选题专项练习附答案
新高考新题型——数学函数的概念与基本初等函数多选题专项练习附答案一、函数的概念与基本初等函数多选题1.已知函数4()nn f x x x=+(n 为正整数),则下列判断正确的是( )A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x ,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.2.下列说法中,正确的有( ) A .若0a b >>,则b a a b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R ,任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx x xf x -+-=-==+++, 则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.3.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Q f x x Q ∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC 【分析】利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==; 任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确; 对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确; 对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.4.德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立 C .任取一个不为零的有理数T ,f x Tf x 对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD 【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.5.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.6.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=-- ⎪⎝⎭有3个零点D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.7.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--,[0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.8.已知函数1()xx f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()x x f x e'=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0,故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.9.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确;当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.10.已知函数()221,0log 1,0xx f x x x ⎧+≤⎪=⎨->⎪⎩,则方程()()22210f x f x a -+-=的根的个数可能为( ) A .2 B .6 C .5 D .4【答案】ACD 【分析】先画出()f x 的图象,再讨论方程()()22210f x f x a -+-=的根,求得()f x 的范围,再数形结合,得到答案. 【详解】画出()f x 的图象如图所示:令()t f x =,则22210t t a -+-=,则24(2)a ∆=-,当0∆=,即22a =时,1t =,此时()1f x =,由图1y =与()y f x =的图象有两个交点,即方程()()22210f x f x a -+-=的根的个数为2个,A 正确;当>0∆时,即22a <时,212t a =-,则2022a <-≤故211212a <+-≤212121a ≤-<,当212t a =-2()12f x a =--(1,1)∈-,则x 有2解, 当212t a =-t (1,2]∈,则x 有3解;若t (2,12]∈+,则x 有2解,故方程()()22210f x f x a -+-=的根的个数为5个或4个,CD 正确;故选:ACD 【点睛】本题考查了函数的根的个数问题,函数图象的画法,考查了分类讨论思想和数形结合思想,难度较大.11.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>-D .2212log 2mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-,由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ 51≥=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.12.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n ⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -=同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-. 所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.13.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故C 正确;对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD. 【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.14.已知函数()()2214sin 2xxex f x e -=+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调 B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增 C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2xx xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e --++---=-=,()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xxf x e x e '=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xx g x e x e=-+, 则1()+2cos 2+2cos 0x x g x e x x e'=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.15.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.16.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( ) A .当2a =时,342f ⎛⎫=⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭D .当0a >时,不等式()122x f x a -≤在[)0,+∞上恒成立 【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确; 对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.17.已知函数()()()22224x x f x x x m m ee --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( ) A .1 B .1-C .2D .2-【答案】BC 【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论. 【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()ttf t t m m e e -=-+-+,定义域为R ,22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称, 要使得函数()f x 有唯一零点,则(2)0f =, 即2482()0m m -+-=,解得1m =-或2 ①当1m =-时,2()42()t t f t t e e -=-++ 由基本不等式有2t t e e -+≥,当且仅当0t =时取得2()4t t e e -∴+≥故2()42()0ttf t t e e -=-++≥,当且仅当0t =取等号 故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意. 故选:BC . 【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+18.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2x y =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>, 所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.19.设函数2,0()12,02x e xf x x x x ⎧≤⎪=⎨-++>⎪⎩,对关于x 的方程2()()20f x bf x b -+-=,下列说法正确的有( ).A .当223b =-+时,方程有1个实根B .当32b =时,方程有5个不等实根 C .若方程有2个不等实根,则17210b <≤ D .若方程有6个不等实根,则32232b -+<< 【答案】BD 【分析】先作出函数()f x 的图象,进行换元()f x t =,将方程转化成关于t 的二次方程,结合()f x 函数值的分布,对选项中参数值与根的情况逐一分析判断四个选项的正误即可. 【详解】函数()22,0,0()132,01,022x x e x e x f x x x x x x ⎧⎧≤≤⎪⎪==⎨⎨-++>--+>⎪⎪⎩⎩,作图如下:由图可知,3(),2f x ⎛⎤∈-∞ ⎥⎝⎦,令()f x t =,则3,2t ⎛⎤∈-∞ ⎥⎝⎦,则方程转化为220b bt t +-=-,即222()22204b b t t b t t b b ϕ⎛⎫=--- +-=+⎪-⎝=⎭选项A 中,223b =-+时方程为(22234230t t -+-=+,即(2310t +=,故31t =,即131,12()f x ⎛⎫∈ ⎪⎝⎭=,看图知存在三个根,使得()31f x =,故A错误; 选项B 中,32b =,方程即231022t t -+=,即22310t t -+=,解得1t =或12t =,当()1f x t ==时看图可知,存在3个根,当1()2f x t ==时看图可知,存在2个根,故共5个不等的实根,B 正确;选项C 中,方程有2个不等实根,则有两种情况:(1)122bt t ==,则31,22b ⎛⎫∈ ⎪⎝⎭或10,22b ⎛⎤∈ ⎥⎝⎦,此时2204b b +--=,即2480b b -+=,解得223b =-±,132b =-±,均不满足上面范围,舍去;(2)12t t ≠时,即(]123,,02t t =∈-∞或(]12,,0t t ∈-∞.①当(]123,,02t t =∈-∞时132t =,代入方程得2220332b b +⎛⎫-⋅ ⎪⎝-=⎭,解得1710b =,由123210t t b =-=,得(]21,05t =∉-∞,不满足题意,舍去;②当(]12,,0t t ∈-∞时220b bt t +-=-,则()2420b b ∆=-->,1220t t b =-≥,120t t b +=<,解得223t <--,故C 错误;选项D 中,方程有6个不等实根,则1211,1,,122t t ⎛⎤⎛⎤∈∈⎥⎥⎝⎦⎝⎦且12t t ≠,222()2422b b t t b t t b b ϕ⎛⎫=--- ⎪⎝⎭+-=+-图象如下:需满足:()2193024*********b b b b b ϕϕϕ⎧⎛⎫=-> ⎪⎪⎝⎭⎪⎪=-≥⎨⎪⎛⎫⎪=-+-< ⎪⎪⎝⎭⎩,解得:32232b -+<<,故D 正确.故选:BD. 【点睛】 关键点点睛:本题解题关键在于对方程2()()20f x bf x b -+-=进行换元()f x t =,变成关于t 的二次方程根的分布问题,结合函数()f x 图象中函数值的分布情况来突破难点.20.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,.()()11111+11++1xxx x xxe e ef x f x e e e ------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.。
高考新题型——数学函数的概念与基本初等函数多选题专项练习附解析
高考新题型——数学函数的概念与基本初等函数多选题专项练习附解析一、函数的概念与基本初等函数多选题1.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kxx x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.2.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.3.下列说法中,正确的有( )A .若0a b >>,则b a a b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx x x f x -+-=-==+++,则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++,所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.4.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,12)01,1(x x x x x x x x x g x ⎧++>⎪⎪⎪-++<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x 在区间)1⎡⎣上单调递减,在区间(,1-∞上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.5.定义在R 上的函数()(),()22(2)f x x g x g x x g x =+=--+--,若()f x 在区间[1,)-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式一定成立的是( )A .21(1)()2f t t f ++> B .(2)0()f f t ->> C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】ABC 【分析】先由()(),()22(2)f x x g x g x x g x =+=--+--推出()f x 关于1x =-对称,然后可得出B 答案成立,对于答案ACD ,要比较函数值的大小,只需分别看自变量到对称轴的距离的大小即可 【详解】因为()(),()22(2)f x x g x g x x g x =+=--+--所以(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+= 所以()f x 关于1x =-对称,所以(0)(2)f f =- 又因为()f x 在区间[1,)-+∞上为增函数,20t -<< 所以(0)(2)()f f f t =->因为(0)()0f f t ⋅<所以()0,(2)(0)0f t f f <-=> 所以选项B 成立因为2231120224t t t ⎛⎫++-=++> ⎪⎝⎭所以21t t ++比12离对称轴远 所以21(1)()2f t t f ++>,所以选项A 成立 因为()()2232250t t t +-+=+>所以32t t +>+,所以2t +比1t +离对称轴远 所以(2)(1)f t f t +>+,即C 答案成立因为20t -<<,所以()()222123t t t +-+=+符号不定 所以2t +,1t +无法比较大小,所以(1)()f t f t +>不一定成立 所以D 答案不一定成立 故选:ABC 【点睛】本题考查的是函数的性质,由条件得出()f x 关于1x =-对称是解题的关键.6.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.7.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解.【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.9.已知函数()22,21ln 1,1x x f x x x e +-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( ) A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦, 故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.10.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个 C .2个 D .4个 【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()xx f x e '=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0,故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.11.若实数2a ≥,则下列不等式中一定成立的是( ) A .21(1)(2)a a a a +++>+ B .1log (1)log (2)a a a a ++>+ C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断;【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.12.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( )A .()f x 是偶函数B .()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x =【答案】ABC 【分析】 逐项分析判断即可. 【详解】当x -为有理数时,x 也为有理数∴()1f x -=当x -为无理数时,x 也为无理数∴()0f x -= ∴1()()0()x f x x ⎧-=⎨⎩为有理数为无理数∴()()f x f x -=()f x ∴是偶函数,A 对;易知B 对;1x =时,()((1))11f f f ==∴C 对(())()f f x f x =的解为全体有理数∴D 错故选:ABC. 【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,难度较大.13.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2nnx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.14.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭ D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD 【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故C 正确;对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD. 【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.15.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2x y =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>, 所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.16.对于函数()f x 定义域中任意的()1212,x x x x ≠,有如下结论,当()lg f x x =时,上述结论中正确结论的序号是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .1212()()f x f x x x -->0D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】BC 【分析】由对数的运算性质判断A ,B ,由对数函数的单调性判断C ,由对数的运算结合基本不等式判断D . 【详解】 对于A ,()()112122lg lg lg f x x x x x x +=+≠⋅,即()()()1212f x x f x f x +≠⋅,故A 错误; 对于B ,()()()()12112122lg lg lg f x x x x x x f x f x ⋅=+=+=,故B 正确; 对于C ,()lg f x x =在定义域中单调递增,()()12120f x f x x x -∴->,故C 正确;对于D ,()1212,0x x x x >≠,利用基本不等式知1122lg 22x x x x f +⎛⎫> ⎪+⎛⎫⎪⎭⎝= ⎝⎭()()()221121lg lg lg 222f x f x x x x x +===+()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,故D 错误; 故选:BC 【点睛】关键点点睛:本题考查命题的真假判断,考查对数函数的性质,考查基本不等式的应用,解决本题的关键点是将对数形式化为根式,即21lg lg 2x x =+合基本不等式放缩得出答案,并验证取等条件,考查了学生逻辑思维能力和计算能力,属于中档题.17.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.18.已知函数ln ,0()1,x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a 的可能取值是( )A .0B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】 画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =, 故1()2f x =-,()f x e =()f x e =,当1()2f x =-时,由图象可知,有1个根, 当()f x e =2个根, 当()f x e=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根, 当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =, 故2()3f x =-,3()f x e =3()f x e , 当2()3f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x =时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.19.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=,所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.20.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确;对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.。
高中数学函数的概念与基本初等函数多选题测试试题及答案
高中数学函数的概念与基本初等函数多选题测试试题及答案一、函数的概念与基本初等函数多选题1.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:1212a b ⎧-=⎪⎪⎨⎪=⎪⎩. 故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.2.已知函数ln ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a的可能取值是( ) A .0 B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =,故1()2f x =-,()f x =()f x =,当1()2f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根, 当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =,故2()3f x =-,()f x =()f x ,当2()3f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x =时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.3.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++,由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ ()332151141x x +≥+⋅-=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.4.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( )A .2a b +=B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2x y =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>,所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.5.已知函数()()()22224x x f x x x m m ee --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( ) A .1 B .1-C .2D .2-【答案】BC 【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论. 【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()ttf t t m m e e -=-+-+,定义域为R ,22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称, 要使得函数()f x 有唯一零点,则(2)0f =, 即2482()0m m -+-=,解得1m =-或2 ①当1m =-时,2()42()t t f t t e e -=-++ 由基本不等式有2t t e e -+≥,当且仅当0t =时取得2()4t t e e -∴+≥故2()42()0ttf t t e e -=-++≥,当且仅当0t =取等号 故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意. 故选:BC . 【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+6.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.7.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xx e e e f x f x e e e------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.8.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e =+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e-<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e-<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e-=-,()2120f e-=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e=-有3个交点,即函数()()32g x f x e =+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e -<≤-,D 错误. 故选:BC【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.二、导数及其应用多选题9.已知函数1(),()122x x f x e g x n ==+的图象与直线y =m 分别交于A 、B 两点,则( )A .f (x )图像上任一点与曲线g (x )上任一点连线线段的最小值为2+ln 2B .∃m 使得曲线g (x )在B 处的切线平行于曲线f (x )在A 处的切线C .函数f (x )-g (x )+m 不存在零点D .∃m 使得曲线g (x )在点B 处的切线也是曲线f (x )的切线 【答案】BCD 【分析】利用特值法,在f (x )与g (x )取两点求距离,即可判断出A 选项的正误;解方程12()(2)m f lnm g e-''=,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点(C n ,())g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】在函数1(),()122xx f x e g x n ==+上分别取点1(0,1),(2,)2P Q,则||PQ =2ln 22<+(注ln 20.7≈),故A 选项不正确; ()x f x e =,1()22x g x ln =+,则()x f x e '=,1()g x x'=,曲线()y f x =在点A 处的切线斜率为()f lnm m '=, 曲线()y g x =在点B 处的切线斜率为12121(2)2m m g ee--'=,令12()(2)m f lnm g e-''=,即1212m m e-=,即1221m me -=,则12m =满足方程1221m me -=,m ∴∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数1()()()22xx F x f x g x m e ln m =-+=-+-,可得1()x F x e x'=-,函数1()xF x e x'=-在(0,)+∞上为增函数,由于1()20F e '<,F '(1)10e =->,则存在1(,1)2t ∈,使得1()0tF t e t'=-=,可得t lnt =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.∴11()()2222t t min t F x F t e ln m e lnt m ln ==-+-=-++-11132220222t m ln m ln ln m t =+++->+-=++>, ∴函数()()()F x f x g x m =-+没有零点,C 选项正确;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点(C n ,())g n ,则曲线()y f x =在点A 处的切线方程为()lnm y m e x lnm -=-,即(1)y mx m lnm =+-, 同理可得曲线()y g x =在点C 处的切线方程为1122n y x ln n =+-, ∴11(1)22m n n m lnm ln ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得1(1)202m m lnm ln --++=,令1()(1)22G x x x lnx ln =--++,则11()1x G x lnx lnx x x-'=--=-, 函数()y G x '=在(0,)+∞上为减函数,G '(1)10=>,1(2)202G ln '=-<, 则存在(1,2)s ∈,使得1()0G s lns s'=-=,且1s s e =.当0x s <<时,()0G x '>,当x s >时,()0G x '<.∴函数()y G x =在(2,)+∞上为减函数,5(2)02G =>,17(8)20202G ln =-<, 由零点存 定理知,函数()y G x =在(2,)+∞上有零点, 即方程1(1)202m m lnm ln --++=有解. m ∴∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线.故选:BCD . 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,考查了转化思想和数形结合思想,属难题.10.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( )A .()()()m x f x g x =-在0x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1-D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2ey =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断. 【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x+'∴=+=>, 当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以21480k b ∆=+≤,所以0b ≤,又12kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误;对于D ,函数()f x 和()h x 的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,则隔离直线方程为(2ey k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =,此时隔离直线方程为:2ey =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x存在唯一的隔离直线2ey =-,D 正确. 故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.。
高三数学函数的概念与基本初等函数多选题测试试题及答案
高三数学函数的概念与基本初等函数多选题测试试题及答案一、函数的概念与基本初等函数多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=- B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误. 【详解】由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点; ∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.3.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根 【答案】BCD 【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果. 【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒=由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥, 221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确;④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD. 【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.4.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤, 又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.5.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( ) A .当2a =时,342f ⎛⎫=⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭ D .当0a >时,不等式()122x f x a-≤在[)0,+∞上恒成立【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确; 对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.6.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.7.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( )A .9,04⎛⎫- ⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.8.若定义在R 上的函数()f x 满足()()0f x f x ,当0x <时,23()22f x x ax a =++(a ∈R ),则下列说法正确的是( )A .若方程()2af x ax =+有两个不同的实数根,则0a <或48a << B .若方程()2af x ax =+有两个不同的实数根,则48a << C .若方程()2af x ax =+有4个不同的实数根,则8a > D .若方程()2af x ax =+有4个不同的实数根,则4a > 【答案】AC 【分析】由题知()f x 是R 上的奇函数,则由0x <时的解析式可求出()f x 在R 上的解析式.先讨论特殊情况0x =为方程的根,则可求出0a =,此时方程化为()0f x =,而函数()f x 为R 上的减函数,则方程仅有一个根.当0x ≠时,由分段函数分类讨论得出0x <时,1(1)2(1)a x x =-+++-+,0x >时,4242a x x =-++-.利用数形结合思想,画出图象,则可得知方程()2af x ax =+不同的实数根个数分别为2个和4时,参数a 的取值范围. 【详解】 因为()()0f x f x 所以()()f x f x -=-,所以()f x 是R 上的奇函数,(0)0f =, 当0x >时,0x -<,23()22f x x ax a -=-+, 所以23()()22f x f x x ax a =--=-+-, 综上2232,02()0,032,02x ax a x f x x x ax a x ⎧++<⎪⎪==⎨⎪⎪-+->⎩,若0x =是方程()2af x ax =+的一个根, 则0a =,此时()2af x ax =+,即()0f x =, 而22,0()0,0,0x x f x x x x ⎧<⎪==⎨⎪->⎩,在R 上单调递减,当0a =时,原方程有一个实根. 当0x <时,23222a x ax a ax ++=+, 所以20x ax a ++=,当1x =-时不满足,所以21(1)21(1)x a x x x =-=-++++-+, 当0x >时,23222ax ax a ax -+-=+, 所以220x ax a -+=,当2x =时不满足,所以242422x a x x x ==-++--,如图:若方程()2af x ax =+有两个不同的实数根, 则0a <或48a <<;若方程()2af x ax =+有4个不同的实数根,则8a >. 故选:AC 【点睛】关键点点睛:本题的关键是将方程()2af x ax =+进行参数分离,再借助数形结合法,求出对应的参数的取值范围.二、导数及其应用多选题9.关于函数()sin ,(,)x f e x x x π∈-=+∞+,下列结论正确的有( ) A .()f x 在(0,)+∞上是增函数 B .()f x 存在唯一极小值点0x C .()f x 在(,)π-+∞上有一个零点 D .()f x 在(,)π-+∞上有两个零点 【答案】ABD 【分析】根据函数()f x 求得()'f x 与()f x '',再根据()0f x ''>在(,)π-+∞恒成立,确定()'f x 在(,)π-+∞上单调递增,及(0,)x ∈+∞()0f x '>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',从而判断A ,B 选项正确;再据此判断函数()f x 的单调性,从而判断零点个数.【详解】由已知()sin ,(,)x f e x x x π∈-=+∞+得()cos x f x e x '=+,()sin xf x e x ''=-,(,)x π∈-+∞,()0f x ''>恒成立,()'f x 在(,)π-+∞上单调递增,又34232()0,()0,(0)20422f e f e f ππππ--'''-=-<-=>=>(0,)x ∴∈+∞时()(0)0f x f ''>>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',即00cos x e x =-, 所以()f x 在(0,)+∞上是增函数,且()f x 存在唯一极小值点0x ,故A,B 选项正确. 且()f x 在0(,)x π-单调递减,0(,)x +∞单调递增,又()00f e ππ--=+>,000000()sin sin cos )04x f x e x x x x π=+=-=-<,(0)10=>f ,所以()f x 在(,)π-+∞上有两个零点,故D 选项正确,C 选项错误. 故选:ABD.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.10.对于函数2ln ()x f x x =,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .f f f <<D .若()21f x k x <-在()0,∞+上恒成立,则2e k > 【答案】ACD【分析】 求得函数的导数312ln ()-'=x f x x ,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x+>+=在()0,∞+上恒成立,令()2ln 1x g x x+=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】 由题意,函数2ln ()x f x x =,可得312ln ()(0)x f x x x -'=>,令()0f x '=,即312ln 0x x -=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln ln 2ln ,242f f πππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以f f f <<,所以C 正确;由()21f x k x <-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x --=,解得x = 所以当0x<<()0g x '>,函数()g x 在上单调递增; 当x>()0g x '<,函数()g x 在)+∞上单调递减, 所以当x=()g x 取得最大值,最大值为22e e g e =-=, 所以2e k >,所以D 正确. 故选:ACD.【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.。
高三数学函数的概念与基本初等函数多选题(讲义及答案)及答案
高三数学函数的概念与基本初等函数多选题(讲义及答案)及答案一、函数的概念与基本初等函数多选题1.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:1212a b ⎧-=⎪⎪⎨⎪=⎪⎩. 故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.2.已知函数ln ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a的可能取值是( ) A .0 B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =,故1()2f x =-,()f x =()f x =,当1()2f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根, 当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =,故2()3f x =-,()f x =()f x ,当2()3f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x =时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.3.已知函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩,其中实数 a ∈R ,则下列关于 x 的方程f 2 (x ) − (1+a )⋅ f (x ) + a = 0的实数根的情况,说法正确的有( ) A .a 取任意实数时,方程最多有5个根 B .当151522a --+<<时,方程有2个根 C .当 15a --=时,方程有3个根 D .当 a ≤ −4时,方程有4个根 【答案】CD 【分析】先化简方程为()1f x =或()f x a =,再对a 进行分类讨论,结合图象来确定()1f x =或()f x a =分别有几个根,根据结果逐一判断选项正误即可.【详解】解:关于x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0,即[][]()1()0f x f x a --=,故()1f x =或()f x a =.函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩中,()0,()ln 1x f x x ≥=+单调递增,()2220,(2)11x a x f x a x x a -+=-<=+-,对称轴为x a =,判别式()()411a a ∆=+-.(1)当0a ≥时,函数()f x 图象如下:由图象可知,方程()1f x =有1个根,1a >时方程()f x a =有2个根,01a ≤≤时,方程()f x a =有1个根,故1a >时已知方程有3个根,01a ≤<时,已知方程有2个根,1a =时已知方程有1个根;(2)1a =-时,函数()f x 图象如下:10a -<<时,函数()f x 图象如下:由两个图象可知,10a -≤<时,方程()1f x =有2个根,方程()f x a =没有根,故已知方程有2个根;(3)1a <-时,函数()f x 图象如下:方程()1f x =有两个根.下面讨论最小值21a -与a 的关系,由21a a -<解得152a -<, 故当15a --<时,21a a -<,直线y a =如图①,方程()f x a =有2个根,故已知方程有4个根; 当15a --=21a a -=,直线y a =如图②,方程有()f x a =有1 个根,故已知方程有3个根;1a <<-时,21a a ->,直线y a =如图③,方程()f x a =没有根,故已知方程有2个根.综上可知,a 取任意实数时,方程最多有4个根,选项A1a <<时方程有2个根,1a =时已知方程有1个根,1a >时方程有3个根,故选项B 错误;当a =3个根,C 正确;当4a ≤-<时,方程有4个根,故D 正确. 故选:CD. 【点睛】 关键点点睛:本题的解题关键在于分类讨论确定二次函数的图象,以及其最低点处21a -与a 的关系,以确定方程()f x a =的根的情况,才能突破难点.4.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.5.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt t y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫ ⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.6.已知21,1, ()ln,1,x xf xx x⎧-≤⎪=⎨>⎪⎩,则关于x的方程2[()]()210f x f x k-+-=,下列正确的是()A.存在实数k,使得方程恰有1个不同的实数解;B.存在实数k,使得方程恰有2个不同的实数解;C.存在实数k,使得方程恰有3个不同的实数解;D.存在实数k,使得方程恰有6个不同的实数解;【答案】ACD【分析】令()0f x t=≥,根据判别式确定方程2210t t k-+-=根的个数,作出()f x的大致图象,根据根的取值,数形结合即可求解.【详解】令()0f x t=≥,则关于x的方程2[()]()210f x f x k-+-=,可得2210t t k-+-=,当58k=时,()14210k∆=--=,此时方程仅有一个根12t=;当58k<时,()14210k∆=-->,此时方程有两个根12,t t,且121t t+=,此时至少有一个正根;当58k>时,()14210k∆=--<,此时方程无根;作出()f x的大致图象,如下:当58k=时,此时12t=,由图可知()f x t=,有3个不同的交点,C正确;当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.7.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y=+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121x y z m ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.8.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m mf n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩,所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m mf n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,, 单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.二、导数及其应用多选题9.对于函数2ln ()xf x x=,下列说法正确的有( ) A .()f x在x =12eB .()f x 有两个不同的零点 C.(2)f f f <<D .若21()f x k x>-在(0,)+∞上有解,则2e k <【答案】ACD 【分析】利用导数求出函数的单调区间,进一步求出函数的极值可判断A ;利用函数的单调性和函数值的范围判断B ;利用函数的单调性比较出函数值的大小关系判断C ;利用不等式有解问题的应用判断D . 【详解】函数2ln ()x f x x =,所以2431ln 212ln ()(0)x x xx x f x x x x⨯-⨯-'==>, 令()0f x '=,即2ln 1x =,解得x =当0x <<()0f x '>,故()f x在上为单调递增函数.当x >()0f x '<,故()f x在)+∞上为单调递减函数.所以()f x在x =12f e=,故A 正确;当0x <<()0f x '>,()f x在上为单调递增函数,因为()10f =,所以函数()f x在上有唯一零点,当x ≥2ln ()0xf x x=>恒成立,即函数()f x在)+∞上没有零点, 综上,()f x 有唯一零点,故B 错误.由于当x >()0f x '<,()f x在)+∞上为单调递减函数,因为2>>>(2)f f f <<,故C 正确;由于21()f x k x >-在(0,)+∞上有解,故221ln 1()x k f x x x +<+=有解,所以2ln 1()max x k x +<,设2ln 1()x g x x +=,则32ln 1()x g x x --'=,令()0g x '=,解得x =当x >()0f x '<,故()f x在)+∞上为单调递减函数.当0x <<时,()0f x '>,故()f x在上为单调递增函数.所以()22max e eg x g e ==-=. 故2ek <,故D 正确.故选:ACD . 【点睛】方法点睛:本题通过对多个命题真假的判断,综合考查导数的应用,这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.10.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()22x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自然对数的底数),则( )A .()()()m x f x g x =-在0x ⎛⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]2,1-D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2ey =-【答案】BD 【分析】对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为2e y kx =-;可得到222x ekx ≥-,再利用恒成立得出k 的值,最后尝试利用导数证明()2eh x ≤-,进而作出判断. 【详解】对于A ,()()()2122x m x f x g x x =-=-, ()322121022x m x x x x+'∴=+=>, 当x ⎛⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,22x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以21480k b ∆=+≤,所以0b ≤,又12kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,因为0b ≤,所以0k ≤且21480b k ∆=+≤,所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]2,0-, 故B 正确,C 错误; 对于D ,函数()f x 和()h x的图象在x =∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,则隔离直线方程为(2ey k x -=,即2e y kx =-,则222x ekx ≥-(x ∈R),得2220x kx e -+≥对x ∈R 恒成立,则()24420k e ∆=-≤,解得k =,此时隔离直线方程为:2ey =-,下面证明()2e h x ≤-, 令()()ln 22e e G x h x e x =--=--(0x >),则()x G x x'=,当x =()0G x '=;当0x <<()0G x '<;当x >()0G x '>;∴当x =()G x 取到极小值,也是最小值,即()0min G x G==,()()02e G x h x ∴=--≥在()0,∞+上恒成立,即()2eh x ≤-,∴函数()f x 和()h x存在唯一的隔离直线2ey =-,D 正确. 故选:BD . 【点睛】关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.。
高三数学第二学期函数的概念与基本初等函数多选题单元达标检测
高三数学第二学期函数的概念与基本初等函数多选题单元达标检测一、函数的概念与基本初等函数多选题1.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.2.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;3.定义在R 上的函数()(),()22(2)f x x g x g x x g x =+=--+--,若()f x 在区间[1,)-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式一定成立的是( )A .21(1)()2f t t f ++> B .(2)0()f f t ->> C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】ABC 【分析】先由()(),()22(2)f x x g x g x x g x =+=--+--推出()f x 关于1x =-对称,然后可得出B 答案成立,对于答案ACD ,要比较函数值的大小,只需分别看自变量到对称轴的距离的大小即可 【详解】因为()(),()22(2)f x x g x g x x g x =+=--+--所以(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+= 所以()f x 关于1x =-对称,所以(0)(2)f f =- 又因为()f x 在区间[1,)-+∞上为增函数,20t -<< 所以(0)(2)()f f f t =-> 因为(0)()0f f t ⋅<所以()0,(2)(0)0f t f f <-=>所以选项B 成立因为2231120224t t t ⎛⎫++-=++> ⎪⎝⎭所以21t t ++比12离对称轴远 所以21(1)()2f t t f ++>,所以选项A 成立 因为()()2232250t t t +-+=+>所以32t t +>+,所以2t +比1t +离对称轴远 所以(2)(1)f t f t +>+,即C 答案成立因为20t -<<,所以()()222123t t t +-+=+符号不定 所以2t +,1t +无法比较大小,所以(1)()f t f t +>不一定成立 所以D 答案不一定成立 故选:ABC 【点睛】本题考查的是函数的性质,由条件得出()f x 关于1x =-对称是解题的关键.4.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D .【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.5.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-, 当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点, 113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.6.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a ∈ D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【答案】AC 【分析】根据奇函数()()f x f x -=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案 【详解】函数是奇函数,故()f x 在R 上的解析式为:222,22322,20()0,022,022,223x x x x x f x x x x x x x ⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A :如下图所示直线1l 与该函数有7个交点,故A 正确;对B :当1211x x -<<<时,函数不是减函数,故B 错误; 对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2, 故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、212x =+、212x =-; 若使得其与()f x m =的所有零点之和为0,则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立7.已知函数4()nnf x x x =+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nn f x x x f x xx -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫ ⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.8.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( )A .()f x 是偶函数B .()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x =【答案】ABC 【分析】 逐项分析判断即可. 【详解】当x -为有理数时,x 也为有理数∴()1f x -=当x -为无理数时,x 也为无理数∴()0f x -= ∴1()()0()x f x x ⎧-=⎨⎩为有理数为无理数∴()()f x f x -=()f x ∴是偶函数,A 对;易知B 对;1x =时,()((1))11f f f ==∴C 对(())()f f x f x =的解为全体有理数∴D 错故选:ABC. 【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,难度较大.9.已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()xx f x e e -=+为偶函数,当1k =-时,()xx f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x ee -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增, 故函数()xx f x ee -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误;当1k =-时,()xx f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减, 故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.10.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-. 所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.11.已知函数123,12()1,222x x f x x f x ⎧--≤≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,则下列说法正确的是( )A .若函数()=-y f x kx 有4个零点,则实数k 的取值范围为11,246⎛⎫⎪⎝⎭B .关于x 的方程*1()0()2n f x n N -=∈有24n +个不同的解 C .对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立D .当1[2,2](*)n n x n N -∈∈时,函数()f x 的图象与x 轴围成的图形的面积为1 【答案】AC 【分析】根据函数的表达式,作出函数的图像,对于A ,C 利用数形结合进行判断,对于B ,D 利用特值法进行判断. 【详解】 当312x ≤≤时,()22f x x =-;当 322x <≤时,()42f x x =-;当23x <≤,则3122<≤x ,1()1222⎛⎫==- ⎪⎝⎭x x f x f ; 当34x <≤,则3222<≤x, 1()2222⎛⎫==- ⎪⎝⎭x x f x f ;当46x <≤,则232<≤x, 11()2242⎛⎫==- ⎪⎝⎭x x f x f ;当68x <≤,则342<≤x,1()1224⎛⎫==- ⎪⎝⎭x x f x f ;依次类推,作出函数()f x 的图像:对于A ,函数()=-y f x kx 有4个零点,即()y f x =与y kx =有4个交点,如图,直线y kx =的斜率应该在直线m , n 之间,又16m k =,124=n k ,11,246⎛⎫∴∈⎪⎝⎭k ,故A 正确; 对于B ,当1n =时,1()2f x =有3个交点,与246+=n 不符合,故B 错误; 对于C ,对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立,即3()2≤f x x恒成立,由图知函数()f x 的每一个上顶点都在曲线32y x =上,故3()2≤f x x恒成立,故C 正确; 对于D , 取1n =,[1,2]x ∈,此时函数()f x 的图像与x 轴围成的图形的面积为111122⨯⨯=,故D 错误; 故选:AC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( )A .当2a =时,342f ⎛⎫=⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭ D .当0a >时,不等式()122x f x a -≤在[)0,+∞上恒成立 【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确; 对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.13.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根 【答案】BCD 【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果.【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒=由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥,221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确; ④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD. 【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.14.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.15.若定义在R 上的函数()f x 满足()()0f x f x ,当0x <时,23()22f x x ax a =++(a ∈R ),则下列说法正确的是( )A .若方程()2af x ax =+有两个不同的实数根,则0a <或48a << B .若方程()2af x ax =+有两个不同的实数根,则48a << C .若方程()2af x ax =+有4个不同的实数根,则8a > D .若方程()2af x ax =+有4个不同的实数根,则4a > 【答案】AC【分析】由题知()f x 是R 上的奇函数,则由0x <时的解析式可求出()f x 在R 上的解析式.先讨论特殊情况0x =为方程的根,则可求出0a =,此时方程化为()0f x =,而函数()f x 为R 上的减函数,则方程仅有一个根.当0x ≠时,由分段函数分类讨论得出0x <时,1(1)2(1)a x x =-+++-+,0x >时,4242a x x =-++-.利用数形结合思想,画出图象,则可得知方程()2af x ax =+不同的实数根个数分别为2个和4时,参数a 的取值范围. 【详解】 因为()()0f x f x 所以()()f x f x -=-,所以()f x 是R 上的奇函数,(0)0f =, 当0x >时,0x -<,23()22f x x ax a -=-+, 所以23()()22f x f x x ax a =--=-+-, 综上2232,02()0,032,02x ax a x f x x x ax a x ⎧++<⎪⎪==⎨⎪⎪-+->⎩,若0x =是方程()2af x ax =+的一个根, 则0a =,此时()2af x ax =+,即()0f x =, 而22,0()0,0,0x x f x x x x ⎧<⎪==⎨⎪->⎩,在R 上单调递减,当0a =时,原方程有一个实根. 当0x <时,23222a x ax a ax ++=+, 所以20x ax a ++=,当1x =-时不满足,所以21(1)21(1)x a x x x =-=-++++-+, 当0x >时,23222ax ax a ax -+-=+, 所以220x ax a -+=,当2x =时不满足,所以242422x a x x x ==-++--,如图:若方程()2af x ax =+有两个不同的实数根, 则0a <或48a <<;若方程()2af x ax =+有4个不同的实数根,则8a >. 故选:AC 【点睛】关键点点睛:本题的关键是将方程()2af x ax =+进行参数分离,再借助数形结合法,求出对应的参数的取值范围.16.已知函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩,其中实数 a ∈R ,则下列关于 x 的方程f 2 (x ) −(1+ a )⋅ f (x ) + a = 0的实数根的情况,说法正确的有( ) A .a 取任意实数时,方程最多有5个根 B 1515a --+<<时,方程有2个根 C .当 15a --=时,方程有3个根 D .当 a ≤ −4时,方程有4个根 【答案】CD 【分析】先化简方程为()1f x =或()f x a =,再对a 进行分类讨论,结合图象来确定()1f x =或()f x a =分别有几个根,根据结果逐一判断选项正误即可.【详解】解:关于x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0,即[][]()1()0f x f x a --=,故()1f x =或()f x a =.函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩中,()0,()ln 1x f x x ≥=+单调递增,()2220,(2)11x a x f x a x x a -+=-<=+-,对称轴为x a =,判别式()()411a a ∆=+-.(1)当0a ≥时,函数()f x 图象如下:由图象可知,方程()1f x =有1个根,1a >时方程()f x a =有2个根,01a ≤≤时,方程()f x a =有1个根,故1a >时已知方程有3个根,01a ≤<时,已知方程有2个根,1a =时已知方程有1个根;(2)1a =-时,函数()f x 图象如下:10a -<<时,函数()f x 图象如下:由两个图象可知,10a -≤<时,方程()1f x =有2个根,方程()f x a =没有根,故已知方程有2个根;(3)1a <-时,函数()f x 图象如下:方程()1f x =有两个根.下面讨论最小值21a -与a 的关系,由21a a -<解得15a --<, 故当152a --<时,21a a -<,直线y a =如图①,方程()f x a =有2个根,故已知方程有4个根; 当152a -=时,21a a -=,直线y a =如图②,方程有()f x a =有1 个根,故已知方程有3个根; 当1512a -<<-时,21a a ->,直线y a =如图③,方程()f x a =没有根,故已知方程有2个根.综上可知,a 取任意实数时,方程最多有4个根,选项A 错误;1512a --<<时方程有2个根,1a =时已知方程有1个根,1a >时方程有3个根,故选项B 错误;当15a --=3个根,C 正确;当 1542a --≤-<时,方程有4个根,故D 正确. 故选:CD. 【点睛】 关键点点睛:本题的解题关键在于分类讨论确定二次函数的图象,以及其最低点处21a -与a 的关系,以确定方程()f x a =的根的情况,才能突破难点.17.已知函数ln ,0()1,x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a 的可能取值是( )A .0B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =, 故1()2f x =-,()f x e =()f x e =,当1()2f x =-时,由图象可知,有1个根, 当()f x e =2个根, 当()f x e=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根,当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =,故2()3f x =-,()f x =()f x ,当2()3f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x =时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.18.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=- ⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确;因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.19.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:12a b ⎧-=⎪⎪⎨⎪=⎪⎩故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确. 对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.20.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+B .()2f x x =--C .3()5f x x =+D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+-- 由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.。
高三数学第二学期函数的概念与基本初等函数多选题单元达标测试题试卷
高三数学第二学期函数的概念与基本初等函数多选题单元达标测试题试卷一、函数的概念与基本初等函数多选题1.已知函数()()()22224x x f x x x m m e e --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( ) A .1 B .1-C .2D .2-【答案】BC 【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论. 【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()ttf t t m m e e -=-+-+,定义域为R ,22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称, 要使得函数()f x 有唯一零点,则(2)0f =, 即2482()0m m -+-=,解得1m =-或2 ①当1m =-时,2()42()t t f t t e e -=-++ 由基本不等式有2t t e e -+≥,当且仅当0t =时取得2()4t t e e -∴+≥故2()42()0ttf t t e e -=-++≥,当且仅当0t =取等号 故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意. 故选:BC . 【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+2.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0,此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.3.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,12)01,1(x x x x x x x x x g x ⎧++>⎪⎪⎪-++<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x在区间)1⎡⎣上单调递减,在区间(,1-∞上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.4.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解.【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.5.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.6.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()xx f x e '=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解,故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.7.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴()()()()()()()()()()()()10102246201620182020222210102020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++=+++=⨯=个,D 正确. 故选:BCD . 【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.8.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( ) A .()f x 是偶函数B .()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x =【答案】ABC 【分析】 逐项分析判断即可. 【详解】当x -为有理数时,x 也为有理数∴()1f x -=当x-为无理数时,x也为无理数∴()0f x-=∴1()()0()xf xx⎧-=⎨⎩为有理数为无理数∴()()f x f x-=()f x∴是偶函数,A对;易知B对;1x=时,()((1))11f f f==∴C对(())()f f x f x=的解为全体有理数∴D错故选:ABC.【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,难度较大.9.已知()x xf x e ke-=+(k为常数),那么函数()f x的图象不可能是()A .B .C .D .【答案】AD【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k=时,()x xf x e e-=+为偶函数,当1k=-时,()x xf x e e-=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性.当1k=时,()x xf x e e-=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增, 故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()xx f x ee -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减, 故函数()xx f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误.故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.10.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误.对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.11.已知()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭()1a <的实根个数可能为( ) A .2 B .3C .4D .5【答案】ABC 【分析】画出()f x 的图像,由1a <,可分类讨论01a <<,0a =,0a <三种情况,令12t x x =+-,并画出图像,结合两个函数图像以及12f x a x ⎛⎫+-= ⎪⎝⎭,判断出实根个数构成的集合. 【详解】画出()f x 的图像如图所示,令12t x x=+-,画出图像如图所示. 由()5log 11t -=,解得:4544,5t t =-=,由()2221t --+=,解得671,3t t ==.. 由()5log 10t -=,解得:80t =,由()()22201t t --+=≥,解得922t =+. (1)当01a <<时,()f t a =,有3解,且40t -<<或405t <<或322t <<+,结合12t x x =+-的图像可知,40t -<<时没有x 与其对应,405t <<或322t <<+时每个t 都有2个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有4个实数根. (2)当0a =时,()f t a =,有2解,且0t =或22t =+,0t =有一个1x =与其对应,22t =+有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有3个实数根. (3)当0a <时,()f t a =,有1解,且22t >+,结合12t x x=+-的图像可知,每个t 有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有2个实数根.综上所述,关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数构成的集合为{2,3,4}. 故选:ABC【点睛】方法点睛:本题考查分类讨论参数,求函数零点个数问题,讨论函数零点个数常用方法: (1)直接法:直接求解方程得到方程的根;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,考查学生的数形结合的数学思想方法,考查分类讨论的数学思想方法,属于难题.12.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>, 所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.13.下列函数求值域正确的是( )A .2()1(2)f x x x =+-的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C .()11h x x x =+-(02],D .()13w x x x =-+的值域为[222],【答案】CD 【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g xx x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B ;()1111h x x x x x =+--=++-利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()13w x x x =-++两边平方可得()222(1)44w x x =-+++,由于()0w x >,可得()22(1)44w x x =-+++,求出2(1)t x =-+的范围即可求()w x 值域,可判断选项D. 【详解】对于选项A :原函数化为211()12312212x x f x x x x x x -+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,, 其图象如图,原函数值域为[3)+∞,,故选项A 不正确,对于选项B :2(1)11()(1)11x g x x x x ++==++++,定义域为{}|1x x ≠-, 当1x <-时,10x +<,此时[][]11(1)2(1)211x x x x ⎛⎫⎛⎫-++-≥-+⨯-= ⎪ ⎪++⎝⎭⎝⎭,所以1(1)21x x ++≤-+,当且仅当1(1)1x x -+=-+即2x =-时等号成立, 当1x >-时,10x +>,此时11(1)(1)211x x x x ++≥+⨯=++,当且仅当111x x +=+即0x =时等号成立, 所以函数()g x 值域为(2][2)-∞-⋃+∞,,,故选项B 不正确; 对于选项C :()h x 的定义域为[1)+∞,, (11)(11)()111111x x x x h x x x x x x x +-+-=+-==++-++-,因为y =y =[1)+∞,上是增函数,所以y =[1)+∞,上是增函数,又y =[1)+∞,上恒不等于0,则y =在[1)+∞,上是减函数,则()h x 的最大值为()1h =又因为()0h x >,所以()h x 的值域为(0,故选项C 正确;对于选项D :()w x 的定义域为[31]-,,()w x ======设2(1)t x =-+,则[40]t ∈-,,[]0,4,[]44,8∈,则()2,w x ⎡=⎣,()w x 的值域为[2,故选项D 正确, 故选:CD 【点睛】方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域; (4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b =±±数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,a b +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x 的一元二次方程,利用判别式求值域,形如y Ax =+22ax bx c y dx ex f++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域; (9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.14.已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,若存在实数a ,使得()()f a f f a ⎡⎤=⎣⎦,则a 的个数不是( ) A .2 B .3C .4D .5【答案】ABD 【分析】令()f a t =,即满足()f t t =,对t 进行分类讨论,结合已知函数解析式代入即可求得满足题意的t ,进而求得a. 【详解】令()f a t =,即满足()f t t =,转化为函数()1y f t =与2y t =有交点,结合图像由图可知,()f t t =有两个根0t =或1t =(1)当1t =,即()1f a =,由()22,1,1a a f a a a -≥⎧=⎨<⎩,得1a =±时,经检验均满足题意;(2)当0t =,即()0f a =,当1a ≥时,()20f a a =-=,解得:2a =;当1a <时,()20f a a ==,解得:0a =;综上所述:共有4个a . 故选:ABD . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解15.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.16.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.17.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ ()332151141x x +≥+⋅-=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.18.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.19.已知函数123,12()1,222x x f x x f x ⎧--≤≤⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩,则下列说法正确的是( )A .若函数()=-y f x kx 有4个零点,则实数k 的取值范围为11,246⎛⎫⎪⎝⎭B .关于x 的方程*1()0()2n f x n N -=∈有24n +个不同的解 C .对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立D .当1[2,2](*)n n x n N -∈∈时,函数()f x 的图象与x 轴围成的图形的面积为1 【答案】AC 【分析】根据函数的表达式,作出函数的图像,对于A ,C 利用数形结合进行判断,对于B ,D 利用特值法进行判断. 【详解】 当312x ≤≤时,()22f x x =-;当 322x <≤时,()42f x x =-;当23x <≤,则3122<≤x , 1()1222⎛⎫==- ⎪⎝⎭x x f x f ;当34x <≤,则3222<≤x, 1()2222⎛⎫==- ⎪⎝⎭x x f x f ; 当46x <≤,则232<≤x, 11()2242⎛⎫==- ⎪⎝⎭x x f x f ; 当68x <≤,则342<≤x,1()1224⎛⎫==- ⎪⎝⎭x x f x f ;依次类推,作出函数()f x 的图像:对于A ,函数()=-y f x kx 有4个零点,即()y f x =与y kx =有4个交点,如图,直线y kx =的斜率应该在直线m , n 之间,又16m k =,124=n k ,11,246⎛⎫∴∈⎪⎝⎭k ,故A 正确; 对于B ,当1n =时,1()2f x =有3个交点,与246+=n 不符合,故B 错误; 对于C ,对于实数[1,)x ∈+∞,不等式2()30xf x -≤恒成立,即3()2≤f x x恒成立,由图知函数()f x 的每一个上顶点都在曲线32y x =上,故3()2≤f x x恒成立,故C 正确; 对于D , 取1n =,[1,2]x ∈,此时函数()f x 的图像与x 轴围成的图形的面积为111122⨯⨯=,故D 错误; 故选:AC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.20.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确; 对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.。
高三数学第二学期函数的概念与基本初等函数多选题单元达标学能测试试卷
高三数学第二学期函数的概念与基本初等函数多选题单元达标学能测试试卷一、函数的概念与基本初等函数多选题 1.已知53a =,85b =,则( )A .a b <B .112a b+> C .11a b a b+<+ D .b a a a b b +<+【答案】ABD 【分析】根据条件求得,a b 表达式,根据对数性质结合放缩法得A 正确,根据不等式性质得B 正确,通过作差法判断C 错,结合指数函数单调性与放缩法可得D 正确. 【详解】解:∵53a =,85b =, ∴35log a =,58log b =,因为3344435533535log 3log 54<⇒<⇒<=, 又由3344438835858log 5log 84>⇒>⇒>=,所以a b <,选项A 正确; 35lo 01g a <=<,580log 1b <=<,则11a >,11b >,所以112a b +>,选项B 正确;因为a b <,01a b <<<,则0b a ->,11ab>,此时111()()10b a a b a b b a a b ab ab -⎛⎫⎛⎫+-+=-+=--> ⎪ ⎪⎝⎭⎝⎭, 所以11a b a b+>+,故选项C 不正确; 由1324a <<和314b <<知()x f x a =与()x g x b =均递减, 再由a ,b 的大小关系知b b a b a b a a b b a b a a b b <<⇒<⇒+<+,故选项D 正确. 故选:ABD 【点睛】本题考查了数值大小比较,关键运用了指对数运算性质,作差法和放缩法.2.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而102-<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=,由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得b =b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得1x =,2x =,所以1212a b ⎧=⎪⎪⎨+⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.3.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +< D.12x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<,122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.4.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.5.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,.()()11111+11++1xxx x xxe e ef x f x e e e ------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.6.已知函数4()nn f x x x=+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确; 当n 为偶数时,>0n x,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.7.若()f x 满足对任意的实数a ,b 都有()()()f a b f a f b +=且()12f =,则下列判断正确的有( ) A .()f x 是奇函数B .()f x 在定义域上单调递增C .当()0,x ∈+∞时,函数()1f x >D .()()()()()()()()()()()()2462016201820202020135201520172019f f f f f f f f f f f f +++⋅⋅⋅++= 【答案】BCD 【分析】利用新定义结合函数的性质进行判断.计算出(1)f 判断A ;先利用(1)21f =>证明所有有理数p ,有()1f p >,然后用任意无理数q 都可以看作是一个有理数列的极限,由极限的性质得()1f q >,这样可判断C ,由此再根据单调性定义判断B ,根据定义计算(2)(21)f n f n -(n N ∈),然后求得D 中的和,从而判断D .【详解】令0,1a b ==,则(1)(10)(1)(0)f f f f =+=,即22(0)f =,∴(0)1f =,()f x 不可能是奇函数,A 错;对于任意x ∈R ,()0f x ≠,若存在0x R ∈,使得0()0f x =,则0000(0)(())()()0f f x x f x f x =+-=-=,与(0)1f =矛盾,故对于任意x ∈R ,()0f x ≠,∴对于任意x ∈R ,2()022222x x x x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+==> ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, ∵(1)21f =>,∴对任意正整数n ,11111111121nn n f n n f f f f f n n n n n n n ⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫ ⎪+++===> ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ⎪ ⎪⎝⎭个个,∴11f n ⎛⎫> ⎪⎝⎭, 同理()(111)(1)(1)(1)21n f n f f f f =+++==>,对任意正有理数p ,显然有m p n=(,m n是互质的正整数),则1()1mm f p f fn n ⎡⎤⎛⎫⎛⎫==> ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 对任意正无理数q ,可得看作是某个有理数列123,,,p p p 的极限,而()1i f p >,i N ∈,∴()f q 与()i f p 的极限,∴()1f q >, 综上对所有正实数x ,有()1f x >,C 正确,设12x x <,则210x x ->,∴21()1f x x ->,则21211211()(())()()()f x f x x x f x f x x f x =+-=⋅->,∴()f x 是增函数,B 正确;由已知(2)(211)(21)(1)2(21)f n f n f n f f n =-+=-=-,∴(2)2(21)f n f n =-,∴() ()()()()()()()()()()()10102246201620182020222210102020 135201520172019f f f f f ff f f f f f+++⋅⋅⋅++=+++=⨯=个,D正确.故选:BCD.【点睛】本题考查新定义函数,考查学生分析问题,解决问题的能力,逻辑思维能力,运算求解能力,对学生要求较高,本题属于难题.8.已知函数()()()52log1,122,1x xf xx x⎧-<⎪=⎨--+≥⎪⎩,则方程12f x ax⎛⎫+-=⎪⎝⎭的实根个数可能为()A.8 B.7 C.6 D.5【答案】ABC【分析】以()1f x=的特殊情形为突破口,解出1x=或3或45或4-,将12xx+-看作整体,利用换元的思想进一步讨论即可.【详解】由基本不等式可得120xx+-≥或124xx+-≤-,作出函数()()()52log1,122,1x xf xx x⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a>时,1224xx+-≤-或1021xx<+-<,故方程12f x ax⎛⎫+-=⎪⎝⎭的实数根个数为4;②当2a=时,1224xx+-=-或1021xx<+-<或122xx+-=,故方程12f x ax⎛⎫+-=⎪⎝⎭的实数根个数为6;③当12a <<时,12424x x -<+-<-或1021x x <+-<或1122x x<+-< 或1223x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为8; ④当1a =时,124x x +-=-或1021x x <+-<或121x x +-=或123x x+-=,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; 故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.9.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( )A .9,04⎛⎫- ⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.10.已知函数()()2214sin 2x xe xf x e -=+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调 B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增 C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2x x xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e--++---=-=,()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xxf x e x e '=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xx g x e x e=-+, 则1()+2cos 2+2cos 0x x g x e x x e'=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.11.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD.【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.12.对于函数()9f x x x=+,则下列判断正确的是( ) A .()f x 在定义域内是奇函数B .函数()f x 的值域是(][),66,-∞-⋃+∞ C .()12,0,3x x ∀∈,12x x ≠,有()()12120f x f x x x ->-D .对任意()12,0,x x ∈+∞且12x x ≠,有()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭【答案】ABD 【分析】根据函数奇偶性定义判断()f x 的奇偶性,利用基本不等式求()f x 的值域,设1203x x <<<,根据解析式判断()()12,f x f x 的大小,进而确定()()1212,0f x f x x x --的大小关系,应用作差、作商法判断12122,2()()f x f x x x f +⎛⎫⎪+⎝⎭大小关系,进而确定各项的正误. 【详解】A :由解析式知:定义域为0x ≠,99()()()f x x x f x x x-=-+=-+=--,即()f x 在定义域内是奇函数,正确; B :当0x >时,()96f x x x =+≥=当且仅当3x =时等号成立;当0x <时有0x ->,()9[()()]6f x x x=--+-≤-=-当且仅当3x =-时等号成立;故其值域(][),66,-∞-⋃+∞,正确;C :当1203x x <<<时,()()1212121212999()(1)f x f x x x x x x x x x -=-+-=--,而120x x -<,12910x x -<,则()()120f x f x ->,所以()()12120f x f x x x -<-,错误;D :若120x x >>,1212123622x x f x x x x +⎛⎫=++⎪+⎝⎭,12121299()()f x f x x x x x +=+++,所以121212123699()()]2[()2f x f x x x x x x x f +⎛⎫- ⎪⎝+=-++⎭,而121221212364199()x x x x x x x x +=<++,即()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭,正确; 故选:ABD 【点睛】关键点点睛:综合应用函数奇偶性的证明、对勾函数值域的求法、作差(作商)法比较大小,判断各选项的正误.13.对于函数()f x 定义域中任意的()1212,x x x x ≠,有如下结论,当()lg f x x =时,上述结论中正确结论的序号是( ) A .()()()1212f x x f x f x +=⋅ B .()()()1212f x x f x f x ⋅=+ C .1212()()f x f x x x -->0D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】BC 【分析】由对数的运算性质判断A ,B ,由对数函数的单调性判断C ,由对数的运算结合基本不等式判断D . 【详解】 对于A ,()()112122lg lg lg f x x x x x x +=+≠⋅,即()()()1212f x x f x f x +≠⋅,故A 错误; 对于B ,()()()()12112122lg lg lg f x x x x x x f x f x ⋅=+=+=,故B 正确; 对于C ,()lg f x x =在定义域中单调递增,()()12120f x f x x x -∴->,故C 正确;对于D ,()1212,0x x x x >≠,利用基本不等式知1122lg 22x x x x f +⎛⎫> ⎪+⎛⎫⎪⎭⎝= ⎝⎭()()()221121lg lg lg 222f x f x x x x x +===+()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,故D 错误; 故选:BC【点睛】关键点点睛:本题考查命题的真假判断,考查对数函数的性质,考查基本不等式的应用,解决本题的关键点是将对数形式化为根式,即2121lg lg lg 2xx x x =+,利用对数的运算结合基本不等式放缩得出答案,并验证取等条件,考查了学生逻辑思维能力和计算能力,属于中档题.14.设函数2,0()12,02x e x f x x x x ⎧≤⎪=⎨-++>⎪⎩,对关于x 的方程2()()20f x bf x b -+-=,下列说法正确的有( ).A .当223b =-+时,方程有1个实根B .当32b =时,方程有5个不等实根 C .若方程有2个不等实根,则17210b <≤ D .若方程有6个不等实根,则32232b -+<< 【答案】BD 【分析】先作出函数()f x 的图象,进行换元()f x t =,将方程转化成关于t 的二次方程,结合()f x 函数值的分布,对选项中参数值与根的情况逐一分析判断四个选项的正误即可. 【详解】函数()22,0,0()132,01,022x x e x e x f x x x x x x ⎧⎧≤≤⎪⎪==⎨⎨-++>--+>⎪⎪⎩⎩,作图如下:由图可知,3(),2f x ⎛⎤∈-∞ ⎥⎝⎦,令()f x t =,则3,2t ⎛⎤∈-∞ ⎥⎝⎦,则方程转化为220b bt t +-=-,即222()22204b b t t b t t b b ϕ⎛⎫=--- +-=+⎪-⎝=⎭选项A 中,223b =-+时方程为()22234230t t -+-=+,即()2310t +-=,故31t =-,即131,12()f x ⎛⎫-∈ ⎪⎝⎭=,看图知存在三个根,使得()31f x =-,故A错误; 选项B 中,32b =,方程即231022t t -+=,即22310t t -+=,解得1t =或12t =,当()1f x t ==时看图可知,存在3个根,当1()2f x t ==时看图可知,存在2个根,故共5个不等的实根,B 正确;选项C 中,方程有2个不等实根,则有两种情况:(1)122bt t ==,则31,22b ⎛⎫∈ ⎪⎝⎭或10,22b ⎛⎤∈ ⎥⎝⎦,此时2204b b +--=,即2480b b -+=,解得223b =-±,132b =-±,均不满足上面范围,舍去;(2)12t t ≠时,即(]123,,02t t =∈-∞或(]12,,0t t ∈-∞.①当(]123,,02t t =∈-∞时132t =,代入方程得2220332b b +⎛⎫-⋅ ⎪⎝-=⎭,解得1710b =,由123210t t b =-=,得(]21,05t =∉-∞,不满足题意,舍去;②当(]12,,0t t ∈-∞时220b bt t +-=-,则()2420b b ∆=-->,1220t t b =-≥,120t t b +=<,解得223t <--,故C 错误;选项D 中,方程有6个不等实根,则1211,1,,122t t ⎛⎤⎛⎤∈∈ ⎥⎥⎝⎦⎝⎦且12t t ≠,222()2422b b t t b t t b b ϕ⎛⎫=--- ⎪⎝⎭+-=+-图象如下:需满足:()2193024213202024b b b b b ϕϕϕ⎧⎛⎫=-> ⎪⎪⎝⎭⎪⎪=-≥⎨⎪⎛⎫⎪=-+-< ⎪⎪⎝⎭⎩,解得:32232b -+<<,故D 正确.故选:BD. 【点睛】 关键点点睛:本题解题关键在于对方程2()()20f x bf x b -+-=进行换元()f x t =,变成关于t 的二次方程根的分布问题,结合函数()f x 图象中函数值的分布情况来突破难点.15.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.16.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos cos 0x x x x ==-=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()2112115 22,222xxx+==-+时等号成立,故D选项正确.由图象可知()()2324log1log1x x+=-+,()()2324log1log10x x+++=,()()34111x x+⋅+=,4433111,111x xx x+==-++,由()()2log111x x+=>-,解得1x=或12x=-,由()()2log121x x+=>-,解得3x=或34x=-,所以3431,1342x x-≤<-<≤,()3433331144145111x x x xx x+=+-+=-+++()332151141xx+≥+⋅-=-①.令()()21134,1,1421x x xx+===-++或12x=-,所以①的等号不成立,即3441x x+>-,故C选项正确.故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.17.已知函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩,其中实数 a ∈R ,则下列关于 x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0的实数根的情况,说法正确的有( ) A .a 取任意实数时,方程最多有5个根B .当1515a --+<<时,方程有2个根 C .当 15a --=时,方程有3个根 D .当 a ≤ −4时,方程有4个根 【答案】CD 【分析】先化简方程为()1f x =或()f x a =,再对a 进行分类讨论,结合图象来确定()1f x =或()f x a =分别有几个根,根据结果逐一判断选项正误即可.【详解】解:关于x 的方程f 2 (x ) − (1+ a )⋅ f (x ) + a = 0,即[][]()1()0f x f x a --=,故()1f x =或()f x a =.函数2ln(1),0()21,0x x f x x ax x +≥⎧=⎨-+<⎩中,()0,()ln 1x f x x ≥=+单调递增,()2220,(2)11x a x f x a x x a -+=-<=+-,对称轴为x a =,判别式()()411a a ∆=+-.(1)当0a ≥时,函数()f x 图象如下:由图象可知,方程()1f x =有1个根,1a >时方程()f x a =有2个根,01a ≤≤时,方程()f x a =有1个根,故1a >时已知方程有3个根,01a ≤<时,已知方程有2个根,1a =时已知方程有1个根;(2)1a =-时,函数()f x 图象如下:10a -<<时,函数()f x 图象如下:由两个图象可知,10a -≤<时,方程()1f x =有2个根,方程()f x a =没有根,故已知方程有2个根;(3)1a <-时,函数()f x 图象如下:方程()1f x =有两个根.下面讨论最小值21a -与a 的关系,由21a a -<解得15a --<, 故当15a --<时,21a a -<,直线y a =如图①,方程()f x a =有2个根,故已知方程有4个根;当a =21a a -=,直线y a =如图②,方程有()f x a =有1 个根,故已知方程有3个根;当112a -<<-时,21a a ->,直线y a =如图③,方程()f x a =没有根,故已知方程有2个根.综上可知,a 取任意实数时,方程最多有4个根,选项A 错误;112a --<<时方程有2个根,1a =时已知方程有1个根,1a >时方程有3个根,故选项B 错误;当12a --=时,方程有3个根,C 正确;当 142a --≤-<时,方程有4个根,故D 正确. 故选:CD. 【点睛】 关键点点睛:本题的解题关键在于分类讨论确定二次函数的图象,以及其最低点处21a -与a 的关系,以确定方程()f x a =的根的情况,才能突破难点.18.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=- B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误. 【详解】由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点; ∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.19.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈,()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.20.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭ D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD 【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故C 正确;对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD.【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.。
高三数学第二学期函数的概念与基本初等函数多选题单元达标综合模拟测评学能测试试卷
高三数学第二学期函数的概念与基本初等函数多选题单元达标综合模拟测评学能测试试卷一、函数的概念与基本初等函数多选题1.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+-- 由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.2.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点B .函数()f x 的值域为RC .()f x 在定义域内为周期函数D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.3.下列说法中,正确的有( ) A .若0a b >>,则b a a b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx x xf x -+-=-==+++,则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.4.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确; 对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD .【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;5.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.6.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .151522⎡-⎢⎣⎦是()f x 的一个“完美区间” C .()f x 的所有“完美区间”的“复区间长度”的和为35+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞0<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=,由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得12b +=,12b =.所以此时完美区间为10,2⎡⎢⎣⎦,则“复区间长度”为()221b a -==+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得1x =,2x =,所以a b ⎧=⎪⎪⎨⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.7.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦ C .()f x 的一个周期为π D .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt t y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)x x h x --=上任意一点, 则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.8.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD .【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.9.已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( ) A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦, 故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.10.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根,即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kxx x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=2k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.11.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-,所以3431,1342x x-≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ ()332151141x x +≥+⋅-=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.12.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦; 若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.13.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确; 对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.14.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m m f n n n n ⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m m f n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010mn ⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+,即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,,单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.15.函数()()1xf x x R x=∈+,以下四个结论正确的是( ) A .()f x 的值域是()1,1- B .对任意x ∈R ,都有()()12120f x f x x x ->-C .若规定()()()()()11,n n f x f x f x f f x +==,则对任意的(),1n xn N f x n x*∈=+ D .对任意的[]1,1x ∈-,若函数()2122f x t at ≤-+恒成立,则当[]1,1a ∈-时,2t ≤-或2t ≥【答案】ABC 【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C 中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围. 【详解】由函数解析式可得1 1,01()11,01xxf xxx⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x的值域是()1,1-,且单调递增即()()1212f x f xx x->-(利用单调性定义结合奇偶性也可说明),即有AB正确;对于C,有()11xf xx=+,若()1,1(1)nxn N f xn x*-∈=+-,∴当2n≥时,11(1)||()(())1||1||1(1)||n nxxn xf x f f xx n xn x-+-===+++-,故有(),1nxn N f xn x*∈=+.正确.对于D,[]1,1x∈-上max1()(1)2f x f==,若函数()2122f x t at≤-+恒成立,即有211222t at-+≥,220t at-≥恒成立,令2()2h a at t=-+,即[]1,1a∈-上()0h a≥,∴0t>时,2(1)20h t t=-+≥,有2t≥或0t≤(舍去);t=时,()0h a故恒成立;t<时,2(1)20h t t-=+≥,有2t≤-或0t≥(舍去);综上,有2t≥或0t=或2t≤-;错误.故选:ABC【点睛】方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n=结论成立,若1n-时结论也成立,证明n时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.16.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( ) A .()1.10.9f -= B .函数()f x 为奇函数 C .()()11f x f x +=+ D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确. 对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.17.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项.【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.18.1837年,德国数学家狄利克雷(P .G.Dirichlet ,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x QD x x Q ∈⎧=⎨∈⎩(Q 表示有理数集合),关于此函数,下列说法正确的是( )A .()D x 是偶函数B .,(())1x R D D x ∀∈=C .对于任意的有理数t ,都有()()D x t D x +=D .存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC 为正三角形 【答案】ABCD 【分析】利用定义判断函数奇偶性,可确定A 的正误,根据“狄利克雷函数”及有理数、无理数的性质,判断其它三个选项的正误. 【详解】A :由()D x 定义知:定义域关于原点对称,当x Q ∈则x Q -∈,当R x Q ∈则Rx Q -∈,即有()()D x D x -=,故()D x 是偶函数,正确;B :由解析式知:,()1x R D x ∀∈=或()0D x =,即(())1D D x =,正确;C :任意的有理数t ,当x Q ∈时,x t Q +∈即()()D x t D x +=,当R x Q ∈时,R x t Q +∈即()()D x t D x +=,正确;D :若存在ABC 为正三角形,则其高为1,边长为233,所以当33(,0),(0,1),(,0)33A B C -时成立,正确; 故选:ABCD 【点睛】关键点点睛:应用函数的奇偶性判断,结合新定义函数及有理数、无理数的性质判断各选项的正误.19.已知函数()3log ,092sin ,91744x x f x x x ππ⎧<<⎪=⎨⎛⎫+≤≤ ⎪⎪⎝⎭⎩,若()()()()f a f b f c f d ===,且a b c d <<<,则( ) A .1ab = B .26c d π+=C .abcd 的取值范围是()153,165D .+++a b c d 的取值范围是31628,9⎛⎫⎪⎝⎭【答案】ACD 【分析】作出函数()f x 的图象,利用对数的运算性质可判断A 选项的正误,利用正弦型函数的对称性可判断B 选项的正误;利用二次函数的基本性质可判断C 选项的正误;利用双勾函数的单调性可判断D 选项的正误. 【详解】由3log 2x ≤可得32log 2x -≤≤,解得199x ≤≤. 作出函数()f x 的图象如下图所示:由图象可得1191115179a b c d <<<<<<<<<, 由33log log a b =,可得33log log a b -=,即()333log log log 0a b ab +==,得1ab =,A 选项正确; 令()442x k k Z ππππ+=+∈,解得()41x k k Z =+∈, 当()9,17x ∈时,令94117k <+<,解得24k <<,由于k Z ∈,3k ∴=, 所以,函数[]()2sin 9,1744x y x ππ⎛⎫=+∈⎪⎝⎭的图象关于直线13x =对称, 则点()(),c f c 、()(),d f d 关于直线13x =对称,可得26c d +=,B 选项错误;()()()22613169153,165abcd c c c =-=--+∈,C 选项正确; 126a b c d a a+++=++,下面证明函数1y x x =+在()0,1上为减函数,任取1x 、()20,1x ∈且12x x <,则()12121212121111y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1212211212121x x x x x x x x x x x x ---=-+=, 1201x x <<<,则120x x -<,1201x x <<,所以,12y y >,所以,函数1y x x=+在()0,1上为减函数, 119a <<,则13162628,9a b c d a a ⎛⎫+++=++∈ ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.20.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xx e e e f x f x e e e------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.。
高三数学第二学期函数的概念与基本初等函数多选题单元达标质量专项训练
高三数学第二学期函数的概念与基本初等函数多选题单元达标质量专项训练一、函数的概念与基本初等函数多选题1.函数()()1xf xx Rx=∈+,以下四个结论正确的是()A.()f x的值域是()1,1-B.对任意x∈R,都有()()1212f x f xx x->-C.若规定()()()()()11,n nf x f x f x f f x+==,则对任意的(),1nxn N f xn x*∈=+ D.对任意的[]1,1x∈-,若函数()2122f x t at≤-+恒成立,则当[]1,1a∈-时,2t≤-或2t≥【答案】ABC【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围.【详解】由函数解析式可得11,01()11,01xxf xxx⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x的值域是()1,1-,且单调递增即()()1212f x f xx x->-(利用单调性定义结合奇偶性也可说明),即有AB正确;对于C,有()11xf xx=+,若()1,1(1)nxn N f xn x*-∈=+-,∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.2.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.3.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数,则x y e =与ln y x =的图象关于y x =对称, 将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.4.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()x x f x e'=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <, 由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.5.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1x xx x xxe e ef x f x e e e ------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.6.已知函数4()nnf x x x =+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确; 当n 为偶数时,>0n x,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫⎪⎝⎭,代入4()f x x x=+不满足,所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.7.已知函数1(),f x x x =+221()g x x x=+则下列结论中正确的是( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是偶函数 C .()()f x g x +的最小值为4 D .()()f x g x ⋅的最小值为2【答案】BC 【分析】利用奇偶性的定义可得A 错B 对;利用均值不等式可得C 对;利用换元求导可得D 错. 【详解】2211()()f x g x x x x x+=+++ ()22221111()()()f x g x x x x x x x x x ∴-+-=-++-+=+++-- ()()()()f x g x f x g x ∴+=-+- ()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得3t >或3t <- 2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC. 【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.8.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD 【分析】通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.9.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g xf xx=,函数y m=由题意可知函数y m=与函数()()g xf xx=的图象有两个不同的交点因为()0f x≥时,)12,x⎡∈-+∞⎣,()0f x<时,(),12x∈-∞-所以12,012,122)01,12(x xxx xxx xxg x⎧++>⎪⎪⎪-++-≤<⎨⎪⎪--<-⎩=⎪当0x>时,设1201x x,()()()()121212121212111x x x xg x g x x xx x x x---=+--=因为12120,10x x x x-<-<,所以()()12g x g x->,即()()12g x g x>设121x x<<,()()()()121212121x x x xg x g xx x---=<,即()()12g x g x<所以函数()g x在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g++==函数()g x图象如下图所示由图可知,要使得函数y m=与函数()()g xf xx=的图象有两个不同的交点则实数m的取值范围是()()–,04,∞+∞,故D正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.10.已知函数()()2214sin 2x xe xf x e -=+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调 B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增 C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2x x xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e--++---=-=, ()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xx f x e x e'=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xxg x e x e =-+, 则1()+2cos 2+2cos 0x x g x e x x e'=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.11.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈,()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.12.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.13.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.14.对于函数()9f x x x=+,则下列判断正确的是( ) A .()f x 在定义域内是奇函数B .函数()f x 的值域是(][),66,-∞-⋃+∞C .()12,0,3x x ∀∈,12x x ≠,有()()12120f x f x x x ->-D .对任意()12,0,x x ∈+∞且12x x ≠,有()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭【答案】ABD 【分析】根据函数奇偶性定义判断()f x 的奇偶性,利用基本不等式求()f x 的值域,设1203x x <<<,根据解析式判断()()12,f x f x 的大小,进而确定()()1212,0f x f x x x --的大小关系,应用作差、作商法判断12122,2()()f x f x x x f +⎛⎫⎪+⎝⎭大小关系,进而确定各项的正误. 【详解】A :由解析式知:定义域为0x ≠,99()()()f x x x f x x x-=-+=-+=--,即()f x 在定义域内是奇函数,正确; B :当0x >时,()96f x x x =+≥=当且仅当3x =时等号成立;当0x <时有0x ->,()9[()()]6f x x x=--+-≤-=-当且仅当3x =-时等号成立;故其值域(][),66,-∞-⋃+∞,正确;C :当1203x x <<<时,()()1212121212999()(1)f x f x x x x x x x x x -=-+-=--,而120x x -<,12910x x -<,则()()120f x f x ->,所以()()12120f x f x x x -<-,错误;D :若120x x >>,1212123622x x f x x x x +⎛⎫=++⎪+⎝⎭,12121299()()f x f x x x x x +=+++,所以121212123699()()]2[()2f x f x x x x x x x f +⎛⎫- ⎪⎝+=-++⎭,而121221212364199()x x x x x x x x +=<++,即()()1212122x x f f x f x +⎛⎫<+⎡⎤ ⎪⎣⎦⎝⎭,正确; 故选:ABD关键点点睛:综合应用函数奇偶性的证明、对勾函数值域的求法、作差(作商)法比较大小,判断各选项的正误.15.对于函数()f x 定义域中任意的()1212,x x x x ≠,有如下结论,当()lg f x x =时,上述结论中正确结论的序号是( ) A .()()()1212f x x f x f x +=⋅ B .()()()1212f x x f x f x ⋅=+ C .1212()()f x f x x x -->0D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】BC 【分析】由对数的运算性质判断A ,B ,由对数函数的单调性判断C ,由对数的运算结合基本不等式判断D . 【详解】 对于A ,()()112122lg lg lg f x x x x x x +=+≠⋅,即()()()1212f x x f x f x +≠⋅,故A 错误; 对于B ,()()()()12112122lg lg lg f x x x x x x f x f x ⋅=+=+=,故B 正确; 对于C ,()lg f x x =在定义域中单调递增,()()12120f x f x x x -∴->,故C 正确;对于D ,()1212,0x x x x >≠,利用基本不等式知1122lg 22x x x x f +⎛⎫> ⎪+⎛⎫⎪⎭⎝= ⎝⎭()()()221121lg lg lg 222f x f x x x x x +===+()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,故D 错误; 故选:BC 【点睛】关键点点睛:本题考查命题的真假判断,考查对数函数的性质,考查基本不等式的应用,解决本题的关键点是将对数形式化为根式,即21lg lg 2x x =+合基本不等式放缩得出答案,并验证取等条件,考查了学生逻辑思维能力和计算能力,属于中档题.16.已知函数()22,1,1x x f x x x -≥⎧=⎨<⎩,若存在实数a ,使得()()f a f f a ⎡⎤=⎣⎦,则a 的个数A .2B .3C .4D .5【答案】ABD 【分析】令()f a t =,即满足()f t t =,对t 进行分类讨论,结合已知函数解析式代入即可求得满足题意的t ,进而求得a. 【详解】令()f a t =,即满足()f t t =,转化为函数()1y f t =与2y t =有交点,结合图像由图可知,()f t t =有两个根0t =或1t = (1)当1t =,即()1f a =,由()22,1,1a a f a a a -≥⎧=⎨<⎩,得1a =±时,经检验均满足题意; (2)当0t =,即()0f a =,当1a ≥时,()20f a a =-=,解得:2a =;当1a <时,()20f a a ==,解得:0a =;综上所述:共有4个a . 故选:ABD . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解17.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.18.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.19.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011xy -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.20.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法;(4)若()f x 与1()f x或()f x 满足某个等式,可构造另一个等式,通过解方程组求解;。
高三数学下学期函数的概念与基本初等函数多选题单元达标检测试卷
高三数学下学期函数的概念与基本初等函数多选题单元达标检测试卷一、函数的概念与基本初等函数多选题1.已知函数1(),f x x x =+221()g x x x=+则下列结论中正确的是( )A .()()f x g x +是奇函数B .()()f x g x ⋅是偶函数C .()()f x g x +的最小值为4D .()()f x g x ⋅的最小值为2【答案】BC 【分析】利用奇偶性的定义可得A 错B 对;利用均值不等式可得C 对;利用换元求导可得D 错. 【详解】2211()()f x g x x x x x+=+++ ()22221111()()()f x g x x x x x x x x x ∴-+-=-++-+=+++-- ()()()()f x g x f x g x ∴+=-+- ()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得t >t <2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC.【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.2.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.3.定义在R 上的函数()(),()22(2)f x x g x g x x g x =+=--+--,若()f x 在区间[1,)-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式一定成立的是( )A .21(1)()2f t t f ++> B .(2)0()f f t ->> C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】ABC 【分析】先由()(),()22(2)f x x g x g x x g x =+=--+--推出()f x 关于1x =-对称,然后可得出B 答案成立,对于答案ACD ,要比较函数值的大小,只需分别看自变量到对称轴的距离的大小即可 【详解】因为()(),()22(2)f x x g x g x x g x =+=--+--所以(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+= 所以()f x 关于1x =-对称,所以(0)(2)f f =- 又因为()f x 在区间[1,)-+∞上为增函数,20t -<< 所以(0)(2)()f f f t =-> 因为(0)()0f f t ⋅<所以()0,(2)(0)0f t f f <-=> 所以选项B 成立因为2231120224t t t ⎛⎫++-=++> ⎪⎝⎭所以21t t ++比12离对称轴远 所以21(1)()2f t t f ++>,所以选项A 成立 因为()()2232250t t t +-+=+>所以32t t +>+,所以2t +比1t +离对称轴远 所以(2)(1)f t f t +>+,即C 答案成立因为20t -<<,所以()()222123t t t +-+=+符号不定 所以2t +,1t +无法比较大小,所以(1)()f t f t +>不一定成立 所以D 答案不一定成立 故选:ABC 【点睛】本题考查的是函数的性质,由条件得出()f x 关于1x =-对称是解题的关键.4.德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立 C .任取一个不为零的有理数T ,f x Tf x 对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD 【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.5.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .1515-+⎣⎦是()f x 的一个“完美区间” C .()f x 的所有“完美区间”的“复区间长度”的和为35+ D .()f x 的所有“完美区间”的“复区间长度”的和为325+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而1502-<,所以不存在定义域与值域范围相同情况,所以B 错误; 对于C ,由定义域为[]a b ,,可知0a b ≤<,当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=, 由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得12b +=,12b =.所以此时完美区间为10,2⎡⎢⎣⎦,则“复区间长度”为()221b a -==+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得1x =,2x =,所以1212a b ⎧=⎪⎪⎨+⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.6.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<,又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.8.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-, 当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点, 113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.9.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)12,x ⎡∈-+∞⎣,()0f x <时,(),12x ∈-∞-所以12,012,122)01,12(x x x x x x x x x g x ⎧++>⎪⎪⎪-++-≤<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x 在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.10.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kxx x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.11.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:12a b ⎧-=⎪⎪⎨⎪=⎪⎩故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-.故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.12.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n ⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222nx n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.13.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞ 【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确;对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.14.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( ) A .()1.10.9f -= B .函数()f x 为奇函数 C .()()11f x f x +=+ D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确.对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.15.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.16.1837年,德国数学家狄利克雷(P .G.Dirichlet ,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x Q D x x Q ∈⎧=⎨∈⎩(Q 表示有理数集合),关于此函数,下列说法正确的是( )A .()D x 是偶函数B .,(())1x R D D x ∀∈=C .对于任意的有理数t ,都有()()D x t D x +=D .存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC 为正三角形 【答案】ABCD 【分析】利用定义判断函数奇偶性,可确定A 的正误,根据“狄利克雷函数”及有理数、无理数的性质,判断其它三个选项的正误. 【详解】A :由()D x 定义知:定义域关于原点对称,当x Q ∈则x Q -∈,当R x Q ∈则Rx Q -∈,即有()()D x D x -=,故()D x 是偶函数,正确;B :由解析式知:,()1x R D x ∀∈=或()0D x =,即(())1D D x =,正确;C :任意的有理数t ,当x Q ∈时,x t Q +∈即()()D x t D x +=,当R x Q ∈时,R x t Q +∈即()()D x t D x +=,正确;D :若存在ABC 为正三角形,则其高为1,所以当((0,1),,0)33A B C -时成立,正确; 故选:ABCD 【点睛】关键点点睛:应用函数的奇偶性判断,结合新定义函数及有理数、无理数的性质判断各选项的正误.17.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.18.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011xy -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.19.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++,由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ ()332151141x x +≥+⋅-=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.20.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a∈ D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【答案】AC 【分析】根据奇函数()()f x f x -=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案 【详解】函数是奇函数,故()f x 在R 上的解析式为:222,22322,20()0,022,022,223x x x x x f x x x x x x x ⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A :如下图所示直线1l 与该函数有7个交点,故A 正确;对B :当1211x x -<<<时,函数不是减函数,故B 错误; 对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2, 故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、21x =+、21x =-; 若使得其与()f x m =的所有零点之和为0, 则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立。
人教版高三数学第二学期函数的概念与基本初等函数多选题单元专题强化试卷学能测试试卷
人教版高三数学第二学期函数的概念与基本初等函数多选题单元专题强化试卷学能测试试卷一、函数的概念与基本初等函数多选题 1.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞ 【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确; 对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.2.已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()xx f x ee -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案. 【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增, 故函数()xx f x ee -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误;当1k =-时,()xx f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减, 故函数()xx f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误.故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.3.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根;当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.4.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,122)01,12(x xxx xxx xxg x⎧++>⎪⎪⎪-++-≤<⎨⎪⎪--<-⎩=⎪当0x>时,设1201x x,()()()()121212121212111x x x xg x g x x xx x x x---=+--=因为12120,10x x x x-<-<,所以()()12g x g x->,即()()12g x g x>设121x x<<,()()()()121212121x x x xg x g xx x---=<,即()()12g x g x<所以函数()g x在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g++==函数()g x图象如下图所示由图可知,要使得函数y m=与函数()()g xf xx=的图象有两个不同的交点则实数m的取值范围是()()–,04,∞+∞,故D正确;故选:CD【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.5.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,,当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.6.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-, 当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点, 113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.7.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( ) A .0个 B .1个C .2个D .4个【答案】ABC 【分析】令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】()xx f x e '=-, 故当0x <时,0f x ,故()f x 在,0上为增函数;当0x >时,0fx,故()f x 在0,上为减函数,而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <, 因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0, 故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==, 由图象可知方程1f x的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解, 故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <,由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是2. 故选:ABC . 【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.8.已知函数4()nn f x x x=+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x -=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x ,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减,所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫ ⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.9.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点,当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.10.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+, 即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;11.已知()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭()1a <的实根个数可能为( ) A .2 B .3C .4D .5【答案】ABC 【分析】画出()f x 的图像,由1a <,可分类讨论01a <<,0a =,0a <三种情况,令12t x x =+-,并画出图像,结合两个函数图像以及12f x a x ⎛⎫+-= ⎪⎝⎭,判断出实根个数构成的集合. 【详解】画出()f x 的图像如图所示,令12t x x=+-,画出图像如图所示. 由()5log 11t -=,解得:4544,5t t =-=,由()2221t --+=,解得671,3t t ==.. 由()5log 10t -=,解得:80t =,由()()22201t t --+=≥,解得922t =+. (1)当01a <<时,()f t a =,有3解,且40t -<<或405t <<或322t <<+,结合12t x x =+-的图像可知,40t -<<时没有x 与其对应,405t <<或322t <<+时每个t 都有2个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有4个实数根. (2)当0a =时,()f t a =,有2解,且0t =或22t =+,0t =有一个1x =与其对应,22t =+有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有3个实数根. (3)当0a <时,()f t a =,有1解,且22t >+,结合12t x x=+-的图像可知,每个t 有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有2个实数根.综上所述,关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数构成的集合为{2,3,4}. 故选:ABC【点睛】方法点睛:本题考查分类讨论参数,求函数零点个数问题,讨论函数零点个数常用方法: (1)直接法:直接求解方程得到方程的根;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,考查学生的数形结合的数学思想方法,考查分类讨论的数学思想方法,属于难题.12.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( ) A .2- B .1-C .1D 2【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.13.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”;对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立,()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.14.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R上单调递增,且13022f ⎛⎫=< ⎪⎝⎭,(1)10f =>, 所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.15.对于函数()f x 定义域中任意的()1212,x x x x ≠,有如下结论,当()lg f x x =时,上述结论中正确结论的序号是( ) A .()()()1212f x x f x f x +=⋅ B .()()()1212f x x f x f x ⋅=+ C .1212()()f x f x x x -->0D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭【答案】BC 【分析】由对数的运算性质判断A ,B ,由对数函数的单调性判断C ,由对数的运算结合基本不等式判断D . 【详解】 对于A ,()()112122lg lg lg f x x x x x x +=+≠⋅,即()()()1212f x x f x f x +≠⋅,故A 错误; 对于B ,()()()()12112122lg lg lg f x x x x x x f x f x ⋅=+=+=,故B 正确; 对于C ,()lg f x x =在定义域中单调递增,()()12120f x f x x x -∴->,故C 正确;对于D ,()1212,0x x x x >≠,利用基本不等式知1122lg 22x x x x f +⎛⎫> ⎪+⎛⎫⎪⎭⎝= ⎝⎭()()()22121211lg lg lg lg 222f x f x x x x x x x +===+,则()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,故D 错误; 故选:BC 【点睛】关键点点睛:本题考查命题的真假判断,考查对数函数的性质,考查基本不等式的应用,解决本题的关键点是将对数形式化为根式,即2121lg lg lg 2x x x x =+,利用对数的运算结合基本不等式放缩得出答案,并验证取等条件,考查了学生逻辑思维能力和计算能力,属于中档题.16.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.17.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.18.若定义在R 上的函数()f x 满足()()0f x f x ,当0x <时,23()22f x x ax a =++(a ∈R ),则下列说法正确的是( )A .若方程()2af x ax =+有两个不同的实数根,则0a <或48a << B .若方程()2af x ax =+有两个不同的实数根,则48a << C .若方程()2af x ax =+有4个不同的实数根,则8a > D .若方程()2af x ax =+有4个不同的实数根,则4a > 【答案】AC 【分析】由题知()f x 是R 上的奇函数,则由0x <时的解析式可求出()f x 在R 上的解析式.先讨论特殊情况0x =为方程的根,则可求出0a =,此时方程化为()0f x =,而函数()f x 为R 上的减函数,则方程仅有一个根.当0x ≠时,由分段函数分类讨论得出0x <时,1(1)2(1)a x x =-+++-+,0x >时,4242a x x =-++-.利用数形结合思想,画出图象,则可得知方程()2af x ax =+不同的实数根个数分别为2个和4时,参数a 的取值范围. 【详解】 因为()()0f x f x 所以()()f x f x -=-,所以()f x 是R 上的奇函数,(0)0f =, 当0x >时,0x -<,23()22f x x ax a -=-+, 所以23()()22f x f x x ax a =--=-+-, 综上2232,02()0,032,02x ax a x f x x x ax a x ⎧++<⎪⎪==⎨⎪⎪-+->⎩,若0x =是方程()2af x ax =+的一个根, 则0a =,此时()2af x ax =+,即()0f x =, 而22,0()0,0,0x x f x x x x ⎧<⎪==⎨⎪->⎩,在R 上单调递减,当0a =时,原方程有一个实根. 当0x <时,23222a x ax a ax ++=+, 所以20x ax a ++=,当1x =-时不满足,所以21(1)21(1)x a x x x =-=-++++-+, 当0x >时,23222ax ax a ax -+-=+, 所以220x ax a -+=,当2x =时不满足,所以242422x a x x x ==-++--,如图:若方程()2af x ax =+有两个不同的实数根,则0a <或48a <<; 若方程()2af x ax =+有4个不同的实数根,则8a >. 故选:AC 【点睛】关键点点睛:本题的关键是将方程()2af x ax =+进行参数分离,再借助数形结合法,求出对应的参数的取值范围.19.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ 51≥=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.20.设s,t 0>,若满足关于x x t x t s -+=恰有三个不同的实数解123,x x x s <<=则下列选项中,一定正确的是( )A .1230x x x ++>B .6425s t ⋅=C .45t s = D .14425s t +=【答案】CD 【分析】 设()f x x t x t -+()f x 为偶函数,从而有1230x x x ++=,因此方程()=f x s 必有一解为0,代入得2t s =,分0x t ≤≤和x t >两种情况得出函数()f x 的单调性和最值,从而求得s t ,,可得选项. 【详解】 设()f x x t x t -+()f x 为偶函数,所以1230x x x ++=,所以()=f x s ,其中必有一解为0,则()0 2f t t s t s ==∴=,①当0x t ≤≤时,()f x ≤当且仅当0x =时取等号;②当x t >时,()f x =(),t +∞上递增, ()f x s ==,54454x t x t t x t x t =-++=⇒=⇒=,又()f x 在(),t +∞上递增,35 4x t ∴=,即3564516=,42545x s t t s t =====, 6454144, 2516525t s t s ∴=⨯=+=. 故选:CD. 【点睛】本题考查函数与方程的综合知识,关键构造合适的函数,判断函数的奇偶性,单调性,最值,属于较难题.。
高三数学第二学期函数的概念与基本初等函数多选题单元达标提高题学能测试试卷
高三数学第二学期函数的概念与基本初等函数多选题单元达标提高题学能测试试卷一、函数的概念与基本初等函数多选题1.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m mf n n n n⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m mf n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,,单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.2.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.3.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.4.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.5.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .12e x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C. 【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D,由12x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC 【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.6.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+=则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--,则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.7.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e=+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e -<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e-<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e -=-,()2120f e -=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点,即函数()()32g x f x e =+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e-<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.8.已知函数4()nnf x x x =+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nn f x x x f x xx -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫ ⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.9.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B.⎣⎦是()f x 的一个“完美区间” C .()f x 的所有“完美区间”的“复区间长度”的和为3+ D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而102-<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=, 由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得b =b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得1x =,2x =,所以a b ⎧=⎪⎪⎨⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.10.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.11.若实数2a ≥,则下列不等式中一定成立的是( ) A .21(1)(2)a a a a +++>+ B .1log (1)log (2)a a a a ++>+ C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a +>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.12.函数()()1xf x x R x=∈+,以下四个结论正确的是( ) A .()f x 的值域是()1,1- B .对任意x ∈R ,都有()()12120f x f x x x ->-C .若规定()()()()()11,n n f x f x f x f f x +==,则对任意的(),1n xn N f x n x*∈=+ D .对任意的[]1,1x ∈-,若函数()2122f x t at ≤-+恒成立,则当[]1,1a ∈-时,2t ≤-或2t ≥【答案】ABC 【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C 中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围.【详解】由函数解析式可得11,01()11,01x x f x x x ⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x 的值域是()1,1-,且单调递增即()()12120f x f x x x ->-(利用单调性定义结合奇偶性也可说明),即有AB 正确; 对于C ,有()11x f x x =+,若()1,1(1)n x n N f x n x*-∈=+-, ∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.13.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( )A .B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||2x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.14.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2x y =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-, 函数2x y =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>, 所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.15.下列函数求值域正确的是( )A .2()1(2)f x x x =++-的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C .()11h x x x =+--的值域为(02],D .()13w x x x =-++的值域为[222],【答案】CD 【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g x x x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B ;()1111h x x x x x =+--=++-利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()13w x x x =-++两边平方可得()222(1)44w x x =-+++,由于()0w x >,可得()22(1)44w x x =-+++,求出2(1)t x =-+的范围即可求()w x 值域,可判断选项D. 【详解】对于选项A :原函数化为211()12312212x x f x x x x x x -+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,, 其图象如图,原函数值域为[3)+∞,,故选项A 不正确,对于选项B :2(1)11()(1)11x g x x x x ++==++++,定义域为{}|1x x ≠-, 当1x <-时,10x +<,此时[][]11(1)2(1)211x x x x ⎛⎫⎛⎫-++-≥-+⨯-= ⎪ ⎪++⎝⎭⎝⎭,所以1(1)21x x ++≤-+,当且仅当1(1)1x x -+=-+即2x =-时等号成立,当1x >-时,10x +>,此时1(1)21x x ++≥=+,当且仅当111x x +=+即0x =时等号成立, 所以函数()g x 值域为(2][2)-∞-⋃+∞,,,故选项B 不正确; 对于选项C :()h x 的定义域为[1)+∞,,()h x ===,因为y =y =[1)+∞,上是增函数,所以y =[1)+∞,上是增函数,又y =[1)+∞,上恒不等于0,则y =在[1)+∞,上是减函数,则()h x 的最大值为()1h =又因为()0h x >,所以()h x 的值域为(0,故选项C 正确;对于选项D :()w x 的定义域为[31]-,,()w x ======设2(1)t x =-+,则[40]t ∈-,,[]0,4,[]44,8∈,则()2,w x ⎡=⎣,()w x 的值域为[2,故选项D 正确, 故选:CD 【点睛】方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域; (4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b =±±数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,a b +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x 的一元二次方程,利用判别式求值域,形如2y Ax B axbx c =+++或22ax bx c y dx ex f++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域; (9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.16.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.17.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011x y -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.18.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4 D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.19.已知函数ln ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a 的可能取值是( )A .0B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =, 故1()2f x =-,()f x e =()f x e =,当1()2f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根, 当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =,故2()3f x =-,()f x =()f x ,当2()3f x =-时,由图象可知,有1个根,当()f x =2个根, 当()f x =时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.20.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+-- 由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.。
高三数学下学期函数的概念与基本初等函数多选题单元达标提高题学能测试
高三数学下学期函数的概念与基本初等函数多选题单元达标提高题学能测试一、函数的概念与基本初等函数多选题1.已知函数4()nn f x x x=+(n 为正整数),则下列判断正确的是( )A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x ,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.2.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.3.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+= 即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,12)01,1(x x x x x x x x x g x ⎧++>⎪⎪⎪-++<⎨⎪⎪--<-⎩=⎪当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x 在区间)12,0⎡-⎣上单调递减,在区间(),12-∞-上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.4.德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立 C .任取一个不为零的有理数T ,f x Tf x 对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD 【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.5.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.6.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.7.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<,存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.8.已知函数()()23,03,0x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩,以下结论正确的是( )A .()f x 在区间[]4,6上是增函数 B .()()220204f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619ii x==∑D .若方程()1f x kx =+恰有3个实根,则{}11,13k ⎛⎫∈-- ⎪⎝⎭【答案】BCD 【分析】根据()f x 在[2-,0]上的单调性判断A ,根据(2020)(2)f f =-判断B ,根据图象的对称性判断C ,根据直线1y kx =+与()y f x =的图象有3个交点判断D . 【详解】解:由题意可知当3x -时,()f x 是以3为周期的函数, 故()f x 在[4,6]上的单调性与()f x 在[2-,0]上的单调性相同, 而当0x <时,239()()24f x x =-++,()f x ∴在[2-,0]上不单调,故A 错误;又(2020)(2)2f f =-=,故(2)(2020)4f f -+=,故B 正确; 作出()y f x =的函数图象如图所示:由于()y f x b =-在(,6)-∞上有6个零点,故直线y b =与()y f x =在(,6)-∞上有6个交点,不妨设1i i x x +<,1i =,2,3,4,5, 由图象可知1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称, ∴613392229222i i x ==-⨯+⨯+⨯=∑,故C 正确;若直线1y kx =+经过点(3,0),则13k =-,若直线1y kx =+与23(0)y x x x =--<相切,则消元可得:2(3)10x k x +++=, 令0∆=可得2(3)40k +-=,解得1k =-或5k =-, 当1k =-时,1x =-,当5k =-时,1x =(舍),故1k =-.若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性可得1k =.因为方程()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =的图象有3个交点,113k ∴-<<-或1k =,故D 正确.故选:BCD . 【点睛】本题考查了函数零点与函数图象的关系,考查函数周期性、对称性的应用,属于中档题.9.已知函数()22,21ln 1,1x x f x x x e +-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( ) A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>,所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦, 故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.10.已知定义在R 上的函数()f x 的图象连续不断,若存在常数()t t R ∈,使得()()0f x t tf x ++=对任意的实数x 成立,则称()f x 是回旋函数.给出下列四个命题中,正确的命题是( )A .常值函数()(0)f x a a =≠为回旋函数的充要条件是1t =-;B .若(01)x y a a =<<为回旋函数,则1t >;C .函数2()f x x =不是回旋函数;D .若()f x 是2t =的回旋函数,则()f x 在[0]4030,上至少有2015个零点. 【答案】ACD 【分析】A.利用回旋函数的定义即可判断;B.代入回旋函数的定义,推得矛盾,判断选项;C.利用回旋函数的定义,令0x =,则必有0t = ,令1x =,则2310t t ++=,推得矛盾;D.根据回旋函数的定义,推得()()22f x f x +=-,再根据零点存在性定理,推得零点的个数. 【详解】A.若()f x a =,则()f x t a +=,则0a ta +=,解得:1t =-,故A 正确;B.若指数函数()01xy a a =<<为回旋函数,则0x t x a ta ++=,即0t a t +=,则0t <,故B 不正确;C.若函数()2f x x =是回旋函数,则()220x t tx ++=,对任意实数都成立,令0x =,则必有0t = ,令1x =,则2310t t ++=,显然0t =不是方程的解,故假设不成立,该函数不是回旋函数,故C 正确;D. 若()f x 是2t =的回旋函数,则()()220f x f x ++=,对任意的实数x 都成立,即有()()22f x f x +=-,则()2f x +与()f x 异号,由零点存在性定理得,在区间(),2x x +上必有一个零点,可令0,2,4,...20152x =⨯,则函数()f x 在[]0,4030上至少存在2015个零点,故D 正确. 故选:ACD 【点睛】本题考查以新定义为背景,判断函数的性质,重点考查对定义的理解,应用,属于中档题型.11.已知函数()3log ,092sin ,91744x x f x x x ππ⎧<<⎪=⎨⎛⎫+≤≤ ⎪⎪⎝⎭⎩,若()()()()f a f b f c f d ===,且a b c d <<<,则( ) A .1ab = B .26c d π+=C .abcd 的取值范围是()153,165D .+++a b c d 的取值范围是31628,9⎛⎫⎪⎝⎭【答案】ACD 【分析】作出函数()f x 的图象,利用对数的运算性质可判断A 选项的正误,利用正弦型函数的对称性可判断B 选项的正误;利用二次函数的基本性质可判断C 选项的正误;利用双勾函数的单调性可判断D 选项的正误. 【详解】由3log 2x ≤可得32log 2x -≤≤,解得199x ≤≤. 作出函数()f x 的图象如下图所示:由图象可得1191115179a b c d <<<<<<<<<, 由33log log a b =,可得33log log a b -=,即()333log log log 0a b ab +==,得1ab =,A 选项正确; 令()442x k k Z ππππ+=+∈,解得()41x k k Z =+∈, 当()9,17x ∈时,令94117k <+<,解得24k <<,由于k Z ∈,3k ∴=, 所以,函数[]()2sin 9,1744x y x ππ⎛⎫=+∈⎪⎝⎭的图象关于直线13x =对称, 则点()(),c f c 、()(),d f d 关于直线13x =对称,可得26c d +=,B 选项错误;()()()22613169153,165abcd c c c =-=--+∈,C 选项正确; 126a b c d a a+++=++,下面证明函数1y x x =+在()0,1上为减函数,任取1x 、()20,1x ∈且12x x <,则()12121212121111y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1212211212121x x x x x x x x x x x x ---=-+=, 1201x x <<<,则120x x -<,1201x x <<,所以,12y y >,所以,函数1y x x=+在()0,1上为减函数, 119a <<,则13162628,9a b c d a a ⎛⎫+++=++∈ ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.12.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k xkx x x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.13.已知函数1(),f x x x =+221()g x x x=+则下列结论中正确的是( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是偶函数 C .()()f x g x +的最小值为4 D .()()f x g x ⋅的最小值为2【答案】BC 【分析】利用奇偶性的定义可得A 错B 对;利用均值不等式可得C 对;利用换元求导可得D 错. 【详解】2211()()f x g x x x x x+=+++ ()22221111()()()f x g x x x x x x x x x ∴-+-=-++-+=+++-- ()()()()f x g x f x g x ∴+=-+- ()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得t >t <2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC. 【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.14.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f =B .()20202020f =C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2nnx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.15.已知函数()()2214sin 2x x e x f x e -=+,则下列说法正确的是( ) A .函数()y f x =是偶函数,且在(),-∞+∞上不单调B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增C .函数()y f x =在π,02⎛⎫- ⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()fm f m =,且()0f m ≥【答案】AD【分析】 由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D.【详解】解:对A ,()()222114sin =2cos 2x x x x e x e f x x e e -+=+-, 定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x x e e f x x x f x e e--++---=-=, ()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin x x f x e x e'=-+, 11()2sin()=(2sin )()x x x x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数, 令1()2sin x x g x e x e =-+, 则1()+2cos 2+2cos 0x x g x e x x e'=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误; 对C ,1()2sin x x f x e x e '=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误; 对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD.【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域;(2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.16.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点 【答案】BCD【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==, ()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D .【详解】解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称,即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误.对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确;故选:BCD【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.17.已知函数()()()22224x x f x x x m m e e --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( ) A .1B .1-C .2D .2- 【答案】BC【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论.【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()t tf t t m m e e -=-+-+,定义域为R , 22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称,要使得函数()f x 有唯一零点,则(2)0f =,即2482()0m m -+-=,解得1m =-或2①当1m =-时,2()42()t t f t t e e -=-++由基本不等式有2t t e e -+≥,当且仅当0t =时取得 2()4t t e e -∴+≥故2()42()0t tf t t e e -=-++≥,当且仅当0t =取等号故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意.故选:BC .【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+18.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根【答案】BCD【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果.【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒= 由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥, 221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确;④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD.【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.19.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD【分析】 通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论.【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解.对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =, 方程()g x b =-、()0g x =、()g x b =均只有一解,所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确;对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =, 方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解,所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确.故选:ABD.【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下:(1)确定内层函数()u g x =和外层函数()y f u =;(2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==; (3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.20.已知函数1()x x f x e+=,当实数m 取确定的某个值时,方程2()()10f x mf x ++=的根的个数可以是( )A .0个B .1个C .2个D .4个【答案】ABC【分析】 令()t f x =,画出1()x x f x e+=,结合210t mt ++=的解的情况可得正确的选项. 【详解】 ()x x f x e'=-, 故当0x <时,0f x,故()f x 在,0上为增函数; 当0x >时,0fx ,故()f x 在0,上为减函数, 而()10f -=且当0x >时,()0f x >恒成立,故()f x 的图象如图所示:考虑方程210t mt ++=的解的情况.24m ∆=-,当2m <-时,>0∆,此时方程210t mt ++=有两个不等的正根12t t <,因为121t t =,故101t <<,21t >,由图象可知方程()1t f x =的解的个数为2,方程()2t f x =的解的个数为0,故方程2()()10f x mf x ++=的根的个数是2.当2m =-时,0∆=,此时方程210t mt ++=有两个相等的正根121t t ==,由图象可知方程1f x的解的个数为1, 故方程2()()10f x mf x ++=的根的个数是1.当22m -<<时,∆<0,此时方程210t mt ++=无解,故方程2()()10f x mf x ++=的根的个数是0.当2m =时,0∆=,此时方程210t mt ++=有两个相等的负根121t t ==-, 由图象可知方程()1f x =-的解的个数为1,故方程2()()10f x mf x ++=的根的个数是1.当2m >时,>0∆,此时方程210t mt ++=有两个不等的负根12t t <,由图象可知方程()1t f x =的解的个数为1,方程()2t f x =的解的个数为1,故方程2()()10f x mf x ++=的根的个数是2.故选:ABC .【点睛】本题考查复合方程的解,此类问题,一般用换元法来考虑,其中不含的参数的函数的图象应利用导数来刻画,本题属于难题.。
高三数学下学期函数的概念与基本初等函数多选题单元专项训练学能测试
高三数学下学期函数的概念与基本初等函数多选题单元专项训练学能测试一、函数的概念与基本初等函数多选题1.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD 【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故C 正确;对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD. 【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.2.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一,狄利克雷函数()1,0,x Qf x x Q ∈⎧=⎨∉⎩(Q 是有理数集)的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质、结构”.关于()f x 的性质,下列说法正确的是( )A .函数()f x 是偶函数B .函数()f x 是周期函数C .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=D .对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x ⋅= 【答案】ABC 【分析】利用函数奇偶性的定义可判断A 选项的正误;验证()()1f x f x +=,可判断B 选项的正误;分1x Q ∈、1x Q ∉两种情况讨论,结合函数()f x 的定义可判断C 选项的正误;取20x =,1x Q ∉可判断D 选项的正误.【详解】对于A 选项,任取x Q ∈,则x Q -∈,()()1f x f x ==-; 任取x Q ∉,则x Q -∉,()()0f x f x ==-.所以,对任意的x ∈R ,()()f x f x -=,即函数()f x 为偶函数,A 选项正确; 对于B 选项,任取x Q ∈,则1x Q +∈,则()()11f x f x +==; 任取x Q ∉,则1x Q +∉,则()()10f x f x +==.所以,对任意的x ∈R ,()()1f x f x +=,即函数()f x 为周期函数,B 选项正确; 对于C 选项,对任意1x Q ∈,2x ∈Q ,则12x Q x +∈,()()1211f x x f x +==; 对任意的1x Q ∉,2x ∈Q ,则12x x Q +∉,()()1210f x x f x +==. 综上,对任意的1x R ∈,2x ∈Q ,都有()()121f x x f x +=,C 选项正确; 对于D 选项,取20x =,若1x Q ∉,则()()()12101f x x f f x ⋅==≠,D 选项错误. 故选:ABC. 【点睛】关键点点睛:本题解题的关键在于根据已知函数的定义依次讨论各选项,分自变量为无理数和有理数两种情况讨论,对于D 选项,可取1x Q ∉,20x =验证.3.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解; 【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=,可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0,此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.4.定义在R 上的函数()(),()22(2)f x x g x g x x g x =+=--+--,若()f x 在区间[1,)-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式一定成立的是( )A .21(1)()2f t t f ++> B .(2)0()f f t ->> C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】ABC 【分析】先由()(),()22(2)f x x g x g x x g x =+=--+--推出()f x 关于1x =-对称,然后可得出B 答案成立,对于答案ACD ,要比较函数值的大小,只需分别看自变量到对称轴的距离的大小即可 【详解】因为()(),()22(2)f x x g x g x x g x =+=--+--所以(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+= 所以()f x 关于1x =-对称,所以(0)(2)f f =- 又因为()f x 在区间[1,)-+∞上为增函数,20t -<< 所以(0)(2)()f f f t =-> 因为(0)()0f f t ⋅<所以()0,(2)(0)0f t f f <-=> 所以选项B 成立因为2231120224t t t ⎛⎫++-=++> ⎪⎝⎭所以21t t ++比12离对称轴远 所以21(1)()2f t t f ++>,所以选项A 成立 因为()()2232250t t t +-+=+>所以32t t +>+,所以2t +比1t +离对称轴远所以(2)(1)f t f t +>+,即C 答案成立因为20t -<<,所以()()222123t t t +-+=+符号不定 所以2t +,1t +无法比较大小,所以(1)()f t f t +>不一定成立 所以D 答案不一定成立 故选:ABC 【点睛】本题考查的是函数的性质,由条件得出()f x 关于1x =-对称是解题的关键.5.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.6.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xxe e ef x f x e e e ------====-,该函数为奇函数,图象关于原点对称.所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.7.已知函数4()nn f x x x=+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-,当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确; 当n 为偶数时,>0n x,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.8.已知函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数可能为( ) A .8 B .7C .6D .5【答案】ABC 【分析】以()1f x =的特殊情形为突破口,解出1x =或3或45或4-,将12x x+-看作整体,利用换元的思想进一步讨论即可. 【详解】由基本不等式可得120xx +-≥或124x x+-≤-, 作出函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a >时,1224x x +-≤-或1021x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为4; ②当2a =时,1224x x +-=-或1021x x <+-<或122x x+-=, 故方程12f x a x ⎛⎫+-=⎪⎝⎭的实数根个数为6; ③当12a <<时,12424x x -<+-<-或1021x x <+-<或1122x x<+-< 或1223x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为8; ④当1a =时,124x x +-=-或1021x x <+-<或121x x +-=或123x x+-=,故方程12f x a x ⎛⎫+-=⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为3;⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; 故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.9.下列说法中,正确的有( ) A .若0a b >>,则b aa b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx xx f x -+-=-==+++, 则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.10.设[]x 表示不超过x 的最大整数,如:[]1.21=,[]1.22-=-,[]y x =又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( ) A .x R ∀∈,[][]22x x =B .,x y R ∀∈,若[][]x y =,则1x y ->-C .x R ∀∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦D .不等式[][]2230x x --≥的解集为{|0x x <或}2x ≥ 【答案】BCD通过反例可得A 错误,根据取整函数的定义可证明BC 成立,求出不等式2230t t --≥的解后可得不等式[][]2230x x --≥的解集,从而可判断D 正确与否. 【详解】对于A , 1.5x =-,则[][][]()233,2224x x =-=⨯--==-,故[][]22x x ≠,故A 不成立.对于B ,[][]x y m ==,则1,1m x m m y m ≤<+≤<+, 故1m y m --<-≤-,所以1x y ->-,故B 成立. 对于C ,设x m r =+,其中[),0,1m Z r ∈∈, 则[]11222x x m r ⎡⎤⎡⎤++=++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222x m r =+, 若102r ≤<,则102r ⎡⎤+=⎢⎥⎣⎦,[]20r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦;若112r <<,则112r ⎡⎤+=⎢⎥⎣⎦,[]21r =,故[][]122x x x ⎡⎤++=⎢⎥⎣⎦,故C 成立.对于D ,由不等式[][]2230x x --≥可得[]1x ≤-或[]32x ≥, 故0x <或2x ≥,故D 正确. 故选:BCD 【点睛】本题考查在新定义背景下恒等式的证明与不等式的解法,注意把等式的证明归结为整数部分和小数部分的关系,本题属于较难题.11.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=- B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误.由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点; ∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.12.下列结论正确的是( )A .函数()y f x =的定义域为[]1,3,则函数()21y f x =+的定义域为[]0,1 B .函数()f x 的值域为[]1,2,则函数()1f x +的值域为[]2,3C .若函数24y x ax =-++有两个零点,一个大于2,另一个小于-1,则a 的取值范围是()0,3D .已知函数()23,f x x x x R =+∈,若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为()()0,19,⋃+∞ 【答案】ACD 【分析】根据抽象函数定义域及代换的方法可求函数的定义域,判断A ,利用函数图象的平移可判断函数值域的变换情况,判断B ,利用数形结合及零点的分布求解判断C ,作出函数()23f x x x =+与1y a x =-的图象,数形结合即可判断D.【详解】对于A, ()y f x =的定义域为[]1,3,则由1213x ≤+≤可得()21y f x =+定义域为[]0,1,故正确;对于B ,将函数()f x 的图象向左平移一个单位可得函数()1f x +的图象,故其值域相同,故错误;对于C, 函数2()4y g x x ax ==-++有两个零点,一个大于2,另一个小于-1只需(2)0(1)0g g >⎧⎨->⎩,解得0<<3a ,故正确; 对于D, 作出函数()23f x x x =+与1y a x =-的图象,如图,由图可以看出,0a ≤时,不可能有4个交点,找到直线与抛物线相切的特殊位置1a =或9a =,观察图象可知,当01a <<有4个交点,当9a <时,两条射线分别有2个交点,综上知方程()10f x a x --=恰有4个互异的实数根时,()()0,19,a ∈+∞正确.故选:ACD 【点睛】关键点点睛:对于方程实根问题,可转化为函数图象交点问题,本题中,()23f x x x=+图象确定,而1y a x =-是过(1,0)关于1x =对称的两条射线,参数a 确定两射线张角的大小,首先结合图形找到关键位置,即1a =时左边射线与抛物线部分相切,9a =时右边射线与抛物线相切,然后观察图象即可得出结论.13.函数()()1xf x x R x=∈+,以下四个结论正确的是( ) A .()f x 的值域是()1,1- B .对任意x ∈R ,都有()()12120f x f x x x ->-C .若规定()()()()()11,n n f x f x f x f f x +==,则对任意的(),1n xn N f x n x*∈=+D .对任意的[]1,1x ∈-,若函数()2122f x t at ≤-+恒成立,则当[]1,1a ∈-时,2t ≤-或2t ≥【答案】ABC 【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C 中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围. 【详解】由函数解析式可得11,01()11,01x x f x x x⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x 的值域是()1,1-,且单调递增即()()12120f x f x x x ->-(利用单调性定义结合奇偶性也可说明),即有AB 正确; 对于C ,有()11x f x x =+,若()1,1(1)n x n N f x n x*-∈=+-, ∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.14.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.15.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.16.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011xy -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0x y -=-∈-,所以()1,0a -∈-,所以()0,1a ∈, 且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误,故选:BC.【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有:(1)确定方程根的个数;(2)求参数范围;(3)求不等式解集;(4)研究函数性质.17.已知函数()3log ,092sin ,91744x x f x x x ππ⎧<<⎪=⎨⎛⎫+≤≤ ⎪⎪⎝⎭⎩,若()()()()f a f b f c f d ===,且a b c d <<<,则( )A .1ab =B .26c d π+=C .abcd 的取值范围是()153,165D .+++a b c d 的取值范围是31628,9⎛⎫ ⎪⎝⎭ 【答案】ACD【分析】作出函数()f x 的图象,利用对数的运算性质可判断A 选项的正误,利用正弦型函数的对称性可判断B 选项的正误;利用二次函数的基本性质可判断C 选项的正误;利用双勾函数的单调性可判断D 选项的正误.【详解】 由3log 2x ≤可得32log 2x -≤≤,解得199x ≤≤. 作出函数()f x 的图象如下图所示:由图象可得1191115179a b c d <<<<<<<<<, 由33log log a b =,可得33log log a b -=,即()333log log log 0a b ab +==,得1ab =,A 选项正确; 令()442x k k Z ππππ+=+∈,解得()41x k k Z =+∈, 当()9,17x ∈时,令94117k <+<,解得24k <<,由于k Z ∈,3k ∴=, 所以,函数[]()2sin 9,1744x y x ππ⎛⎫=+∈ ⎪⎝⎭的图象关于直线13x =对称, 则点()(),c f c 、()(),d f d 关于直线13x =对称,可得26c d +=,B 选项错误; ()()()22613169153,165abcd c c c =-=--+∈,C 选项正确;126a b c d a a +++=++,下面证明函数1y x x =+在()0,1上为减函数, 任取1x 、()20,1x ∈且12x x <,则()12121212121111y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1212211212121x x x x x x x x x x x x ---=-+=, 1201x x <<<,则120x x -<,1201x x <<,所以,12y y >, 所以,函数1y x x=+在()0,1上为减函数, 119a <<,则13162628,9a b c d a a ⎛⎫+++=++∈ ⎪⎝⎭,D 选项正确. 故选:ACD.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.18.若定义在R 上的函数()f x 满足()()0f x f x ,当0x <时,23()22f x x ax a =++(a ∈R ),则下列说法正确的是( ) A .若方程()2a f x ax =+有两个不同的实数根,则0a <或48a << B .若方程()2a f x ax =+有两个不同的实数根,则48a << C .若方程()2a f x ax =+有4个不同的实数根,则8a > D .若方程()2a f x ax =+有4个不同的实数根,则4a > 【答案】AC【分析】由题知()f x 是R 上的奇函数,则由0x <时的解析式可求出()f x 在R 上的解析式.先讨论特殊情况0x =为方程的根,则可求出0a =,此时方程化为()0f x =,而函数()f x 为R 上的减函数,则方程仅有一个根.当0x ≠时,由分段函数分类讨论得出0x <时,1(1)2(1)a x x =-+++-+,0x >时,4242a x x =-++-.利用数形结合思想,画出图象,则可得知方程()2a f x ax =+不同的实数根个数分别为2个和4时,参数a 的取值范围.【详解】因为()()0f x f x 所以()()f x f x -=-,所以()f x 是R 上的奇函数,(0)0f =, 当0x >时,0x -<,23()22f x x ax a -=-+, 所以23()()22f x f x x ax a =--=-+-, 综上2232,02()0,032,02x ax a x f x x x ax a x ⎧++<⎪⎪==⎨⎪⎪-+->⎩,若0x =是方程()2a f x ax =+的一个根,则0a =,此时()2a f x ax =+,即()0f x =, 而22,0()0,0,0x x f x x x x ⎧<⎪==⎨⎪->⎩,在R 上单调递减,当0a =时,原方程有一个实根.当0x <时,23222a x ax a ax ++=+, 所以20x ax a ++=,当1x =-时不满足,所以21(1)21(1)x a x x x =-=-++++-+, 当0x >时,23222a x ax a ax -+-=+, 所以220x ax a -+=,当2x =时不满足,所以242422x a x x x ==-++--,如图:若方程()2a f x ax =+有两个不同的实数根, 则0a <或48a <<; 若方程()2a f x ax =+有4个不同的实数根,则8a >. 故选:AC【点睛】关键点点睛:本题的关键是将方程()2a f x ax =+进行参数分离,再借助数形结合法,求出对应的参数的取值范围.19.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫⎪⎝⎭【答案】BC【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项.【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.20.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n ⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( )A .()20202019f =B .()20202020f =C .21122n n n b --=+D .(1)2n n n b += 【答案】BC【分析】先推导出()f x 在[)()*,1n n n N +∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21x f x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+; ………故当[),1x n n ∈+时,()()21x n f x n -=+-,当21,2n n x ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-. 所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n ⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n nb ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.。
人教版高三数学下学期函数的概念与基本初等函数多选题单元达标提高题学能测试
人教版高三数学下学期函数的概念与基本初等函数多选题单元达标提高题学能测试一、函数的概念与基本初等函数多选题1.函数()f x 的定义域为D ,若存在区间[],m n D ⊆使()f x 在区间[],m n 上的值域也是[],m n ,则称区间[],m n 为函数()f x 的“和谐区间”,则下列函数存在“和谐区间”的是( ) A .()f x =B .()222f x x x =-+C .()1f x x x=+D .()1f x x=【答案】ABD 【分析】根据题意,可知若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,且m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,再对各个选项进行运算求解,m n ,即可判断该函数是否存在“和谐区间”.【详解】解:由题得,若()f x 在区间[],m n 上的值域也是[],m n ,则()f x 存在“和谐区间”[],m n ,可知,m n <,则()()f m m f n n ⎧=⎪⎨=⎪⎩或()()f m nf n m ⎧=⎪⎨=⎪⎩,A :())0f x x =≥,若()()f m mf n n⎧==⎪⎨==⎪⎩,解得:01m n =⎧⎨=⎩,所以()f x =“和谐区间”[]0,1;B :()()222f x x x x R =-+∈,若 ()()222222f m m m mf n n n n⎧=-+=⎪⎨=-+=⎪⎩,解得:12m n =⎧⎨=⎩, 所以()222f x x x =-+存在“和谐区间” []1,2;C :()()10f x x x x =+≠,若()()11f m m m mf n n n n ⎧=+=⎪⎪⎨⎪=+=⎪⎩,得1010m n⎧=⎪⎪⎨⎪=⎪⎩,故无解;若()()11f m m nmf n n mn⎧=+=⎪⎪⎨⎪=+=⎪⎩,即 21111m n m m m n n m n ⎧+=⎪⎪⎪=⎨+⎪⎪+=⎪⎩,化简得:2210(1)m m m m ++=+, 即210m m ++=,由于2141130∆=-⨯⨯=-<,故无解; 若()0112,m n f m m <<<∴=∴= 不成立 所以()1f x x x=+不存在“和谐区间”; D :()()10f x x x =≠,函数在()()0+-0∞∞,,,单调递减,则 ()()11f m n mf n mn ⎧==⎪⎪⎨⎪==⎪⎩, 不妨令122m n ⎧=⎪⎨⎪=⎩, 所以()1f x x =存在“和谐区间”1,22⎡⎤⎢⎥⎣⎦; 综上得:存在“和谐区间”的是ABD. 故选:ABD. 【点睛】关键点点睛:本题以函数的新定义为载体,考查函数的定义域、值域以及零点等知识,解题的关键是理解“和谐区间”的定义,考查运算能力以及函数与方程的思想.2.高斯是德国著名数学家、物理学家、天文学家、大地测量学家,近代数学奠基者之一.高斯被认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]()f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列正确的是( ) A .函数()f x 是R 上单调递增函数B .对于任意实数a b ,,都有()()()f a f b f a b +≤+ C .函数()()g x f x ax =-(0x ≠)有3个零点,则实数a 的取值范围是34434532⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭,, D .对于任意实数x ,y ,则()()f x f y =是1x y -<成立的充分不必要条件 【答案】BCD 【分析】取反例可分析A 选项,设出a ,b 的小数部分,根据其取值范围可分析B 选项,数形结合可分析C 选项,取特殊值可分析D 选项. 【详解】解:对于A 选项,()()1 1.21f f ==,故A 错误;对于B 选项,令[]a a r =+,[](,b b q r =+q 分别为a ,b 的小数部分), 可知[]01r a a =-<,[]01q b b =-<,[]0r q +≥, 则()[][][][][][][]()()f a b a b r q a b r q a b f a f b ⎡⎤+=+++=++++=+⎣⎦,故B 错误;对于C 选项,可知当1k x k ≤<+,k Z ∈时,则()[]f x x k ==, 可得()f x 的图象,如图所示:函数()()()0g x f x ax x =-≠有3个零点,∴函数()f x 的图象和直线y ax =有3个交点,且()0,0为()f x 和直线y ax =必过的点,由图可知,实数a 的取值范围是][3443,,4532⎛⎫⋃⎪⎝⎭,故C 正确;对于D 选项,当()()f x f y =时,即r ,q 分别为x ,y 的小数部分,可得01r ≤<,01q ≤<,[][]101x y x r y q r q -=+--=-<-=;当1x y -<时,取0.9x =-,0.09y =,可得[]1x =-,[]0y =,此时不满足()()f x f y =,故()()f x f y =是1x y -<成立的充分不必要条件,故D 正确; 故选:BCD . 【点睛】本题考查函数新定义问题,解答的关键是理解题意,转化为分段函数问题,利用数形结合思想;3.已知函数()2221,021,0x x x f x x x x ⎧++≥=⎨-++<⎩,则下列判断正确的是( )A .()f x 为奇函数B .对任意1x ,2x R ∈,则有()()()12120x x f x f x --≤⎡⎤⎣⎦C .对任意x ∈R ,则有()()2f x f x +-=D .若函数()y f x mx =-有两个不同的零点,则实数m 的取值范围是()()–,04,∞+∞【答案】CD 【分析】根据函数的奇偶性以及单调性判断AB 选项;对x 进行分类讨论,判断C 选项;对选项D ,构造函数,将函数的零点问题转化为函数图象的交点问题,即可得出实数m 的取值范围. 【详解】对于A 选项,当0x >时,0x -<,则()22()()2()121()f x x x x x f x -=--+-+=-+-≠-所以函数()f x 不是奇函数,故A 错误; 对于B 选项,221y x x =++的对称轴为1x =-,221y x x =-++的对称轴为1x =所以函数221y x x =++在区间[0,)+∞上单调递增,函数221y x x =-++在区间(,0)-∞上单调递增,并且2202010201+⨯+=-+⨯+ 所以()f x 在R 上单调递增即对任意()1122,,x x x x R <∈,都有()()12f x f x <则()()()()()121212120,00x x f x f x x x f x f x ⎡⎤-<-⇒--⎣⎦,故B 错误; 对于C 选项,当0x >时,0x -<,则 22()()2()121f x x x x x -=--+-+=--+ 则22()()21212f x f x x x x x +-=++--+= 当0x =时,(0)(0)1f f -==,则(0)(0)2f f -+=当0x <时,0x ->,则22()()2()121f x x x x x -=-+-+=-+ 则22()()21212f x f x x x x x +-=-+++-+=即对任意x ∈R ,则有()()2f x f x +-=,故C 正确;对于D 选项,当0x =时,()010y f ==≠,则0x =不是该函数的零点 当0x ≠时,()()0f x f x xm x m -=⇔=令函数()()g x f x x=,函数y m =由题意可知函数y m =与函数()()g x f x x=的图象有两个不同的交点因为()0f x ≥时,)1x ⎡∈+∞⎣,()0f x <时,(,1x ∈-∞-所以12,012,12)01,1(x x x x x x x x x g x ⎧++>⎪⎪⎪-++<⎨⎪⎪--<-⎩=⎪ 当0x >时,设1201x x ,()()()()121212121212111x x x x g x g x x x x x x x ---=+--= 因为12120,10x x x x -<-<,所以()()120g x g x ->,即()()12g x g x > 设121x x <<,()()()()1212121210x x x x g x g x x x ---=<,即()()12g x g x <所以函数()g x 在区间(0,1)上单调递减,在区间(1,)+∞上单调递增同理可证,函数()g x在区间)1⎡⎣上单调递减,在区间(,1-∞上单调递增11241)1(g ++==函数()g x 图象如下图所示由图可知,要使得函数y m =与函数()()g x f x x=的图象有两个不同的交点则实数m 的取值范围是()()–,04,∞+∞,故D 正确;故选:CD 【点睛】本题主要考查了利用定义证明函数的单调性以及奇偶性,由函数零点的个数求参数的范围,属于较难题.4.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-,所以增函数12222t tt t y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫ ⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.5.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.6.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.7.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误; 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,,当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.8.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根,即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kxx x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=2k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.9.已知函数()22,21ln 1,1x x f x x x e +-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( )A .3-B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈- ⎥⎝⎦,即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦, 故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.10.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n ⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222nx n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.11.若实数2a ≥,则下列不等式中一定成立的是( ) A .21(1)(2)a a a a +++>+ B .1log (1)log (2)a a a a ++>+ C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.12.函数()()1xf x x R x=∈+,以下四个结论正确的是( ) A .()f x 的值域是()1,1- B .对任意x ∈R ,都有()()12120f x f x x x ->-C .若规定()()()()()11,n n f x f x f x f f x +==,则对任意的(),1n xn N f x n x*∈=+D .对任意的[]1,1x ∈-,若函数()2122f x t at ≤-+恒成立,则当[]1,1a ∈-时,2t ≤-或2t ≥【答案】ABC 【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C 中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围. 【详解】由函数解析式可得11,01()11,01x x f x x x⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x 的值域是()1,1-,且单调递增即()()12120f x f x x x ->-(利用单调性定义结合奇偶性也可说明),即有AB 正确; 对于C ,有()11x f x x =+,若()1,1(1)n x n N f x n x*-∈=+-, ∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.13.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.14.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.15.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( ) A .()1.10.9f -= B .函数()f x 为奇函数 C .()()11f x f x +=+ D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确. 对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.16.下列函数求值域正确的是( )A .()1f x x =+的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C .()h x =(0D .()w x =的值域为[2【答案】CD 【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g x x x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B ;()h x ==利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()w x =()24w x =,由于()0w x >,可得()w x =2(1)t x =-+的范围即可求()w x 值域,可判断选项D. 【详解】对于选项A:原函数化为211 ()12312212x xf x x x xx x-+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,,其图象如图,原函数值域为[3)+∞,,故选项A不正确,对于选项B:2(1)11()(1)11xg x xx x++==++++,定义域为{}|1x x≠-,当1x<-时,10x+<,此时[][]11(1)2(1)211x xx x⎛⎫⎛⎫-++-≥-+⨯-=⎪ ⎪++⎝⎭⎝⎭,所以1(1)21xx++≤-+,当且仅当1(1)1xx-+=-+即2x=-时等号成立,当1x>-时,10x+>,此时11(1)(1)211x xx x++≥+⨯=++,当且仅当111xx+=+即0x=时等号成立,所以函数()g x值域为(2][2)-∞-⋃+∞,,,故选项B不正确;对于选项C:()h x的定义域为[1)+∞,,(11)(11)()111111x x x xh x x xx x x x++-+--=+-==++-++-,因为1y x=+1y x=-[1)+∞,上是增函数,所以11y x x=+-[1)+∞,上是增函数,又11y x x=+-[1)+∞,上恒不等于0,则11yx x=++-在[1)+∞,上是减函数,则()h x的最大值为()12h=又因为()0h x>,所以()h x的值域为(02],,故选项C正确;对于选项D:()w x的定义域为[31]-,,()2()131313213w x x x x x x x x x =-+=-++=-+++-⋅+===设2(1)t x =-+,则[40]t ∈-,,[]0,4,[]44,8∈,则()2,w x ⎡=⎣,()w x 的值域为[2,故选项D 正确, 故选:CD 【点睛】方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域; (4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b =±±数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,a b +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x 的一元二次方程,利用判别式求值域,形如y Ax =+22ax bx c y dx ex f++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域; (9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.17.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.18.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4 D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.19.已知函数()sin sin xxf x e e=+,以下结论正确的是( )A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为5【答案】ABD 【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe '=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈; 当2x ππ≤≤时,()()sin sin cos xx f x x ee -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x ee ⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确. 因()f x 在,2x ππ⎛⎫∈ ⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误. 对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x xπ=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin xx f x ee -=+,()()sin sin cos 0x x f x x e e -'=->,3123322f e e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.20.已知函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则方程12f x a x ⎛⎫+-= ⎪⎝⎭的实根个数可能为( ) A .8 B .7C .6D .5【答案】ABC 【分析】以()1f x =的特殊情形为突破口,解出1x =或3或45或4-,将12x x+-看作整体,利用换元的思想进一步讨论即可. 【详解】 由基本不等式可得120x x +-≥或124x x+-≤-, 作出函数()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩的图像,如下:①当2a >时,1224x x +-≤-或1021x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为4; ②当2a =时,1224x x +-=-或1021x x <+-<或122x x+-=, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为6; ③当12a <<时,12424x x -<+-<-或1021x x <+-<或1122x x<+-< 或1223x x<+-<, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为8; ④当1a =时,124x x +-=-或1021x x <+-<或121x x +-=或123x x+-=,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为7; ⑤当01a <<时,1420x x -<+-<或1324x x<+-<,故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; ⑥当0a =时,120x x +-=或1324x x<+-<, 故方程12f x a x ⎛⎫+-=⎪⎝⎭的实数根个数为3; ⑦当0a <时,123x x+->, 故方程12f x a x ⎛⎫+-= ⎪⎝⎭的实数根个数为2; 故选:ABC 【点睛】本题考查了求零点的个数,考查了数形结合的思想以及分类讨论的思想,属于难题.。
高三数学下学期函数的概念与基本初等函数多选题单元专题强化试卷学能测试试卷
高三数学下学期函数的概念与基本初等函数多选题单元专题强化试卷学能测试试卷一、函数的概念与基本初等函数多选题1.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根, 即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k xkx x x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.2.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+=C .4x y z +>D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y =+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121xyzm ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.3.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.4.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD 【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-,将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍),结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.5.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .1122⎡-⎢⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞0<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-, 即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=, 由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得b =b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得1x =,2x =,所以a b ⎧=⎪⎪⎨⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.6.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减,因为cos2[1,1]t x =∈-, 所以增函数12222ttt ty -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)x x h x --=, 设(,)P x y 为sin 2sin 22(2)x x h x --=上任意一点, 则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.7.下列命题正确的是( )A .已知幂函数21()(1)m f x m x --=+在(0,)+∞上单调递减则0m =或2m =-B .函数2()(24)3f x x m x m =-++的有两个零点,一个大于0,一个小于0的一个充分不必要条件是1m <-.C .已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)0f a ->,则a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭D .已知函数()f x 满足()()2f x f x -+=,1()x g x x+=,且()f x 与()g x 的图像的交点为()()()112288,,,,x y x y x y 则128128x x x y y y ++⋯++++⋯+的值为8【答案】BD 【分析】根据幂函数的性质,可判定A 不正确;根据二次函数的性质和充分条件、必要条件的判定,可得判定B 是正确;根据函数的定义域,可判定C 不正确;根据函数的对称性,可判定D 正确,即可求解. 【详解】对于A 中,幂函数21()(1)m f x m x--=+,可得11m +=±,解得0m =或2m =-,当0m =时,函数1()f x x -=在(0,)+∞上单调递减;当2m =-时,函数()f x x =在(0,)+∞上单调递增,所以A 不正确;对于B 中,若函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0,则满足(0)30f m =<,解得0m <,所以1m <-是函数2()(24)3f x x m x m =-++的有两个零点,且一个大于0,一个小于0的充分不必要条件,所以B 是正确; 对于C 中,由函数31()sin ln()1x f x x x x +=++-,则满足101xx+>-,解得11x -<<, 即函数()f x 的定义域为(1,1)-,所以不等式(21)0f a ->中至少满足1211a -<-<, 即至少满足01a <<,所以C 不正确;对于D 中,函数()f x 满足()()2f x f x -+=,可得函数()y f x =的图象关于(0,1)点对称, 又由11()x x g x x x-+--==-,可得()()2g x g x -+=,所以函数()y g x =的图象关于(0,1)点对称,则1281280428x x x y y y ++⋯++++⋯+⨯+==,所以D 正确.故选:BD. 【点睛】本题主要考查了以函数的基本性质为背景的命题的真假判定,其中解答中熟记函数的基本性质,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( ) A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .122x x >【答案】ABC 【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C.【详解】函数xy e =与ln y x =互为反函数, 则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln lnx x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤, 由于12x x ≠,则121x x <,故D 错误; 故选:ABC【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.9.已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()xx f x e e -=+为偶函数,当1k =-时,()xx f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x ee -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增, 故函数()xx f x ee -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误;当1k =-时,()xx f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减, 故函数()xx f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误.故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.10.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,. ()()11111+11++1xxx x xxe e ef x f x e e e ------====-,该函数为奇函数,图象关于原点对称.所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.11.已知()()()52log 1,122,1x x f x x x ⎧-<⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭()1a <的实根个数可能为( ) A .2 B .3C .4D .5【答案】ABC 【分析】画出()f x 的图像,由1a <,可分类讨论01a <<,0a =,0a <三种情况,令12t x x =+-,并画出图像,结合两个函数图像以及12f x a x ⎛⎫+-= ⎪⎝⎭,判断出实根个数构成的集合. 【详解】画出()f x 的图像如图所示,令12t x x=+-,画出图像如图所示. 由()5log 11t -=,解得:4544,5t t =-=,由()2221t --+=,解得671,3t t ==.. 由()5log 10t -=,解得:80t =,由()()22201t t --+=≥,解得922t = (1)当01a <<时,()f t a =,有3解,且40t -<<或405t <<或322t <<+合12t x x =+-的图像可知,40t -<<时没有x 与其对应,405t <<或322t <<+时每个t 都有2个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有4个实数根. (2)当0a =时,()f t a =,有2解,且0t =或22t =+,0t =有一个1x =与其对应,22t =+有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有3个实数根. (3)当0a <时,()f t a =,有1解,且22t >+,结合12t x x=+-的图像可知,每个t 有两个x 与其对应,故此时12f x a x ⎛⎫+-= ⎪⎝⎭有2个实数根.综上所述,关于x 的方程12f x a x ⎛⎫+-=⎪⎝⎭的实根个数构成的集合为{2,3,4}. 故选:ABC【点睛】方法点睛:本题考查分类讨论参数,求函数零点个数问题,讨论函数零点个数常用方法:(1)直接法:直接求解方程得到方程的根;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,考查学生的数形结合的数学思想方法,考查分类讨论的数学思想方法,属于难题.12.对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x mh x g x m ⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”.给出定义域均为{}|1D x x =>的四组函数,其中曲线()y f x =与()y g x =存在“分渐近线”的是( )A .()2f x x =,()g x =B .()102xf x -=+,()23x g x x-=C .()21x f x x+=,()ln 1ln x x g x x +=D .()221x f x x =+,()()21xg x x e -=--【答案】BD 【分析】根据分渐近线的定义,对四组函数逐一分析,由此确定存在“分渐近线”的函数. 【详解】解:()f x 和()g x 存在分渐近线的充要条件是x →∞时,()()0,()()f x g x f x g x -→>.对于①,()2f x x =,()g x =当1x >时,令()()()2F x f x g x x =-=,由于()20F x x '=->,所以()h x 为增函数,不符合x →∞时,()()0f x g x -→,所以不存在分渐近线; 对于②,()1022xf x -=+>,()232,(1)x g x x x-=<> ()()f x g x ∴>,2313()()10210xx x f x g x x x--⎛⎫-=+-=+ ⎪⎝⎭,因为当1x >且x →∞时,()()0f x g x -→,所以存在分渐近线;对于③,21()x f x x+=,ln 1()ln x x g x x +=,21111111()()ln ln ln x x nx f x g x x x x x x x x x++-=-=+--=-当1x >且x →∞时,1x 与1ln x 均单调递减,但1x的递减速度比1ln x 快,所以当x →∞时,()()f x g x -会越来越小,不会趋近于0,所以不存在分渐近线;对于④,22()1x f x x =+,()()21xg x x e -=--,当x →∞时,22()()220+1222+1x x x f x g x x e x x e--=-+++=→,且()()0f x g x ->,因此存在分渐近线.故存在分渐近线的是BD . 故选:BD . 【点睛】本小题主要考查新定义概念的理解和运用,考查函数的单调性,属于难题.13.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( ) A .()f x 是偶函数B .()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x =【答案】ABC 【分析】 逐项分析判断即可. 【详解】当x -为有理数时,x 也为有理数∴()1f x -=当x -为无理数时,x 也为无理数∴()0f x -= ∴1()()0()x f x x ⎧-=⎨⎩为有理数为无理数∴()()f x f x -=()f x ∴是偶函数,A 对;易知B 对;1x =时,()((1))11f f f ==∴C 对(())()f f x f x =的解为全体有理数∴D 错故选:ABC. 【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,难度较大.14.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.15.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭ D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD 【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故C 正确;对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD. 【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.16.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称,即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误.对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确;故选:BCD【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.17.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()x f x e =B .()f x =C .()()2sin f x x =D .()sin f x x x =⋅【答案】BCD【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论.【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”;对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C. ()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立,()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.18.已知函数()()()22224x x f x x x m m e e --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( )A .1B .1-C .2D .2-【答案】BC【分析】 由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论.【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()t tf t t m m e e -=-+-+,定义域为R , 22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称,要使得函数()f x 有唯一零点,则(2)0f =,即2482()0m m -+-=,解得1m =-或2①当1m =-时,2()42()t t f t t e e -=-++由基本不等式有2t t e e -+≥,当且仅当0t =时取得 2()4t t e e -∴+≥故2()42()0t tf t t e e -=-++≥,当且仅当0t =取等号故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意.故选:BC .【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+19.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根【答案】BCD【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果.【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒= 由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥, 221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>, 即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确;④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD.【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.20.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点【答案】BCD【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==, ()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D .【详解】根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=-即(4)(2)()f x f x f x +=-+=则()f x 是周期为4的周期函数,A 错误;对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--, [0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--,[0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---,[6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-, ()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<,存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增,0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->, 所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点,即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<,又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点,所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>, ()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD .【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.。
高考数学函数的概念与基本初等函数多选题练习题含答案
高考数学函数的概念与基本初等函数多选题练习题含答案一、函数的概念与基本初等函数多选题1.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4 D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.3.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n ⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222nx n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.4.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.5.对x ∀∈R ,[]x 表示不超过x 的最大整数.十八世纪,[]y x =被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( ) A .,[]1x x x ∃∈+RB .,,[][][]x y x y x y ∀∈++RC .函数[]()y x x x =-∈R 的值域为[0,1)D .若t ∃∈R ,使得3451,2,3,,2nt t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n 的最大值是5 【答案】BCD 【分析】由取整函数的定义判断,由定义得[][]1x x x ≤<+,利用不等式性质可得结论. 【详解】[]x 是整数, 若[]1x x ≥+,[]1x +是整数,∴[][]1x x ≥+,矛盾,∴A 错误;,x y ∀∈R ,[],[]x x y y ≤≤,∴[][]x y x y +≤+,∴[][][]x y x y +≤+,B 正确;由定义[]1x x x -<≤,∴0[]1x x ≤-<,∴函数()[]f x x x =-的值域是[0,1),C 正确;若t ∃∈R ,使得3451,2,3,,2n t t t t n ⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t ≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.6.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而102-<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-,即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=, 由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得12b +=,12b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得112x =,212x =,所以a b ⎧=⎪⎪⎨⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.7.下列选项中a 的范围能使得关于x 的不等式220x x a +--<至少有一个负数解的是( ) A .9,04⎛⎫-⎪⎝⎭B .()2,3C .1,2D .0,1【答案】ACD【分析】将不等式变形为22x a x -<-,作出函数2,2y x a y x =-=-的图象,根据恰有一个负数解时判断出临界位置,再通过平移图象得到a 的取值范围. 【详解】因为220x x a +--<,所以22x a x -<-且220x ,在同一坐标系中作出2,2y x a y x =-=-的图象如下图:当y x a =-与22y x =-在y 轴左侧相切时,22x a x -=-仅有一解,所以()1420a ∆=++=,所以94a =-, 将y x a =-向右移动至第二次过点()0,2时,02a -=,此时2a =或2a =-(舍), 结合图象可知:9,24a ⎛⎫∈- ⎪⎝⎭,所以ACD 满足要求. 故选:ACD. 【点睛】本题考查函数与方程的综合应用,着重考查数形结合的思想,难度较难.利用数形结合可解决的常见问题有:函数的零点或方程根的个数问题、求解参数范围或者解不等式、研究函数的性质等.8.下列说法中,正确的有( ) A .若0a b >>,则b a a b> B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx xx f x -+-=-==+++, 则()()()()()()21212212122212221x x x x x x x x f x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.二、导数及其应用多选题9.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+-C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; 对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③; 对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a cb d -+-的值可能是( ) A .7 B .8C .9D .10【答案】BCD 【分析】由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12xf x e '∴=-由1121cd c d -=⇒=-+-,令()2g x x =-+ 则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y 由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD. 【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。
高三数学易错函数的概念与基本初等函数多选题达标测试基础卷
高三数学易错函数的概念与基本初等函数多选题达标测试基础卷一、函数的概念与基本初等函数多选题1.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称为的“k 倍跟随区间”;若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是( )A .若[]1,b 为()222f x x x =-+的跟随区间,则2b =B .函数()11f x x=+存在跟随区间 C .若函数()f x m =1,04m ⎛⎤∈- ⎥⎝⎦D .二次函数()212f x x x =-+存在“3倍跟随区间” 【答案】ABCD 【分析】根据“k 倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可. 【详解】对A, 若[]1,b 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,b 为增函数,故其值域为21,22b b ⎡⎤-+⎣⎦,根据题意有222b b b -+=,解得1b =或2b =,因为1b >故2b =.故A 正确; 对B,因为函数()11f x x =+在区间(),0-∞与()0,+∞上均为减函数,故若()11f x x=+存在跟随区间[],a b 则有11+11+a b b a ⎧=⎪⎪⎨⎪=⎪⎩,解得:1212a b ⎧-=⎪⎪⎨⎪=⎪⎩. 故存在, B 正确.对C, 若函数()f x m =[],a b ,因为()f x m =,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=⎪⎩a b < 即()()()11a b a b a b -=+-+=-,因为a b <,1=.易得01≤<.所以(1a m m =-=--,令t =20t t m --=,同理t =20t t m --=,即20t t m --=在区间[]0,1上有两根不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故C 正确.对D,若()212f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b .当1a b <≤时,易得()212f x x x =-+在区间上单调递增,此时易得,a b 为方程2132x x x -+=的两根,求解得0x =或4x =-.故存在定义域[]4,0-,使得值域为[]12,0-. 故D 正确. 故选:ABCD. 【点睛】本题主要考查了函数新定义的问题,需要根据题意结合函数的性质分析函数的单调性与取最大值时的自变量值,并根据函数的解析式列式求解.属于难题.2.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=- B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误. 【详解】由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点;∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.3.已知函数()3log ,092sin ,91744x x f x x x ππ⎧<<⎪=⎨⎛⎫+≤≤ ⎪⎪⎝⎭⎩,若()()()()f a f b f c f d ===,且a b c d <<<,则( )A .1ab =B .26c d π+=C .abcd 的取值范围是()153,165D .+++a b c d 的取值范围是31628,9⎛⎫⎪⎝⎭【答案】ACD 【分析】作出函数()f x 的图象,利用对数的运算性质可判断A 选项的正误,利用正弦型函数的对称性可判断B 选项的正误;利用二次函数的基本性质可判断C 选项的正误;利用双勾函数的单调性可判断D 选项的正误. 【详解】由3log 2x ≤可得32log 2x -≤≤,解得199x ≤≤. 作出函数()f x 的图象如下图所示:由图象可得1191115179a b c d <<<<<<<<<,由33log log a b =,可得33log log a b -=,即()333log log log 0a b ab +==,得1ab =,A 选项正确; 令()442x k k Z ππππ+=+∈,解得()41x k k Z =+∈, 当()9,17x ∈时,令94117k <+<,解得24k <<,由于k Z ∈,3k ∴=,所以,函数[]()2sin 9,1744x y x ππ⎛⎫=+∈⎪⎝⎭的图象关于直线13x =对称, 则点()(),c f c 、()(),d f d 关于直线13x =对称,可得26c d +=,B 选项错误;()()()22613169153,165abcd c c c =-=--+∈,C 选项正确; 126a b c d a a+++=++,下面证明函数1y x x =+在()0,1上为减函数,任取1x 、()20,1x ∈且12x x <,则()12121212121111y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1212211212121x x x x x x x x x x x x ---=-+=, 1201x x <<<,则120x x -<,1201x x <<,所以,12y y >,所以,函数1y x x=+在()0,1上为减函数, 119a <<,则13162628,9a b c d a a ⎛⎫+++=++∈ ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.4.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( )A .()f x 是偶函数B .()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x =【答案】ABC 【分析】逐项分析判断即可.【详解】当x-为有理数时,x也为有理数∴()1f x-=当x-为无理数时,x也为无理数∴()0f x-=∴1()()0()xf xx⎧-=⎨⎩为有理数为无理数∴()()f x f x-=()f x∴是偶函数,A对;易知B对;1x=时,()((1))11f f f==∴C对(())()f f x f x=的解为全体有理数∴D错故选:ABC.【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,难度较大.5.对x∀∈R,[]x表示不超过x的最大整数.十八世纪,[]y x=被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是()A.,[]1x x x∃∈+RB.,,[][][]x y x y x y∀∈++RC.函数[]()y x x x=-∈R的值域为[0,1)D.若t∃∈R,使得3451,2,3,,2nt t t t n⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则正整数n的最大值是5【答案】BCD【分析】由取整函数的定义判断,由定义得[][]1x x x≤<+,利用不等式性质可得结论.【详解】[]x是整数,若[]1x x≥+,[]1x+是整数,∴[][]1x x≥+,矛盾,∴A错误;,x y∀∈R,[],[]x x y y≤≤,∴[][]x y x y+≤+,∴[][][]x y x y+≤+,B正确;由定义[]1x x x-<≤,∴0[]1x x≤-<,∴函数()[]f x x x=-的值域是[0,1),C正确;若t∃∈R,使得3451,2,3,,2nt t t t n⎡⎤⎡⎤⎡⎤⎡⎤====-⎣⎦⎣⎦⎣⎦⎣⎦同时成立,则1t≤<,t ≤<t ≤<t ≤<,,t ≤<=6n ≥,则不存在t 同时满足1t ≤<t <5n ≤时,存在t ∈满足题意, 故选:BCD . 【点睛】本题考查函数新定义,正确理解新定义是解题基础.由新定义把问题转化不等关系是解题关键,本题属于难题.6.定义:若函数()F x 在区间[]a b ,上的值域为[]a b ,,则称区间[]a b ,是函数()F x 的“完美区间”,另外,定义区间()F x 的“复区间长度”为()2b a -,已知函数()21f x x =-,则( )A .[]0,1是()f x 的一个“完美区间”B .⎣⎦是()f x 的一个“完美区间”C .()f x 的所有“完美区间”的“复区间长度”的和为3+D .()f x 的所有“完美区间”的“复区间长度”的和为3+【答案】AC 【分析】根据定义,当[]0,1x ∈时求得()f x 的值域,即可判断A ;对于B ,结合函数值域特点即可判断;对于C 、D ,讨论1b ≤与1b >两种情况,分别结合定义求得“复区间长度”,即可判断选项. 【详解】对于A ,当[]0,1x ∈时,()2211f x x x =-=-,则其值域为[]0,1,满足定义域与值域的范围相同,因而满足“完美区间”定义,所以A 正确;对于B ,因为函数()210f x x =-≥,所以其值域为[)0,+∞,而102-<,所以不存在定义域与值域范围相同情况,所以B 错误;对于C ,由定义域为[]a b ,,可知0a b ≤<, 当1b ≤时,[][]0,1a b ,,此时()2211f x x x =-=-,所以()f x 在[]a b ,内单调递减,则满足()()2211f a a b f b b a⎧=-=⎪⎨=-=⎪⎩,化简可得22a a b b -=-,即221122a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以1122a b -=-或1122a b -=-,解得a b =(舍)或1a b +=, 由211a b a b +=⎧⎨+=⎩解得1b =或0b =(舍), 所以10a b =-=,经检验满足原方程组,所以此时完美区间为[]0,1,则“复区间长度”为()22b a -=;当1b >时,①若01a ≤<,则[]1a b ∈,,此时()()min 10f x f ==.当()f x 在[]a b ,的值域为[]a b ,,则()0,a f b b ==,因为1b > ,所以()21f b b b =-=,即满足210b b --=,解得12b +=,12b =.所以此时完美区间为⎡⎢⎣⎦,则“复区间长度”为()12212b a +-=⨯=+ ②若1a ≤,则()21f x x =-,[]x a b ∈,,此时()f x 在[]a b ,内单调递增,若()f x 的值域为[]a b ,,则()()2211f a a af b b b⎧=-=⎪⎨=-=⎪⎩,则,a b 为方程210x x --=的两个不等式实数根,解得112x =,212x =,所以a b ⎧=⎪⎪⎨⎪=⎪⎩,与1a ≤矛盾,所以此时不存在完美区间.综上可知,函数()21f x x =-的“复区间长度”的和为213++=C 正确,D 错误; 故选:AC. 【点睛】本题考查了函数新定义的综合应用,由函数单调性判断函数的值域,函数与方程的综合应用,分类讨论思想的综合应用,属于难题.7.德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立 C .任取一个不为零的有理数T ,f x Tf x 对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD 【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.8.对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x mh x g x m⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”.给出定义域均为{}|1D x x =>的四组函数,其中曲线()y f x =与()y g x =存在“分渐近线”的是( ) A .()2f x x =,()g x x =B .()102xf x -=+,()23x g x x-=C .()21x f x x+=,()ln 1ln x x g x x +=D .()221x f x x =+,()()21xg x x e -=--【答案】BD 【分析】根据分渐近线的定义,对四组函数逐一分析,由此确定存在“分渐近线”的函数. 【详解】解:()f x 和()g x 存在分渐近线的充要条件是x →∞时,()()0,()()f x g x f x g x -→>.对于①,()2f x x =,()g x =当1x >时,令()()()2F x f x g x x =-=,由于()20F x x '=->,所以()h x 为增函数,不符合x →∞时,()()0f x g x -→,所以不存在分渐近线; 对于②,()1022xf x -=+>,()232,(1)x g x x x-=<> ()()f x g x ∴>,2313()()10210xx x f x g x x x--⎛⎫-=+-=+ ⎪⎝⎭,因为当1x >且x →∞时,()()0f x g x -→,所以存在分渐近线;对于③,21()x f x x+=,ln 1()ln x x g x x +=,21111111()()ln ln ln x x nx f x g x x x x x x x x x++-=-=+--=-当1x >且x →∞时,1x 与1ln x 均单调递减,但1x的递减速度比1ln x 快,所以当x →∞时,()()f x g x -会越来越小,不会趋近于0,所以不存在分渐近线;对于④,22()1x f x x =+,()()21xg x x e -=--,当x →∞时,22()()220+1222+1x x x f x g x x e x x e--=-+++=→,且()()0f x g x ->,因此存在分渐近线.故存在分渐近线的是BD .故选:BD . 【点睛】本小题主要考查新定义概念的理解和运用,考查函数的单调性,属于难题.二、导数及其应用多选题9.函数ln ()xf x x=,则下列说法正确的是( )A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B.e e π<,且()f x在(0,)e 单调递增ln f f e ππ∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ==== 252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.10.已知函数()1ln f x x x x=-+,给出下列四个结论,其中正确的是( ) A .曲线()y f x =在1x =-处的切线方程为10x y ++=B .()f x 恰有2个零点C .()f x 既有最大值,又有最小值D .若120x x >且()()120f x f x +=,则121=x x 【答案】BD 【分析】本题首先可根据()10f -=以及13f判断出A 错误,然后根据当0x >时的函数单调性、当0x <时的函数单调性、()10f -=以及()10f =判断出B 正确和C 错误,最后根据()()120f x f x +=得出()121f x f x ⎛⎫= ⎪⎝⎭,根据函数单调性即可证得121=x x ,D 正确.【详解】函数()1ln f x x x x=-+的定义域为()(),00,-∞⋃+∞, 当0x >时,()1ln f x x x x=-+,()2221111x x f x x x x -+-'=--=;当0x <时,1ln f x x x x,()2221111x x f x x x x -+-'=--=,A 项:1ln 1110f,22111131f,则曲线()y f x =在1x =-处的切线方程为031y x ,即33y x =--,A 错误;B 项:当0x >时,222215124x x x f xx x ,函数()f x 是减函数,当0x <时,222215124x x x f xx x ,函数()f x 是减函数,因为()10f -=,()10f =,所以函数()f x 恰有2个零点,B 正确; C 项:由函数()f x 的单调性易知,C 错误; D 项:当1>0x 、20x >时, 因为()()120f x f x +=, 所以1222222221111ln lnf x f x x x x fx x x x , 因为()f x 在()0,∞+上为减函数,所以121x x =,120x x >, 同理可证得当10x <、20x <时命题也成立,D 正确,故选:BD.【点睛】本题考查函数在某点处的切线求法以及函数单调性的应用,考查根据导函数求函数在某点处的切线以及函数单调性,导函数值即切线斜率,若导函数值大于0,则函数是增函数,若导函数值小于0,则函数是减函数,考查函数方程思想,考查运算能力,是难题.。
高考新题型——数学函数的概念与基本初等函数多选题专项练习含答案
高考新题型——数学函数的概念与基本初等函数多选题专项练习含答案一、函数的概念与基本初等函数多选题1.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( ) A .()1.10.9f -= B .函数()f x 为奇函数 C .()()11f x f x +=+ D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确. 对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.2.已知21,1,()ln ,1,x x f x x x ⎧-≤⎪=⎨>⎪⎩,则关于x 的方程2[()]()210f x f x k -+-=,下列正确的是( )A .存在实数k ,使得方程恰有1个不同的实数解;B .存在实数k ,使得方程恰有2个不同的实数解;C .存在实数k ,使得方程恰有3个不同的实数解;D .存在实数k ,使得方程恰有6个不同的实数解;【答案】ACD 【分析】令()0f x t =≥,根据判别式确定方程2210t t k -+-=根的个数,作出()f x 的大致图象,根据根的取值,数形结合即可求解. 【详解】令()0f x t =≥,则关于x 的方程2[()]()210f x f x k -+-=, 可得2210t t k -+-=, 当58k =时,()14210k ∆=--=,此时方程仅有一个根12t =; 当58k <时,()14210k ∆=-->,此时方程有两个根12,t t , 且121t t +=,此时至少有一个正根; 当58k >时,()14210k ∆=--<,此时方程无根; 作出()f x 的大致图象,如下:当58k =时,此时12t =,由图可知()f x t =,有3个不同的交点,C 正确; 当58k <时,此时方程有两个根12,t t ,且121t t +=,此时至少有一个正根, 当()10,1t ∈、()20,1∈t ,且12t t ≠时,()f x t =,有6个不同的交点,D 正确; 当方程有两个根12,t t ,一个大于1,另一个小于0, 此时()f x t =,仅有1个交点,故A 正确;当方程有两个根12,t t ,一个等于1,另一个等于0,()f x t =,有3个不同的交点,当58k >时,()14210k ∆=--<,此时方程无根. 故选:ACD 【点睛】关键点点睛:本题考查了根的个数求参数的取值范围,解题的关键是利用换元法将方程化为2210t t k -+-=,根据方程根的分布求解,考查了数形结合的思想,分类讨论的思想.3.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫- ⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.4.德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立 C .任取一个不为零的有理数T ,f x Tf x 对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD 【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.5.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦ C .()f x 的一个周期为π D .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt t y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦;因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=, 所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.6.对于函数()()13cos ,,22132,,22x x f x f x x π⎧⎡⎤∈-⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,下面结论正确的是( )A .任取121,,2x x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()122f x f x -≤恒成立 B .对于一切1,2x ⎡⎫∈-+∞⎪⎢⎣⎭,都有()()()*22N k f x f x k k =+∈ C .函数()1ln 2y f x x ⎛⎫=--⎪⎝⎭有3个零点 D .对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭【答案】ABC 【分析】先在坐标轴中画出()y f x =的图象,根据图象可判断A 选项,结合解析式可判断B 选项,再画出1ln()2y x =-与k y x=的图象,数形结合可判断C,D 选项.【详解】在坐标轴上作出函数()f x 的图象如下图所示:由图象可知()f x 的最大值为1,最小值为1-,故选项A 正确; 由题可知()()()1312,(,)(2),(,)22221f x f x x f x f x x =-∈+∞⇒+=∈-+∞, 所以*1(2)()()()2k f x k f x k N +=∈即()2(2)k f x f x k =+,故选项B 正确;作出1ln()2y x =-的图象,因为11ln(2)ln 2232-=<,由图象可知()y f x =与1ln()2y x =-有3个交点,故选项C 正确;结合图象可知,若对任意0x >,不等式()kf x x恒成立, 即2x n =时,不等式(2)2kf n n恒成立, 又11(2)()(0)()22nnf n f ==, 所以1()22n k n ,即22n nk 在*n N ∈时恒成立, 设2()2x x g x =,则2ln 4()2xxg x -⋅'=, 故[)2,x ∈+∞时,()0g x '<,函数()g x 在[)2,+∞上单调递减, 所以[)2,x ∈+∞时,max ()(2)1g x g ==,又(1)1g =,所以max 212n n ⎛⎫= ⎪⎝⎭,即1k ,故选项D 错误.故选:ABC. 【点睛】本题主要考查分段函数的周期性及数形结合法在处理函数问题中的应用,有一定难度.7.已知函数1(),f x x x =+221()g x x x=+则下列结论中正确的是( ) A .()()f x g x +是奇函数 B .()()f x g x ⋅是偶函数 C .()()f x g x +的最小值为4D .()()f x g x ⋅的最小值为2【答案】BC 【分析】利用奇偶性的定义可得A 错B 对;利用均值不等式可得C 对;利用换元求导可得D 错. 【详解】2211()()f x g x x x x x+=+++ ()22221111()()()f x g x x x x x x x x x ∴-+-=-++-+=+++-- ()()()()f x g x f x g x ∴+=-+- ()()f x g x ∴+是偶函数, A 错;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭()()22221111()()f x x x x xg x x x x x ⎛⎫⎛⎫-+⋅-+=+⋅+ ⎪ ⎪ ⎪-⎝⎭-⎝∴-⋅-=⎭()()()()f x g x f x g x ∴-⋅-=⋅ ()()f x g x ∴⋅是偶函数,B 对;2211()()224f x g x x x x x +=+++≥+=,当且仅当1x x =和221=x x 时,等号成立,即当且仅当21x =时等号成立,C 对;221(1)()x x xf x xg x ⎛⎫+⋅+ ⎪⎝⋅=⎭令1t x x=+()2t ≥,则()23()()22f t t g t t x x ⋅-=-⋅= []232()()f x g x t '∴=-⋅,令2320t ->,得t >t <2t ∴≥时,()()f x g x ⋅单调递增∴当2t =有最小值,最小值为4,D 错故选:BC. 【点睛】本题综合考查奇偶性、均值不等式、利用导数求最值等,对学生知识的运用能力要求较高,难度较大.8.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( )A .()20202019f =B .()20202020f =C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2n nx ⎡⎤∈-⎣⎦时,()()()21222nx n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.9.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y =+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121xyzm ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.10.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( )A .当2a =时,342f ⎛⎫= ⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭D .当0a >时,不等式()122x f x a -≤在[)0,+∞上恒成立 【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确; 对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.11.若实数2a ≥,则下列不等式中一定成立的是( ) A .21(1)(2)a a a a +++>+ B .1log (1)log (2)a a a a ++>+ C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a +>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.12.已知函数()1y f x =-的图象关于1x =对称,且对(),y f x x R =∈,当12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则a 的可能取值为( ) A. B .1-C .1 D【答案】BC 【分析】由已知得函数()f x 是偶函数,在[0,)+∞上是单调增函数,将问题转化为2|2||21|ax x <+对任意的x ∈R 恒成立,由基本不等式可求得范围得选项. 【详解】因为函数()1y f x =-的图象关于直线1x =对称,所以函数()y f x =的图象关于直线0x =(即y 轴)对称,所以函数()f x 是偶函数.又12,(,0]x x ∈-∞时,()()21210f x f x x x -<-成立,所以函数()f x 在[0,)+∞上是单调增函数.且()()2221f ax f x <+对任意的x ∈R 恒成立,所以2|2||21|ax x <+对任意的x ∈R 恒成立,当0x =时,01<恒成立,当0x ≠时,2|21|11|||||||||2|22x a x x x x x+<=+=+,又因为1||||2x x +=≥||x =时,等号成立,所以||a <,因此a <<,故选:BC. 【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.13.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>, 所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.14.已知53a =,85b =,则( ) A .a b < B .112a b+> C .11a b a b+<+ D .b a a a b b +<+【答案】ABD 【分析】根据条件求得,a b 表达式,根据对数性质结合放缩法得A 正确,根据不等式性质得B 正确,通过作差法判断C 错,结合指数函数单调性与放缩法可得D 正确. 【详解】解:∵53a =,85b =, ∴35log a =,58log b =,因为3344435533535log 3log 54<⇒<⇒<=, 又由3344438835858log 5log 84>⇒>⇒>=,所以a b <,选项A 正确; 35lo 01g a <=<,580log 1b <=<,则11a >,11b >,所以112a b +>,选项B 正确;因为a b <,01a b <<<,则0b a ->,11ab>,此时111()()10b a a b a b b a a b ab ab -⎛⎫⎛⎫+-+=-+=--> ⎪ ⎪⎝⎭⎝⎭, 所以11a b a b+>+,故选项C 不正确; 由1324a <<和314b <<知()x f x a =与()x g x b =均递减, 再由a ,b 的大小关系知b b a b a b a a b b a b a a b b <<⇒<⇒+<+,故选项D 正确. 故选:ABD 【点睛】本题考查了数值大小比较,关键运用了指对数运算性质,作差法和放缩法.15.定义域和值域均为[],a a -的函数()y f x =和()y g x =的图象如图所示,其中0a c b >>>,下列四个结论中正确有( )A .方程()0f g x =⎡⎤⎣⎦有且仅有三个解B .方程()0g f x =⎡⎤⎣⎦有且仅有三个解C .方程()0f f x =⎡⎤⎣⎦有且仅有八个解D .方程()0g g x =⎡⎤⎣⎦有且仅有一个解【答案】ABD 【分析】通过利用()t f x =和()t g x =,结合函数()y f x =和()y g x =的图象,分析每个选项中外层函数的零点,再分析内层函数的图象,即可得出结论. 【详解】由图象可知,对于方程()y f x =,当a y c -≤<-或c y a <≤,方程()y f x =只有一解;当y c =±时,方程()y f x =只有两解;当c y c -<<时,方程()y f x =有三解; 对于方程()y g x =,当a y a -≤≤时,方程()y g x =只有唯一解. 对于A 选项,令()t x g =,则方程()0f t =有三个根1t b =-,20t =,3t b =,方程()g x b =-、()0g x =、()g x b =均只有一解, 所以,方程()0f g x =⎡⎤⎣⎦有且仅有三个解,A 选项正确; 对于B 选项,令()t f x =,方程()0g t =只有一解1t b =,方程()f x b =只有三解,所以,方程()0g f x =⎡⎤⎣⎦有且仅有三个解,B 选项正确; 对于C 选项,设()t f x =,方程()0f t =有三个根1t b =-,20t =,3t b =,方程()f x b =-有三解,方程()0f x =有三解,方程()f x b =有三解, 所以,方程()0f f x =⎡⎤⎣⎦有且仅有九个解,C 选项错误;对于D 选项,令()t x g =,方程()0g t =只有一解1t b =,方程()g x b =只有一解, 所以,方程()0g g x =⎡⎤⎣⎦有且仅有一个解,D 选项正确. 故选:ABD. 【点睛】思路点睛:对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.16.已知函数()2,021,0x x ax x f x x -⎧+≤=⎨->⎩,则( )A .()f x 的值域为()1,-+∞B .当0a ≤时,()()21f x f x >+C .当0a >时,存在非零实数0x ,满足()()000f x f x -+=D .函数()()g x f x a =+可能有三个零点 【答案】BC 【分析】A .考虑2a =时的情况,求解出各段函数值域再进行判断;B .先根据条件分析()f x 的单调性,再根据21x +与x 的大小关系进行判断;C .作出222,,y x ax y x ax y x ax =+=-+=-+的函数图象,根据图象的对称性进行分析判断;D .根据条件先分析出()0,1a ∈,再根据有三个零点确定出a 满足的不等式,由此判断出a 是否有解,并判断结论是否正确.【详解】A .当0x >时,21011xy -=->-=-,当0x ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭,取2a =,此时()2111y x =+-≥-,所以此时的值域为[)1,-+∞,故A 错误;B .当0a ≤时,22224a a y x ax x ⎛⎫=+=+- ⎪⎝⎭的对称轴为02a x =-≥,所以()f x 在(],0-∞上单调递减,又因为()f x 在()0,∞+上单调递减,且200021a -+⨯=-,所以()f x 在R 上单调递减,又因为22131024x x x ⎛⎫+-=-+> ⎪⎝⎭,所以21x x +>,所以()()21f x f x >+,故B 正确;C .作出函数22,,21x y x ax y x ax y -=+=-+=-的图象如下图所示:由图象可知:22,y x ax y x ax =+=-+关于原点对称,且2y x ax =-+与21x y -=-相交于()00,x y ,因为点()00,x y 在函数2y x ax =-+的图象上,所以点()00,x y --在函数2y x ax =+的图象上,所以()()()00000f x f x y y +-=+-=,所以当0a >时,存在0x 使得()()000f x f x -+=,故C 正确;D .由题意知:()f x a =-有三个根,所以()f x 不是单调函数,所以0a >, 又因为()211,0xy -=-∈-,所以()1,0a -∈-,所以()0,1a ∈,且22,4a y x ax ⎡⎫=+∈-+∞⎪⎢⎣⎭,若方程有三个根,则有24a a ->-,所以4a >或0a <,这与()0,1a ∈矛盾,所以函数()()g x f x a =+不可能有三个零点,故D 错误, 故选:BC. 【点睛】思路点睛:函数与方程的综合问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.17.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4 D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.18.已知函数()()()sin 0f x x ωϕω=+>满足()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值.则下列说法正确的是()A .01()12f x +=-B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在()0,303上的零点个数最少为202个 【答案】AC 【分析】由题意知()00,1x x +在一个波谷的位置且有对称性,有01()12f x +=-且23πω=,进而可判断A 、B 、C 的正误,又[0,303]上共有101个周期,最多有203个零点,最少有202个零点,进而可知()0,303零点个数最少个数,即知D 的正误. 【详解】由()01()12f x f x +=-=0,且()f x 在()00,1x x +上有最小值,无最大值,∴()00,1x x +在一个波谷的位置且有对称性,即01()12f x +=-,002(1)()3x x πωϕωϕω++-+==, ∴()f x 的最小正周期为23T πω==,故A 、C 正确,B 错误;在[0,303]上共有101个周期,若每个周期有两个零点时,共有202个零点,此时区间端点不为零点;若每个周期有三个零点时,共有203个零点,此时区间端点为零点; ∴()0,303上零点个数最少为201个,即每个周期有三个零点时,去掉区间的两个端点,故D 错误. 故选:AC. 【点睛】关键点点睛:由条件推出()00,1x x +在一个波谷的位置且有对称性,可确定01()2f x +及最小正周期,再由正弦函数的性质判断()0,303上零点个数,进而确定最少有多少个零点.19.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.20.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第二学期函数的概念与基本初等函数多选题单元达标检测试卷一、函数的概念与基本初等函数多选题1.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;2.定义在R 上的函数()(),()22(2)f x x g x g x x g x =+=--+--,若()f x 在区间[1,)-+∞上为增函数,且存在20t -<<,使得(0)()0f f t ⋅<.则下列不等式一定成立的是( )A .21(1)()2f t t f ++> B .(2)0()f f t ->> C .(2)(1)f t f t +>+D .(1)()f t f t +>【答案】ABC 【分析】先由()(),()22(2)f x x g x g x x g x =+=--+--推出()f x 关于1x =-对称,然后可得出B 答案成立,对于答案ACD ,要比较函数值的大小,只需分别看自变量到对称轴的距离的大小即可 【详解】因为()(),()22(2)f x x g x g x x g x =+=--+--所以(2)2(2)2()22()()f x x g x x g x x g x x f x --=--+--=--+++=+= 所以()f x 关于1x =-对称,所以(0)(2)f f =- 又因为()f x 在区间[1,)-+∞上为增函数,20t -<< 所以(0)(2)()f f f t =-> 因为(0)()0f f t ⋅<所以()0,(2)(0)0f t f f <-=> 所以选项B 成立因为2231120224t t t ⎛⎫++-=++> ⎪⎝⎭所以21t t ++比12离对称轴远 所以21(1)()2f t t f ++>,所以选项A 成立 因为()()2232250t t t +-+=+>所以32t t +>+,所以2t +比1t +离对称轴远所以(2)(1)f t f t +>+,即C 答案成立因为20t -<<,所以()()222123t t t +-+=+符号不定 所以2t +,1t +无法比较大小,所以(1)()f t f t +>不一定成立 所以D 答案不一定成立 故选:ABC 【点睛】本题考查的是函数的性质,由条件得出()f x 关于1x =-对称是解题的关键.3.设函数cos2cos2()22x x f x -=-,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC 【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222ttt t y -=-=-,显然函数12222t t tty -=-=-为增函数,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222ttt ty -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)x x h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点,而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.4.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确. 故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.5.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a ∈ D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【答案】AC 【分析】根据奇函数()()f x f x -=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案 【详解】函数是奇函数,故()f x 在R 上的解析式为:222,22322,20()0,022,022,223x x x x x f x x x x x x x ⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A :如下图所示直线1l 与该函数有7个交点,故A 正确;对B :当1211x x -<<<时,函数不是减函数,故B 错误; 对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2, 故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、21x =+、21x =-; 若使得其与()f x m =的所有零点之和为0, 则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立6.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,.()()11111+11++1xxx x xxe e ef x f x e e e ------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.7.函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数, 则下列结论正确的是( ) A .()f x 是偶函数B.()f x 的值域是{0,1}C .方程(())f f x x =的解为1x =D .方程(())()f f x f x =的解为1x =【答案】ABC 【分析】 逐项分析判断即可. 【详解】当x -为有理数时,x 也为有理数∴()1f x -=当x -为无理数时,x 也为无理数∴()0f x -= ∴1()()0()x f x x ⎧-=⎨⎩为有理数为无理数∴()()f x f x -=()f x ∴是偶函数,A 对;易知B 对;1x =时,()((1))11f f f ==∴C 对(())()f f x f x =的解为全体有理数∴D 错故选:ABC. 【点睛】本题综合考查分段函数的奇偶性判断、值域、解方程等,要求学生能灵活应用知识解题,难度较大.8.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+-- 由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.9.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( )A .()g x 为奇函数B .若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C .()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D .若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫- ⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅=所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD 【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题.10.已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .函数()f x 在区间[2,4]上是减函数B .(2020)(2021)1f f +=C .若方程()10()f x mx m R --=∈恰有5个不相等的实根,则11,46m ⎛⎫∈-- ⎪⎝⎭ D .若函数()y f x k =-在区间(,6)-∞上有8个零点()*8,i x i i N ≤∈,则8116i i x ==∑【答案】BCD 【分析】对于A ,画出函数的图象即可判断;对于B ,由函数的周期性可计算求解;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,画出图形即可判断求解;对于D ,函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,由对称性可求解. 【详解】由题可知当0x ≥时,()f x 是以2为周期的函数,则可画出()f x 的函数图象,对于A ,根据函数图象可得,()f x 在()2,3单调递增,在()3,4单调递减,故A 错误; 对于B ,()()()2020020f f f ==-=,()()()2021111f f f ==-=,则(2020)(2021)1f f +=,故B 正确;对于C ,方程()10()f x mx m R --=∈恰有5个不相等的实根等价于()y f x =与直线1y mx =+有5个交点,如图,直线1y mx =+过定点()0,1A ,观察图形可知AB AC k m k <<,其中()()4,0,6,0B C ,则11,46AB AC k k =-=-,故11,46m ⎛⎫∈-- ⎪⎝⎭,故C 正确;对于D ,若函数()y f x k =-在区间(,6)-∞上有8个零点,则()y f x =与y k =有8个交点,如图,可知这八个零点关于2x =对称,则814416ii x==⨯=∑,故D 正确.故选:BCD. 【点睛】关键点睛:本题考查函数与方程的综合问题,解题的关键是判断出函数的周期性,画出函数的图象,即可将方程的解的个数问题、函数的零点问题转化为函数图象的交点问题,利用数形结合的思想可快捷解决问题.11.已知函数221,0()log ,0x kx x f x x x ⎧-+≤=⎨>⎩,下列关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的说法中,正确的是( ) A .当1k >,有1个零点 B .当2k =-时,有3个零点C .当10k >>,有4个零点D .当4k =-时,有7个零点【答案】ABD 【分析】令0y =得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为()f x t =和()1f t =-,作出函数()f x 的图象,利用数形结合即可得到结论.【详解】令0y =,得()1f f x =-⎡⎤⎣⎦,设()f x t =,则方程()1f f x =-⎡⎤⎣⎦等价为()1f t =-, 函数21y x kx =-+,开口向上,过点()0,1,对称轴为2kx =对于A ,当1k >时,作出函数()f x 的图象:()1f t =-,此时方程()1f t =-有一个根12t =,由()12f x =可知,此时x 只有一解,即函数()1y f f x =+⎡⎤⎣⎦有1个零点,故A 正确; 对于B ,当2k =-时,作出函数()f x 的图象:()1f t =-,此时方程()1f t =-有一个根12t =,由()12f x =可知,此时x 有3个解,即函数()1y f f x =+⎡⎤⎣⎦有3个零点,故B 正确;对于C ,当10k >>时,图像如A ,故只有1个零点,故C 错误; 对于D ,当4k =-时,作出函数()f x 的图象:()1f t =-,此时方程()1f t =-有3个根,其中112t =,2(1,0)t ∈-,3(4,3)t ∈--由()12f x =可知,此时x 有3个解,由()2(1,0)f x t =∈-,此时x 有3个解,由()3(4,3)f x t =∈--,此时x 有1个解,即函数()1y f f x =+⎡⎤⎣⎦有7个零点,故D 正确; 故选:ABD . 【点睛】方法点睛:本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解,属于难题.12.已知函数()()2214sin 2x xe xf x e -=+,则下列说法正确的是( )A .函数()y f x =是偶函数,且在(),-∞+∞上不单调B .函数()y f x '=是奇函数,且在(),-∞+∞上不单调递增C .函数()y f x =在π,02⎛⎫-⎪⎝⎭上单调递增 D .对任意m ∈R ,都有()()f m f m =,且()0f m ≥【答案】AD 【分析】由函数的奇偶性以及函数的单调性即可判断A 、B 、C 、D. 【详解】 解:对A ,()()222114sin =2cos 2xx xx e x e f x x e e-+=+-,定义域为R ,关于原点对称,()2211=2cos()2cos()()x x x xe ef x x x f x e e--++---=-=, ()y f x ∴=是偶函数,其图像关于y 轴对称,()f x ∴在(),-∞+∞上不单调,故A 正确;对B ,1()2sin xx f x e x e'=-+, 11()2sin()=(2sin )()x xx x f x e x e x f x e e--''-=-+---+=-, ()f x '∴是奇函数,令1()2sin xxg x e x e =-+, 则1()+2cos 2+2cos 0xxg x e x x e '=+≥≥, ()f x '∴在(),-∞+∞上单调递增,故B 错误;对C ,1()2sin x x f x e x e'=-+,且()'f x 在(),-∞+∞上单调递增, 又(0)0f '=,π,02x ⎛⎫∴∈- ⎪⎝⎭时,()0f x '<,()y f x ∴=在π,02⎛⎫- ⎪⎝⎭上单调递减,故C 错误;对D ,()y f x =是偶函数,且在(0,)+∞上单调递增,()()f m f m ∴=,且()(0)0f m f ≥=,故D 正确.故选:AD. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.13.函数()()1xf x x R x=∈+,以下四个结论正确的是( ) A .()f x 的值域是()1,1- B .对任意x ∈R ,都有()()12120f x f x x x ->-C .若规定()()()()()11,n n f x f x f x ff x +==,则对任意的(),1n xn N f x n x*∈=+ D .对任意的[]1,1x ∈-,若函数()2122f x t at ≤-+恒成立,则当[]1,1a ∈-时,2t ≤-或2t ≥【答案】ABC 【分析】由函数解析式可得函数图象即可知其值域、单调性;根据C 中的描述结合数学归纳法可推得结论成立;由函数不等式恒成立,利用变换主元法、一元二次不等式的解法即可求参数范围.【详解】由函数解析式可得11,01()11,01x x f x x x ⎧-≥⎪⎪+=⎨⎪-<⎪-⎩,有如下函数图象:∴()f x 的值域是()1,1-,且单调递增即()()12120f x f x x x ->-(利用单调性定义结合奇偶性也可说明),即有AB 正确; 对于C ,有()11x f x x =+,若()1,1(1)n x n N f x n x*-∈=+-, ∴当2n ≥时,11(1)||()(())1||1||1(1)||n n xx n x f x f f x x n x n x -+-===+++-,故有(),1n xn N f x n x*∈=+.正确. 对于D ,[]1,1x ∈-上max 1()(1)2f x f ==,若函数()2122f x t at ≤-+恒成立,即有211222t at -+≥,220t at -≥恒成立,令2()2h a at t =-+,即[]1,1a ∈-上()0h a ≥, ∴0t >时,2(1)20h t t =-+≥,有2t ≥或0t ≤(舍去);0t =时,()0h a 故恒成立;0t <时,2(1)20h t t -=+≥,有2t ≤-或0t ≥(舍去);综上,有2t ≥或0t =或2t ≤-;错误. 故选:ABC 【点睛】 方法点睛:1、对于简单的分式型函数式画出函数图象草图判断其值域、单调性.2、数学归纳法:当1n =结论成立,若1n -时结论也成立,证明n 时结论成立即可.3、利用函数不等式恒成立,综合变换主元法、一次函数性质、一元二次不等式解法求参数范围.14.已知函数()()124,01,21,1,x x f x af x x ⎧--≤≤⎪=⎨⎪->⎩其中a R ∈,下列关于函数()f x 的判断正确的为( ) A .当2a =时,342f ⎛⎫=⎪⎝⎭B .当1a <时,函数()f x 的值域[]22-,C .当2a =且[]()*1,x n n n ∈-∈N时,()1212242n n f x x --⎛⎫=-- ⎪⎝⎭D .当0a >时,不等式()122x f x a -≤在[)0,+∞上恒成立 【答案】AC 【分析】对于A 选项,直接代入计算即可;对于B 选项,由题得当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,进而得当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,故()f x 的值域(]2,2-;对于C 选项,结合B 选项得当2a =且[]()*1,x n n n ∈-∈N时,()()121n f x f x n -=-+进而得解析式;对于D 选项,取特殊值即可得答案.【详解】解:对于A 选项,当2a =时,3111222442222f f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故A 选项正确; 对于B 选项,由于当01x ≤≤,函数的值域为[]0,2,所以当(]*,1,x m m m N ∈+∈时,()()m f x a f x m =-,由于(]0,1x m -∈,所以()[]0,2f x m -∈,因为1a <,所以()1,1m a ∈-,所以当(]*,1,x m m m N ∈+∈时,()()2,2f x ∈-,综上,当1a <时,函数()f x 的值域(]2,2-,故B 选项错误;对于C 选项,由B 选项得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,故当2a =且[]()*1,x n n n ∈-∈N时,()()1112122412n n f x f x n x n --⎛⎫=-+=--+- ⎪⎝⎭1112122422422n n n x n x --⎛⎫⎛-⎫=--+=-- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确; 对于D 选项,取812a =,34x =,则331241442f ⎛⎫=--= ⎪⎝⎭,122x a-=()311142482488111222222222---⎛⎫⎛⎫==⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,不满足式()122x f x a -≤,故D选项错误. 故选:AC. 【点睛】本题考查函数的综合应用,考查分析能力与运算求解能力,是难题.本题解题的关键在于根据题意得当(]*,1,x m m m N ∈+∈时,()()mf x a f x m =-,且当01x ≤≤,函数的值域为[]0,2,进而利用函数平移与伸缩变换即可求解.15.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R上单调递增,且13022f ⎛⎫=< ⎪⎝⎭,(1)10f =>, 所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.16.下列函数求值域正确的是( )A.()1f x x =+的值域为[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C.()h x =(0D.()w x =的值域为[2【答案】CD 【分析】()12f x x x =++-去绝对值结合单调性和图象即可判断选项A ;2(1)11()(1)11x g x x x x ++==++++讨论10x +>和10x +<,利用基本不等式求值域可判断选项B;()h x ==利用单调性即可判断选项C ;()w x 定义域为[31]-,,将()w x =()24w x =,由于()0w x >,可得()w x =2(1)t x =-+的范围即可求()w x 值域,可判断选项D. 【详解】对于选项A :原函数化为211()12312212x x f x x x x x x -+≤-⎧⎪=++-=-<≤⎨⎪->⎩,,,, 其图象如图,原函数值域为[3)+∞,,故选项A 不正确,对于选项B :2(1)11()(1)11x g x x x x ++==++++,定义域为{}|1x x ≠-, 当1x <-时,10x +<,此时[][]11(1)2(1)211x x x x ⎛⎫⎛⎫-++-≥-+⨯-= ⎪ ⎪++⎝⎭⎝⎭,所以1(1)21x x ++≤-+,当且仅当1(1)1x x -+=-+即2x =-时等号成立, 当1x >-时,10x +>,此时11(1)(1)211x x x x ++≥+⨯=++,当且仅当111x x +=+即0x =时等号成立, 所以函数()g x 值域为(2][2)-∞-⋃+∞,,,故选项B 不正确; 对于选项C :()h x 的定义域为[1)+∞,, (11)(11)()111111x x x x h x x x x x x x ++-+--=+-==++-++-,因为1y x =+1y x =-[1)+∞,上是增函数,所以11y x x =+-[1)+∞,上是增函数,又11y x x =+-[1)+∞,上恒不等于0,则11y x x =++-在[1)+∞,上是减函数,则()h x 的最大值为()12h = 又因为()0h x >,所以()h x 的值域为(02],,故选项C 正确;对于选项D :()w x 的定义域为[31]-,, ()2()131313213w x x x x x x x x x =-+=-++=-+++-⋅+222(1)(3)422342(1)44x x x x x =-++=--++=-+++设2(1)t x =-+,则[40]t ∈-,,[]240,4t +,[]2444,8t +∈, 则2()2(1)442,22w x x ⎡=-+++⎣,()w x 的值域为[222],,故选项D 正确,故选:CD 【点睛】方法点睛:求函数值域常用的方法(1)观察法:一些简单的函数,值域可以通过观察法得到;(2)利用常见函数的值域:一次函数值域为R ;二次函数利用配方法,结合定义域求出值域;反比例函数的值域为{}|0y y ≠;指数函数的值域为{}|0y y >;对数函数值域为R ;正、余弦函数的值域为[]1,1-;正切函数值域为R ;(3)单调性法:先判断函数的单调性,再由函数的单调性求函数的值域; (4)分离常数法:将有理分式转化为反比例函数类的形式,便于求值域;(5)换元法:对于一些无理函数如y ax b =±±数,通过求有理函数的值域间接求原函数的值域;(6)不等式法:利用几个重要的不等式及其推论来求最值,进而求得值域,如222a b ab +≥,a b +≥,以及绝对值三角不等式等;(7)判别式法:把函数解析式化为关于x的一元二次方程,利用判别式求值域,形如y Ax =+22ax bx c y dx ex f++=++的函数适用; (8)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域; (9)配方法:求二次函数型函数值域的基本方法,形如()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦的函数求值域,均可使用配方法;(10)数形结合法:若函数的解析式的几何意义较明显,如距离、斜率等可使用数形结合法;(11)导数法:利用导数求函数值域时,一种是利用导数判断函数的单调性,进而根据单调性求函数的值域;一种是利用导数与极值、最值的关系求函数的值域.17.已知函数222,0()log ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A .x 1+x 2=-1 B .x 3x 4=1 C .1<x 4<2 D .0<x 1x 2x 3x 4<1【答案】BCD 【分析】由解析式得到函数图象,结合函数各分段的性质有122x x +=-,341x x =,341122x x <<<<,即可知正确选项. 【详解】由()f x 函数解析式可得图象如下:∴由图知:122x x +=-,121x -<<-,而当1y =时,有2|log |1x =,即12x =或2, ∴341122x x <<<<,而34()()f x f x =知2324|log ||log |x x =:2324log log 0x x +=, ∴341x x =,21234121(1)1(0,1)x x x x x x x ==-++∈.故选:BCD 【点睛】关键点点睛:利用分段函数的性质确定函数图象,由二次函数、对数运算性质确定1234,,,x x x x 的范围及关系.18.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4 D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.19.已知函数()sin sin xxf x e e=+,以下结论正确的是( )A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为5【答案】ABD【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe '=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈; 当2x ππ≤≤时,()()sin sin cos xx f x x ee -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x e e ⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确.因()f x 在,2x ππ⎛⎫∈ ⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误. 对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x xπ=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin x xf x e e -=+,()()sin sin cos 0x x f x x e e -'=->,3123322f e e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.20.已知函数21,01()(1)1,1x x f x f x x ⎧-≤<=⎨-+≥⎩,方程()0f x x -=在区间0,2n⎡⎤⎣⎦(*n N ∈)上的所有根的和为n b ,则( ) A .()20202019f = B .()20202020f = C .21122n n n b --=+D .(1)2n n n b +=【答案】BC 【分析】先推导出()f x 在[)()*,1n n n N+∈上的解析式,然后画出()f x 与y x =的图象,得出()f x x =时,所有交点的横坐标,然后得出n b .【详解】因为当[)0,1x ∈时,()21xf x =-,所以当[)1,2x ∈时,[)10,1x -∈,则()1121x f x --=-,故()()11112112x x f x f x --=-+=-+=,即[)10,1x -∈时,[)10,1x -∈,()12x f x -= 同理当[)2,3x ∈时,[)11,2x -∈,()()21121x f x f x -=-+=+;当[)3,4x ∈时,[)12,3x -∈,则()()31122x f x f x -=-+=+;………故当[),1x n n ∈+时,()()21x nf x n -=+-,当21,2nnx ⎡⎤∈-⎣⎦时,()()()21222n x n f x --=+-.所以()20202020f =,故B 正确;作出()f x 与y x =的图象如图所示,则当()0f x x -=且0,2n ⎡⎤⎣⎦时,x 的值分别为:0,1,2,3,4,5,6,,2n则()()121122101222221222n n n n n n n n b ---+=+++++==+=+,故C 正确.故选:BC.【点睛】本题考查函数的零点综合问题,难度较大,推出原函数在每一段上的解析式并找到其规律是关键.。