八年级上册数学知识点归纳
八年级数学上册知识点归纳
八年级数学上册知识点归纳八年级数学上册必备知识梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:一般梯形、梯形直角梯形、特殊梯形等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的'两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。
八年级数学知识总结一、整式的乘法1.同底数幂的乘法:am²an=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。
2.幂的乘方法则:(am)n=amn(m,n都是正整数)幂的乘方,底数不变,指数相乘。
3.积的乘方法则:(ab)n = an²bn(n为正整数) 积的乘方=乘方的积4.单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式5.单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
6.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2。
2.完全平方公式:(a±b)2=a2±2ab+b2口诀:前平方,后平方,积的两倍中间放,中间符号看情况。
八年级数学上册必背知识点
以下是八年级数学上册的必背知识点:一、整式的概念与运算1.简单的代数式的概念与运算:常数、变量、系数、次数等。
2.同类项的概念与合并:同底数幂相乘的原理、定点方向向量。
3.整式之和与差、积的概念与规律。
二、分式的概念与运算1.简单的分式的概念与约分:通分、求最简分式。
2.分式之和与差、积及商的概念与运算。
三、一元一次方程与不等式1.等式的定义与性质:等式的基本性质、等式的移项与合并、等式的逆运算等。
2.一元一次方程与不等式的定义与解法:有理数的加减乘除、方程、方程与不等式的基本关系。
四、图形的初步认识1.点、线、面的概念。
2.线段、射线、角的概念与性质:直角、余角、补角、平分线。
3.直线与点的位置关系:共线、相交、平行、垂直。
4.三角形、四边形的定义与性质:等腰、等边、直角、等角、对顶角、对边、外角和等角、四边形的分类及性质。
五、比例与图形的相似1.比与比例的概念与运算:比例的基本性质、反比例等。
2.图形的相似与比例:全等、相似的定义与性质、相似三角形的判定与性质、相似多边形的性质等。
六、平面直角坐标系与函数1.平面直角坐标系:横坐标与纵坐标、坐标的性质与应用等。
2.函数及表示方法:函数的概念、自变量与因变量、函数的表示方法等。
3.一次函数的概念:函数的定义域、值域、图象等。
七、数据的收集、整理与处理1.数据的收集与整理:调查方法、表格、直方图、折线图等。
2.概率的初步认识:实验、样本空间、随机事件、概率等。
以上是八年级数学上册的必背知识点,希望能对你的学习有所帮助!。
八年级上册数学知识点归纳总结
八年级上册数学知识点归纳总结八年级上册数学知识点归纳总结如下:
1. 整式的加减
- 同类项的加减
- 整式的加减运算法则
- 括号的运算法则
- 移项与去括号
2. 一元二次方程
- 一元二次方程的定义
- 解二次方程的方法(因式分解法、配方法、求根公式)
- 判别式和根的情况
3. 提公因式与分式
- 提公因式的方法
- 分式的概念与基本性质
- 分式的基本运算(加减乘除)
4. 二次根式
- 二次根式的定义与概念
- 二次根式的化简
- 二次根式的运算(加减乘除)
5. 数据的收集整理与分析
- 数据的搜集和整理
- 统计图的绘制与分析
- 平均数、中位数、众数的计算
6. 几何图形的认识与性质
- 点、线、面的概念
- 直线、射线、线段的特点
- 同位角、对顶角、同旁内角的性质
7. 平面图形的性质与计算
- 三角形的分类
- 四边形的分类
- 平行四边形与矩形的性质
8. 角与等角(同位角、内错角、同旁内角的性质)
- 角的概念和性质
- 直角、钝角、锐角
- 利用角的性质解决问题
9. 周长和面积
- 二维图形的周长计算(长方形、正方形、三角形)
- 二维图形的面积计算(长方形、正方形、三角形、梯形)
这些是八年级上册数学的一些重要知识点,希望能对你有所帮助。
八年级上册数学每课知识点
八年级上册数学每课知识点第一课:有理数的加减法有理数概念、绝对值、相反数、加减法法则、混合运算等。
第二课:有理数的乘法有理数的乘法法则、除法等。
第三课:整式的加减法整式的概念、同类项的概念、加减法法则、混合运算等。
第四课:一元一次方程方程的定义、等式的性质、解方程的基本思路、解一元一次方程的方法,方程与问题的联系等。
第五课:一元一次方程的应用根据实际情况建立方程、解决问题等。
第六课:图形的基本概念点、线、面的基本概念、相互关系、名称等。
第七课:图形的相似相似的概念、相似三角形的性质、相似多边形的性质等。
第八课:勾股定理勾股定理的概念、勾股定理的证明、勾股定理的应用等。
第九课:三角形的周长和面积三角形周长的计算、三角形面积的计算等。
第十课:概率的基本概念随机事件、样本空间、事件的概率、事件间的关系等。
第十一课:实数的概念与运算实数的定义、实数的分类、实数的加减乘除等。
第十二课:一次函数函数及其概念、函数的表示方法、一次函数概念和性质、解一元一次方程的图像、一次函数在实际问题中的应用等。
第十三课:比例与比例关系比例的概念、比例的性质及应用、比例的化归、反比例的概念及应用等。
第十四课:分式分式的概念、分式的基本性质、分式的化简,分式方程等。
第十五课:数据的收集和整理样本、数据的收集与整理、频数分布表、频率分布图、累计频率等。
第十六课:数据的分析与解释数据的中心值、离散程度、分布形状、基本要素等。
以上就是八年级上册数学每课知识点的详细内容。
掌握这些知识点,对于学好数学课程,掌握数学基础具有至关重要的作用。
学生可以根据自己的实际情况,通过理论知识的学习和实践操作的练习,来提高自己的数学能力。
只要认真学习,坚持不懈,就一定能收获学习的喜悦,也一定能在日后的生活和工作中得到更好的发展、体现自己的价值。
八年级上册数学知识点归纳总结
八年级上册数学知识点归纳总结一、有理数1. 有理数的概念有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数和负分数)。
2. 有理数的运算(1)加法和减法:同号相加减,异号相加减取相反数后加(2)乘法:同号得正,异号得负(3)除法:分子取商的符号,分母取绝对值后再除3. 有理数的比较在数轴上比较大小,可以通过绝对值和符号来确定大小关系4. 有理数的应用有理数在实际生活中的运用,如温度、扩大、缩小等二、代数1. 代数的基本概念(1)代数式:由运算符号和字母组成的表达式(2)项:代数式中的最小单位(3)系数:含有变量的项的常数因子(4)幂:同一个数的多次相乘2. 一元一次方程如ax+b=0(a≠0),其中a、b为已知数,x为未知数3. 一元一次不等式如ax+b>0(a≠0),其中a、b为已知数,x为未知数4. 代数式的加减法整理同类项后进行加减5. 代数式的乘法分配律、结合律、交换律的运用6. 代数式的因式分解三、平方根和立方根1. 平方数和平方根平方数是某个数的平方,平方根是某个数的算术平方根2. 平方根的求法开平方、开方运算3. 立方数和立方根立方数是某个数的立方,立方根是某个数的算术立方根4. 立方根的求法开立方、立方根的运算5. 有理数的平方与立方有理数的平方是对其绝对值的平方,有理数的立方是对其绝对值的立方四、多边形1. 多边形的基本认识多边形是由同一个平面上的若干条线段组成的闭合图形2. 多边形的内角和外角n边形的内角和等于180°×(n-2)n边形的外角和等于360°3. 正多边形边相等,角相等的多边形4. 不规则多边形五、相似1. 相似的概念对于两个图形,如果它们的形状相似(其中一图放大或缩小),则它们称之为相似的2. 相似三角形对于两个三角形,如果它们的对应角相等,则它们为相似三角形3. 相似三角形的性质相似三角形的性质包括对应边成比例、对应角相等、相似三角形的高线比例等六、函数1. 函数的概念对应关系中,一个自变量对应一个因变量的关系2. 函数的表示方法函数的图像、函数的解析式、函数的映射表示等3. 函数的性质奇函数、偶函数、周期函数、增减性与极值、奇偶性及周期性的判断等4. 函数的应用在实际问题中,函数的运用,如一元一次函数、二次函数等七、同比例1. 比例的概念两个量之间的相等关系2. 比例的性质比例中的乘除、比例式的变形3. 等比例四个数成等比的性质4. 倒数的概念两个数之积为1时,这两个数称为倒数5. 倒比例四个数成倒比的性质八、图形的旋转1. 图形的旋转图形绕定点旋转的变换2. 旋转的性质旋转变换后的图形3. 图形的对称图形相对于一条直线、一个点的对称4. 图形的变换平移、旋转、翻转的组合变换以上就是八年级上册数学知识点的归纳总结,希望能帮助到大家对这些知识点的理解和掌握。
八年级上册数学笔记知识点
八年级上册数学笔记知识点一、有理数1. 有理数:在现实生活中存在着大量的具有相反意义的量,如向东走与向西走,盈利与亏损等。
用一种符号表示具有相反意义的量就得到有理数。
2. 有理数的分类:整数和分数统称为有理数。
注意:0既不是正数也不是负数。
二、数轴1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
2. 建立数轴:先确定原点、再确定正方向、最后确定单位长度。
3. 理解数轴上的点与实数是一一对应的关系。
三、绝对值1. 定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 规律总结:一个正数的绝对值是大于它本身;一个负数的绝对值是小于它的实际绝对值;0的绝对值是它本身。
四、相反数1. 定义:只有符号不同的两个数叫做互为相反数。
2. 注意:互为相反数的两个数不一定是异号,但一定是非零的数;符号不同的两个数也互为相反数。
如-a和a互为相反数,并且有绝对值较大的一个符号决定相反数的符号。
五、公式定理部分1. 代数式求值:把已知条件整体代入代数式中求出未知量的值。
2. 代数式的变形:根据代数式中数字与字母的特点,灵活运用乘法对加法的分配律,提取公因式以及公式法等使代数式得到简化。
3. 特殊三角形:等边三角形、等腰三角形、直角三角形等,分别根据其性质得出有关边、角的关系式,并注意综合运用。
六、三角形部分1. 等腰三角形:根据等腰三角形的特点综合运用勾股定理、三角形内角和定理、三角形稳定性等知识求出角度的大小。
2. 直角三角形:根据直角三角形的特点综合运用勾股定理、三角函数等知识求出线段的长或角的度数。
七、四边形部分平行四边形和梯形是两种最基本的四边形,其它四边形都是由这两种基本四边形通过转化而得到的或是它们的特例。
因此,在研究四边形的有关性质时,应从基本四边形的性质入手,结合具体四边形的特点进行转化(通过添加辅助线)来解决。
八、函数部分函数思想是初中数学中的一个重要思想,应通过具体问题来培养这种思想,应弄清一个函数包括定义域和对应法则两部分,注意函数的定义域优先的原则。
八年级上册数学知识点归纳
八年级上册数学知识点归纳一、实数1. 有理数和无理数的概念- 有理数:可以表示为两个整数的比的数- 无理数:不能表示为两个整数的比的数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的概念和运算- 实数的性质和比较大小二、代数表达式1. 单项式和多项式- 单项式的定义和度量- 多项式的定义、次数和系数2. 代数式的加减运算- 合并同类项- 去括号法则3. 代数式的乘法运算- 单项式乘单项式- 单项式乘多项式- 多项式乘多项式4. 代数式的因式分解- 提公因式法- 公式法(如平方差公式、完全平方公式)三、方程与不等式1. 一元一次方程- 方程的建立和解法- 方程的解的检验2. 一元一次不等式- 不等式的概念和性质- 不等式的解法- 不等式的解集表示3. 二元一次方程组- 代入法解方程组- 消元法解方程组- 方程组的解的情况分析四、几何1. 平行线与角- 平行线的判定和性质- 同位角、内错角、同旁内角- 角的分类(锐角、直角、钝角、平角、周角)2. 三角形- 三角形的基本性质- 三角形的内角和外角性质- 等腰三角形和等边三角形的性质- 三角形的中线、高线、角平分线3. 四边形- 四边形的定义和分类- 矩形、菱形、正方形的性质- 平行四边形的性质4. 圆的基本性质- 圆的定义和圆心、半径- 弦、直径、弧、半圆- 圆周角和圆心角的关系- 切线的概念和性质五、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制(如条形图、饼图)2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率六、应用题- 利用所学知识解决实际问题- 培养数学建模和逻辑推理能力请注意,以上内容是根据一般八年级上册数学教材的常见知识点进行归纳,具体的教学大纲和知识点可能会根据不同地区和版本的教材有所差异。
教师和学生应参考具体的教材和教学大纲来确定学习重点。
八年级上册数学知识点总结归纳
八年级上册数学知识点总结归纳一、代数1. 一元一次方程与一元一次不等式1) 一元一次方程的定义及解法2) 一元一次不等式的定义及解法3) 实际生活中的应用案例2. 二元一次方程组1) 二元一次方程组的定义及解法2) 二元一次方程组的几何意义3) 实际生活中的应用案例3. 整式的加减和乘除1) 整式的概念2) 整式的加减法规则3) 整式的乘除法规则4) 实际生活中的应用案例4. 因式分解1) 因式分解的基本概念2) 因式分解的公式及方法3) 实际生活中的应用案例二、平面几何1. 直角三角形1) 直角三角形的性质及判定方法2) 特殊直角三角形(30-60-90三角形、45-45-90三角形)3) 直角三角形的应用题2. 平行线与相交线1) 平行线与转化线的基本概念2) 平行线与转化线的判定方法3) 平行线与转化线的性质3. 圆1) 圆的基本概念2) 圆的性质及判定3) 圆的应用题4. 规则图形1) 正方形、矩形、菱形、平行四边形的性质2) 规则图形的面积和周长计算方法3) 规则图形的应用题三、空间与立体几何1. 空间图形的投影1) 正投影与侧投影的概念2) 空间图形的投影绘制方法3) 实际生活中的应用案例2. 三棱柱与三棱锥1) 三棱柱与三棱锥的定义及性质2) 三棱柱与三棱锥的表面积和体积计算方法3) 实际生活中的应用案例3. 直角坐标系1) 直角坐标系的建立及性质2) 直角坐标系中点、距离的计算方法3) 实际生活中的应用案例四、统计与概率1. 统计图1) 条形图、折线图、饼状图的绘制方法2) 统计图的解读及应用2. 概率1) 随机事件与概率的基本概念2) 概率的计算方法及性质3) 实际生活中的应用案例以上就是八年级上册数学知识点的总结归纳,希望同学们能够通过系统的学习和复习,牢固掌握这些知识点,为将来更深入的学习打下坚实的基础。
初二数学知识点总结归纳【完整版】
初二数学知识点总结归纳【完整版】八年级上册数学知识点篇一1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离相同的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的所有点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28、定理四边形的内角和等于360°29、四边形的外角和等于360°初二数学知识点归纳篇二一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx 平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移)②当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;④当b0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b0时,直线y=kx+b与y轴负半轴有交点为(0,b);(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。
八年级上册数学知识点归纳大全
八年级上册数学知识点归纳大全一、数与式1.数的整除:整除的定义、性质;0的整除性;素数与合数。
2.代数式:代数式的概念;代数式的运算法则(加、减、乘、除、乘方)。
3.一元一次方程:一元一次方程的定义;一元一次方程的解法(代入法、消元法、加减法)。
二、平面直角坐标系1.坐标与图形:平面直角坐标系的概念;原点、坐标、象限;点的坐标。
2.直线与坐标轴:直线的概念;直线的方程(点斜式、两点式、一般式);坐标轴与直线的关系。
3.坐标与图形:通过坐标表示点、直线、角;平面内的图形变换(平移、旋转、对称)。
三、三角形1.三角形的基本性质:三角形的内角和;三角形的外角和;三角形的角平分线;三角形的中线。
2.三角形的分类:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形。
3.三角形的面积:三角形的面积公式(海伦公式、底乘高公式);三角形面积的应用。
四、整式的乘法与因式分解1.整式的乘法:同底数幂的乘法;积的乘方;幂的乘方与积的乘方。
2.整式的因式分解:因式分解的方法(提公因式法、公式法、分组法);因式分解的应用(解方程、求值)。
五、方程与函数1.一元一次方程:一元一次方程的性质;一元一次方程的解法(代入法、消元法、加减法)。
2.一元一次不等式:一元一次不等式的性质;一元一次不等式的解法(代入法、消元法、加减法)。
3.一次函数:一次函数的概念;一次函数的图像与性质;一次函数的应用。
4.反比例函数:反比例函数的概念;反比例函数的图像与性质;反比例函数的应用。
六、数据的整理与描述性统计1.数据的整理:数据的收集与整理(调查、实验、观察);数据的表示与呈现(表格、条形图、折线图)。
2.数据的描述性统计:平均数、中位数、众数;频数与频率;数据的分布(集中趋势、离散程度)。
七、几何图形初步1.图形的认识:基本图形的认识(点、线、面);基本图形的性质。
2.几何变换:图形的旋转;图形的对称(轴对称、中心对称、中心对称图形);图形的平移。
八年级上册数学知识点归纳
八年级上册数学知识点归纳八年级上册数学知识点归纳11、函数一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
3、函数的三种表示法及其优缺点关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
图象法用图象表示函数关系的方法叫做图象法。
4、由函数关系式画其图像的一般步骤列表:列表给出自变量与函数的一些对应值。
描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
5、正比例函数和一次函数①正比例函数和一次函数的概念一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k 不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。
②一次函数的图像:所有一次函数的`图像都是一条直线。
③一次函数、正比例函数图像的主要特征一次函数y=kx+b的图像是经过点(0,b)的直线;正比例函数y=kx的图像是经过原点(0,0)的直线。
④正比例函数的性质一般地,正比例函数有下列性质:当k>0时,图像经过第一、三象限,y随x的增大而增大;当k⑤一次函数的性质一般地,一次函数有下列性质:当k>0时,y随x的增大而增大;当k⑥正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。
八年级数学上册重点知识点归纳
八年级数学上册重点知识点归纳数学是一门普及性极高的学科,它的知识点丰富而广泛。
针对八年级数学上册,以下是一些重点知识点的归纳总结,希望对同学们的学习有所帮助。
一. 代数与函数1. 代数式的运算1.1 同底数幂的乘法与除法1.2 幂的乘法法则与除法法则1.3 乘方的运算规律2. 一元一次方程与实际问题2.1 抽象问题的建模与解答2.2 一元一次方程的解法:解方程法、等式法2.3 实际问题的应用:工程实践、生活实例等3. 二元一次方程与解法3.1 二元一次方程的解法:代入法、消元法3.2 解二元一次方程的几何意义3.3 实际问题的解答与应用:图形问题、线性方程组等二. 几何与形状1. 平面图形的性质与分类1.1 三角形的分类与性质:等边三角形、等腰三角形、直角三角形等1.2 四边形的分类与性质:矩形、平行四边形等1.3 多边形的分类与性质:正多边形、对称多边形等2. 平面图形的计算2.1 平行四边形的面积计算2.2 三角形的面积计算:海伦公式、高度法等2.3 圆的周长与面积计算:圆周率的性质、弧长与扇形面积等3. 空间图形的认识3.1 空间图形的基本要素:点、线、面、体3.2 空间图形的投影与展开:正视图、俯视图、展开图等3.3 空间图形的表达与分析:尺度、比例等三. 数据与统计1. 统计调查与样本问题1.1 样本容量与抽样方法1.2 数据的搜集与整理:频数、频率表等1.3 数据的分析与应用:中心趋势与离散程度等2. 概率与事件2.1 实验与随机现象2.2 概率的计算与性质:理论概率、条件概率等2.3 事件的组合与应用:排列组合、互斥事件等四. 实际问题的数学分析与解决1. 数学建模与实际应用1.1 实际问题的数学表达:问题转化、函数建模等1.2 使用数学方法解决实际问题:方程求解、函数图像分析等1.3 结果与实际问题的对比与解释以上仅为八年级数学上册的部分重点知识点归纳,通过系统学习与掌握这些知识点,同学们将能够更好地应对课堂考试与实际问题,提高数学素养和解决问题的能力。
八年级上册数学各单元知识点总结
八年级上册数学各单元知识点总结第一章:小数1.小数的概念小数是用数字和小数点来表示分数的一种方法,分母为10的分数叫做小数,数字中的小数点的左边表示整数部分,右边表示小数部分,小数点的位置可以被移动。
2.小数的加减乘除小数的加减乘除运算和整数一样,只需要注意小数点的位置。
3.小数与分数的转化通过小数点的位置,可以把小数转化为分数;通过分数的化简,可以把分数转化为小数。
4.小数的比较把小数转化为分数后,比较大小即可。
第二章:代数式1.代数式的概念代数式由变量、系数和常数构成的表达式,其中变量表示数值未知的量,系数是变量的系数,常数也是代数式的一部分,代数式可以进行运算。
2.代数式的加减乘除代数式进行加减乘除运算的方法和数字一样,只需把同类项加减即可。
3.同类项的合并同类项是指字母相同,次数相同的项,合并同类项可以简化表达式。
4.代数式的因式分解代数式的因式分解是指把一个代数式分解成为简单的乘积形式。
第三章:图形的认识1.图形的基本概念平面图形是二维几何图形,从简单到复杂可以分为直线、射线、线段、角、三角形、四边形、多边形、圆形等。
2.物体的视图物体的视图是指物体呈不同角度时在不同平面上所看到的形状,分为正视图和侧视图。
3.图形的相似性如果两个图形除了大小不同,其他地方完全相同,那么这两个图形就是相似的,可以通过比例来描述它们之间的关系。
4.角的度量角的度量有两种方式,一种是用角度来表示,一种是用弧度来表示。
第四章:方程1.方程的概念方程是指等号两边的式子,表示两个量或两个式子相等的关系,其中未知数是方程的一部分。
2.方程的解法方程的解法分为两种,一种是通过变形、化简来解决,另一种是通过列方程组来解决。
3.一元一次方程组一元一次方程组是指只有一个未知数,各方程的最高次数均为一次的方程组。
4.二元一次方程组二元一次方程组是指有两个未知数,各方程的最高次数均为一次的方程组。
第五章:百分数1.百分数的概念百分数是把一个数表示为百分之几的形式,以百分号“%”来表示。
八年级上册数学知识点总结(实用10篇)
八年级上册数学知识点总结(实用10篇)八年级上册数学知识点总结(1)第十一章三角形一、知识框架:知识概念:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的内角:多边形相邻两边组成的角叫做它的内角.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.第十二章全等三角形一、知识框架:二、知识概念:基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质八年级上册数学知识点总结(2)把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
八年级上册数学知识点汇总
八年级上册数学知识点汇总一、代数与函数1. 代数运算:加减乘除、加法交换律、结合律、分配律、简单的整式求值。
2. 解一元一次方程:原理是等式两边同时做相同的运算,消去未知数的系数和常数项,求得未知数的值。
3. 一次函数:y = kx + b 的标准式,斜率是 k,截距是 b。
4. 平面直角坐标系:确定点的位置,解决几何问题。
5. 平移、相似、对称、旋转等基本变换。
二、图形的初步认识1. 图形的基本概念:点、线、面等基本元素。
2. 基本图形的性质:三角形、四边形、圆等基本图形的内角和、面积、周长等性质。
3. 图形的相似:形状相同,大小不同;相似三角形的性质。
三、三角形的性质和计算1. 三角形的分类:按角度分为锐角三角形、直角三角形、钝角三角形;按边长分为等边三角形、等腰三角形、普通三角形。
2. 三角形重心、垂心、外心和内心:位置和计算公式。
3. 三角形的面积公式:海伦公式、正弦公式、余弦公式和面积公式。
四、列方程解几何问题1. 利用方程解几何问题:列方程、解方程,求出未知数。
2. 分析几何问题:确定已知量和未知量,列方程求解。
五、形状的运动1. 平移、相似、对称、旋转等基本变换。
2. 图形的运动:平移、相似、对称、旋转变换的概念和性质。
3. 图形的复合变换:多个变换连续作用的情况。
六、数学中的单位换算1. 长度单位的换算:米、厘米、毫米等常用单位的换算。
2. 面积单位的换算:平方米、平方厘米、平方毫米等常用单位的换算。
3. 容积单位的换算:立方米、立方厘米等常用单位的换算。
4. 质量、时间和速度单位的换算。
七、简单的概率统计1. 事件、样本空间和概率:事件发生的可能性,概率的定义和计算方法。
2. 相关概念:随机事件、独立事件、互不影响事件等相关概念。
3. 统计图表的制作和读取:折线图、条形图、饼图等常见图表的制作和读取方法。
以上是八年级上册数学知识点的汇总,这些知识点是数学学习中的基础,各位同学需要熟练掌握,才能更好地应对数学考试,完成数学作业。
八年级上册数学知识点归纳(5篇)
八年级上册数学知识点归纳(5
篇)
新学期已经开始,同学们即将进入紧张的学习生活。
以下是白话文编写的八年级上册数学知识点总结(5篇精选),希望能给你一些参考和帮助。
八年级上册数学知识点篇一
1、二元一次方程
①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
2、二元一次方程组
①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法代入(消元)法、加减(消元)法
④一次函数与二元一次方程(组)的关系:
一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解
线性函数与二元线性方程组的关系:二元线性方程组的解可以看作是两个线性函数之和的像的交集。
当函数图象有交点时,说明相应的二元一次方程组有解;
当函数图像(直线)平行,即没有交点时,说明对应的二元线性方程组无解。
数学初二上册知识点篇二
乘法和除法,因式分解和三角形的分数,全等三角形,轴对称和代数表达式。
(1)三角形:是初中数学的基础,中考命题中的重点。
中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。
八年级上册数学知识点归纳
八年级上册数学知识点归纳一、有理数1. 有理数的定义2. 有理数的四则运算3. 有理数的乘方运算4. 有理数的相反数和绝对值5. 有理数的比较大小二、线段和角1. 线段的长度2. 角的度量3. 角的分类4. 角的平分线5. 相邻角、同位角、对顶角三、平行线与平面图形1. 平行线的判定条件2. 平行线的性质3. 平行线的平行截线定理4. 平行线的射影定理5. 平行线与平行四边形四、相交线与角1. 相交线的性质2. 垂线的性质3. 垂线的判定条件4. 垂直于同一条直线的两条平行线的性质5. 垂直于平面的直线的性质五、图形的相似1. 图形的相似比例2. 相似三角形的性质3. 相似三角形的判定条件4. 相似多边形的判定条件5. 相似多边形的性质六、圆与圆的切线1. 圆的定义和性质2. 切线的定义和性质3. 切线定理4. 切线的判定条件5. 弧长和扇形面积七、数据与统计1. 平均数、众数和中位数的计算2. 数据的图表表示3. 折线图和饼状图的制作4. 数据的处理和分析5. 概率与统计八、代数式的运算1. 代数式的加减乘除2. 代数式的化简3. 代数式的展开与因式分解4. 因式分解公式5. 二次根式的加减乘除九、方程与不等式1. 一元一次方程的基本概念2. 一步一元一次方程的解法3. 两步一元一次方程的解法4. 一元一次方程组的解法5. 不等式的基本概念及解法十、直角三角形1. 直角三角形的性质2. 正弦定理和余弦定理3. 解直角三角形的应用4. 解直角三角形的方法5. 平面向量运算及相关性质。
八年级上册数学知识点归纳
八年级上册数学知识点归纳八年级上册数学知识点归纳如下:1.全等三角形的定义和性质:全等三角形指的是能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的对应边相等,对应角相等,并且能够进行相关的基本性质和判定。
2.轴对称、中心对称及基本性质:轴对称指的是一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线是它的对称轴。
中心对称指的是一个图形绕着某一点旋转180°后能够与自身重合,那么这个图形叫做中心对称图形,这个点是它的对称中心。
3.一次函数的定义、图象与性质:一次函数指的是形如y=kx+b(k,b是常数,k≠0)的函数,其中x是自变量,y是因变量。
函数的图象是一条直线,当k>0时,函数图象经过一、三象限,y随x的增大而增大;当k<0时,函数图象经过二、四象限,y随x的增大而减小。
4.整式的乘法运算和因式分解:整式的乘法运算包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式等;因式分解指的是将一个多项式转化为几个整式的积的形式。
5.分式的概念、基本性质和简单运算:分式指的是形如A/B(A、B是整式,且B中含有字母)的式子,其中A叫做分式的分子,B叫做分式的分母。
分式的基本性质包括分式的分子和分母同时乘以或除以同一个非零数或式子,分式的值不变;分式的运算包括分式的加减法、乘法和除法等。
6.数的开方及乘方运算:数的开方指的是求一个数的平方根或立方根的运算;乘方运算指的是将一个数自乘若干次后得到的结果。
7.特殊三角函数的值和计算:特殊三角函数包括正弦函数、余弦函数和正切函数等,它们在特定角度下的值是已知的,可以通过查表得到。
在进行计算时,可以利用这些特殊值进行简化。
8.概率初步知识:概率初步知识包括随机事件的概念、概率的定义和计算方法等。
9.几何初步知识:几何初步知识包括线段、角、相交线、平行线、三角形、四边形等基本几何图形的定义、性质和判定方法等。
八年级数学上册知识要点总结
八年级数学上册知识要点总结八年级数学上册知识归纳一、算术平方根1.算术平方根:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作√a。
0的算术平方根为0;2.平方根:如果一个数x的平方等于a,即x2=a,那么数x就叫做a的平方根(或二次方根)。
3.开平方:求一个数a的平方根的运算(与平方互为逆运算)4.平方根性质:正数有2个平方根(一正一负),它们是互为相反数;负数没有平方根。
二、立方根1.立方根:如果一个数x的立方等于a,即x3=a,那么数x就叫做a的立方根(或三次方根)。
2.开立方:求一个数a的立方根的运算(与立方互为逆运算)。
3.立方根性质:正数的立方根是正数;负数的立方根是负数。
0的立方根是0;三、实数1.无理数:无限不循环小数。
如:π、√2、√32.实数:有理数和无理数统称实数。
实数都可以用数轴上的点表示。
八年级数学知识总结一、正方形定义:一个角是直角的菱形或邻边相等的矩形。
性质:1、四条边都相等;2、四个角都是直角;3、正方形既是矩形,又是菱形。
判定定理:1、邻边相等的矩形是正方形。
2、有一个角是直角的菱形是正方形。
二、梯形定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
1、直角梯形的定义:有一个角是直角的梯形2、等腰梯形的定义:两腰相等的'梯形。
等腰梯形的性质:1、同一底边上的两个角相等;2、两条对角线相等;3、两腰相等;4、对称性:轴对称图形。
等腰梯形判定定理:1、两腰相等的梯形是等腰梯形;2、同一底上两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形;八年级数学知识重点一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c22、勾股定理的逆定理如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。
3、勾股数:满足a2b2c2的三个正整数,称为勾股数。
二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
八年级上册数学总结知识点
八年级上册数学总结知识点八年级上册数学知识点总结一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正数、负数和零。
- 无理数:无限不循环小数,如√2、π等。
2. 实数的运算- 加法:同号相加,异号相减,取绝对值大的数的符号。
- 减法:实数减法可以转化为加法,即a - b = a + (-b)。
- 乘法:正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数。
- 除法:除以一个数等于乘以这个数的倒数。
- 乘方:求一个数的幂,如a^n表示a的n次方。
3. 算术平方根和平方根- 算术平方根:一个数的平方根中最大的正数。
- 平方根:一个数的平方根有两个,一个正数和一个负数。
4. 实数的性质和比较大小- 正实数大于0,负实数小于0。
- 两个负实数,绝对值大的反而小。
二、代数表达式1. 单项式- 单项式是由数字和字母的乘积组成的,如3x^2。
2. 多项式- 多项式是由若干个单项式通过加减法组成的,如2x^2 + 3x - 5。
3. 同类项- 同类项是指次数相同且字母相同的项,如2x^2和-5x^2是同类项。
4. 合并同类项- 将同类项的系数相加或相减,字母和次数不变。
5. 代数式的加减运算- 去括号法则:括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号,去掉“-”号和括号,括号里的各项都变号。
三、方程与不等式1. 一元一次方程- 形如ax + b = 0的方程,其中a和b是已知数,x是未知数。
2. 二元一次方程- 形如ax + by + c = 0的方程,其中a、b和c是已知数,x和y是未知数。
3. 解一元一次方程- 通过移项、合并同类项、系数化为1等步骤求解。
4. 不等式- 用符号“>”、“<”、“≤”、“≥”连接的式子。
5. 不等式的解集- 不等式的解集是满足不等式的一切数值的集合。
6. 解一元一次不等式- 通过移项、合并同类项等步骤求解,注意在不等式两边同时乘以或除以同一个负数时,不等号的方向要改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学知识点归纳、总结人教版、1 全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23 推论3 等边三角形的各角都相等,并且每一个角都等于60°24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25 推论1 三个角都相等的三角形是等边三角形26 推论2 有一个角等于60°的等腰三角形是等边三角形27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28 直角三角形斜边上的中线等于斜边上的一半29 定理线段垂直平分线上的点和这条线段两个端点的距离相等30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32 定理1 关于某条直线对称的两个图形是全等形33 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 37勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形38定理四边形的内角和等于360°39四边形的外角和等于360°40多边形内角和定理n边形的内角的和等于(n-2)×180°41推论任意多边的外角和等于360°42平行四边形性质定理1 平行四边形的对角相等43平行四边形性质定理2 平行四边形的对边相等44推论夹在两条平行线间的平行线段相等45平行四边形性质定理3 平行四边形的对角线互相平分46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形48平行四边形判定定理3 对角线互相平分的四边形是平行四边形49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形50矩形性质定理1 矩形的四个角都是直角51矩形性质定理2 矩形的对角线相等52矩形判定定理1 有三个角是直角的四边形是矩形53矩形判定定理2 对角线相等的平行四边形是矩形54菱形性质定理1 菱形的四条边都相等55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角56菱形面积=对角线乘积的一半,即S=(a×b)÷2 57菱形判定定理1 四边都相等的四边形是菱形58菱形判定定理2 对角线互相垂直的平行四边形是菱形59正方形性质定理1 正方形的四个角都是直角,四条边都相等60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角61定理1 关于中心对称的两个图形是全等的62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称64等腰梯形性质定理等腰梯形在同一底上的两个角相等65等腰梯形的两条对角线相等66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形67对角线相等的梯形是等腰梯形68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边71 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半72 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h 73 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 76 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例77 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例78 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例80 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)84 判定定理3 三边对应成比例,两三角形相似(SSS)85 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比87 性质定理2 相似三角形周长的比等于相似比88 性质定理3 相似三角形面积的比等于相似比的平方89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值91圆是定点的距离等于定长的点的集合92圆的内部可以看作是圆心的距离小于半径的点的集合93圆的外部可以看作是圆心的距离大于半径的点的集合94同圆或等圆的半径相等95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线97到已知角的两边距离相等的点的轨迹,是这个角的平分线98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线99定理不在同一直线上的三点确定一个圆。
100垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧102推论2 圆的两条平行弦所夹的弧相等103圆是以圆心为对称中心的中心对称图形104定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等105推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等106定理一条弧所对的圆周角等于它所对的圆心角的一半107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形110定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角111①直线L和⊙O相交d<r ②直线L和⊙O相切d=r ③直线L和⊙O相离d>r 112切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线113切线的性质定理圆的切线垂直于经过切点的半径114推论1 经过圆心且垂直于切线的直线必经过切点115推论2 经过切点且垂直于切线的直线必经过圆心116切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角117圆的外切四边形的两组对边的和相等118弦切角定理弦切角等于它所夹的弧对的圆周角119推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等120相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等121推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项122切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项123推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等124如果两个圆相切,那么切点一定在连心线上125①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r) 126定理相交两圆的连心线垂直平分两圆的公共弦127定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形128定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆129正n边形的每个内角都等于(n-2)×180°/n 130定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形131正n边形的面积Sn=pnrn/2 p表示正n边形的周长132正三角形面积√3a/4 a表示边长133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 134弧长计算公式:L=n兀R/180 135扇形面积公式:S扇形=n兀R^2/360=LR/2 136内公切线长= d-(R-r) 外公切线长= d-(R+r)。