高考物理(全国通用)二轮专题专练:专练8+万有引力与航天(含答案解析)
高考物理二轮复习 专项训练 物理万有引力与航天含解析
高考物理二轮复习 专项训练 物理万有引力与航天含解析一、高中物理精讲专题测试万有引力与航天1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMTh R π因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π(3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ 【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R =可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.3.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高考物理万有引力与航天题20套(带答案)含解析
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR +=23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R g+=(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+代入④得()203t R gR h ω=-+2.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:h R =3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=4.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
高中物理万有引力与航天专项训练及答案及解析.docx
高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
高考物理万有引力与航天专题训练答案及解析.docx
高考物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1.已知地球同步卫星到地面的距离为地球半径的 6 倍,地球半径为R,地球视为均匀球体,两极的重力加速度为g,引力常量为G,求:(1)地球的质量;(2)地球同步卫星的线速度大小.【答案】 (1)gR2gR M(2)vG7【解析】【详解】(1)两极的物体受到的重力等于万有引力,则GMmR2解得mgM gR2;G(2)地球同步卫星到地心的距离等于地球半径的7 倍,即为7R,则GMm v22m7R7R而 GM gR2,解得gRv.72.宇航员在某星球表面以初速度v0竖直向上抛出一个物体,物体上升的最大高度为h.已知该星球的半径为R,且物体只受该星球的引力作用.求:(1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)v2(2)R 2hv0 2h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则v022g h 解得,该星球表面的重力加速度g v022hv2(2) 卫星贴近星球表面运行,则mg mRR解得:星球上发射卫星的第一宇宙速度v g R v02h3.某双星系统中两个星体A、 B 的质量都是m,且 A、 B 相距 L,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期T 要小于按照力学理论计算出的周期理论值 T0,且k (),于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A、 B 的连线中点.求:(1)两个星体 A、 B 组成的双星系统周期理论值;(2)星体 C 的质量.【答案】( 1);( 2)【解析】【详解】(1)两星的角速度相同 ,根据万有引力充当向心力知 :可得:两星绕连线的中点转动,则解得:(2) 因为 C 的存在 ,双星的向心力由两个力的合力提供,则再结合:k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可 .4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高考物理万有引力与航天专项训练及答案及解析
高考物理万有引力与航天专项训练及答案及分析一、高中物理精讲专题测试万有引力与航天1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018 ”.比如,我国将进行北斗组网卫星的高密度发射,整年发射 18 颗北斗三号卫星,为“一带一路”沿线及周边国家供给服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星构成.图为此中一颗静止轨道卫星绕地球飞翔的表示图.已知该卫星做匀速圆周运动的周期为 T,地球质量为 M、半径为 R,引力常量为 G.(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运行轨道面与地球赤道面有必定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量散布均匀的正球体,请比较h1和 h2的大小,并说出你的原因.【答案】( 1)=2π3GMT 212;( 2)h1=4 2R( 3) h = h T【分析】【剖析】(1)依据角速度与周期的关系能够求出静止轨道的角速度;(2)依据万有引力供给向心力能够求出静止轨道到地面的高度;(3)依据万有引力供给向心力能够求出倾斜轨道到地面的高度;【详解】(1)依据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2πTMm2π2(2)静止轨道卫星做圆周运动,由牛顿运动定律有:G2= m( R h1 )( )(R h1 )T 解得:h =3GMT 2R124π( 3)如下图,同步卫星的运行轨道面与地球赤道共面,倾斜同步轨道卫星的运行轨道面与地球赤道面有夹角,可是都绕地球做圆周运动,轨道的圆心均为地心.因为它的周期也是 T ,依据牛顿运动定律,GMm2( R h 2 )=m(Rh 2 )( 2 T) 2解得: h 2 = 3 GMT 2R42所以 h 1= h 2.1) =2π GMT 2R (3) h 1= h 2故此题答案是:(;( 2) h 1 =3T4 2【点睛】关于环绕中心天体做圆周运动的卫星来说,都借助于万有引力供给向心力即可求出要求的物理量.2. 如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程能够筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽视不计),经过轨道上 P 点时点火加快,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地址为圆轨道Ⅰ上的P 点,远地址为同步圆轨道Ⅲ上的Q 点.抵达远地址 Q 时再次点火加快,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为 R ,飞船质量为 m ,同步轨道距地面高度为h .当卫星距离地心的距离为 r 时,地球与卫星构成的系统的引力势能为E pGMm(取无量远处的引力势能为r零),忽视地球自转和喷气后飞船质量的変化,问:( 1)在近地轨道Ⅰ上运行时,飞船的动能是多少?( 2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能互相转变.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为v ,则经过 Q 点时的速率 v 多大?1 2( 3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器能够抵达离地心无量远处),则探测器走开飞船时的速度v 3 (相关于地心)起码是多少?(探测器走开地球的过程中只有引力做功,动能转变成引力势能)【答案】( 1)GMm( 2)v122GM2GM (3)2GM 2R R h R R【分析】【剖析】(1)万有引力供给向心力,求出速度,而后依据动能公式进行求解;(2)依据能量守恒进行求解即可;(3)将小探测器射出,并使它能离开地球引力范围,动能所有用来战胜引力做功转变成势能;【详解】(1)在近地轨道(离地高度忽视不计)Ⅰ 上运行时,在万有引力作用下做匀速圆周运动即:G mMm v2 R2R则飞船的动能为E k 1 mv2GMm ;22R(2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能互相转变.由能量守恒可知动能的减少许等于势能的増加量:1mv121mv22GMm( GMm ) 22R h R若飞船在椭圆轨道上运行,经过P 点时速率为v1,则经过Q点时速率为:v2v122GM2GM ;R h R(3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器离地心的距离无量远),动能所有用来战胜引力做功转变成势能即: G Mm1mv32 R2则探测器走开飞船时的速度(相关于地心)起码是:v32GM.R【点睛】此题考察了万有引力定律的应用,知道万有引力供给向心力,同时注意应用能量守恒定律进行求解.3.我国科学家正在研究设计返回式月球软着陆器,计划在2030 年前后实现航天员登月,对月球进行科学探测。
高中物理万有引力与航天试题(有答案和解析)
设该星球质量M,对该星球表现质量为m1的物体有 ,解得
由 ,得:
6.在月球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该月球半径为R,万有引力常量为G,月球质量分布均匀。求:
(1)月球的密度;
(2)月球的第一宇宙速度。
【答案】(1) (2)
【解析】
【详解】
(1)根据竖直上抛运动的特点可知:
所以:g=
设月球的半径为R,月球的质量为M,则:
体积与质量的关系:
联立得:
(2)由万有引力提供向心力得
解得;
综上所述本题答案是:(1) (2)
【点睛】
会利用万有引力定律提供向心力求中心天体的密度,并知道第一宇宙速度等于 。
7.我国的火星探测器计划于2020年前后发射,进行对火星的科学研究.假设探测器到了火星上空,绕火星做匀速圆周运动,并测出探测器距火星表面的距离为h,以及其绕行周期T和绕行速率V,不计其它天体对探测器的影响,引力常量为G,求:
(2)根据黄金代换公式可以求出.
8.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t小球落回抛出点,已知月球半径为R,引力常数为G.
(1)求月球的密度.
(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?
【答案】(1) (2)
【解析】
【详解】
(1)由匀变速直线运动规律:
(1)火星表面重力加速度的大小;
(2)火箭助推器对洞察号作用力的大小.
【答案】(1) (2)F=260N
【解析】
【分析】
火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力.
(物理)高考物理万有引力与航天专题训练答案含解析
(物理)高考物理万有引力与航天专题训练答案含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为R 6 106m,假设该星球表面上有一倾角为30 的固定斜面体,一质量为 m 1kg 的小物块在力F作用下从静止开始沿斜面向上运动,力 F 向来与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3,力F随位移 x 变化的规律3如图乙所示(取沿斜面向上为正方向).已知小物块运动12m时速度恰好为零,万有引力常量10 11 N?m 2 /kg 2,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小;(2)该星球的平均密度.【答案】 g6m / s2,【解析】【解析】【详解】(1)对物块受力解析以下列图;假设该星球表面的重力加速度为g,依照动能定理,小物块在力F1作用过程中有:F1s1 fs1 mgs1 sin 1 mv202N mgcosf N小物块在力F2 作用过程中有:F2s2 fs2mgs2 sin01mv22由题图可知: F1 15N, s16?m; F23?N, s2 6?m 整理可以获取:(2)依照万有引力等于重力: ,则:,,代入数据得2.“嫦娥一号 ”在西昌卫星发射中心发射升空,正确进入预定轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.以下列图,阴影部分表示月球,设想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上翱翔 n 圈所用时间为 t ,到达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在到达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,此后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上翱翔 n 圈所用时间为 .不考虑其他星体对飞船的影响,求:( 1)月球的平均密度是多少?( 2)若是在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球翱翔方向相同,某时辰两飞船相距近来(两飞船在月球球心的同侧,且两飞船与月球球心在同素来线上),则经过多长时间,他们又会相距近来?1) 192 n2mt1,2,3【答案】( ;( 2) t)( mGt 27n【解析】试题解析:( 1)在圆轨道 Ⅲ 上的周期: T 3t ,由万有引力供应向心力有:8nG Mm2m2RR 2T又: M4R 3 ,联立得:3192 n 2 .3GT 32Gt 2(2)设飞船在轨道I 上的角速度为1 、在轨道 III 上的角速度为23 ,有:1T 12 t 时间相距近来,有:3t ﹣ 1t2m所以有:所以3设飞飞船再经过T 3tmt m,, ).(7n 1 2 3考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要观察万有引力定律的应用,开普勒定律的应用.同时依照万有引力供应向心力列式计算.3. 我国首个月球探测计划 “嫦娥工程 ”将分三个阶段推行,大体用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为 R ,地球表面的重力加速度为 g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径.(2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方 h 高处以速度 v 0 水平抛出一个小球,小球落回到月球表面的水平距离为 s .已知月球半径为R 月,万有引力常量为 G .试求出月球的质量 M 月 .【答案】 (1) r3 gR 2T 22R 月2h 024 2(2) M 月 =Gs 2【解析】本题观察天体运动,万有引力公式的应用,依照自由落体求出月球表面重力加速度再由黄金代换式求解4. 宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间 t ,小球落到星 球表面,测得抛出点与落地点之间的距离为 L .若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为 G ,求该星球的质量M .【答案】2 3LR 2M3Gt 2【解析】【详解】两次平抛运动,竖直方向h1gt 2 ,水平方向 xv 0t ,依照勾股定理可得:2L 2h 2 ( v 0 t)2 ,抛出速度变为 2 倍: ( 3L )2 h 2 (2v 0t )2 ,联立解得: h1 L ,3g2L ,在星球表面: GMm mg ,解得: M2LR 23t 2R23t 2G5. 在月球表面上沿竖直方向以初速度已知该月球半径为R ,万有引力常量为v 0 抛出一个小球,测得小球经时间G ,月球质量分布平均。
专题08 万有引力定律与航天——历年高考物理真题精选之黄金30题(解析版)
历年高考物理真题精选之黄金30题专题08 万有引力定律与航天一、单选题1.(2021·江苏·高考真题)我国航天人发扬“两弹一星”精神砥砺前行,从“东方红一号”到“北斗”不断创造奇迹。
“北斗”第49颗卫星的发射迈出组网的关键一步。
该卫星绕地球做圆周运动,运动周期与地球自转周期相同,轨道平面与地球赤道平面成一定夹角。
该卫星( )A .运动速度大于第一宇宙速度B .运动速度小于第一宇宙速度C .轨道半径大于“静止”在赤道上空的同步卫星D .轨道半径小于“静止”在赤道上空的同步卫星【答案】 B【解析】AB .第一宇宙速度是指绕地球表面做圆周运动的速度,是环绕地球做圆周运动的所有卫星的最大环绕速度,该卫星的运转半径远大于地球的半径,可知运行线速度小于第一宇宙速度,选项A 错误B 正确;CD .根据2224Mm G m r r T π=可知r 因为该卫星的运动周期与地球自转周期相同,等于“静止”在赤道上空的同步卫星的周期,可知该卫星的轨道半径等于“静止”在赤道上空的同步卫星的轨道半径,选项CD 错误。
故选B 。
2.(2021·山东·高考真题)从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。
已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍。
在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程。
悬停时,“祝融”与“玉兔”所受陆平台的作用力大小之比为( )A .9∶1B .9∶2C .36∶1D .72∶1【答案】 B【解析】悬停时所受平台的作用力等于万有引力,根据2mMF G R = 可得22299=:=2=22M m M m F G G F R R ⨯月祝融祝融火玉兔月玉兔火故选B 。
3.(2021·广东·高考真题)2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行,若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是( )A .核心舱的质量和绕地半径B .核心舱的质量和绕地周期C .核心舱的绕地角速度和绕地周期D .核心舱的绕地线速度和绕地半径【答案】 D【解析】根据核心舱做圆周运动的向心力由地球的万有引力提供,可得222224Mm v πG m m ωr m r r r T ===可得2232324v r r r M G G GT ωπ===可知已知核心舱的质量和绕地半径、已知核心舱的质量和绕地周期以及已知核心舱的角速度和绕地周期,都不能求解地球的质量;若已知核心舱的绕地线速度和绕地半径可求解地球的质量。
高中物理《万有引力与航天》练习题(附答案解析)
高中物理《万有引力与航天》练习题(附答案解析)学校:___________姓名:___________班级:_________一、单选题1.如图所示,两球间的距离为r ,两球的质量分布均匀,质量大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球间的万有引力大小为( )A .122m m Gr B .2212221m m G r r r ++C .12212()m m G r r +D .12212()m m Gr r r ++2.2021年5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区成功软着陆。
用h 表示着陆器与火星表面的距离,用F 表示它所受的火星引力大小,则在着陆器从火星上空向火星表面软着陆的过程中,能够描述F 随h 变化关系的大致图像是( )A .B .C .D .3.发现万有引力定律和测出引力常量的科学家分别是( ) A .牛顿、卡文迪许 B .开普勒、卡文迪许 C .开普勒、库仑D .牛顿、库仑4.经典力学有一定的局限性。
当物体以下列速度运动时,经典力学不再适用的是( ) A .32.910m/s -⨯ B .02.910m/s ⨯ C .42.910m/s ⨯ D .82.910m/s ⨯5.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球一起转动,b 在近地轨道做匀速圆周运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图所示。
关于这四颗卫星,下列说法正确的是( )A .a 的向心加速度等于重力加速度g B .c 在4 h 内转过的圆心角是6C .在相同时间内,这四颗卫星中b 转过的弧长最长D .d 做圆周运动的周期有可能是20小时6.2019年10月28日发生了天王星冲日现象,即太阳、地球、天王星处于同一直线,此时是观察天王星的最佳时间。
已知日地距离为0R ,天王星和地球的公转周期分别为T 和0T ,则天王星与太阳的距离为( )A 0B 0C 0D 07.如图所示,两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,圆的半径与椭圆的半长轴相等,两轨道相交于A 、B 两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是( )A .两卫星在图示位置的速度v 1<v 2B .两卫星在A 处的加速度大小不相等C .两颗卫星可能在A 或B 点处相遇D .两卫星永远不可能相遇8.我们的银河系的恒星中大约四分之一是双星。
高中物理万有引力与航天专题训练答案及解析
高中物理万有引力与航天专题训练答案及分析一、高中物理精讲专题测试万有引力与航天1. 如下图,质量分别为m 和 M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得 R =M,又由于 LR rrm因此能够解得: M L , rm L ;RMmMm(2)依据( 1)能够获得 : GmM4 2 4 2ML 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .2. 载人登月计划是我国的 “探月工程 ”计划中实质性的目标.假定宇航员登上月球后,以初速度 v 0 竖直向上抛出一小球,测出小球从抛出到落回原地方需的时间为 t. 已知引力常量为G ,月球的半径为 R ,不考虑月球自转的影响,求: (1) 月球表面的重力加快度大小g 月 ;(2) 月球的质量 M ;(3)飞船切近月球表面绕月球做匀速圆周运动的周期T.2v 0 ; (2) 2R 2v 0 Rt【答案】 (1)Gt; (3) 2t 2v 0【分析】【详解】2v 0(1) 小球在月球表面上做竖直上抛运动,有tg 月月球表面的重力加快度大小g 月 2v 0t(2) 假定月球表面一物体质量为m ,有MmGR2=mg月月球的质量M2R 2v 0Gt(3) 飞船切近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船切近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 03.“嫦娥一号 ”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知 “嫦娥一号 ”绕月飞翔轨道近似为圆形,距月球表面高度为 H ,飞翔周期为 T ,月球的半径为R ,引力常量为 G .求:(1) 嫦“娥一号 ”绕月飞翔时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】 (1)2 RH ( 2) 4 2R H32 R HR H ( 3) TGT 2TR【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小 v 12π(R H ).T( 2 )设月球质量为M .“嫦娥一号”的质量为 m.2依据牛二定律得 G Mm m 4π (R H )(R H )2T 223解得 M4π (R H ).GT 2( 3)设绕月飞船运转的线速度为Mm0V2 V ,飞船质量为 m0,则G2m0又R R23 M4π (R 2 H ) .GT联立得 V 2π R H R H T R4.经过逾 6 个月的飞翔,质量为 40kg 的洞察号火星探测器终于在北京时间2018 年 11 月27 日 03: 56 在火星安全着陆。
高考物理万有引力与航天试题(有答案和解析)及解析
(2)该星球的质量 M ;
(3)该星球的第一宇宙速度 v。
【答案】(1)
g
2hv02 x2
(2)
M
2hv02 R2 Gx2
(3) v v0 x
2hR
【解析】(1)由平抛运动规律得:水平方向 x v0t
竖直方向 h 1 gt2 2
解得:
g
2hv02 x2
(2)星球表面上质量为
m
的物体受到万有引力近似等于它的重力,即
4.利用万有引力定律可以测量天体的质量. (1)测地球的质量 英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量 的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为 g,地球 半径为 R,引力常量为 G.若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量 所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点 O 做匀速圆周运动的两个星 球 A 和 B,如图所示.已知 A、B 间距离为 L,A、B 绕 O 点运动的周期均为 T,引力常量为 G,求 A、B 的总质量.
是
T,根据牛顿运动定律, G
Mm (R h2 )2
=m(R
h2
)(
2 T
)2
解得: h2 = 3
GMT 2 4 2
R
因此 h1= h2.
故本题答案是:(1) =
2π T
;(2) h1= 3
GMT 2 4 2
R
(3)h1= h2
【点睛】
对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的 物理量.
【答案】(1) 2 R H (2) 4 2 R H 3 (3) 2 R H R H
高考物理二轮复习:04 曲线运动 万有引力与航天(含答案及解析)
2020年高考物理二轮复习:04 曲线运动万有引力与航天一、单选题1.我国第一颗人造地球卫星因可以模拟演奏《东方红》乐曲并让地球上从电波中接收到这段音乐而命名为“东方红一号”。
该卫星至今仍沿椭圆轨道绕地球运动。
如图所示,设卫星在近地点、远地点的角速度分别为,,在近地点、远地点的速度分别为,,则()A. B. C. D.2.我国已掌握“半弹道跳跃式高速再入返回技术”,为实现“嫦娥”飞船月地返回任务奠定基础.如图虚线为地球大气层边界,返回器与服务舱分离后,从a点无动力滑入大气层,然后经b点从c点“跳”出,再经d点从e点“跃入”实现多次减速,可避免损坏返回器。
d点为轨迹最高点,离地面高h,已知地球质量为M,半径为R,引力常量为G。
则返回器()A. 在d点处于超重状态B. 从a点到e点速度越来越小C. 在d点时的加速度大小为D. 在d点时的线速度小于地球第一宇宙速度3.2018年1月12日,我国成功发射北斗三号组网卫星.如图为发射卫星的示意图,先将卫星发射到半径为r的圆轨道上做圆周运动,到A点时使卫星加速进入椭圆轨道,到椭圆轨道的远地点B点时,再次改变卫星的速度,使卫星进入半径为2r的圆轨道.已知卫星在椭圆轨道时距地球的距离与速度的乘积为定值,卫星在椭圆轨道上A点时的速度为v,卫星的质量为m,地球的质量为M,引力常量为G,则发动机在A 点对卫星做的功与在B点对卫星做的功之差为(忽略卫星的质量变化)()A. B. C. D.4.如图所示是嫦娥五号的飞行轨道示意图,其中弧形轨道为地月转移轨道,轨道I是嫦娥五号绕月运行的圆形轨道。
已知轨道I到月球表面的高度为H,月球半径为R,月球表面的重力加速度为g,若忽略月球自转及地球引力影响,则下列说法中正确的是()A. 嫦娥五号在轨道III和轨道I上经过Q点时的速率相等B. 嫦娥五号在P点被月球捕获后沿轨道III无动力飞行运动到Q点的过程中,月球与嫦娥五号所组成的系统机械能不断增大C. 嫦娥五号在轨道I上绕月运行的速度大小为D. 嫦娥五号在从月球表面返回时的发射速度要小于5.如图所示,“嫦娥四号”飞船绕月球在圆轨道Ⅰ上运动,在A位置变轨进入椭圆轨道Ⅱ,在近月点B位置再次变轨进入近月圆轨道Ⅲ,下列判断正确的是()A. 飞船在A位置变轨时,动能增大B. 飞船在轨道Ⅰ上的速度大于在轨道Ⅲ上的速度C. 飞船在轨道Ⅰ上的加速度大于在轨道Ⅲ上的加速度D. 飞船在轨道Ⅰ上的周期大于在轨道Ⅱ的周期6.如图所示,当用扳手拧螺母时,扳手上的P、Q两点的角速度分别为和,线速度大小分别为和,则()A. B. C. D.7.在距河面高度h=20 m的岸上有人用长绳拴住一条小船,开始时绳与水面的夹角为30°,人以恒定的速率v=3 m/s拉绳,使小船靠岸,那么( )A. 5 s时绳与水面的夹角为60°B. 5 s后小船前进了15 mC. 5 s时小船的速率为4 m/sD. 5 s时小船到岸边的距离为15 m8.火车轨道在转弯处外轨高于内轨,设斜面倾角为θ,火车质量为m,轨道半径为R,若重力加速度为g,则下列说法正确的是()A. 火车可能受到重力、支持力和向心力B. 物体受到的向心力方向沿轨道斜面向下C. 若火车的速度为,则轨道对火车没有侧向压力D. 增加斜面倾角θ,车轮对内轨的压力一定增大9.如图所示A、B、C分别是地球表面上北纬、南纬和赤道上的点若已知地球半径为R,自转的角速度为,A、B、C三点的向心加速度大小之比为( )A. 1:1:1B. 1:1:2C. :1:2D. 1::210.如图所示是一个玩具陀螺,、和是陀螺上的三个点,当陀螺绕垂直于水平地面的轴线以角速度稳定旋转时,下列表述正确的是()A. 、和三点的线速度大小相等B. 、和三点的角速度相等C. 、两点的角速度比的大D. 的线速度比、的大11.如图,两根细杆M、N竖直固定在水平地面上,M杆顶端A和N杆中点B之间有一拉直的轻绳。
高中物理万有引力与航天试题(有答案和解析)及解析
由以上各式得, r
m1 m2 m2
r1 ①
由万有引力定律得
FA
G
m1m2 r2
将①代入得 FA G
m1m23 m1 m2
r12
令
FA
G
m1m ' r12
,比较可得
m'
m23 m1 m2
2
②
(2)由牛顿第二定律有: G
m1m ' r12
m1
v2 r1
③
又可见星的轨道半径 r1
vT 2
④
求出行星质量
(2)在行星表面
求出:
(3)在行星表面
求出: 【点睛】 本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.
4.我国科学家正在研究设计返回式月球软着陆器,计划在 2030 年前后实现航天员登月,
对月球进行科学探测。宇航员在月球上着陆后,自高 h 处以初速度 v0 水平抛出小球,测量 出小球的水平射程为 L(这时月球表面可以看成是平坦的),已知月球半径为 R,万有引力常
联立可得
3 GT 2
5.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极
大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,
请你解答:
(1)若已知地球半径为 R,地球表面的重力加速度为 g,月球绕地球运动的周期为 T,且
把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径.
由②③④得 m1
m23
m2 2
v3T 2 G
(3)将 m1
6ms 代入
m23 m1 m2
2
v3T 2 G
高考物理二轮复习专题突破训练—万有引力定律与航天(含解析)
高考物理二轮复习专题突破训练—万有引力定律与航天(含解析)一、单项选择题1.2022年5月,我国成功完成了天舟四号货运飞船与空间站的对接,形成的组合体在地球引力作用下绕地球做圆周运动,周期约90分钟。
下列说法正确的是()A .组合体中的货物处于超重状态B .组合体的速度大小略大于第一宇宙速度C .组合体的角速度大小比地球同步卫星的大D .组合体的加速度大小比地球同步卫星的小【答案】C【详解】A .组合体在天上只受万有引力的作用,则组合体中的货物处于失重状态,A 错误;B .由题知组合体在地球引力作用下绕地球做圆周运动,而第一宇宙速度为最大的环绕速度,则组合体的速度大小不可能大于第一宇宙速度,B 错误;C .已知同步卫星的周期为24h ,则根据角速度和周期的关系有2Tπω=由于T 同>T 组合体,则组合体的角速度大小比地球同步卫星的大,C 正确;D .由题知组合体在地球引力作用下绕地球做圆周运动,有2224Mm G m r r Tπ=整理有2T =由于T 同>T 组合体,则r 同>r 组合体,且同步卫星和组合体在天上有2Mmma Gr =则有a 同<a 组合体,D 错误。
故选C 。
2.“羲和号”是我国首颗太阳探测科学技术试验卫星。
如图所示,该卫星围绕地球的运动视为匀速圆周运动,轨道平面与赤道平面接近垂直。
卫星每天在相同时刻,沿相同方向经过地球表面A 点正上方,恰好绕地球运行n 圈。
已知地球半径为地轴R ,自转周期为T ,地球表面重力加速度为g ,则“羲和号”卫星轨道距地面高度为()A .1223222π⎛⎫- ⎪⎝⎭gR T Rn B .1223222π⎛⎫ ⎝⎭gR T n C .1223224π⎛⎫- ⎪⎝⎭gR T Rn D .1223224π⎛⎫⎪⎝⎭gR T n 【答案】C【详解】地球表面的重力加速度为g ,根据牛顿第二定律得2GMmmg R =解得2GM gR =根据题意可知,卫星的运行周期为'TT n=根据牛顿第二定律,万有引力提供卫星运动的向心力,则有()()2224'GMmm R h T R h π=++联立解得2h R =故选C 。
高考物理专题 万有引力与航天练习及参考答案
3232bb a a T r T r =高三物理万有引力与航天专题练习一、选择题。
本题共12小题。
(第1—9题在每小题给出的四个选项中,只有一项符合题目要求,第10—12题有的有多项符合题目要求。
)1、2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。
与天宫二号单独运行时相比,组合体运行的()A .周期变大B .动能变大C .速率变大D .向心加速度变大2、关于行星运动的规律,下列说法符合史实的是 A.开普勒在牛顿定律的基础上,导出了行星运动的规律 B.开普勒总结出了行星运动的规律,发现了万有引力定律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒在天文观测数据的基础上,总结出了行星运动的规律3、已知地球半径为R ,地面附近的重力加速度为g ,一颗卫星绕地球做匀速圆周运动,且卫星离地面的高度也为R ,则下列说法中正确的是()A. 卫星的线速度大小为gR 2B. 卫星的角速度大小为RgC.卫星的向心加速度大小为g 41 D. 卫星的运动周期为Rg π4 4、宇航员站在某一星球距离表面h 高度处,以初速度v 0沿水平方向抛出一个小球,经过时间t 后小球落到星球表面,已知该星球的半径为R ,万有引力常量为G ,则该星球的质量为( )A.Gt R h 22B.222Gt hR C.02v GthD.022v Gt h 5、已知地球质量为月球质量的81倍,地球半径约为月球半径的4倍.若在月球和地球表面同样高度处,以相同的初速度水平抛出物体,抛出点与落地点间的水平距离分别为S 月和S 地,则S 月:S 地约为()A 、9:4B 、6:1C 、1:1D 、3:2 6、“神舟十一号”载人飞船,于2016年10月19日3时31分,与“天宫二号”空间实验室成功实现自动交会对接,为我国未来空间站建设进行科学的技术验证,为实现我国从航天大国走向航天强国的中国梦典定了坚实的基础.关于在轨运行的“天宫二号”,下列说法中正确的是()A. “天宫二号”运行时,其处于超重状态B.“天宫二号”运行时,其处于平衡状态C. “天宫二号”的运行速度一定小于7.9km/sD 、“天宫二号”的运行速度一定大于7.9km/s 且小于11.2km/s 7、我国发射的“神州六号”载人飞船(周期为T a ,轨道半径为r a )与“神州五号”飞船(周期为T b ,轨道半径为r b )相比,它在更高的轨道上绕地球做匀速圆周运动,如图所示,下列说法中不正确的是()A. B.“神州六号”的周期比“神州五号”的要长C.“神州六号”的向心加速度比“神州五号”的向心加速度小D.在轨道上“神州六号”的环绕速度比“神州五号”的要小8、某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10m/s 的初速度竖直向上抛出一物体,从抛出到落回原地需要的时间为)/10(2s m g =地()9、太阳系中的8大行星的轨道均可以近似看成圆轨道。
高考物理万有引力与航天专项训练及答案
高考物理万有引力与航天专项训练及答案一、高中物理精讲专题测试万有引力与航天1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R =,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为1v =3.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GTπ=;22GM R c '= 【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭ 解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c'=4.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2L L G M M π+; 【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL= 同理对星2M ,有:212222M M GM R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.5.我国在2008年10月24日发射了“嫦娥一号”探月卫星.同学们也对月球有了更多的关注.(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,月球绕地球的运动可近似看作匀速圆周运动,试求月球绕地球运动的轨道半径.(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度0v 竖直向上抛出一个小球,经过时间t ,小球落回抛出点.已知月球半径为r ,万有引力常量为G ,试求出月球的质量M 月【答案】(2)202v r Gt . 【解析】 【详解】(1)设地球的质量为M ,月球的质量为M 月,地球表面的物体质量为m ,月球绕地球运动的轨道半径R ',根据万有引力定律提供向心力可得:222()MM G M R R Tπ=''月月2Mmmg GR = 解得:R '=(2)设月球表面处的重力加速度为g ',根据题意得:02g t v '=02GM m g r m '=月 解得:202v r M Gt=月6.2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知地球半径为R ,地面处的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)飞船在上述圆形轨道上运行的周期T .【答案】(1)GgR M 2=(2)32()2R h T gR π+= 【解析】 【详解】(1)根据在地面重力和万有引力相等,则有2MmGmg R = 解得:GgR M 2=(2)设神舟五号飞船圆轨道的半径为r ,则据题意有:r R h =+飞船在轨道上飞行时,万有引力提供向心力有:2224πMm G m r r T=解得:32()2πR h T gR +=7.宇航员来到某星球表面做了如下实验:将一小钢球以v 0的初速度竖直向上抛出,测得小钢球上升离抛出点的最大高度为h (h 远小于星球半径),该星球为密度均匀的球体,引力常量为G ,求:(1)求该星球表面的重力加速度;(2)若该星球的半径R ,忽略星球的自转,求该星球的密度. 【答案】(1)(2)【解析】(1)根据速度-位移公式得:,得(2)在星球表面附近的重力等于万有引力,有及联立解得星球密度8.2018年12月08日凌晨2时23分,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射嫦娥四号探测器,开启了月球探测的新旅程。
高考物理万有引力与航天专题训练答案及解析
高考物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR p += (2)23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R gπ+=③(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+⑤代入④得()203t R gR h ω=-+2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.某双星系统中两个星体 A 、B 的质量都是 m ,且 A 、B 相距 L ,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期 T 要小于按照力学理论计算出的周期理论值 T 0,且= k () ,于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A 、B 的连线中点.求: (1)两个星体 A 、B 组成的双星系统周期理论值; (2)星体C 的质量.【答案】(1);(2)【解析】 【详解】(1)两星的角速度相同,根据万有引力充当向心力知:可得:两星绕连线的中点转动,则解得:(2)因为C 的存在,双星的向心力由两个力的合力提供,则再结合:= k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可.4.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。
高考物理二轮复习专题训练:万有引力与航天(word版含答案)
2022年高考物理二轮复习专题必刷——万有引力与航天学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2021·海南·高考真题)2021年4月29日,我国在海南文昌用长征五号B运载火箭成功将空间站天和核心舱送入预定轨道。
核心舱运行轨道距地面的高度为400km左右,地球同步卫星距地面的高度接近36000km。
则该核心舱的()A.角速度比地球同步卫星的小B.周期比地球同步卫星的长C.向心加速度比地球同步卫星的大D.线速度比地球同步卫星的小2.(2021·湖北·高考真题)2021年5月,天问一号探测器软着陆火星取得成功,迈出了我国星际探测征程的重要一步。
火星与地球公转轨道近似为圆,两轨道平面近似重合,且火星与地球公转方向相同。
火星与地球每隔约26个月相距最近,地球公转周期为12个月。
由以上条件可以近似得出()A.地球与火星的动能之比B.地球与火星的自转周期之比C.地球表面与火星表面重力加速度大小之比D.地球与火星绕太阳运动的向心加速度大小之比3.(2021·天津·高考真题)2021年5月15日,天问一号探测器着陆火星取得成功,迈出了我国星际探测征程的重要一步,在火属上首次留下国人的印迹。
天问一号探测器成功发射后,顺利被火星捕获,成为我国第一颗人造火星卫星。
经过轨道调整,探测器先沿椭圆轨道Ⅰ运行,之后进入称为火星停泊轨道的椭圆轨道Ⅰ运行,如图所示,两轨道相切于近火点P,则天问一号探测器()A.在轨道Ⅰ上处于受力平衡状态B.在轨道Ⅰ运行周期比在Ⅰ时短C.从轨道Ⅰ进入Ⅰ在P处要加速D.沿轨道Ⅰ向P飞近时速度增大4.(2021·四川内江·一模)据外媒报道,2021年天文学家发现了一颗具有大型海洋特征且气温和环境可以支持微生物生命的行星,被称为“Hycean行星”。
高考物理万有引力与航天专题训练答案含解析
高考物理万有引力与航天专题训练答案含解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR +=23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R g+=(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+代入④得()203t R gR h ω=-+2.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到: (2)根据万有引力等于重力:,则:,,代入数据得3.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12Mm F GR= (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:h R =4.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R = 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得v =.5.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
最新 高考物理万有引力与航天试题(有答案和解析)
最新 高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b卫星22(4)4Mm v G m R R= 解得v 4b GM R= 所以2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V Gm RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=4.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】 【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.5.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算6.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专练8 万有引力与航天一、单项选择题1.我国“北斗”卫星导航定位系统将由5颗静止轨道卫星(同步卫星)和30颗非静止轨道卫星组成,30颗非静止轨道卫星中有27颗是中轨道卫星,中轨道卫星轨道高度约为2.15×104 k m ,静止轨道卫星的高度约为3.60×104 k m ,下列说法正确的是( )A .静止轨道卫星的运行周期大于中轨道卫星的运行周期B .中轨道卫星的线速度大于7.9 k m/sC .静止轨道卫星的线速度大于中轨道卫星的线速度D .静止轨道卫星的向心加速度大于中轨道卫星的向心加速度解析 根据万有引力提供向心力可得,G Mm r 2=ma =m v 2r =m (2πT )2r ,所以T =4π2r 3GM ,v =GM r ,a =GMr 2,由题意可知,中轨道卫星的半径小于静止轨道卫星的半径,与静止轨道卫星相比,中轨道卫星的周期小,线速度大,向心加速度大,故选项A 正确,C 、D 错误;7.9 k m/s 是第一宇宙速度,即卫星绕地球转动的最大运行速度,故中轨道卫星的线速度小于7.9 k m/s ,选项B 错误. 答案 A2.(2014·甘肃第一次诊考)星系由很多绕中心做圆形轨道运行的恒星组成.科学家研究星系的一种方法是测量恒星在星系中的运行速度v 和离星系中心的距离r .用v ∝r n 这样的关系来表达,科学家们特别关心指数n .若作用于恒星的引力主要来自星系中心的巨型黑洞,则n 的值为( )A .1B .2 C.12 D .-12解析 恒星由受到的万有引力提供向心力,则有G Mmr 2=m v 2r ,可知,v =GMr =GM ·r -12,所以v ∝r -12,n 为-12,故D 项正确. 答案 D3.(2014·高考冲刺试卷三)科学家分析,随着地球上各地地震、海啸的不断发生,会导致地球的自转变快.理论分析,下列说法正确的是( )A .“天宫一号”飞行器的高度要略调高一点B .地球赤道上物体的重力会略变大C .同步卫星的高度要略调低一点D .地球的第一宇宙速度将略变小解析 地球的自转变快表明地球的自转周期变小,“天宫一号”飞行器的高度、地球的第一宇宙速度与地球的自转周期无关,A 、D 错;地球赤道上物体的重力mg =G Mm R 2-m 4π2T 2R 将变小,B 错;对于同步卫星:G Mm r 2=m 4π2T 2r ,得r =3GMT 24π2,所以C 正确. 答案 C4.(2014·河北唐山一模)2013年12月15日4时35分,嫦娥三号着陆器与巡视器(“玉兔号”月球车)成功分离,巡视器顺利驶抵月球表面.一同学设计实验来测定月球的第一宇宙速度:设想通过月球车上的装置在距离月球表面h 高处平抛一个物体,抛出的初速度为v 0,测量出水平射程L ,已知月球的半径为R ,月球的第一宇宙速度为( )A.v 0L hRB.v 0L 2hRC.2v 0L hRD.2v 0L 2hR解析 根据平抛运动的规律得,L =v 0t ,h =12gt 2,则g =2h v 20L 2,月球的第一宇宙速度v =gR =v 0L 2hR ,B 正确. 答案 B5.(2014·西安一模)如图1所示,人造卫星A 、B 在同一平面内绕地心O 做匀速圆周运动.已知A 、B 连线与A 、O 连线间的夹角最大为θ,则卫星A 、B 的角速度之比ωAωB等于( )图1A .sin 3θ B.1sin 3θ C.sin 3θ D.1sin 3θ答案 C6.(2014·山东潍坊市联考)2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P ,这个行星围绕某恒星Q 做匀速圆周运动.测得P 的公转周期为T ,公转轨道半径为r ,已知引力常量为G ,则( )A .恒星Q 的质量约为4π2r 3GT 2 B .行星P 的质量约为4π2r 3GT 2 C .恒星Q 的平均密度约为3πGT 2 D .行星P 的第一宇宙速度为2πrT解析 由于万有引力提供向心力,以行星P 为研究对象有G Mm r 2=m 4π2T 2r ,得M =4π2r 3GT 2,选项A 正确;根据万有引力提供向心力只能求得中心天体的质量,因此根据题目所给信息不能求出行星P 的质量,选项B 错误;由题中信息无法得出恒星Q 的体积,故无法求出恒星Q 的密度,选项C 错误;2πrT 是行星P 的公转速度,而不是其第一宇宙速度,选项D 错误,答案为A. 答案 A7.(2014·浙江卷,16)长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 k m ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 k m ,则它的公转周期T 2最接近于( )A .15天B .25天C .35天D .45天 解析 根据牛顿第二定律及万有引力定律得 GMm 1r 21=m 14π2T 21r 1① GMm 2r 22=m 24π2T 22r 2② 由①②得:r 31r 32=T 21T 22,即T 2=r 2r1r 2r 1T 1=1204912049×6.39天≈25天,选项B 正确. 答案 B8.(2014·河北石家庄质检)太阳系中某行星A 运行的轨道半径为R ,周期为T ,但科学家在观测中发现,其实际运行的轨道与圆轨道存在一些偏离,且每隔时间t 发生一次最大的偏离.天文学家认为形成这种现象的原因可能是A 外侧还存在着一颗未知星B ,它对A 的万有引力引起A 行星轨道的偏离,假设其运行轨道与A 在同一平面内,且与A 的绕行方向相同,由此可推测未知行星B 绕太阳运行的圆轨道半径为( )A .R3(t t -T )2B.tt -TR C .R3(t -T t )2D .R3t 2t -T解析 在太阳系中行星A 每隔时间t 实际运行的轨道发生一次最大偏离,说明A 、B 此时相距最近,此过程类似于钟表中时、分两针从重合到再次重合,已知A 的轨道半径小于B 的轨道半径,则有ωA t -ωB t =2π,2πT t -2πT ′t =2π,T ′=tt -T T ,利用开普勒第三定律有R 3R ′3=T 2T ′2,解得R ′=R 3(t t -T )2,所以只A 项正确.答案 A9.(2014·高考冲刺卷四)美国航天局2013年4月18日宣布,开普勒天文望远镜已观测到太阳系外迄今“最像地球”的行星.据称,有两颗行星位于一个名为开普勒-62的行星系统的“宜居带”中,这里温度条件适宜,理论上其表面有液态水,甚至可能有少许大气.若A 、B 两行星的密度相同,A 行星表面重力加速度是B 行星表面重力加速度的2倍(忽略行星自转影响),已知两行星各有一颗卫星在其表面附近围绕行星做匀速圆周运动,由此可判断下列说法正确的是( )A .A 、B 两行星的半径之比为4∶1 B .A 、B 两行星的质量之比为1∶8C .两颗卫星分别绕A 、B 做匀速圆周运动的周期之比为1∶1D .两颗卫星分别绕A 、B 做匀速圆周运动的线速度大小之比为1∶2解析 设A 、B 两行星的质量分别为M 1、M 2,半径分别为R 1、R 2,两卫星运行的周期分别为T 1、T 2,线速度大小分别为v 1、v 2.由题意有M 14πR 313=M 24πR 323,GM 1R 21=2GM 2R 22.可解得M 1∶M 2=8∶1,R 1∶R 2=2∶1,选项A 、B 错误;对A 行星表面附近的卫星,G M 1m R 21=m (2πT 1)2R 1,对B 行星表面附近的卫星,G M 2m R 22=m (2πT 2)2R 2,由上述各式得T 1=T 2,所以选项C 正确;由v 1v 2=R 1R 2×T 2T 1,可得v 1∶v 2=2∶1,则选项D 错误.答案 C10.(2014·海南卷,6)设地球自转周期为T ,质量为M ,引力常量为G ,假设地球可视为质量均匀分布的球体,半径为R .同一物体在南极和赤道水平面上静止时所受到的支持力之比为( )A.GMT 2GMT 2-4π2R 3 B.GMT 2GMT 2+4π2R 3 C.GMT 2-4π2R 3GMT 2D.GMT 2+4π2R 3GMT 2解析 假设物体质量为m ,物体在南极受到的支持力为F N1,则F N1=GMmR 2;假设物体在赤道受到的支持力为F N2,则GMm R 2-F N2=m 4π2T 2R ;联立可得F N1F N2=GMT 2GMT 2-4π2R 3,故选A.答案 A二、多项选择题11.如图2所示,A 表示地球同步卫星,B 为运行轨道比A 低的一颗卫星,C 为地球赤道上某一高山山顶上的一个物体,两颗卫星及物体C 的质量都相同,关于它们的线速度、角速度、运行周期和所受到的万有引力的比较,下列关系式正确的是( )图2A .vB >v A >v CB .ωA >ωB >ωC C .F A >F B >F CD .T A =T C >T B解析 A 为地球同步卫星,故ωA =ωC ,根据v =ωr 可知v A >v C ,再根据G Mm r 2=m 4π2T 2r 得到v =GMr ,可见v B >v A ,所以三者的线速度关系为v B >v A >v C ,故选项A正确,由ω=2πT 可知T A =T C ,由G Mm r 2=m (2πT )2r 可知T C >T B ,因此它们的周期关系T A =T C >T B ,它们的角速度关系为ωB >ωA =ωC ,所以选项D 正确,选项B 错误;F =G Mmr 2可知F A <F B <F C ,所以选项C 错误. 答案 AD12.(2014·长春市调研测试)如图3所示,有甲、乙两颗卫星分别在不同的轨道围绕一个半径为R 、表面重力加速度为g 的行星运动,卫星甲、卫星乙各自所在的轨道平面相互垂直,卫星甲的轨道为圆,距离行星表面的高度为R ,卫星乙的轨道为椭圆,M 、N 两点的连线为其椭圆轨道的长轴且M 、N 两点间的距离为4R .则以下说法正确的是( )图3 A.卫星甲的线速度大小为2gRB.卫星乙运行的周期为4π2R gC.卫星乙沿椭圆轨道运行经过M点时的速度大于卫星甲沿圆轨道运行的速度D.卫星乙沿椭圆轨道运行经过N点时的加速度小于卫星甲沿圆轨道运行的加速度解析卫星甲绕行星做匀速圆周运动,由万有引力提供向心力,可计算出卫星甲环绕行星运动的线速度大小v=gR2,A选项错误.同理可计算出卫星甲环绕行星的周期T甲=4π2Rg,由卫星乙椭圆轨道的半长轴等于卫星甲圆轨道的半径,根据开普勒第三定律,可知卫星乙运行的周期和卫星甲运行的周期相等,则T乙=T甲=4π2Rg,B选项正确.卫星乙沿椭圆轨道经过M点时的速度大于轨道半径为M至行星中心距离的圆轨道的卫星的线速度,而轨道半径为M至行星中心距离的圆轨道的卫星的线速度大于卫星甲在圆轨道上的线速度,C选项正确.卫星运行时只受万有引力,引力加速度a=GMr2,D选项正确.答案BCD13.北京时间2013年12月2日凌晨2点17分,在西昌卫星发射中心,“长征三号乙”运载火箭将中国探月工程二期的“嫦娥三号”月球探测器成功送入太空.“嫦娥三号”接近月球表面的过程可简化为三个阶段:距离月球表面15 k m时打开反推发动机减速,下降到距月球表面H=100 m高度时悬停,寻找合适落月点;找到落月点后继续下降,距月球表面h=4 m时速度再次减为0;此后,关闭所有发动机,使它做自由落体运动落到月球表面,已知“嫦娥三号”的质量为140 k g,月球表面重力加速度g′约为1.6 m/s2,月球半径为R,引力常量为G,则( )A .月球的质量为g ′R 2G B .月球的质量为g ′RGC .“嫦娥三号”悬停在离月球表面100 m 处时发动机对“嫦娥三号”的作用力大小为224 ND .“嫦娥三号”从悬停在100 m 处到落至月球表面,发动机对“嫦娥三号”做的功约为2 150 J解析 设月球质量为M ,根据万有引力定律,在月球表面有G Mm 0R 2=m 0g ′,解得M =g ′R 2G ,故选项A 正确,B 错误.由题意可知,“嫦娥三号”在H =100 m 高度悬停时受力平衡,则发动机对“嫦娥三号”的作用力的大小为F =mg ′=140×1.6 N =224 N ,选项C 正确.设“嫦娥三号”从悬停在100 m 处至到达4 m 处的过程中,发动机对其做功为W 1,由动能定理得mg ′(H -h )+W 1=0,解得W 1=-mg ′(H -h )=-140×1.6×(100-4)J ≈2.15×104 J ;从4 m 处释放至到达月球表面,机械能守恒,发动机对“嫦娥三号”做功为零,即W 2=0.因此,“嫦娥三号”从悬停在100 m 处到落至月球表面,发动机对“嫦娥三号”做的功约为W =W 1+W 2=2.15×104 J ,故选项D 错误. 答案 AC14.(2014·黑龙江齐齐哈尔二模)嫦娥工程划为三期,简称“绕、落、回”三步走.我国发射的“嫦娥三号”卫星是嫦娥工程第二阶段的登月探测器,经变轨成功落月.若该卫星在某次变轨前,在距月球表面高度为h 的轨道上绕月球做匀速圆周运动,其运行的周期为T .若以R 表示月球的半径,忽略月球自转及地球对卫星的影响,则( )A .“嫦娥三号”绕月球做匀速圆周运动时的线速度大小为2πR TB .物体在月球表面自由下落的加速度大小为4π2(R +h )3R 2T 2C .在月球上发射月球卫星的最小发射速度为2πRT R +h RD .月球的平均密度为3π(R +h )3GT 2R 3解析 “嫦娥三号”的线速度v =2π(R +h )T ,A 项错误;由GMm(R +h )2=m 4π2T 2(R +h ),GMmR 2=mg 月,可得物体在月球表面的重力加速度g 月=4π2(R +h )3R 2T 2,B 项正确;因月球上卫星的最小发射速度也就是最大环绕速度,有GMm 卫R 2=m 卫v 2R ,又GMm(R +h )2=m 4π2T 2(R +h )可得:v =2π(R +h )T R +hR ,C 项错误;由GMm(R +h )2=m 4π2T 2(R +h ),ρ=M V ,V =43πR 3可得月球的平均密度ρ=3π(R +h )3GT 2R 3,D 正确. 答案 BD方法技巧 解决天体运动问题要善于构建两大模型(1)“天体公转”模型——某天体绕中心天体做匀速圆周运动,这种模型一般应用动力学方程(G Mm r 2=m v 2r 2=mω2r =m (2πT )2r =ma n )和黄金代换公式(GM =gR 2)就能轻松解决问题.(2)“天体自转”模型——天体绕自身中心的某一轴以一定的角速度匀速转动,这种模型中往往要研究天体上某物体随天体做匀速圆周运动问题,这时向心力是天体对物体的万有引力和天体对物体的支持力的合力,在天体赤道上,则会有F n =F 万-F N .。