城市轨道交通供电系统详解.
城市轨道交通供电系统详解.
城市轨道交通供电系统详解第一章电力牵引供电系统综述一、电力牵引的制式对牵引列车的电动车辆或电力机车特性的基本要求:1、起动加速性能要求起动加速力大而且平稳, 即恒定的大的起动力矩, 便于列车快速平稳起动。
2、动力设备容量利用对列车的主要动力设备——牵引电动机的基本性能要求为, 列车轻载时, 运行速度可以高一些, 而列车重载时运行速度可以低一些。
这样无论列车重载或轻载都可以达到牵引电动机容量的充分利用, 因为列车的牵引力与运行速度的乘积为其功率容量,这时近于常数。
3、调速性能列车运输,特别是旅客运输,要求有不同的运行速度,即调速。
在调速过程中既要达到变速, 还要尽可能经济, 不要有太大的能量损耗, 同时还希望容易实现调速。
低频单相交流制是交流供电方式, 交流电可以通过变压器升降压, 因此可以升高供电系统的电压, 到了列车以后再经车上的变压器将电压降低到适合牵引电动机应用的电压等级。
由于早期整流技术的关系, 这种制式采用的牵引电动机在原理上与直流串激电动机相似的单相交流整流子电动机。
这种电动机存在着整流换向问题,其困难程度随电源频率的升高而增大,因此采用了“低频”单相交流制,它的供电频率和电压有 25 HZ、 6.5~11 kV和 1632HZ 、 12~15 kV等类型。
由于用了低频电源使供电系统复杂化, 需由专用低频电厂供电, 或由变频电站将国家统一工频电源转变成低频电源再送出, 因此没有得到广泛应用, 只在少量国家的工矿或干线上应用。
“工频单相交流制” 。
这种制式既保留了交流制可以升高供电电压的长处, 又仍旧采用直流串激电动机作为牵引电动机的优点, 在电力机车上装设降压变压器和大功率整流设备, 它们将高压电源降压, 再整流成适合直流牵引电动机应用的低压直流电, 电动机的调压调速可以通过改变降压变压器的抽头或可控制整流装置电压来达到。
工频单相交流制是当前世界各国干线电气化铁路应用较普遍的牵引供电制式。
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析一、城市轨道交通供电系统城市轨道交通供电系统通常采用第三轨供电和架空线供电两种方式,其中第三轨供电主要应用于地铁系统,而架空线供电则主要应用于轻轨、有轨电车等系统。
无论是第三轨供电还是架空线供电,其基本构成和组成原理大致相同,即由电源、供电装置、接触网或第三轨、车辆等组成。
1. 供电方式第三轨供电是指在轨道旁边或轨道中间铺设一根金属轨,通过轨道供电装置向车辆提供电能。
相比于架空线供电,第三轨供电的优势在于无须建设高架架空线路,不会影响城市景观,但其缺点在于安全性较差、受环境影响大等。
而架空线供电则是指在路轨上方悬挂一根或多根电力导线,通过接触网将电能传输给车辆。
架空线供电的优势在于供电安全性高、可靠性强,但其缺点在于对城市景观影响大、对环境要求高等。
2. 供电装置城市轨道交通供电系统的供电装置通常包括变电设备、开闭所、接触网或第三轨等部分。
变电设备主要用于将城市电网供电的高压交流电转换为适合交通车辆使用的低压直流电,以及对供电系统进行监控和保护。
开闭所则用于控制供电系统的通断,保障其安全、稳定地运行。
接触网或第三轨则用于向行驶中的车辆提供电能。
这些供电装置的设计和运行状态对城市轨道交通系统的安全性和可靠性具有重要影响。
3. 车辆城市轨道交通车辆是供电系统的终端使用者,其接受并利用供电系统提供的电能。
车辆的设计和制造质量,电力系统以及电气设备的性能表现等都与城市轨道交通供电系统的安全、稳定运行密切相关。
二、电力技术城市轨道交通供电系统的高效、稳定运行需要电力技术的支撑,在此我们将从电源技术、供电技术和电力质量技术三个方面对相关技术进行分析。
1. 电源技术城市轨道交通供电系统的电源一般来自城市电网,而城市电网的电能来源多种多样,包括火电、水电、风电、光伏发电等。
电源技术的发展趋势主要包括提高电能利用率、降低对环境的影响、提高系统的可靠性和稳定性等。
还需要考虑城市电网与城市轨道交通供电系统之间的匹配性和互动性,以保障城市轨道交通供电系统能够获得高质量的电能供应。
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析随着城市化进程的加速和人口规模的增长,城市交通成为一个日益严峻的问题。
城市轨道交通系统由于其快速、高效、环保等特点,成为了解决城市交通问题的重要手段。
而城市轨道交通系统的供电系统则是其保证运行的重要支撑。
本文将从城市轨道交通供电系统的基本构成、运行原理以及相关电力技术等方面进行分析和探讨。
一、城市轨道交通供电系统的基本构成城市轨道交通供电系统主要由电源、接触网、牵引变流器和牵引系统组成。
1. 电源:城市轨道交通系统的电源通常是由电力公司供电,也有一些是采用独立的供电设备。
电源通过电缆或开关设备输送至轨道交通系统。
2. 接触网:接触网是城市轨道交通系统的供电装置,它由接触线、接触网支撑系统和连接导线等部分组成。
接触线是通过导电导线挂接在轨道上方,并由支撑系统支撑在空中,通过接触网与列车的集电装置接触,将电能传输给列车。
3. 牵引变流器:牵引变流器是城市轨道交通系统的电力变换设备,主要用于将电网供电的交流电转换为适合列车牵引电动机使用的直流电。
4. 牵引系统:牵引系统是城市轨道交通车辆的动力装置,主要包括牵引电动机、传动装置和控制系统等部分。
牵引系统能够将电能转换为机械能,驱动列车行驶。
城市轨道交通供电系统的运行原理是通过电源将电能传送至轨道交通的接触网上,列车通过集电装置与接触网相接触,完成对电能的获取,再通过牵引系统将电能转换为机械能,驱动列车行驶。
城市轨道交通供电系统的运行过程中,存在着诸多技术难题。
其中包括供电的稳定性、传输损耗的问题、牵引系统的效率等。
针对这些问题,需要采用相应的电力技术来解决。
1. 变频调速技术:城市轨道交通列车通常采用交流牵引电动机,而电网供电是交流电。
为了提高列车的牵引性能和运行效率,需要采用变频调速技术,将电网供电的交流电通过牵引变流器转换成适合牵引电动机使用的直流电,并通过调节频率和电压来实现对列车的精确控制。
2. 节能降耗技术:城市轨道交通供电系统的节能降耗技术包括采用高效的牵引电动机、减小输电损耗、优化牵引系统等,通过技术手段降低能耗,提高系统的整体效率。
城市轨道交通供电系统城市轨道交通概论
城市轨道交通供电系统城市轨道交通概论城市轨道交通供电系统是指为城市轨道交通(如地铁、轻轨等)提供电力的系统。
它是城市轨道交通运营的重要组成部分,直接关系到城市轨道交通的安全、稳定和高效运行。
城市轨道交通供电系统主要包括供电系统结构、供电方式、供电设备和供电管理等几个方面。
首先,城市轨道交通供电系统的结构主要分为集中式供电和分布式供电两种形式。
集中式供电是指将电力从电网供应给城市轨道交通线路,通过变电所进行电能转换和配电。
分布式供电是指将电力直接供应给城市轨道交通线路,不通过变电所进行中间转换。
其次,城市轨道交通供电系统的供电方式主要有直流供电和交流供电两种形式。
直流供电是将电力以直流形式供应给城市轨道交通线路,其中常见的有三轨供电和四轨供电两种形式。
交流供电是将电力以交流形式供应给城市轨道交通线路,其中常见的有接触网供电和无接触网供电两种形式。
再次,城市轨道交通供电系统的供电设备包括变电所、牵引变压器、接触网或四轨导线和车辆供电设备等。
变电所是供电系统的核心设备,负责将电力从电网转换成适合轨道交通运营的电能。
牵引变压器则将变电所输出的电能转换成适合轨道交通车辆牵引的电能。
接触网或四轨导线是将电能从供电系统传输到运行线路上的设备,通过接触网或四轨导线与车辆上的集电装置接触,实现车辆的供电。
车辆供电设备则是车辆上的设备,负责将来自接触网或四轨导线的电能传输到车辆的牵引装置。
最后,城市轨道交通供电系统的供电管理是保障系统正常运行的重要环节。
供电管理包括供电调度、供电维护、供电检修和故障处理等多个方面。
供电调度负责根据运行情况合理调配供电能力,确保供电系统能满足轨道交通的需求。
供电维护负责对供电设备进行定期维护,确保设备的正常运行和使用寿命。
供电检修则是对供电设备进行故障排除和修复,及时处理供电系统的故障。
故障处理则是在供电系统故障发生时,采取相应措施,保障城市轨道交通的正常运行。
综上所述,城市轨道交通供电系统是为城市轨道交通提供电力的系统,它的结构、方式、设备和管理等方面都对轨道交通的运行质量和效率有着重要影响。
城市轨道交通-供电系统
问题导入
• 城市轨道交通采用电力牵引,由于电动车组本身 无原动力装置,因此在城市轨道交通沿线必须设 置一套完善的、不间断地向电动车组供电的设备, 即城市轨道交通的牵引供电系统。
• 牵引供电系统是城市轨道交通供电系统的最重要 部分。 • 城市轨道交通供电系统是如何起到作用的呢?
城市轨道交通设备
第5章 供电系统
第一节
概述
第二节
第三节牵引供电系统来自电力监控系统一、供电系统概述
• 城市轨道交通供电系统负责提供其正常运营提供 所需电能,包括列车的电力牵引以及为运营服务 的辅助设施消耗的电能。 • 城市轨道交通供电为一级负荷,由两路独立的电 源供电。 • 城市轨道交通供电系统包括高压供电源系统、牵 引供电系统和动力照明供电系统。
二、牵引变电所
• 由于城市轨道交通列车是以一定的速度沿区间运 行的,供给一定区段内牵引电能的变电所称为牵 引变电所。 • 牵引变电所从城市轨道交通主变电所中获得电能, 经过降压和整流,变成车辆所需的直流电。
城市轨道交通设备
二、牵引变电所
• 牵引变电所设置
–牵引变电所的数量、设置地点、以及馈电线数 目要由供电计算确定。 –一般设置在沿线若干车站及车辆段附近。相邻 牵引变电所之间距离在2~4km。
四、动力照明供电系统
• 动力照明供电系统提供车站和区间各类照明、扶 梯、风机、水泵等动力机械设备电源和通信、信 号、自动化等设备电源。
• 动力照明供电系统由降压变电所及动力照明组成。
城市轨道交通设备
四、动力照明供电系统
• 每个车站应设降压变电所,车站动力照明采用 380/220V三相五线制系统配电。
• 车站设备负荷分三类:
– 一类负荷:事故风机、消防泵、主排水站、售检票机、 防灾报警、通信信号、事故照明 – 二类负荷:自动扶梯、普通风机、排污泵、工作照明 – 三类负荷:空调、冷冻机、广告照明、维修电源
城市轨道交通供电系统概述
变电站:接收城市电网的高压电,将其转换为 适合城市轨道交通设备使用的低压电
配电网络:由变电站到各个车站、隧道、控制中 心的配电线路组成,将电能分配到需要的地方
变电所:在车站和隧道中设置的电力变换设备, 将电压调整为列车和其他设备所需的工作电压 用电设备:包括列车、车站照明、空调、通风 等设备,以及控制系统、信号系统等关键设备
成的影响
第分
运行方式
运行方式
城市轨道交通供电系统通常采用以下几种运行方式 单线供电:由一条电源线路提供电能,通过配电网络分配到各个设备。这种方式的 优点是简单、维护方便,但当电源线路出现故障时,可能会影响整个系统的运行
双线供电:由两条电源线路分别从不同的变电站或同一变电站的不同母线供电。这种 方式能够提高系统的可靠性和稳定性,但需要更多的设备和维护成本
随着技术的发展和城市轨道交通的不断发展,供电系统 的构成、运行方式和主要设备也在不断升级和改进,以
满足更高的安全、环保和节能要求
-
谢谢观看
XXXXX
XXXXX
第2部分
主要设备
主要设备
变压器:将高压电转换为 低压电的核心设备,通常
在变电站内设置
断路器:用于切断或接通 电源,当发生故障时,能 够迅速切断电流,保护系
统和设备
开关柜:用于分配和控制 电能,根据需求调整电压
和电流
电力电缆:用于传输电能 的载体,要求具备良好的
导电性和耐久性
不间断电源(UPS):为关 键设备提供持续稳定的电 力供应,防止突然断电造
通过引入智能控制系统和监测设备,实现对城市轨道交通供电系统的实时监控和控制。这种方式能 够提高系统的效率和可靠性,但需要更多的技术和资金投入
轨道交通供电系统—轨道交通SCADA系统
城市轨道交通接触网
3.SCADA系统的优点 对供电系统的监控有以下优点:
(1)集中监控可提高系统运行的安全可靠和经济性。正常时,实现合理的系统运行方式;事故 时,可及时直接显示和记录事故发生时间和内容,有利于加快事故处理。 (2)集中控制使调度人员直接控制运行方式的改变,运行操作效率及其可靠性高,值班人员在 变电所内仅需对电气设备进行监护,劳动条件得到改善。 (3)有利于变电所实现无人值班化,可节省变电所基建和运行费用。
城市轨道交通接触网
1.电力监控系统的任务
城市轨道交通运行的管理和调度是由控制中心来实现的,其中的电力调度是供电系统运行 的管理和调度部门;而城市轨道交通供电系统的各类变电所及其他主要设备是沿线路分散 设置的。
要保证系统运行的安全、可靠及经济性,就必须由电力调度人员对系统进行集中管理和调 度,实现系统运行状态的监视和运行方式的控制。早期的集中调度是通过调度电话来实施 的,通过值班人员对系统运行方式进行监视和控制,属于一种效率低、可靠性差的间接监 控方式。
城市轨道交通接触网
(2)遥信(YX):是指将被控站设备的状态,如断路器的位置信号、报警信号等,传 输给调度端。遥信的内容包括:
①遥信对象的位置信号; ②高中压断路器、直流快速断路器的各种故障跳闸信号; ③变压器、整流器的故障信号; ④交直流电源系统故障信号; ⑤降压变电所低压进线断路器、母联断路器的故障跳闸信号; ⑥钢轨电位限制装置的动作信号; ⑦预告信号; ⑧断路器手车位置信号; ⑨无人值班变电所的大门开启信号。
1.调度端 调度端设在电力调度所内完成远动对象的监控、数据统计及管理功能等,髙速铁路中 主机均为网络化设备。
城市轨道交通接触网
城市轨道交通供电系统
城市轨道交通供电系统一、城市轨道交通供电系统介绍城市轨道交通供电系统是为城市轨道交通运营提供所需电能的系统,不仅为城市轨道交通电动列车提供牵引用电,而且还为城市轨道交通运营服务的其他设施提供电能,如照明、通风、空调、给排水、通信、信号、防灾报警、自动扶梯等,应具备安全可靠、技术先进、功能齐全、调度方便和经济合理等特点。
在城市轨道交通的运营中,供电一旦中断,不仅会造成城市轨道交通运输系统的瘫痪,还会危及乘客生命与财产安全。
因此,高度安全可靠而又经济合理的电力供给是城市轨道交通正常运营的重要保证和前提。
城市轨道交通的用电负荷按其功能不同可分为两大用电群体。
一是电动客车运行所需要的牵引负荷。
二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC系统、FAS、BAS、通信系统、信号系统等。
在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷,有固定负荷、有时刻在变化的运动负荷。
每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。
城市轨道供电系统就是要满足这些不同用户对电能的不同需求,以使其发挥各自的功能与作用。
二、城市轨道交通供电系统的组成城市轨道交通供电系统一般包括外部电源、主变电所(或电源开闭所)、牵引供电系统、动力照明供电系统、电力监控系统。
其中,牵引供电系统包括牵引变电所和牵引网,动力照明供电系统包括降压变电所和动力照明配电系统。
城市轨道交通供电系统中一般设置三类变电所,即主变电所(分散式供电方式为电源开闭所)、降压变电所及牵引降压混合变电所。
主变电所是指采用集中供电方式时,接受城市电网35kV及以上电压等级的电源,经其降压后以中压供给牵引变电所和降压变电所的一种地铁变电所,是专为城市轨道交通系统提供能源的枢纽。
降压变电所:从主变电所(电源开闭所)获得电能并降压变成低压交流电,为车站、隧道动力照明负荷提供电源。
城市轨道交通供电系统
城市轨道交通供电系统概述城市轨道交通供电系统是城市轨道交通运营的重要基础设施之一。
它负责为城市的地铁、轻轨等轨道交通提供稳定可靠的电力供应。
供电系统的设计与运营对于轨道交通系统的正常运行和乘客的出行安全至关重要。
本文将重点介绍城市轨道交通供电系统的组成和原理、供电方式以及相关设备和技术等内容。
组成和原理城市轨道交通供电系统主要由以下几个组成部分组成:电源系统是城市轨道交通供电系统的核心组成部分,负责为整个供电系统提供稳定的电力。
常见的电源系统包括接触网供电系统和第三轨供电系统。
•接触网供电系统:通过架设在轨道上方的接触网,通过配电设备提供电力给列车供电。
•第三轨供电系统:在轨道的一侧或两侧铺设一根导电轨,列车通过集电装置与导电轨接触,实现电能传递。
2. 配电系统配电系统负责将电源系统提供的电能,在整个轨道交通线路上进行合理分配。
配电系统通常包括变电站、变压器、开关设备等,在供电过程中起到调节电能和保护设备的作用。
线路系统是城市轨道交通供电系统的输电线路,包括主干线、支线和馈电线等。
这些线路通过导线将电能输送到不同的供电区域,确保整个供电系统的稳定性和可靠性。
4. 集电装置集电装置是连接列车和供电系统的关键设备,由于列车在运行过程中需要实时获得电力供应,因此集电装置可以通过与接触网或第三轨建立导电接触来获取电能,并将其传送到列车的牵引设备中。
供电方式根据城市轨道交通供电系统的不同设计和实际情况,可以有以下几种常见的供电方式:1.直供直流供电方式(常用于地铁):以直流电方式供电,电压较高,通常为600V、750V或1500V,通过第三轨或接触网提供电能。
2.直供交流供电方式(常用于轻轨):以交流电方式供电,电压较低,通常为380V或750V,通过接触网提供电能。
3.高速铁路供电方式:通常使用交流电方式供电,电压较高,通常为25kV,通过接触网提供电能。
相关设备和技术城市轨道交通供电系统涉及到的设备和技术非常多样化,其中一些关键的设备和技术包括:•变电站:用于将电网的高压电能转换为供电系统所需的低压电能。
第一章城市轨道交通供电系统概述资料
第一节 城市轨道交通供电系统的组成及功能
3.牵引供电系统 将交流中压经降压整流变成直流1500V或直流750V 电压,为城轨电动列车提供牵引供电。牵引供电系统 包括牵引变电所与牵引网两个部分 。
城轨牵引供电系统示意图
第一节 城市轨道交通供电系统的组成及功能
4.动力照明供电系统 将交流中压(35kV或10kV)降压变成交流 220/380V电压,为运营需要的各种机电设备提供电源。 它包括降压变电所(站)、动力照明配电系统。
城轨动力照明供电系统
第一节 城市轨道交通供电系统的组成及功能
5.杂散电流腐蚀防护系统 在城市轨道交通中由于采用直流牵引供电,电流有 牵引变电所的正极出发,经由接触网、电动列车、钢 轨、回流线返回牵引变电所负极。由于钢轨与隧道或 道床等结构之间的绝缘电阻不是无穷大,不可避免地 将造成部分电流不从钢轨回流,而是通过沿线的道床钢 筋、隧道、高架桥或建筑物的结构钢筋或土壤回流到 牵引变电所(甚至不回流而散入大地),这一部分电流 就是杂散电流,也叫迷流。
第二节 城市轨道交通的供电系统的制式
二、电压等级 世界各国城市轨道交通的供电电压均在 550~1500V之间,其中间档级很多,这 是由各种不同交通形式、不同发展历史 时期造成的。现国际电工委员会拟定的 电压标准为:600V、750V、1500V三种, 后两种电压为推荐值。我国国标亦规定 为750V和1500V,不推荐600V电压等级。
第一节 城市轨道交通供电系统的组成及功能
直流牵引地下杂散电流示意图
第一节 城市轨道交通供电系统的组成及功能
城市轨道交通杂散电流腐蚀原理图
第一节 城市轨道交通供电系统的组成及功能
6.电力监控系统 又称电力SCADA系统或者远动系统,往往简称 SCADA系统。是贯穿于整个供电系统的监视控制分, 是控制技术在电力系统中的应用。电力监控系统由控 制中心、通信通道和被控制站系统组成,对全线路的 变电所及沿线的供电设备实行集中监视、控制和测量。 典型的电力监控系统由以下四部分组成:位于控制 中心的电力调度中心主站系统(即中央监控系统)、 位于变电所的远程终端(RTU,即变电所综合自动化 系统)、通信网络、位于供电维修基地的供电复示系 统。
城市轨道交通供电系统—供电系统概述
2.供电系统的构成
外部高压供电系统是城市电网对城市轨道交通系统内部的主变电 所供电的系统,有三种供电方式:
(1)集中式 (2)分散式 (3)混合式
2.供电系统的构成
2.1外部高压供电系统
2.1.1分散式供电 在城市轨道交通线路沿线直接从城市电网引入多路电源,电源电压等
级一般为10 kV,供给各牵引变电所。 分散式供电应保证每座牵引变电所和降压变电所皆能获得双路电源。
),输送至牵引变电所和降压变电所。
主变电所具有
的AC 110 kV电源。
2.供电系统的构成
2.1外部高压供电系统
2.1.1 混合式供电 前两种供电方式的结合,以集中式供电为主,个别地段引入城市电
网电源作为集中式供电的补充。
2.供电系统的构成
2.2 牵引供电系统
牵引供电系统供给电动列车运行的电能。 电能
2.供电系统的构成
2.3 动力照明供电系统
(2)配电所(室):仅起到电能分配作用,将来自降压变电所的380 V或220 V交流电 分别供给动力设备或照明设备;各配电所(室)对本车站及两侧区间动力和照明等设备 配电。
2.供电系统的构成
2.3 动力照明供电系统
(3)配电线路:配电所(室)与用电设备之间的连接线路。
(1)列车运行;
(2)运营辅助服务(为运营服务的辅助设施包括照明、通风、空 调、排水、通信、信号、防灾报警、自动扶梯等)。
两方面的供电。
1.供电系统的供电过程
1.供电系统的供电过程
城市电网电源 主变电所
牵引变电所
降压变电所
牵引供电系统
动力照明供电系统
地铁列车牵引供电 地铁机电设备、照明设备供电
.降压及动力配电
城市轨道交通供电系统
供电系统
城市轨道交通供电系统
1.3.1城市轨道交通供电系统的供电制式
城市轨道交通供电系统由变电所、接触网(接触轨)和回流网三部分构成。变电所通过接 触网(接触轨),由车辆受电器向电动客车馈送电能,回流网是牵引电流返回变电所的导体。
供电系统的供电制式主要指电流制式、电压等级和馈电方式。目前,城市轨道交通的直 流牵引电压等级有DC 600 V、DC 750 V和DC 1 500 V等多种。我国国家标准《城市轨道交 通直流牵引供电系统》(GB/T 10411—2005)规定了DC 750 V和DC 1 500 V两种电压制式。 供电系统的馈电方式分为架空接触网和接触轨两种。其中,电压制式和馈电方式是密不可分的。 一般架空接触网馈电方式电压等级采用DC 1 500 V,接触轨馈电方式电压等级主要采用DC 750 V,但有向DC 1 500 V发展的趋势。
1.3.2 城市轨道交通供电系统的组成
城市轨道交通作为城市交通看成一个重要用户。城市轨道交通供电系统由电源系统(城市电网、主变电所)、 牵引供电系统、动力照明供电系统和电力监控系统组成。其中,牵引供电系统包括牵引变 电所和牵引网两大部分,动力照明供电系统包括降压变电所与动力照明配电系统。
2. 牵引供电系统
城市轨道交通牵引供电系统如图1 3所示,各部分功能简述如下:图1 3城市轨道交通牵 引供电系统1—牵引变电所;2—馈电网;3—接触网;4—电动列车;5—钢轨;6—回流线; 7—电分段
2. 牵引供电系统
01
牵引变电所:供给城市轨道交通一定区域内牵引电能的变电所。
02
接触网:经过电动列车的受电器向电动列车供给电能的导电网。
在接触轨材料的选择上,国内已运行的城市轨道交通线路大多采用低碳钢轨;在国外,有 些城市轨道交通线路采用钢铝复合轨。与低碳钢轨相比,钢铝复合轨载流量大,可以减少牵引 变电所的数量,降低运营维修费用,减少运行损耗。现在,武汉轻轨和天津地铁均已采用该材 料。
城市轨道交通-供电系统
不间断电源(UPS)
作用
不间断电源是城市轨道交通供电系统中的重要设备,主要负责在市电中断或异常情况下, 为轨道交通车辆提供不间断的电力供应。
组成
不间断电源通常由整流器、逆变器和蓄电池等组成。
工作原理
不间断电源在市电正常时将市电整流成直流电,然后逆变成交流电供给轨道交通车辆;在 市电中断或异常情况下,蓄电池将为车辆提供电力供应,确保车辆正常运行。
供电设备的维护保养
定期维护
制定维护计划,定期对供电设备进行清洁、检查和保养。
预防性维护
根据设备磨损规律和运行状态,进行预防性维护,延长设备使用 寿命。
维修记录与档案管理
建立设备维修档案,记录维修过程和结果,为后续维护提供参考。
供电系统的故障处理与应急预案
故障诊断与定位
快速诊断供电系统故障,准确定位故障点,为抢修提供支持。
配电网
将电能从变电所分配给各个车 站、车辆段等用电负荷。
供电方式及其特点
01
集中供电
由城市电网建设专用变电站,通过输电线路将电能输送到轨道交通沿线
的牵引变电所。该方式具有便于管理和维护、可靠性高的优点,但需要
建设专用变电站和输电线路,投资较大。
02
分散供电
在轨道交通沿线建设多个小型变电站,直接向牵引变电所和车站供电。
使用的低压电。
类型
变压器通常分为油浸式变压器和 干式变压器两种类型。
工作原理
变压器通过电磁感应原理,将输 入的高压电转换成低压电输出, 以满足城市轨道交通车辆的用电
需求。
高压开关柜
作用
高压开关柜是城市轨道交通供电系统中的重要设 备,主要负责控制和保护高压电的输配。
组成
高压开关柜通常由断路器、隔离开关、电流互感 器等组成。
[全]城轨交通供电系统
城轨交通供电系统城市轨道供电系统是轨道交通的重要组成部分,没有城市轨道供电系统的可靠安全供电,就不可能有城市轨道交通的正常运行。
城市轨道交通供电系统有主变电所、牵引变电所、降压变所、馈电线、接触轨、走行轨、回流线、迷流防护系统等部分组成。
其中,主变电所把从城市电网110kV电源引入的三相高压交流电降压配送给轨道交通沿线的牵引变电所和降压变电所。
牵引变电所是将交流电经降压整流后换成适合于电动列车使用的直流电(750V)。
直流馈电线是将牵引变电所的直流电输送到接触轨上。
接触轨是沿电动列车行驶轨迹架设的特殊供电设备,电动列车通过其受电器(集电器)与接触网的直接接触而获得电能。
走行轨是作为牵引供电回路的一部分,回流线是将轨道回流引向牵引变电所。
迷流防护系统是将经轨道流入大地的杂散电流通过迷流网收集起来,通过排流柜及其电缆将迷流送回整流器的负端,保护地下或地面建筑物的结构钢筋不被腐蚀。
1.特点及要求(1)供电的可靠性和安全性城市轨道交通供电不同于一般工业企业供电和民用供电,它主要是为运送乘客的列车提供持续的电能,这些电动列车往往处于交通线路沿线的不同线段、不同运行状态之中,有高架地面、地下;有上坡、下坡;还有牵引(包括启动状态)、滑行、制动(包括电气再生制动)等。
列车的运行工况比较复杂,对供电的质量和可靠性要求高。
因此,城市轨道交通需要一个稳定而又经济合理沿线路敷设的城市轨道交通供电电网。
此外,城市轨道交通供电系统还要对为乘客运营服务的辅助设施进行供电。
这些设施包括照明,自动扶梯,通信,信号,通风,给排水,防灾报警,自动售、检票机等等。
城市轨道交通供电是城市电网中的重要用户。
大量的人群滞留在车站和列车上的时间长短不一,交通[供电中心3] 供电的中断不仅会造成交通运输的全线瘫痪,而且可能导致生命和财产的重大损损失[供电中心4] 。
因此,交通[供电中心5] 供电系统必须具备高度的可靠性和安全性。
(2)供电负荷多样性系统中供各级供电网络的变配电设备本身负荷,这类设备的负荷主要包括:变压器损耗、线路损耗、各种电流、电压互感器的线圈损耗等等。
城市轨道交通供电系统概述
源(如110kV、),经主变电站进行电压转换,将外部电源降压(如35kV
或10kV)后,由主变电站集中向牵引变电所和降压变电所供电的外部
电源引入模式。
(2)分散式供电
是相对于集中式供电而言的,是指轨道交通不
设主变电站,由沿线城市变电站直接向牵引变电所和降压变电所提供
中压(35kV或10kV)电源的供电模式。
一、电力牵引制式种类
1.牵引制式概述
电力牵引制式是指牵引供电系统向电动车组或电力机车供电所提
供的电流和电压的制式。目前电力牵引制式按电流分,有直流制
式和交流制式;按相数分,有单相和三相。
第2页/共19页
一、电力牵引制式种类
2.馈电方式、牵引制式与受流方式
架空式适合所有不同的牵引制式。
(1)架空式
(2)第三轨
输电线路是向用户传输电能的通道,一般来说其电压较高,即
采用高压传输,其特点是线路较长,覆盖区域广。配电线路是
向用户分配电能的通道,其电压相对较低,也就是通常说的低
压配电线路,其特点是线路较短。由此可见,不同的电网,其
电压等级也不一样。
第6页/共19页
一、城市轨道交通供电系统概况
(1)集中式供电
指轨道交通从城市电网引入较高电压等级的电
第9页/共19页
二、城市轨道交通供电系统结构
1.根据变电所供电接线方式划分
(1)环网供电 主变电所向沿线的所有牵引变电所和降压变电
所供电。
图1-3
双环网供电接线示意图
第10页/共19页
二、城市轨道交通供电系统结构
(2)单边供电 当轨道线路沿线附近只有一侧有电源时,常采
用单边供电。
图1- 4
单边供电接线示意图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城市轨道交通供电系统详解第一章电力牵引供电系统综述一、电力牵引的制式对牵引列车的电动车辆或电力机车特性的基本要求:1、起动加速性能要求起动加速力大而且平稳, 即恒定的大的起动力矩, 便于列车快速平稳起动。
2、动力设备容量利用对列车的主要动力设备——牵引电动机的基本性能要求为, 列车轻载时, 运行速度可以高一些, 而列车重载时运行速度可以低一些。
这样无论列车重载或轻载都可以达到牵引电动机容量的充分利用, 因为列车的牵引力与运行速度的乘积为其功率容量,这时近于常数。
3、调速性能列车运输,特别是旅客运输,要求有不同的运行速度,即调速。
在调速过程中既要达到变速, 还要尽可能经济, 不要有太大的能量损耗, 同时还希望容易实现调速。
低频单相交流制是交流供电方式, 交流电可以通过变压器升降压, 因此可以升高供电系统的电压, 到了列车以后再经车上的变压器将电压降低到适合牵引电动机应用的电压等级。
由于早期整流技术的关系, 这种制式采用的牵引电动机在原理上与直流串激电动机相似的单相交流整流子电动机。
这种电动机存在着整流换向问题,其困难程度随电源频率的升高而增大,因此采用了“低频”单相交流制,它的供电频率和电压有 25 HZ、 6.5~11 kV和 1632HZ 、 12~15 kV等类型。
由于用了低频电源使供电系统复杂化, 需由专用低频电厂供电, 或由变频电站将国家统一工频电源转变成低频电源再送出, 因此没有得到广泛应用, 只在少量国家的工矿或干线上应用。
“工频单相交流制” 。
这种制式既保留了交流制可以升高供电电压的长处, 又仍旧采用直流串激电动机作为牵引电动机的优点, 在电力机车上装设降压变压器和大功率整流设备, 它们将高压电源降压, 再整流成适合直流牵引电动机应用的低压直流电, 电动机的调压调速可以通过改变降压变压器的抽头或可控制整流装置电压来达到。
工频单相交流制是当前世界各国干线电气化铁路应用较普遍的牵引供电制式。
我国干线电气化铁路即采用这种制式,其供电电压为 25kV 。
在牵引制的发展过程中曾出现过“三相交流制” 的形式, 但由于供电网比较复杂,必须要有两根(两相架空接触线和走行轨道构成三相交流电路,两根架空接触线之间又要高压绝缘,造成的困难和投资更大,因此被淘汰。
关于直流制式的电压等级应用情况大致如下:干线电气化铁路的供电电压有 3 kV 的,电压没有再提高是因为受到直流牵引电动机端电压的限制,其值一般为 l . 5 kV左右,用 3 kV供电,一般就需要将两台电动机串联联接,再提高供电电压其联接就更复杂, 还涉及当时整流装置绝缘水平的问题。
这种制式在原苏联和东欧一些国家应用最普遍。
供电电压为 1.2~1.5 kV的直流制多用于工矿和部分国家的干线电力牵引, 如日本等国家。
城市轨道交通几乎毫无例外地都采用直流供电制式, 这是因为城市轨道交通运输的列车功率并不是很大,其供电半径(范围也不大,因此供电电压不需要太高,还由于直流制比交流制的电压损失小(同样电压等级下 ,因为没有电抗压降。
另外由于城市内的轨道交通, 供电线路都处在城市建筑群之间, 供电电压不宜太高, 以确保安全。
基于以上原因, 世界各国城市轨道交通的供电电压都在直流 550~1500V 之间,但其档级很多,这是由各种不同交通形式,不同发展历史时期造成的。
现在国际电工委员会拟定的电压标准为:600 V、 750 V和 1500V 三种。
后两种为推荐值。
我国国标也规定为 750V 和 1500 V, 不推荐现有的 600 V 。
我国北京地铁采用的是 750 V直流供电电压,上海地铁采用的是 1500 V直流供电电压。
必须根据各城市的具体条件和要求,综合论证决定。
二、电力牵引供电系统的组成我国和大多数国家一样, 电力生产由国家经营管理, 因此无论是干线电气化铁路,还是工矿电力牵引和城市轨道交通电力牵引用电均由国家统一电网供给。
为了说明电力牵引供电系统各个组成部分的关系和作用, 下面以城市轨道交通直流电力牵引供电系统为例,用示意图 1-1表示之。
电厂可能与其用户相距甚远,为了能得到经济输电,必须将输电电压升高, 以减少线路的电压损失和能量损耗, 因此在发电厂的输出端接入升压变压器以提高输电电压。
目前我国用得最普遍的输电电压等级为 110~220 kV。
通常国家供电系统总是把在同一个区域 (或大区的许多发电厂通过高压输电线和变电所联结起来成为一个大的统一的供电系统, 向该区域的负荷供电, 这样由各级电压输电线将发电厂、变电所和电力用户联结起来的一个发电、输电、变电、配电和用户的统一体被称为电力系统。
组成统一的电力系统有如下的一些优越性。
1.可以充分利用动力资源。
火力发电厂发出多少电能就需要相应地消耗多少燃料, 而其他的某些类型发电厂, 它能发出多少电能取决于当时该发电厂的动力资源情况,如水电站的水位高低,它随自然条件的变化而变化,因此,组成统一的电力系统以后, 在任何时候, 可以动态地调整各种动力资源, 以求其发挥最大效益。
2.减少燃料运输,降低发电成本。
大容量火力发电厂所消耗的燃料是很可观的, 如果不用高压远距离输电, 则发电厂必然要建在负荷中心附近而不能建在燃料资源的生产地, 这样就要大量运输燃料, 造成发电成本升高。
采用高压输电电力系统以后就可以解决以上问题,将发电厂建在动力资源丰富的地方。
3.提高供电的可靠性。
由于供电区域内的负荷是由多个发电厂组成的电力系统共同供电的, 这样与单个发电厂独立向自己的负荷供电比较起来, 对负荷的供电可靠性就可以提高很多,因为系统内发电厂之间可以起到互为后备的作用。
与此同时,整个系统的发电设备容量也可以减少很多,降低了设备的投资费用。
4.提高发电效率。
没有组成电力系统之前,每个发电厂的容量是按照它的供电负荷大小来设计选择的, 如果该地区负荷小, 则发电设备单机容量必小。
通常单机小容量的发电设备总是比大容量的设备运行效率低些, 因此组成电力系统以后, 不但各发电厂的单机容量可以尽可能选得大一些, 以提高单机的运行效率, 而且总机组数目也可减少, 还不受各地区负荷大小的牵制, 因为它们是由统一系统供电的,这就达到了提高发电效率的目的。
通常高压输电线到了各城市或工业区以后通过区域变电所 (站将电能转配或降低一个等级,如 35~10 kV 向附近各用电中心送电。
城市轨道交通牵引用电既可从区域变电所高压线路得电,也可以从下一级电压的城市地方电网得电, 这取决于系统和城市地方电网具体情况以及牵引用电容量大小。
对于直接从系统高压电网获得电力的城市轨道交通系统, 往往需要再设置一级主降压变电站,将系统输电电压如 110~220kV 降低到 10~35 kV以适应直流牵引变电所的需要。
从管理的角度上看, 主降压变电站可以由电力系统 (电业部门直接管理,也可以归属于城市轨道交通部门管理。
以上,从发电厂(站经升压、高压输电网、区域变电站至主降压变电站部分通常被称为牵引供电系统的“外部(或一次供电系统” 。
从主降压变电站 (当它不属于电力部门时及其以后部分统称为“牵引供电系统” 。
它应该包括:主降压变电站、直流牵引变电所、馈电线、接触网、走行轨及回流线等。
直流牵引变电所将三相高压交流电变成适合电动车辆应用的低压直流电。
馈电线是将牵引变电所的直流电送到接触网上。
接触网是沿列车走行轨架设的特殊供电线路,电动车辆通过其受流器与接触网的直接接触而获得电力。
走行轨道构成牵引供电回路的一部分。
回流线将轨道回流引向牵引变电所。
三、向牵引变电所供电的接线图1.环行供电接线(图 1-2以下各图符号意义相同。
由两个或两个以上主降压变电站和所有的牵引变电所用输电线联成一个环行。
环行供电是很可靠的供电线路,因为在这种情况下,一路输电线和一个主降压变电站同时停止工作时,只要其母线仍保持通电,就不致中断任何一个牵引变电所的正常供电。
但其投资较大。
2.双边供电接线(图 1-3由两个主降压变电站向沿线牵引变电所供电,通往牵引变电所的输电线都经过其母线联接,为了增加供电的可靠性,用双路输电线供电,而每路按输送功率计算。
这种接线可靠性稍低于环行供电。
当引入线数目较多时,开关设备多,投资增加。
3.单边供电接线(图 l -4当轨道沿线附近只有一侧有电源时, 则采用单边供电。
单边供电较环行供电和双边供电的可靠性差,为了提高可靠性,应用双回路输电线供电。
单边供电设备较少,投资也少些。
4.辐射形供电接线(图 l -5每个牵引变电所用两路独立输电线与主降压变电站联接。
这种接线方式适合于轨道线路成弧形的情况。
这种接线简单, 但当主降压变电所停电时,将全线停电。
应当指出, 实际情况常常是以上某些典型接线方式的综合。
变配电接线图的选择应该是这样的, 当供电系统的一个元件故障损坏时, 它应能自动解列而不致破坏牵引供电。
四、直流牵引变电所的整流装置直流牵引变电所的主要功能为, 将其交流进线电压通过整流变压器降压, 然后经整流器将交流电变成直流电供电动车辆的直流牵引电动机用。
为了提高直流电的供电质量,降低直流电源的脉动(波动量,通常采用多相整流的方法,它可以是六相、十二相整流,还可以增加到二十四相整流。
为此,整流变压器不仅起降压作用, 还要将三相交流电变成多相交流电供整流器整流, 整流变压器与整流器合称为整流装置。
下面就直流牵引变电所应用的多相整流基本工作原理加以叙述。
1、最简单的三相半波整流电路(图 l -7图中(a 表示整流变压器的二次侧三相绕组 a 、 b 、 c 成星形联结, a 、b 、c 三相分别接大功率半导体整流管 D 1、 D 2、 D 3, R 为负载电阻,三相交流电压(U a 、 U b 、 U c 波形如图(b所示。
在任何时刻,相电压最高的一相的整流管导通, 此时整流电压(加在负载 R 上的电压即为该相的瞬时电压,如图中ωt 1~ωt 2时, 为 a 相 D 1管导通, 此时整流电压为 U a , 同理依次为 D 2、 D 3导通,整流电压依次为 U b 、 U c 波形。
这种线路的特点为:1 .变压器副边每相绕组只导通 1/3周期,即相差 120°利用率较差。
2 .整流管承受的反向电压高。
当一个整流管导通时,另外两个管必承受反向电压,其值为副边绕组线电压。
如 D 1导通时, D 2、 D 3分别承受反电压 U ab 、 U ac 。
3 .变压器绕组总是通过单方向电流,引起直流磁化,造成铁心饱和,必要求加大铁心尺寸,且阻抗增大,损耗增大。
以上电路属共阴极接线,即三相整流管的阴极连接在一起。
要改善以上整流电路, 首先可以设想有两组负荷相近的整流电路 (都是三相半被整流电路 ,但是一组为共阴极接线,另一组则为共阳极接线,即 a 、 b 、 c 三相绕组连接的三个整流管的阳极连接在一起。