江西省中考数学试题及答案解析版
江西省2023年中考数学真题及参考答案
江西省2023年中考数学真题及参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)1.下列各数中,正整数是()A .3B .1.2C .0D .2-2.下列图形中,是中心对称图形的是()3.若4-a 有意义,则a 的值可以是()A .1-B .0C .2D .64.计算()322m 的结果为()A .68mB .66mC .62mD .52m 5.如图,平面镜MN 放置在水平地面CD 上,墙面CD PD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若︒=∠35AOC ,则OBD ∠的度数为()A .︒35B .︒45C .︒55D .︒656.如图,点D C B A ,,,均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A .3个B .4个C .5个D .6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式ab 5-的系数为.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学计数法表示应为.9.化简:()=-+221a a .10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知︒=∠60α,点C B ,表示的刻度分别为cm cm 31,,则线段AB 的长为cm .11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点Q B A ,,在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得m AQ cm BD cm AB 122040===,,,则树高=PQ m .12.如图,在▱ABCD 中,︒=∠60B ,AB BC 2=,将AB 绕点A 逆时针旋转角()︒<<︒3600αα得到AP ,连接PD PC ,.当PCD ∆为直角三角形时,旋转角α的度数为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:03345tan 8-︒+;(2)如图,AD AB =,AC 平分BAD ∠.求证:ADC ABC ∆≅∆.14.如图是44⨯的正方形网格,请仅用无刻的的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ∆,使点C 在格点上;(2)在图2中的线段AB 行作点Q ,使PQ 最短.15.化简x x x x x x 1112-⋅⎪⎭⎫ ⎝⎛-++.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是,乙同学解法的依据是;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配率;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数()0>=x xk y 的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC ∆的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同发种植一批树苗,如果没人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.图1时某红色是文化主题公园内的雕塑,将其抽象成如图2所示的示意图,已知点B ,E D A ,,均在同一直线上,AD AC AB ==,测得︒=∠55B ,m DE m BC 28.1==,.(结果保留小数点后一位)(1)连接CD ,求证:BC DC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:82.055sin ≈︒,57.055cos ≈︒,43.155tan ≈︒)20.如图,在ABC ∆中,︒=∠=644C AB ,,以AB 为直径的☉O 与AC 相交于点E D ,为弧ABD 上一点,且︒=∠40ADE .(1)求E B 的长;(2)若︒=∠76EAD ,求证:CB 为☉O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的示例情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.(1)=m ,=n ;(2)被调查的高中学生视力情况的样本容量为;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由;②约定:视力未达到1.0的视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD 中,对角线AC BD ⊥,垂足为O .求证:▱ABCD 是菱形.知识应用(2)如图②,在▱ABCD 中,对角线AC 和BD 相交于点O ,685===BD AC AD ,,①求证:▱ABCD 是菱形;②延长BC 至点E ,连接OE 交CD 与点F ,若ACD E ∠=∠21,求EFOF 的值.六、解答题(本大题共12分)23.综合与实践问题提出某兴趣小组开展综合实践活动:在ABC Rt ∆中,︒=∠90C ,D 为AC 上一点,2=CD .动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿A B C →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为ts ,正方形DPEF 的面积为S ,探究S 与t 的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当1=t 时,=S ;②S 关于t 的函数解析式为.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻321,,t t t (321t t t <<)对应的正方形DPEF 的面积均相等.①=+21t t ;②当134t t =时,求正方形DPEF 的面积.参考答案一、选择题1.A2.B3.D4.A5.C6.D 二、填空题7.5-8.7108.1⨯9.12+a 10.211.612.90°或180°或270°三、解答题13.(1)解:原式=2+1-1=2(2)证明:∵AC 平分BAD ∠,∴DAC BC ∠=∠.在ABC ∆和ADC ∆中,⎪⎩⎪⎨⎧=∠=∠=AC AC DAC BAC AD AB ,∴ABC ∆≌()SAS ADC ∆.14.解:(1)如下左图(右图中的51~C C 亦可):答:ABC ∆即为所求.(2)如下图:答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式()()()()()()x x x x x x x x x x 11111112-⋅⎥⎦⎤⎢⎣⎡+-++-+-=()()()()()()()()()()x xx x x x x x x x x x x x x x 2111121111112=-+⋅-+=-+⋅-+++-=按乙同学的解法化简:原式()()()()xx x x x x x x x x x x x x x x x x 111111111122-+⋅-+-+⋅+=-⋅-+-⋅+=x x x 211=++-=.16.解:(1)随机(2)解法一:列表如下:由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.解法二:画树状图如下:由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.17.解:(1)∵直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,∴32=+b ,23k =.∴1=b ,6=k .∴直线AB 的表达式为1+=x y ,反比例函数图象的表达式为()06>=x xy .(2)过点A 作BC AD ⊥,垂足为D .∵直线1+=x y 与y 轴交点B 的坐标为()1,0,x BC ∥轴,∴C 点的纵坐标为1.∴616==x x ,,即6=BC .由x BC ∥轴,得BC 与x 轴的距离为1.∴2=AD .∴6262121=⨯⨯=⋅=∆AD BC S ABC .四、解答题18.解:(1)设该班的学生人数为x 人.依题意,得254203-=+x x .解得45=x .答:该班的学生人数为45人.(2)由(1)可知,树苗总数为155203=+x .设购买甲种树苗y 棵,则购买乙种树苗()y -155棵.依题意得()54001554030≤-+y y .解得80≥y .答:至少购买了甲种树苗80棵.19.(1)证明:∵AD AC AB ==,∴点D C B ,,在以点A 为圆心,BD 为直径的圆上.∴︒=∠90BCD ,即BC DC ⊥.(2)解:过点E 作BC EF ⊥,垂足为F .在BCD Rt ∆中,BDBC B =cos ,8.1=BC ,∴16.355cos 8.1cos ≈︒==B BC BD .∴16.5216.3=+=+=DE BD BE .在EBF Rt ∆中,BEEF B =sin ,∴2.455sin 16.5sin ≈︒⨯=⋅=B BE EF .因此,雕塑的高约为m 2.4.20.解:(1)连接OE .∵︒=∠40ADE ,∴︒=∠=∠802ADE AOE .∴︒=∠-︒=∠100180AOE BOE .∴E B 的长ππ9101802100=⋅⋅=l .(2)证明:∵︒=∠=80AOE OE OA ,,∴︒=∠-︒=∠502180AOE OAE .∵︒=∠76EAD ,∴︒=∠-∠=∠26OAE EAD BAC .又︒=∠64C ,∴︒=∠-∠-︒=∠90180C BAC ABC ,即BC AB ⊥.又OB 是☉O 的半径,∴CB 为☉O 的切线.五、解答题21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,∴初中生的视力水平好于高中生.理由②:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,∴初中生的视力水平好于高中生.②1430032020082604414342816826000=++++++++⨯(名).∴估计该区有14300名中足额生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证明:∵四边形ABCD 是平行四边形,∴OCOA =又AC BD ⊥,∴BD 垂直平分AC .∴BC BA =.∴▱ABCD 是菱形.(2)①证明:∵四边形ABCD 是平行四边形,68==BD AC ,,∴321421====BD OD AC OA ,.∴25342222=+=+OD OA .又25522==AD ,∴222AD OD OA =+,∴︒=∠90AOD ,即AC BD ⊥.∴▱ABCD 是菱形.②解:如图,取CD 的中点G ,连接OG .∵▱ABCD 是菱形,∴ACDACB OD OB AD BC ∠=∠===,,5∵ACD E ∠=∠21,∴ACB E ∠=∠21,即E ACB ∠=∠2,又COE E ACB ∠+∠=∠,∴COE E ∠=∠,∴4==CO CE ∵GD GC OD OB ==,,∴OG 为DBC ∆的中位线11∴BC OG ∥,且2521==BC OG ,∴CE OG ∥,∴ECF OGF ∆∆~,∴85==CE OG EF OF .六、解答题23.解:(1)①3.②22+=t S (2)由图象可知,当点P 运动到点B 时,6=S .将6=S 代入22+=t S ,得262+=t ,解得2=t 或2-=t (舍),当点P 由点B 运动到点A 时,设S 关于t 的函数解析式为()242+-=t a S .将()6,2代入,,得()24262+-=a ,解得1=a .故S 关于t 的函数解析式为()242+-=t S .由图像可知,当P 运动到A 时,18=S .由()24182+-=t ,得8=t 或0=t (舍)∴()6128=⨯-=AB .(3)①4.由(1)(2)可得()⎪⎩⎪⎨⎧≤≤+-<≤+=82,2420,222t t t t S .在图②中补全20<≤t 内的图象,根据图象可知20≤≤t 内的图象与42≤≤t 内的图象关于直线2=x 对称.因此421=+t t .②根据二次函数的对称性,可知832=+t t .由①可知421=+t t ,∴413=-t t .又134t t =,∴4411=-t t ,得341=t .此时正方形DPEF 的面积93422=+=t S.。
【解析版】江西省中考数学试卷样卷
江西省中考数学试卷样卷一、选择题:本大题共6小题,每小题3分,共18分,每小题只有一个正确选项。
1.9的算术平方根是()A.﹣3 B. 3 C.±3 D. 812.下列运算,正确的是()A. a2•a=a2B. a+a=a2C. a6÷a3=a2D.(a3)2=a63.如图是由一个圆柱和长方体组合而成的几何体,它的俯视图是()A.B.C.D.4.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A. 16a B. 12a C. 8a D. 4a5.二次函数y=kx2﹣6x+7的图象过点(1,2),且与x轴有两个交点A(x1,0),B(x2,0),则x1x2的值是()A. 1 B. 3 C. 6 D. 76.如图,在矩形ABCD中,AB=4,BC=5,点E、F、G、H分别在已知矩形的四条边上,且四边形EFGH也是矩形,GF=2EF.若设AE=a,AF=b,则a与b满足的关系为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分。
7.﹣3的相反数是.8.不等式组的解集是.9.小亮家新房屋装修,购进了同为50×50cm规格但品牌不同的两种瓷砖,他从这两种瓷砖(都是正方形)中各随机抽取五块测量,并将这十块瓷砖的边长(单位:cm)记录下表中:A种品牌50.1 49.9 50.2 49.8 50.0B种品牌50.3 49.6 50.0 50.4 49.7算得两种品牌瓷砖边长的平均数相等,则从边长上可确定更标准的品牌为.10.化简的结果是.11.梁老师驾车从家乡出发,上国道到南昌,其间用了4.5h;返回时走高速公路,路程缩短了5km,平均速度提高了10km/h,比去时少用了0.5h回到家乡,若设他家乡到南昌走国道的路程为xkm,则可列方程为.12.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地面上(如图2),则灰斗柄AB绕点C转动的角度为.13.如图,△ABC是⊙O的内接三角形,平移△ABC使点B与圆心O重合,A、C两点恰好落在圆上的D、E两点处.若AC=2,则平移的距离为.14.如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.若P是四边形边上一动点,且∠BPC=30°,则CP的长为.三、解答题:本大题共4小题,每小题6分,共24分。
2022年江西省中考数学试卷和答案解析
2022年江西省中考数学试卷参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列各数中,负数是()A.﹣1B.0C.2D.2.(3分)实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A.a>b B.a=b C.a<b D.a=﹣b 3.(3分)下列计算正确的是()A.m2•m3=m6B.﹣(m﹣n)=﹣m+nC.m(m+n)=m2+n D.(m+n)2=m2+n24.(3分)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.125.(3分)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.6.(3分)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)因式分解:a2﹣3a=.8.(3分)正五边形的外角和为度.9.(3分)关于x的方程x2+2x+k=0有两个相等的实数根,则k的值为.10.(3分)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.11.(3分)沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为.12.(3分)已知点A在反比例函数y=(x>0)的图象上,点B 在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB 的长为.三、参考答案题(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:|﹣2|+﹣20;(2)解不等式组:.14.(6分)以下是某同学化简分式(﹣)÷的部分运算过程:解:原式=[﹣]×解:①=[﹣]×②=×③…(1)上面的运算过程中第步出现了错误;(2)请你写出完整的参考答案过程.15.(6分)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是事件;A.不可能B.必然C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.16.(6分)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.17.(6分)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.四、参考答案题(本大题共3小题,每小题8分,共24分)18.(8分)如图,点A(m,4)在反比例函数y=(x>0)的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.(1)点B的坐标为,点D的坐标为,点C的坐标为(用含m的式子表示);(2)求k的值和直线AC的表达式.19.(8分)课本再现(1)在⊙O中,∠AOB是所对的圆心角,∠C是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C 的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明∠C=∠AOB;知识应用(2)如图4,若⊙O的半径为2,PA,PB分别与⊙O相切于点A,B,∠C=60°,求PA的长.20.(8分)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)五、参考答案题(本大题共2小题,每小题9分,共18分)21.(9分)在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)报班数人数类别01234及以上合计“双10248755124m减”前2551524n0m“双减”后(1)根据表1,m的值为,的值为;分析处理(2)请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为,“双减”后学生报班个数的众数为;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).22.(9分)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为hm (h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.六、参考答案题(本大题共12分)23.(12分)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为;当OF与BC 垂直时,重叠部分的面积为;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP 分别与正方形的边相交于点M,N.①如图2,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图3,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).(参考数据:sin15°=,cos15°=,tan15°=2﹣)参考答案与解析一、单项选择题(本大题共6小题,每小题3分,共18分)1.【参考答案】解:﹣1是负数,2,是正数,0既不是正数也不是负数,故选:A.【解析】本题考查了实数,掌握在正数前面添加“﹣”得到负数是解题的关键.2.【参考答案】解:根据数轴得:a<b,|a|>|b|,故C选项符合题意,A,B,D选项不符合题意;故选:C.【解析】本题考查了实数与数轴,掌握数轴上右边的数总比左边的大是解题的关键.3.【参考答案】解:A选项,原式=m5,故该选项不符合题意;B选项,原式=﹣m+n,故该选项符合题意;C选项,原式=m2+mn,故该选项不符合题意;D选项,原式=m2+2mn+n2,故该选项不符合题意;故选:B.【解析】本题考查了整式的混合运算,掌握(a+b)2=a2+2ab+b2是解题的关键.4.【参考答案】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【解析】本题考查了规律型:图形的变化类,通过列举每个图形中H的个数,找到规律:每个图形比上一个图形多2个H是解题的关键.5.【参考答案】解:如图,它的俯视图为:故选:A.【解析】本题考查了简单组合体的三视图,从上边看上边看得到的图形是俯视图.注意看得见的棱画实线,看不见的棱画虚线.6.【参考答案】解:由图象可知,A、B、C都正确,当温度为t1℃时,甲、乙的溶解度都为30g,故D错误,故选:D.【解析】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.【参考答案】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).【解析】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.8.【参考答案】解:正五边形的外角和为360度,故答案为:360.【解析】本题考查了多边形内角与外角,解决本题的关键是掌握多边形外角和等于360°.9.【参考答案】解:∵关于x的方程x2+2x+k=0有两个相等的实数根,∴Δ=22﹣4×1×k=0,解得:k=1.故答案为:1.【解析】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.10.【参考答案】解:设甲每小时采样x人,则乙每小时采样(x﹣10)人,根据题意得:=.故答案为:=.【解析】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.11.【参考答案】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,则长方形的对角线长==.故答案为:.【解析】本题考查了正方形的性质,七巧板,矩形的性质,解决本题的关键是掌握正方形的性质.12.【参考答案】解:当AO=AB时,AB=5;当AB=BO时,AB=5;当OA=OB时,设A(a,)(a>0),B(5,0),∵OA=5,∴=5,解得:a1=3,a2=4,∴A(3,4)或(4,3),∴AB==2或AB==;综上所述,AB的长为5或2或.故答案为:5或2或.【解析】本题考查了等腰三角形的性质,反比例函数图象上点的坐标特征,考查分类讨论的思想,当OA=OB时,求出点A的坐标是解题的关键.三、参考答案题(本大题共5小题,每小题6分,共30分)13.【参考答案】解:(1)原式=2+2﹣1,=3.(2)解不等式①得:x<3,解不等式②得:x>1,∴不等式组的解集为:1<x<3.【解析】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是参考答案此题的关键.14.【参考答案】解:(1)第③步出现错误,原因是分子相减时未变号,故答案为:③;(2)原式=[﹣]×,=[﹣]×,=×,=×,=.故答案为:.【解析】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键.15.【参考答案】解:(1)随机抽取1人,甲恰好被抽中”是随机事件;故答案为:C;(2)设甲是共青团员用T表示,其余3人均是共产党员用G表示.从这4名护士中随机抽取2人,所有可能出现的结果共有12种,如图所示:它们出现的可能性相同,所有的结果中,被抽到的两名护士都是共产党员的(记为事件A)的结果有6种,则P(A)==,【解析】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.【参考答案】解:(1)如图1中,射线BP即为所求;(2)如图2中,直线l或直线l′即为所求.【解析】本题考查作图﹣应用与设计作图,角平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.17.【参考答案】(1)证明:∵四边形ABCD为菱形,∴∠ACD=∠BCA,∵∠ACD=∠ABE,∴∠BCA=∠ABE,∵∠BAC=∠EAB,∴△ABC∽△AEB;(2)解:∵△ABC∽△AEB,∴=,∵AB=6,AC=4,∴=,∴AE==9.【解析】本题考查了菱形的判定与性质,相似三角形的判定与性质,掌握相似三角形的性质和判定是解本题的关键.四、参考答案题(本大题共3小题,每小题8分,共24分)18.【参考答案】解:(1)由题意得:B(0,2),D(1,0),由平移可知:线段AB向下平移2个单位,再向右平移1个单位,∵点A(m,4),∴C(m+1,2),故答案为:(0,2),(1,0),(m+1,2);(2)∵点A和点C在反比例函数y=的图象上,∴k=4m=2(m+1),∴m=1,∴A(1,4),C(2,2),∴k=1×4=4,设直线AC的表达式为:y=nx+b,,解得:,∴直线AC的表达式为:y=﹣2x+6.【解析】此题主要考查了一次函数和反比例函数的综合应用以及平移的性质,根据OB和OD的长得出平移的规律是解题关键.19.【参考答案】解:(1)①如图2,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD+∠BOD=2∠ACO+2∠BCO=2∠ACB,∴∠ACB=∠AOB;如图3,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD﹣∠BOD=2∠ACO﹣2∠BCO=2∠ACB,∴∠ACB=∠AOB;(2)如图4,连接OA,OB,OP,∵∠C=60°,∴∠AOB=2∠C=120°,∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∠APO=∠BPO=∠APB=(180°﹣120°)=30°,∵OA=2,∴OP=2OA=4,∴PA==2.【解析】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键.20.【参考答案】(1)证明:∵AB∥CD,∴∠CDG=∠A,∵∠FEC=∠A,∴∠FEC=∠CDG,∴EF∥DG,∵FG∥CD,∴四边形DEFG为平行四边形;(2)解:如图,过点G作GP⊥AB于P,∵四边形DEFG为平行四边形,∴DG=EF=6.2,∵AD=1.6,∴AG=DG+AD=6.2+1.6=7.8,Rt△APG中,sinA=,∴=0.96,∴PG=7.8×0.96=7.488≈7.5.答:雕塑的高为7.5m.【解析】本题考查解直角三角形的应用,解题的关键是理解题意,正确作辅助线构建直角三角形解决问题.五、参考答案题(本大题共2小题,每小题9分,共18分)21.【参考答案】解:(1)m=102+48+75+51+24=300,n=m﹣(255+15+24)=6,∴==0.02,故答案为:300;0.02;(2)汇总表1和图1可得:01234及以上总数172821188246500“双减”前4232440121500“双减”后×100%=2.4%,答:“双减”后报班数为3的学生人数所占的百分比为2.4%;(3)①“双减”前共调查500个数据,从小到大排列后,第250个和第251个数据均为1,∴“双减”前学生报班个数的中位数为1,“双减”后学生报班个数出现次数最多的是0,∴“双减”后学生报班个数的众数为0,故答案为:1;0;②从“双减”前后学生报班个数的变化情况说明:“双减”政策宣传落实到位,参加校外培训机构的学生大幅度减少,“双减”取得了显著效果.【解析】本题考查统计的应用,理解题意,对数据进行采集和整理,掌握中位数和众数的概念是解题关键.22.【参考答案】解:(1)∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)①∵a=﹣,b=,∴y=﹣x2+x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣×752+×75+66=21,∴基准点K的高度h为21m;②∵a=﹣,∴y=﹣x2+bx+66,∵运动员落地点要超过K点,∴x=75时,y>21,即﹣×752+75b+66>21,解得b>,故答案为:b>;(3)他的落地点能超过K点,理由如下:∵运动员飞行的水平距离为25m时,恰好达到最大高度76m,∴抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣,∴抛物线解析式为y=﹣(x﹣25)2+76,当x=75时,y=﹣×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K点.【解析】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.六、参考答案题(本大题共12分)23.【参考答案】解:(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD 的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O 作OM⊥AB于点M,ON⊥BC于点N.∵O是正方形ABCD的中心,∴OM=ON,∵∠OMB=∠ONB=∠B=90°,∴四边形OMBN是矩形,∵OM=ON,∴四边形OMBN是正方形,∴∠MON=∠EOF=90°,∴∠MOJ=∠NOK,∵∠OMJ=∠ONK=90°,∴△OMJ≌△ONK(AAS),∴S△PMJ=S△ONK,∴S四边形OKBJ=S正方形OMBN=S正方形ABCD,∴S1=S.故答案为:1,1,S1=S.(2)①如图2中,结论:△OMN是等边三角形.理由:过点O作OT⊥BC,∵O是正方形ABCD的中心,∴BT=CT,∵BM=CN,∴MT=TN,∵OT⊥MN,∴OM=ON,∵∠MON=60°,∴△MON是等边三角形;②如图3中,连接OC,过点O作OJ⊥BC于点J.∵CM=CN,∠OCM=∠OCN,OC=OC,∴△OCM≌△OCN(SAS),∴∠COM=∠CON=30°,∴∠OMJ=∠COM+∠OCM=75°,∵OJ⊥CB,∴∠JOM=90°﹣75°=15°,∵BJ=JC=OJ=1,∴JM=OJ•tan15°=2﹣,∴CM=CJ﹣MJ=1﹣(2﹣)=﹣1,∴S四边形OMCN=2××CM×OJ=﹣1.(3)如图4﹣1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.在Rt△MOQ中,MQ=OQ•tan=tan,∴MN=2MQ=2tan,∴S2=S△OMN=×MN×OQ=tan.如图4﹣2中,当CM=CN时,S2最大.同法可证△COM≌△CON,∴∠COM=α,∵∠COQ=45°,∴∠MOQ=45°﹣α,QM=OQ•tan(45°﹣α)=tan(45°﹣α),∴MC=CQ﹣MQ=1﹣tan(45°﹣α),∴S2=2S△CMO=2××CM×OQ=1﹣tan(45°﹣α).【解析】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2020年江西省中考数学试卷(解析版)
是
.
【解析】依题意可得,有两个尖头表示 2 10 20 ,有 5 个丁头表示 51,故这个两位数为 25
10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后 7 位,这是祖冲之最重要
2
的数学贡献,胡老师对圆周率的小数点后 100 位数字进行了如下统计:
数字
0
1
2
3
4
5
6
7
8
9
频数
8
8
12
11
10
8
9
8
12
14
那么,圆周率的小数点后 100 位数字的众数为
.
【解析】由于 9 出现的次数为 14 次,频数最多,∴众数为 9,故答案为 9
11.如图, AC 平分 DCB , CB CD , DA 的延长线交 BC 于点 E ,若 EAC 49 ,则 BAE 的度数
为
.
【解析】CD=CB,∠ACD=∠ACB,CA=CA,∴△CAD≌△CAB,∴∠B=∠D,设∠ACB= ,∠B= ,则∠ACD=
∵ x 2 ,∴原式= 1 1 2 x 22
15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员,小贤、小晴、小艺、小志
四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级,现对这四名同学采
取随机抽取的方式进行线上面试.
(1)若随机抽取一名同学,恰好抽到小艺同学的概率为
【解析】(1)14.
(2)对比前一次测试优秀学生的比例大幅提升;
对比前一次测试学生的平均成绩有较大提高;
对比前一次测试学生成绩的众数、中位数增大.
(3)20,34
(4) 800 14 6 320 50
2020年江西省中考数学试卷和答案解析
2020年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.(3分)﹣3的倒数是()A.3B.﹣3C.﹣D.解析:根据倒数的定义即可得出答案.【解答】解:﹣3的倒数是﹣.故选:C.点拨:此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a 解析:根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.点拨:本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.(3分)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:50175亿=5017500000000=5.0175×1012.故选:B.点拨:此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n的值.4.(3分)如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG解析:依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.点拨:本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.(3分)如图所示,正方体的展开图为()A.B.C.D.解析:根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.点拨:本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.(3分)在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt △OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1C.y=x+D.y=x+2解析:求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x 轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴B(3,0),A(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.点拨:本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(a﹣1)2=a2﹣2a+1.解析:直接利用完全平方公式计算即可解答.【解答】解:(a﹣1)2=a2﹣2a+1.点拨:本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.(3分)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为﹣2.解析:利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.点拨:本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.(3分)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.解析:根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答】解:由题意可得,表示25.故答案为:25.点拨:本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.(3分)祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为9.解析:直接根据众数的定义可得答案.【解答】解:圆周率的小数点后100位数字的众数为9,故答案为:9.点拨:本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.(3分)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为82°.解析:证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.点拨:本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.(3分)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米或4厘米或厘米.解析:根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE =30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.【解答】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.点拨:本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:解析:(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,当x=时,原式==.点拨:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.解析:(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.点拨:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.解析:(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.点拨:本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.解析:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y 元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.点拨:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.解析:(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.点拨:本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<4040≤x<5050≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100人数133815m6根据以上图表信息,完成下列问题:(1)m=14;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有20人,至多有34人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80解析:(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及点拨:本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)解析:(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.点拨:本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC 为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).解析:(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC =PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,∴∠AOB=100°,∴∠ACB=50°;(2)如图2,当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由(1)可知,∠AOB+∠APB=180°,∵∠APB=60°,∴∠AOB=120°,∴∠ACB=60°=∠APB,∵点C运动到PC距离最大,∴PC经过圆心,∵PA,PB为⊙O的切线,∴PA=PB,∠APC=∠BPC=30°,又∵PC=PC,∴△APC≌△BPC(SAS),∴∠ACP=∠BCP=30°,AC=BC,∴∠APC=∠ACP=30°,∴AP=AC,∴AP=AC=PB=BC,∴四边形APBC是菱形;(3)∵⊙O的半径为r,∴OA=r,OP=2r,∴AP=r,PD=r,∵∠AOP=90°﹣∠APO=60°,∴==,∴阴影部分的周长=PA+PD+=r+r+r=(+1+)r.点拨:本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,弧长公式,菱形的判定等知识,灵活运用这些性质解决问题是本题的关键.22.(9分)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012…y…m0﹣3n﹣3…(1)根据以上信息,可知抛物线开口向上,对称轴为直线x=1;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系A3A4﹣A1A2=1.解析:(1)观察表格中的数据,得到x=0和x=2时,y值相等都为﹣3,且其他y的值比﹣3大,可得出抛物线开口方向及对称轴;(2)把三点坐标代入抛物线解析式求出a,b,c的值确定出解析式,进而求出m与n的值即可;(3)画出抛物线图象,确定出点P'运动的轨迹即可;(4)根据(3)中图象可得答案.【解答】解:(1)根据表格信息,可知抛物线开口向上,对称轴为直线x=1;故答案为:上,直线x=1;(2)把(﹣1,0),(0,﹣3),(2,﹣3)代入y=ax2+bx+c,得:,解得:,∴抛物线解析式为y=x2﹣2x﹣3,当x=﹣2时,m=4+4﹣3=5;当x=1时,n=1﹣2﹣3=﹣4;(3)画出抛物线图象,如图1所示,描出P'的轨迹,是一条抛物线,如备用图所示,(4)根据题意及(3)中图象可得:A3A4﹣A1A2=1.故答案为:A3A4﹣A1A2=1.点拨:本题考查了待定系数法求二次函数的解析式及二次函数的图象与性质,数形结合并熟练掌握二次函数的相关性质是解题的关键.六、(本大题共12分)23.(12分)某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为S1+S2=S3;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC 为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC =90°,AB=2,DE=2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.解析:类比探究(1)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;推广验证(2)通过证明△ADB∽△BFC,可得=()2,同理可得=()2,由勾股定理可得AB2+AC2=BC2,可得结论;拓展应用(3)过点A作AH⊥BP于H,连接PD,BD,由直角三角形的性质可求AP=,BP=BH+PH=3+,可求S△ABP=,通过证明△ABP∽△EDP,可得∠EPD=∠APB=45°,,S△PDE=,可得∠BPD=90°,PD=1+,可求S△BPD=2+3,由(2)的结论可求S△BCD=S△ABP+S△DPE=+=2+2,即可求解.【解答】解:类比探究(1)∵∠1=∠3,∠D=∠F=90°,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,故答案为:S1+S2=S3.(2)结论仍然成立,理由如下:∵∠1=∠3,∠D=∠F,∴△ADB∽△BFC,∴=()2,同理可得:=()2,∵AB2+AC2=BC2,∴=()2+()2==1,∴S1+S2=S3,(3)过点A作AH⊥BP于H,连接PD,BD,∵∠ABH=30°,AB=2,∴AH=,BH=3,∠BAH=60°,∵∠BAP=105°,∴∠HAP=45°,∵AH⊥BP,∴∠HAP=∠APH=45°,∴PH=AH=,∴AP=,BP=BH+PH=3+,∴S△ABP===,∵PE=,ED=2,AP=,AB=2,∴=,=,∴,且∠E=∠BAP=105°,∴△ABP∽△EDP,∴∠EPD=∠APB=45°,,∴∠BPD=90°,PD=1+,∴S△BPD===2+3,∵△ABP∽△EDP,∴=()2=,∴S△PDE=×=∵tan∠PBD=,∴∠PBD=30°,∴∠CBD=∠ABC﹣∠ABP﹣∠CBD=30°,∴∠ABP=∠PDE=∠CBD,又∵∠A=∠E=∠C=105°,∴△ABP∽△EDP∽△CBD,由(2)的结论可得:S△BCD=S△ABP+S△DPE=+=2+2,∴五边形ABCDE的面积=++2+2+2+3=6+7.点拨:本题是四边形综合题,考查了相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用相似三角形的性质求三角形的面积是本题的关键.。
2023年江西省中考数学试卷及答案解析
2023年江西省中考数学试卷及答案解析一、选择题1. 小华骑自行车从家到学校需要20分钟,而他骑电动车只需要10分钟。
假设他骑电动车的速度是自行车的3倍,那么从家到学校的距离是多少?A) 2公里B) 3公里C) 4公里D) 5公里答案:A) 2公里解析:设自行车的速度为v,从题意可知用自行车骑到学校需要20分钟,即距离为20v。
而用电动车骑到学校只需要10分钟,即距离为10(3v)。
根据题意可得20v = 10(3v),解得v = 2。
因此,从家到学校的距离为20v = 20 × 2 = 40分钟。
2. 下列哪个数是3的倍数?A) 186B) 245C) 312D) 419解析:判断一个数是否是3的倍数有一个小技巧,即将该数的各个位数相加,如果和能被3整除,那么该数也能被3整除。
例如,312的个位数、十位数和百位数之和为3+1+2=6,6能被3整除,故312也能被3整除。
3. 若一辆汽车以每小时60公里的速度行驶,行驶8小时后所走的距离是多少?A) 400公里B) 480公里C) 520公里D) 560公里答案:D) 560公里解析:题目已给出汽车的速度是每小时60公里,而行驶的时间是8小时,因此,所走的距离为60 × 8 = 480公里。
4. 某数的2倍减去5等于8,那么这个数是多少?A) 6B) 7C) 8D) 9解析:设这个数为x,根据题意可以得到2x - 5 = 8,解得2x = 13,x = 6。
5. 某数的5倍减去32等于38,那么这个数是多少?A) 4B) 5C) 6D) 7答案:D) 7解析:设这个数为x,根据题意可以得到5x - 32 = 38,解得5x = 70,x = 7。
二、填空题6. 已知两个数相加是48,其中一个数是3/4,求另一个数。
答案:16解析:设另一个数为x,由题意可得 x + 3/4x = 48,解得 x = 16。
7. 若3/4 ÷ x = 12,则x的值为多少?答案:1/48解析:根据题意可得 3/4 ÷ x = 12,解得 x = 1/48。
2020年江西省中考数学试题及参考答案(word解析版)
江西省2020年中等学校招生考试数学试题卷(全卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×10144.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG5.如图所示,正方体的展开图为()A.B.C.D.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC =49°,则∠BAE的度数为.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:14.先化简,再求值:(﹣)÷,其中x=.15.某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.16.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.四、(本大题共3小题,每小题8分,共24分)18.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.19.为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.20.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)五、(本大题共2小题,每小题9分,共18分)21.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).22.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …m 0 ﹣3 n ﹣3 …(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P',描出相应的点P',再把相应的点P'用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>﹣2)与抛物线及(3)中的点P'所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系.六、(本大题共12分)23.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2,DE =2,点P在AE上,∠ABP=30°,PE=,求五边形ABCDE的面积.答案与解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.﹣3的倒数是()A.3 B.﹣3 C.﹣D.【知识考点】倒数.【思路分析】根据倒数的定义即可得出答案.【解答过程】解:﹣3的倒数是﹣.故选:C.【总结归纳】此题主要考查了倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法.【思路分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答过程】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.【总结归纳】本题主要考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50175亿元,比上年增长8.74%.将50175亿用科学记数法表示为()A.5.0175×1011B.5.0175×1012C.0.50175×1013D.0.50175×1014【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:50175亿=5017500000000=5.0175×1012.故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,∠1=∠2=65°,∠3=35°,则下列结论错误的是()A.AB∥CD B.∠B=30°C.∠C+∠2=∠EFC D.CG>FG【知识考点】平行线的判定;三角形的外角性质.【思路分析】依据平行线的判定与性质,以及三角形外角性质,即可得出结论.【解答过程】解:∵∠1=∠2=65°,∴AB∥CD,故A选项正确,又∵∠3=35°,∴∠C=65°﹣35°=30°,∴∠B=∠C=30°,故B选项正确,∵∠EFC是△CGF的外角,∴∠EFC=∠C+∠3,故C选项错误,∵∠3>∠C,∴CG>FG,故D选项正确,故选:C.【总结归纳】本题主要考查了平行线的判定与性质,以及三角形外角性质,解题时注意:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.5.如图所示,正方体的展开图为()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答过程】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面∧”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.【总结归纳】本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.6.在平面直角坐标系中,点O为坐标原点,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O'A'B',且点O',A'落在抛物线的对称轴上,点B'落在抛物线上,则直线A'B'的表达式为()A.y=x B.y=x+1 C.y=x+D.y=x+2【知识考点】待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点;坐标与图形变化﹣平移.【思路分析】求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A'B'的表达式.【解答过程】解:如图,∵抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴正半轴交于点B,令y=0,解得x=﹣1或3,令x=0,求得y=﹣3,∴A(3,0),B(0,﹣3),∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n+3),∵点B'落在抛物线上,∴n+3=16﹣8﹣3,解得n=2,∴A′(1,2),B′(4,5),设直线A'B'的表达式为y=kx+b,∴,解得∴直线A'B'的表达式为y=x+1,故选:B.【总结归纳】本题考查了抛物线与x轴的交点,坐标和图形变换﹣平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:(a﹣1)2=.【知识考点】完全平方公式.【思路分析】直接利用完全平方公式计算即可解答.【解答过程】解:(a﹣1)2=a2﹣2a+1.【总结归纳】本题考查了完全平方公式,熟记公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.8.若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【知识考点】一元二次方程的解;根与系数的关系.【思路分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解答过程】解:∵a=1,b=﹣k,c=﹣2,∴x1•x2==﹣2.∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.故答案为:﹣2.【总结归纳】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之积等于是解题的关键.9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.【知识考点】用数字表示事件.【思路分析】根据题意可知,这个两位数的个位上的数是5,十位上的数是2,故这个两位数我25.【解答过程】解:由题意可得,表示25.故答案为:25.【总结归纳】本题主要考查了用数字表示事件,理清题目中的符号表示的意义是解答本题的关键.10.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.胡老师对圆周率的小数点后100位数字进行了如下统计:数字0 1 2 3 4 5 6 7 8 9频数8 8 12 11 10 8 9 8 12 14 那么,圆周率的小数点后100位数字的众数为.【知识考点】近似数和有效数字;数学常识;频数(率)分布表;众数.【思路分析】直接根据众数的定义可得答案.【解答过程】解:圆周率的小数点后100位数字的众数为9,故答案为:9.【总结归纳】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.11.如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE的度数为.【知识考点】全等三角形的判定与性质.【思路分析】证明△ABC≌△ADC得∠D+∠ACD=∠B+∠ACB=49°,进而根据三角形内角和定理得结果.【解答过程】解:∵AC平分∠DCB,∴∠BCA=∠DCA,∵CB=CD,∵AC=AC,∴△ABC≌△ADC(SAS),∴∠B=∠D,∴∠B+∠ACB=∠D+∠ACD,∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°,∴∠BAE=180°﹣∠B﹣∠ACB﹣∠CAE=82°,故答案为:82°.【总结归纳】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形的内角和定理,三角形的外角定理,关键是证明三角形全等,求得∠B+∠ACB=49°.12.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段.当图中存在30°角时,AE的长为厘米.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB =30°时或当∠ABA′=30°时求AE的长.【解答过程】解:①当∠ABE=30°时,AE=AB×tan30°=;②当∠AEB=30°时,AE===4;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=,∵AF=AE+EF=ABtan30°=,∴x+=,∴x=8﹣4,∴AE=8﹣4.故答案为:厘米或4厘米或8﹣4厘米.【总结归纳】本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:(1﹣)0﹣|﹣2|+()﹣2;(2)解不等式组:【知识考点】实数的运算;零指数幂;负整数指数幂;解一元一次不等式组.【思路分析】(1)先计算零指数幂、绝对值和负整数指数幂,再计算加减可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=1﹣2+4=﹣1+4=3;(2)解不等式3x﹣2≥1,得:x≥1,解不等式5﹣x>2,得:x<3,则不等式组的解集为1≤x<3.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(6分)先化简,再求值:(﹣)÷,其中x=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答过程】解:原式=[﹣]÷=•=,当x=时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.15.(6分)某校合唱团为了开展线上“百人合唱一首歌”的“云演出”活动,需招收新成员.小贤、小晴、小艺、小志四名同学报名参加了应聘活动,其中小贤、小艺来自七年级,小志、小晴来自八年级.现对这四名同学采取随机抽取的方式进行线上面试.(1)若随机抽取一名同学,恰好抽到小艺同学的概率为;(2)若随机抽取两名同学,请用列表法或树状图法求两名同学均来自八年级的概率.【知识考点】列表法与树状图法.【思路分析】(1)共有4种可能出现的结果,抽到小艺的只有1种,可求出抽到小艺的概率;(2)用列表法表示所有可能出现的结果,进而求出两个同学均来自八年级的概率.【解答过程】解:(1)共有4种可能出现的结果,抽到小艺的只有1种,因此恰好抽到小艺的概率为,故答案为:;(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是八年级,即抽到小志、小晴的有2种,∴P(小志、小晴)==.【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.16.(6分)如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.【知识考点】作图﹣旋转变换.【思路分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据AB=2,BC=,AC=5,利用数形结合的思想解决问题即可.【解答过程】解:(1)如图1中,△A'B'C'即为所求.(2)如图2中,△AB'C'即为所求.【总结归纳】本题考查作图﹣旋转变换,解题的关键是理解题意,学会利用数形结合的思想解决问题,属于中考常考题型.17.(6分)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,根据“小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)先求两人带的总钱数,再求出两人合在一起买文具所需费用,由二者的差大于2个小工艺品所需钱数,可找出:他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【解答过程】解:(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:,解得:.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【知识考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;直角三角形斜边上的中线.【思路分析】(1)根据题意求得A(2,2),然后代入y=(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质以及三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.【解答过程】解:(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOD=45°,∴∠EOD=15°.【总结归纳】本题考查了待定系数法求反比例函数的解析式,直角三角形斜边中线的性质,三角形外角的性质,等腰三角形的性质,证得∠AOE=2∠EOD,是解题的关键.19.(8分)为积极响应教育部“停课不停学”的号召,某中学组织本校优秀教师开展线上教学,经过近三个月的线上授课后,在五月初复学.该校为了解学生不同阶段学习效果,决定随机抽取八年级部分学生进行两次跟踪测评,第一次是复学初对线上教学质量测评,第二次是复学一个月后教学质量测评.根据第一次测试的数学成绩制成频数分布直方图(图1).复学一个月后,根据第二次测试的数学成绩得到如下统计表:成绩30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 人数 1 3 3 8 15 m 6 根据以上图表信息,完成下列问题:(1)m=;(2)请在图2中作出两次测试的数学成绩折线图,并对两次成绩作出对比分析(用一句话概述);(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有人,至多有人;(4)请估计复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图;频数(率)分布折线图.【思路分析】(1)根据前后两次抽取的人数一样多,可以计算出m的值;(2)根据直方图中的数据和表格中的数据,可以将图2中的图补充完整,然后即可写出成绩的变化情况;(3)根据表格中的数据,可以得到分数高于78分的至少有多少人,至多有多少人;(4)根据表格中的数据,可以计算出复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的人数.【解答过程】解:(1)m=(2+8+10+15+10+4+1)﹣(1+3+3+8+15+6)=14,故答案为:14;(2)折线图如下图所示,复学后,学生的成绩总体上有了明显的提升;(3)某同学第二次测试数学成绩为78分.这次测试中,分数高于78分的至少有14+6=20(人),至多有14+6+(15﹣1)=34(人),故答案为:20,34;(4)800×=320(人),答:复学一个月后该校800名八年级学生数学成绩优秀(80分及以上)的有320人.【总结归纳】本题考查频数分布直方图、折线统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【知识考点】解直角三角形的应用.【思路分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答过程】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40(mm)=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44,∴AM=AF+FM=51.44+40≈120.7(mm),答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80,BC=40,∴tan∠D===0.500,∴∠D=26.6°,因此旋转的角度为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.【总结归纳】本题考查直角三角形的边角关系,锐角三角函数的意义,通过作辅助线构造直角三角形是常用的方法,也是基本的方法.五、(本大题共2小题,每小题9分,共18分)21.(9分)已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).【知识考点】圆的综合题.【思路分析】(1)连接OA,OB,由切线的性质可求∠PAO=∠PBO=90°,由四边形内角和可求解;(2)当∠APB=60°时,四边形APBC是菱形,连接OA,OB,由切线长定理可得PA=PB,∠APC=∠BPC=30°,由“SAS”可证△APC≌△BPC,可得∠ACP=∠BCP=30°,AC=BC,可证AP=AC=PB=BC,可得四边形APBC是菱形;(3)分别求出AP,PD的长,由弧长公式可求,即可求解.【解答过程】解:(1)如图1,连接OA,OB,∵PA,PB为⊙O的切线,∴∠PAO=∠PBO=90°,∵∠APB+∠PAO+∠PBO+∠AOB=360°,∴∠APB+∠AOB=180°,∵∠APB=80°,。
2024年江西省中考数学试卷(附答案解析)
2024年江西省中考数学试卷(附答案解析)一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。
错选、多选或未选均不得分。
1.(3分)﹣5的相反数是()A.﹣5B.5C.D.﹣【解答】解:﹣5的相反数是5.故选:B.2.(3分)“长征是宣言书,长征是宣传队,长征是播种机”.二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹.将25000用科学记数法可表示为()A.0.25×106B.2.5×105C.2.5×104D.25×103【答案】C.3.(3分)如图所示的几何体,其主视图为()A.B.C.D.【分析】结合图形,根据主视图的定义即可求得答案.【解答】解:由题干中的几何体可得其主视图为,故选:B.【点评】本题考查简单组合体的三视图,此为基础且重要知识点,必须熟练掌握.4.(3分)将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数y(℃)与时间x(min)的关系用图象可近似表示为()A.B.C.D.【解答】C.5.(3分)如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是()A.五月份空气质量为优的天数是16天B.这组数据的众数是15天C.这组数据的中位数是15天D.这组数据的平均数是15天【答案】D.6.(3分)如图是4×3的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种【分析】依据正方体的展开图的结构特征进行判断,即可得出结论.【解答】解:如图所示:选择标有1或2的位置的空白小正方形,能与阴影部分组成正方体展开图,所以能与阴影部分组成正方体展开图的方法有2种.故选:B.【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)计算:(﹣1)2=.【分析】利用有理数的乘方法则计算即可.【解答】解:(﹣1)2=(﹣1)×(﹣1)=1,故答案为:1.【点评】本题考查有理数的乘方,熟练掌握其运算法则是解题的关键.8.(3分)因式分解:a2+2a=.【分析】直接提取公因式a,进而分解因式得出答案.【解答】解:a2+2a=a(a+2).故答案为:a(a+2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.(3分)在平面直角坐标系中,将点A(1,1)向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B的坐标为.【分析】根据向右平移横坐标加,向上平移纵坐标加计算即可.【解答】解:将点A(1,1)向右平移2个单位长度,再向上平移3个单位长度得到点B,则点B的坐标为(1+2,1+3),即(3,4).故答案为:(3,4).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(3分)观察a,a2,a3,a4,…,根据这些式子的变化规律,可得第100个式子为.【解答】解:根据题意可知,有一列按照一定规律排列的单项式:a,a2,a3,a4,…,∴第100个式子为:a100,故答案为:a100.11.(3分)将图1所示的七巧板,拼成图2所示的四边形ABCD,连接AC,则tan∠CAB=.【解答】解:令AC与BD的交点为O,∵∠ABD=∠CDB=90°,∴CD∥AB,又∵AB=CD,∴四边形ABCD是平行四边形,∴AC与BD互相平分,∴OB=.∵AB=BD,∴OB=.在Rt△AOB中,tan∠CAB=.故答案为:.12.(3分)如图,AB是⊙O的直径,AB=2,点C在线段AB上运动,过点C的弦DE⊥AB,将沿DE翻折交直线AB于点F,当DE的长为正整数时,线段FB的长为.【分析】根据DE≤AB,可得DE=1或2,利用勾股定理进行解答即可.【解答】解:∵AB为直径,DE为弦,∴DE≤AB,∴当DE的长为正整数时,DE=1或2,当DE=2时,即DE为直径,∴DE⊥AB,∴将DBE沿DE翻折交直线AB于点F,此时F与点A重合,故FB=2;当DE=1时,且在点C在线段OB之间,如图,连接OD,此时,∵DE⊥AB,∴,∴,∴,∴;当DE=1时,且点C在线段OA之间,连接OD,同理可得,∴;综上,可得线段FB的长为或或2,故答案为:或或2.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:π0+|﹣5|;(2)化简:.【分析】(1)利用零指数幂及绝对值的性质计算即可;(2)利用分式的加减法则计算即可.【解答】解:(1)原式=1+5=6;(2)原式==1.【点评】本题考查零指数幂,绝对值,分式的加减,熟练掌握相关运算法则是解题的关键.14.(6分)如图,AC为菱形ABCD的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)如图1,过点B作AC的垂线;(2)如图2,点E为线段AB的中点,过点B作AC的平行线.【分析】(1)连接BD,根据菱形的性质可知,直线BD即为所求.(2)结合菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质,连接CE并延长,交DA 的延长线于点F,作直线BF,则直线BF即为所求.【解答】解:(1)如图1,连接BD,∵四边形ABCD为菱形,∴BD⊥AC,则直线BD即为所求.(2)如图2,连接CE并延长,交DA的延长线于点F,作直线BF,∵四边形ABCD为菱形,∴DF∥BC,∴∠AFE=∠BCE,∠FAE=∠CBE,∵点E为线段AB的中点,∴AE=BE,∴△AEF≌△BEC(AAS),∴AF=BC,∴四边形ACBF为平行四边形,∴BF∥AC,则直线BF即为所求.【点评】本题考查作图—复杂作图、菱形的性质、平行四边形的判定与性质、全等三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题.15.(6分)某校一年级开设人数相同的A,B,C三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A班”的概率是;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.【分析】(1)由题意知,共有3种等可能的结果,其中学生甲分到A班的结果有1种,利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及甲、乙两位新生分到同一个班的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意知,共有3种等可能的结果,其中学生甲分到A班的结果有1种,∴“学生甲分到A班”的概率是.故答案为:.(2)列表如下:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)共有9种等可能的结果,其中甲、乙两位新生分到同一个班的结果有3种,∴甲、乙两位新生分到同一个班的概率为=.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.16.(6分)如图,△AOB是等腰直角三角形,∠ABO=90°,双曲线经过点B,过点A(4,0)作x轴的垂线交双曲线于点C,连接BC.(1)点B的坐标为;(2)求BC所在直线的解析式.【分析】(1)过点B作x轴的垂线,根据等腰直角三角形的性质即可解决问题.(2)求出点C的坐标,再利用待定系数法即可解决问题.【解答】解:(1)过点B作x轴的垂线,垂足为M,∵点A坐标为(4,0),∴OA=4.又∵△OAB是等腰直角三角形,∴BM=OM=AM=,∴点B的坐标为(2,2).故答案为:(2,2).(2)将点B坐标代入反比例函数解析式得,k=2×2=4,∴反比例函数解析式为y=.∵AC⊥x轴,∴x C=x A=4.将x=4代入反比例函数解析式得,y=1,∴点C的坐标为(4,1).令直线BC的函数解析式为y=mx+n,将点B和点C的坐标代入函数解析式得,,解得,所以直线BC的函数解析式为y=.17.(6分)如图,AB是半圆O的直径,点D是弦AC延长线上一点,连接BD,BC,∠D=∠ABC=60°.(1)求证:BD是半圆O的切线;(2)当BC=3时,求的长.【分析】(1)根据圆周角定理得到∠ACB=90°,得到∠D+∠A=90°,求得∠ABD=90°,根据切线的判定定理即可得到结论;(2)连接OC,根据圆周角定理得到∠AOC=2∠ABC=120°,根据等边三角形的性质得到OC=BC =3,根据弧长公式即可得到的长==2π.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠D=∠ABC,∴∠D+∠A=90°,∴∠ABD=90°,∵AB是半圆O的直径,∴BD是半圆O的切线;(2)解:连接OC,∵∠ABC=60°,∴∠AOC=2∠ABC=120°,∵OC=OB,∴△BOC是等边三角形,∴OC=BC=3,∴的长==2π.【点评】本题考查了切线的判定和性质,弧长的计算,圆周角定理,正确地作出辅助线是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)如图,书架宽84cm,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm,每本语文书厚1.2cm.(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【分析】(1)根据数学本和语文本的厚度,结合数学书和语文书的本书即可解决问题.(2)用书架宽减去10本语文书的厚度,再利用数学书的本书即可解决问题.【解答】解:(1)设书架上数学书x本,则语文书(90﹣x)本,根据题意得,0.8x+1.2(90﹣x)=84,解得x=60,所以90﹣x=30,答:书架上数学书60本,语文书30本.(2)设数学书还可以摆m本,则10×1.2+0.8m≤84,解得m≤90,所以数学书最多还可以摆90本.【点评】本题考查二元一次方程组的应用及一元一次不等式的应用,能根据题意找出题中的等量关系并建立方程及不等式是解题的关键.19.(8分)图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”.如图2,“大碗”的主视图由“大碗”主体ABCD和矩形碗底BEFC 组成,已知AD∥EF,AM,DN是太阳光线,AM⊥MN,DN⊥MN,点M,E,F,N在同一条直线上.经测量ME=FN=20.0m,EF=40.0m,BE=2.4m,∠ABE=152°.(结果精确到0.1m)(1)求“大碗”的口径AD的长;(2)求“大碗”的高度AM的长.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)【分析】(1)根据垂直定义可得∠AMN=∠DNM=90°,再利用平行线的性质可得∠DAM=90°,从而可得四边形AMND是矩形,然后利用矩形的性质可得AD=MN,从而利用线段的和差关系进行计算即可解答;(2)延长CB交AM于点G,根据题意可得:BE=GM=2.4m,BG=ME=20.0m,BG⊥AM,∠EBG=90°,从而可得∠ABG=62°,然后在Rt△ABG中,利用锐角三角函数的定义求出AG的长,从而利用线段的和差关系进行计算,即可解答.【解答】解:(1)∵AM⊥MN,DN⊥MN,∴∠AMN=∠DNM=90°,∵AD∥MN,∴∠DAM=180°﹣∠AMN=90°,∴四边形AMND是矩形,∴AD=MN=ME+EF+FN=20.0+40.0+20.0=80.0(m),∴“大碗”的口径AD的长为80.0m;(2)延长CB交AM于点G,由题意得:BE=GM=2.4m,BG=ME=20.0m,BG⊥AM,∠EBG=90°,∵∠ABE=152°,∴∠ABG=∠ABE﹣∠EBG=62°,在Rt△ABG中,AG=BG•tan62°≈20.0×1.88=37.6(m),∴AM=AG+MG=37.6+2.4=40.0(m),∴“大碗”的高度AM的长约为40.0m.【点评】本题考查了解直角三角形的应用,矩形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(8分)追本溯源题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在△ABC中,BD平分∠ABC,交AC于点D,过点D作BC的平行线,交AB于点E,请判断△BDE的形状,并说明理由.方法应用(2)如图2,在▱ABCD中,BE平分∠ABC,交边AD于点E,过点A作AF⊥BE交DC的延长线于点F,交BC于点G.①图中一定是等腰三角形的有.A.3个B.4个C.5个D.6个②已知AB=3,BC=5,求CF的长.【分析】(1)由角平分线的定义得出∠ABD=∠CBD.由平行线的性质得出∠EDB=∠CBD,证出∠EDB =∠ABD,则可得出结论;(2)①由等腰三角形的判定可得出结论;②由(1)可知,∠ABE=∠EBG=∠AEB.AB=AE=3,证出CG=CF,则可得出答案.【解答】解:(1)△BDE的形状是等腰三角形,理由如下:∵BD平分∠ABC,∴∠ABD=∠CBD.∵BC∥ED,∴∠EDB=∠CBD,∴∠EDB=∠ABD,∴EB=ED,∴△BDE是等腰三角形.(2)①共有四个等腰三角形.分别是:△ABE,△ABG,△AFD,△CGF,故答案为:B;②由(1)可知,∠ABE=∠EBG=∠AEB.AB=AE=3,∵AF⊥BE,∴∠BAF=∠EAF.∵BC∥AD,∴∠EAG=∠AGB,∴∠BAF=∠AGB,∴AB=AG=3,∵AB∥FD,∴∠BAF=∠CFG,∵∠AGB=∠CGF,∴∠CGF=∠CFG,∴CG=CF,∵CG=BC﹣BG=5﹣3=2,∴CF=2.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟练掌握等腰三角形的性质是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)近年来,我国肥胖人群的规模快速增长.目前,国际上常用身体质量指数(Body Mass Index,缩写BMI)来衡量人体胖瘦程度,其计算公式是.中国人的BMI数值标准为:BMl<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI数值,再参照BMI数值标准分成四组:A.16≤BMI<20;B.20≤BMI<24;C.24≤BMI<28;D.28≤BMI<32.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m) 1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg)52.549.545.640.355.256.148.542.867.290.5 BMI21.6s16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m) 1.46 1.62 1.55 1.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg)46.449.061.556.552.975.550.347.652.446.8 BMI21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI频数分布表组别BMI男生频数女生频数A16≤BMI<2032B20≤BMI<2446C24≤BMI<28t2D28≤BMI<3210应用数据(1)s=,t=,α=;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生BMI≥24的人数.(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.【分析】(1)根据公式计算可得s;用10分别减去其它组男生的频数可得t的值;用360°乘C组人数所占比例可得α的值;(2)利用样本估计总体即可;(3)根据七年级20名学生BMI频数分布表数据解答即可(答案不唯一).【解答】解:(1)由题意得,s==22,t=10﹣3﹣4﹣1=2,α=360°×=72°,故答案为:22,2,72°;(2)①估计该校七年级男生偏胖的人数有:260×=52(人);②估计该校七年级学生BMI≥24的人数有:260×+240×=126(人);(3)由统计表可知,该校七年级学生的偏瘦、偏胖或肥胖的人数约半数,建议该校加强学生的体育锻炼,加强科学饮食习惯的宣传.(答案不唯一).【点评】本题考查了频数分布表和用样本估计总体,熟练掌握用样本估计总体的方法是解题的关键.22.(9分)如图,一小球从斜坡O点以一定的方向弹出,球的飞行路线可以用二次函数y=ax2+bx(a<0)刻画,斜坡可以用一次函数刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如表:x012m4567…y068n…(1)①m=,n=;②小球的落点是A,求点A的坐标.(2)小球飞行高度y(米)与飞行时间t(秒)满足关系:y=﹣5t2+vt.①小球飞行的最大高度为米;②求v的值.【分析】(1)①由抛物线的顶点坐标为(4,8)可建立过于a,b的二元一次方程组,求出a,b的值即可;②联立两函数解析式求解,可求出交点A的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v值.【解答】解:(1)①根据小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律表可知,抛物线顶点坐标为(4,8),,解得:,∴二次函数解析式为y=x2+4x,当y=时,﹣x2+4x=,解得:x=3或x=5(舍去),∴m=3,当x=6时,n=y=﹣62+4×6=6,故答案为:3,6.②联立得:,解得:或,∴点A的坐标是(,).(2)①由题干可知小球飞行最大高度为8米,故答案为:8.②y=﹣5t2+vt=﹣5(t﹣)2+,则=8,解得v=4(负值舍去).【点评】本题主要考查二次函数的应用,从图象和表格中获取数据是解题的关键.六、解答题(本大题共12分)23.(12分)综合与实践如图,在Rt△ABC中,点D是斜边AB上的动点(点D与点A不重合),连接CD,以CD为直角边在CD的右侧构造Rt△CDE,∠DCE=90°,连接BE,=m.特例感知(1)如图1,当m=1时,BE与AD之间的位置关系是,数量关系是.类比迁移(2)如图2,当m≠1时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图3.已知AC=6,设AD =x,四边形CDFE的面积为y.①求y与x的函数表达式,并求出y的最小值;②当BF=2时,请直接写出AD的长度.【分析】(1)由=1,得到CE=CD,CB=CA,根据等腰直角三角形的性质得到∠A=∠ABC =45°,∠ACD=∠BAE,根据全等三角形的性质得到AD=BE,∠A=∠CBE=45°,根据垂直的定义得到AD⊥BE;(2)根据相似三角形的判定定理得到△ADC∽△BEC,求得=m,∠CBE=∠A,得到BE=mAD,根据垂直的定义得到AD⊥BE;﹣x,根据勾股定理得到DE2=BD2+BE2=(6﹣x)2+x2,根据线段垂直平分线的性质得到CE=EF,CD=DF,推出四边形CDFE是正方形,根据正方形的面积公式即可得到y=DE2=[(6﹣x)2+x2],根据二次函数的性质即可得到结论;②过D作DH⊥AC于H,根据等腰直角三角形到现在得到AH=DH=AD=x,求得CH=6﹣x,连接OB,推出OB=,得到∠CBF=90°,根据勾股定理得到结论.【解答】解:(1)AD⊥BE,AD=BE,理由:∵=1,∴CE=CD,CB=CA,∵∠ACB=∠DCE=90°,∴∠A=∠ABC=45°,∠ACD=∠BAE,∴△ACD≌△BCE(SAS),∴AD=BE,∠A=∠CBE=45°,∴∠ABE=90°,∴AD⊥BE;故答案为:AD⊥BE,AD=BE;(2)BE=mAD,AD⊥BE,证明:∵∠ACB=∠DCE=90°,∴∠ACD=∠BAE,∵=m,∴△ADC∽△BEC,∴=m,∠CBE=∠A,∴BE=mAD,∵∠A+∠ABC=90°,∴∠CBE+∠ABC=90°,∴∠ABE=90°,∴AD⊥BE;(3)①连接CF交DE于O,由(1)知,AC=BC=6,∠ACB=90°,∴AB=6,∴BD=6﹣x,∵AD=BE=x,∠DBE=90°,∴DE2=BD2+BE2=(6﹣x)2+x2,∵点F与点C关于DE对称,∴DE垂直平分CF,∴CE=EF,CD=DF,∵CD=CE,∴CD=DF=EF=CE,∵∠DCE=90°,∴四边形CDFE是正方形,∴y=DE2=[(6﹣x)2+x2],∴y与x的函数表达式为y=x2﹣6+36(0<x≤6),∵y=x2﹣6+36=(x﹣3)2+18,∴y的最小值为18;②过D作DH⊥AC于H,则△ADH是等腰直角三角形,∴AH=DH=AD=x,∴CH=6﹣x,连接OB,∴OB=OE=OD=OC=OF,∴OB=,∴∠CBF=90°,∵BC=6,BF=2,∴CF==2∴CD=CF=2,∵CH2+DH2=CD2,∴(6﹣x)2+(x)2=(2)2,解得x=4或x=2,∴AD=4或2.。
2022年江西省中考数学真题试卷附答案解析
试卷第1页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年江西省中考数学真题试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、单选题1.下列各数中,负数是()A .1-B .0C .2D 2.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A .a b >B .a b=C .a b <D .a b=-3.下列计算正确的是()A .236m m m ⋅=B .()m n m n --=-+C .2()m m n m n+=+D .222()m n m n +=+4.将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是()A .9B .10C .11D .125.如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()试卷第2页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※A .B .C .D .6.甲、乙两种物质的溶解度(g)y 与温度()t ℃之间的对应关系如图所示,则下列说法中,错误的是()A .甲、乙两种物质的溶解度均随着温度的升高而增大B .当温度升高至2t ℃时,甲的溶解度比乙的溶解度大C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题7.因式分解:23a a -=__________.8.正五边形的外角和等于_______◦.试卷第3页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………9.已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.10.甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________.11.沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为__________.12.已知点A 在反比例函数12(0)y x x=>的图象上,点B 在x 轴正半轴上,若OAB 为等腰三角形,且腰长为5,则AB 的长为__________.评卷人得分三、解答题13.(1)计算:0|2|2--;(2)解不等式组:26325x x x <⎧⎨>-+⎩14.以下是某同学化筒分式2113422x x x x +⎛⎫-÷⎪-+-⎝⎭的部分运算过程:解:原式112(2)(2)23x x x x x ⎡⎤+-=-⨯⎢⎥+-+⎣⎦①122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦②122(2)(2)3x x x x x +---=⨯+-③解:试卷第4页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…(1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程.15.某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是__________事件;A .不可能B .必然C .随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.16.如图是44⨯的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作ABC ∠的角平分线;(2)在图2中过点C 作一条直线l ,使点A ,B 到直线l 的距离相等.17.如图,四边形ABCD 为菱形,点E 在AC 的延长线上,ACD ABE ∠=∠.(1)求证:ABC AEB ∽;(2)当6,4AB AC ==时,求AE 的长.试卷第5页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………18.如图,点(,4)A m 在反比例函数(0)k y x x=>的图象上,点B 在y 轴上,2OB =,将线段AB 向右下方平移,得到线段CD ,此时点C 落在反比例函数的图象上,点D 落在x 轴正半轴上,且1OD =.(1)点B 的坐标为__________,点D 的坐标为__________,点C 的坐标为__________(用含m 的式子表示);(2)求k 的值和直线AC 的表达式.19.(1)课本再现:在O 中,AOB ∠是 AB 所对的圆心角,C ∠是 AB 所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O 与C ∠的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明12∠=∠C AOB ;(2)知识应用:如图4,若O 的半径为2,,PA PB 分别与O 相切于点A ,B ,60C ∠=°,求PA 的长.20.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB CD FG ∥∥,A ,D ,H ,G 四点在同一直线上,测得72.9, 1.6m, 6.2m FEC A AD EF ∠=∠=︒==.(结果保留小数点后一位)试卷第6页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※(1)求证:四边形DEFG 为平行四边形;(2)求雕塑的高(即点G 到AB 的距离).(参考数据:sin 72.90.96,cos72.90.29,tan 72.9 3.25︒≈︒≈︒≈)21.在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)试卷第7页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)根据表1,m 的值为__________,nm的值为__________;(2)分析处理:请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据以上图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为__________,“双减”后学生报班个数的众数为__________;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).22.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++≠.试卷第8页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※(1)c 的值为__________;(2)①若运动员落地点恰好到达K 点,且此时19,5010a b =-=,求基准点K 的高度h ;②若150a =-时,运动员落地点要超过K 点,则b 的取值范围为__________;(3)若运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,试判断他的落地点能否超过K 点,并说明理由.23.问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积1S 与S 的关系为__________;(2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,,OE OP 分别与正方形的边相交于点M ,N .①如图2,当BM CN =时,试判断重叠部分OMN 的形状,并说明理由;②如图3,当CM CN =时,求重叠部分四边形OMCN 的面积(结果保留根号);(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH ∠(设GOH α∠=),将GOH ∠绕点O 逆时针旋转,在旋转过程中,GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S ,请直接写出2S 的最小值与最大值(分别用含α的式子表示),试卷第9页,共9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(参考数据:sin15tan15244︒=︒=︒=)答案第1页,共22页参考答案:1.A 【解析】【分析】根据负数的定义即可得出答案.【详解】解:-1是负数,2是正数,0既不是正数也不是负数,故选:A .【点睛】本题考查了实数,掌握在正数前面添加“-”得到负数是解题的关键.2.C 【解析】【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a 、b 的位置可知,0a <,0b >,∴a b <,故AB 错误,C 正确;根据数轴上点a 、b 的位置可知,a b -<,故D 错误.故选:C .【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.3.B 【解析】【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A 、2356m m m m ⋅=≠,故此选项不符合题意;B 、()m n m n --=-+,故此选项符合题意;C 、22()m m n m mn m n +=+≠+,故此选项不符合题意;D 、22222()2m m n m n m n n +=++≠+,故此选项不符合题意.故选:B .【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和222()2a b a ab b +=++的应用是解题的关键.4.B【解析】【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B .【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.5.A【解析】【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A.【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.6.D【解析】【分析】利用函数图象的意义可得答案.【详解】解:由图象可知,A、B、C都正确,当温度为t1时,甲、乙的溶解度都为30g,故D错误,故选:D.【点睛】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键.a a-7.(3)【解析】【分析】直接提公因式a即可.【详解】a a-.解:原式=(3)a a-.故答案为:(3)【点睛】此题主要考查了提公因式法分解因式,关键是正确确定公因式.8.360【解析】【详解】∵任何n 边形的外角和都等于360度∴正五边形的外解和也为360°故答案为3609.1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0= ,∴440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.10.16014010x x =-【解析】【分析】先表示乙每小时采样(x-10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x-10)人,根据题意,得16014010x x =-.故答案为:16014010x x =-.【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.11【解析】【分析】根据图形可得长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,然后利用勾股定理即可解决问题.【详解】解:根据图形可知:长方形的长是正方形的对角线为2,长方形的宽是正方形对角线的一半为1,.【点睛】本题主要考查了正方形的性质,七巧板,矩形的性质,勾股定理,解决本题的关键是所拼成的正方形的特点确定长方形的长与宽.12.5或【解析】【分析】因为等腰三角形的腰不确定,所以分三种情况分别计算即可.【详解】解:①当AO =AB 时,AB =5;②当AB =BO 时,AB =5;③当OA =OB 时,则OB =5,B (5,0),设A (a ,12a)(a >0),∵OA =5,5,解得:13a =,24a =,∴A (3,4)或(4,3),∴AB AB综上所述,AB 的长为5或.故答案为:5或.【点睛】本题考查了等腰三角形的性质,反比例函数图象上点的坐标特征,考查分类讨论的思想,当时,求出点的坐标是解题的关键.13.(1)3;(2)1<x<3【解析】【分析】(1)根据绝对值的性质,算术平方根的意义,零指数幂的意义解答即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)原式=2+2-1,=3.(2)26325 xx x⎧⎨-+⎩<①>②解不等式①得:x<3,解不等式②得:x>1,∴不等式组的解集为:1<x<3.【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(1)③(2)见解析【解析】【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可.(1)第③步出现错误,原因是分子相减时未变号,故答案为:③;(2)解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键.15.(1)C (2)12【解析】【分析】(1)根据随机事件的定义即可解决问题;(2)从甲、乙、丙、丁名护士积极报名参加,设甲是共青团员用T 表示,其余3人均是共产党员用G 表示,从这4名护士中随机抽取2人,所有可能出现的结果共有12种,然后利用树状图即可解决问题.(1)解:“随机抽取1人,甲恰好被抽中”是随机事件;故答案为:C ;(2)从甲、乙、丙、丁4名护士积极报名参加,设甲是共青团员用T 表示,其余3人均是共产党员用G 表示.从这4名护士中随机抽取2人,所有可能出现的结果共有12种,如图所示:它们出现的可能性相同,所有的结果中,被抽到的两名护士都是共产党员的(记为事件A )的结果有6种,则()61 122P A==,则被抽到的两名护士都是共产党员的概率为12.【点睛】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率所求情况数与总情况数之比.16.(1)作图见解析部分(2)作图见解析部分【解析】【分析】(1)连接AC,HG,AC与HG交于点P,作射线BP即可;(2)取格点D,过点C和点D作直线l即可.(1)解:如图1,连接AC、HG,AC与HG交于点P,设小正方形的边长为1个单位,∵线段AC和HG是矩形的两条对角线且交于点P,∴AP CP=,又∵AB BC∴AB BC=,∴BP平分ABC∠,∴射线BP即为所作;(2)如图2,连接AD 、AB 、BC 、CD ,直线l 经过点C 和点D ,设小正方形的边长为1个单位,∴AB =AD =BC ==CD ∴AB AD CD BC ===,∴四边形ABCD 是菱形,又∵1AE DF ==,2BE AF ==,90AEB DFA ∠=∠=︒,在AEB △和DFA 中,AE DF AEB DFA BE AF =⎧⎪∠=∠⎨⎪=⎩∴()AEB DFA SAS △≌△,∴ABE DAF ∠=∠,∵90ABE BAE ∠+∠=︒,∴90DAF BAE ∠+∠=︒,∴90BAD ∠=︒,∴四边形ABCD 是正方形,∴AD l ⊥,BC l ⊥,且AD BC =,∴直线l即为所作.本题考查作图一应用与设计作图,考查了等腰三角形三线合一的性质,矩形的性质,正方形的判定和性质,全等三角形的判定和性质,直角三角形两锐角互余,勾股定理等知识.解题的关键是理解题意,学会利用数形结合的思想解决问题.17.(1)见解析(2)AE =9【解析】【分析】(1)根据四边形ABCD 是菱形,得出CD AB ∥,AB CB =,根据平行线的性质和等边对等角,结合ACD ABE ∠=∠,得出ACD ABE CAB ACB ∠=∠=∠=∠,即可证明结论;(2)根据ABC AEB ∆∆∽,得出AB AC AE AB =,代入数据进行计算,即可得出AE 的值.(1)证明:∵四边形ABCD 为菱形,∴CD AB ∥,AB CB =,ACD CAB ∴∠=∠,CAB ACB ∠=∠,∵ACD ABE ∠=∠,∴ACD ABE CAB ACB ∠=∠=∠=∠,∴ABC AEB ∆∆∽.(2)∵ABC AEB ∆∆∽,∴AB AC AE AB =,即646AE =,解得:9AE =.【点睛】本题主要考查了菱形的性质,平行线的性质,等腰三角形的性质,三角形相似的判定和性质,根据题意得出ACD ABE CAB ACB ∠=∠=∠=∠,是解题关键.18.(1)(0,2),(1,0),(m +1,2)(2)1;y =-2x +6【解析】(1)根据OB =2可得点B 的坐标,根据OD =1可得点D 的坐标为(1,0),由平移规律可得点C 的坐标;(2)根据点C 和D 的坐标列方程可得m 的值,从而得k 的值,再利用待定系数法可得直线AC 的解析式.(1)∵点B 在y 轴上,2OB =,∴B (0,2),∵点D 落在x 轴正半轴上,且1OD =∴D (1,0),∴线段AB 向下平移2个单位,再向右平移1个单位,得到线段CD ,∵点A (m ,4),∴C (m +1,2),故答案为:(0,2),(1,0),(m +1,2);(2)∵点A 和点C 在反比例函数(0)k y x x=>的图象上,∴k =4m =2(m +1),∴m =1,∴A (1,4),C (2,2),∴k =1×4=4,设直线AC 的表达式为:y sx t =+,∴422s t s t +=⎧⎨+=⎩解得26s t =-⎧⎨=⎩,∴直线AC 的表达式为:y =-2x +6.【点睛】此题主要考查了一次函数和反比例函数的综合应用以及平移的性质,根据OB 和OD 的长得出平移的规律是解题关键.19.(1)见解析;(2)【解析】【分析】(1)①如图2,当点O在∠ACB的内部,作直径,根据三角形外角的性质和等腰三角形的性质可得结论;②如图3,当O在∠ACB的外部时,作直径CD,同理可理结论;(2)如图4,先根据(1)中的结论可得∠AOB=120°,由切线的性质可得∠OAP=∠OBP=90°,可得∠OPA=30°,从而得PA的长.【详解】解:(1)①如图2,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD+∠BOD=2∠ACO+2∠BCO=2∠ACB,∴∠ACB=12∠AOB;如图3,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD-∠BOD=2∠ACO-2∠BCO=2∠ACB,∴∠ACB=12∠AOB;(2)如图4,连接OA,OB,OP,∵∠C=60°,∴∠AOB=2∠C=120°,∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∠APO=∠BPO=12∠APB=12(180°-120°)=30°,∵OA=2,∴OP=2OA=4,∴PA==【点睛】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键.20.(1)见解析(2)雕塑的高为7.5m,详见解析【解析】【分析】(1)根据平行四边形的定义可得结论;(2)过点G作GP⊥AB于P,计算AG的长,利用∠A的正弦可得结论.(1)证明:∵AB CD FG∥∥,∴∠CDG=∠A,∵∠FEC=∠A,∴∠FEC =∠CDG ,∴EF ∥DG ,∵FG ∥CD ,∴四边形DEFG 为平行四边形;(2)如图,过点G 作GP ⊥AB 于P ,∵四边形DEFG 为平行四边形,∴DG =EF =6.2,∵AD =1.6,∴AG =DG +AD =6.2+1.6=7.8,在Rt △APG 中,sin A =PG AG,∴7.8PG =0.96,∴PG =7.8×0.96=7.488≈7.5.答:雕塑的高为7.5m.【点睛】本题考查解直角三角形的应用,解题的关键是理解题意,正确作辅助线构建直角三角形解决问题.21.(1)300;150(2)见解析;2.4%(3)①1;0;②见解析【解析】【分析】(1)将表1中“双减前”各个数据求和确定m 的值,然后再计算求得n 值,从而求解;(2)通过汇总表1和图1求得“双减后”报班数为3的学生人数,从而求解百分比;(3)①根据中位数和众数的概念分析求解;②根据“双减”政策对学生报班个数的影响结果角度进行分析说明.(1)解:由题意得,1024875512425515240mn m=++++⎧⎨++++=⎩,解得3006mn=⎧⎨=⎩,∴6130050 nm==,故答案为:300;1 50(2)汇总表1和图1可得:01234及以上总数“双减”前172821188246500“双减”后4232440121500∴“双减”后报班数为3的学生人数所占的百分比为12100% 2.4% 500⨯=;(3)“双减”前共调查500个数据,从小到大排列后,第250个和第251个数据均为1,∴“双减”前学生报班个数的中位数为1,“双减”后学生报班个数出现次数最多的是0,∴“双减”后学生报班个数的众数为0,故答案为:1;0;②从“双减”前后学生报班个数的变化情况说明:“双减”政策宣传落实到位,参加校外培训机构的学生大幅度减少,“双减”取得了显著效果.【点睛】本题考查统计的应用,理解题意,对数据进行采集和整理,掌握中位数和众数的概念是解题关键.22.(1)66(2)①基准点K的高度h为21m;②b>9 10;(3)他的落地点能超过K点,理由见解析.【解析】【分析】(1)根据起跳台的高度OA为66m,即可得c=66;(2)①由a=﹣150,b=910,知y=﹣150x2+910x+66,根据基准点K到起跳台的水平距离为75m,即得基准点K的高度h为21m;②运动员落地点要超过K点,即是x=75时,y>21,故﹣150×752+75b+66>21,即可解得答案;(3)运动员飞行的水平距离为25m时,恰好达到最大高度76m,即是抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,可得抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=36,从而可知他的落地点能超过K点.(1)解:∵起跳台的高度OA为66m,∴A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)解:①∵a=﹣150,b=910,∴y=﹣150x2+910x+66,∵基准点K到起跳台的水平距离为75m,∴y=﹣150×752+910×75+66=21,∴基准点K的高度h为21m;②∵a=﹣1 50,∴y=﹣150x2+bx+66,∵运动员落地点要超过K点,∴当x =75时,y >21,即﹣150×752+75b +66>21,解得b >910,故答案为:b >910;(3)解:他的落地点能超过K 点,理由如下:∵运动员飞行的水平距离为25m 时,恰好达到最大高度76m ,∴抛物线的顶点为(25,76),设抛物线解析式为y =a (x ﹣25)2+76,把(0,66)代入得:66=a (0﹣25)2+76,解得a =﹣2125,∴抛物线解析式为y =﹣2125(x ﹣25)2+76,当x =75时,y =﹣2125×(75﹣25)2+76=36,∵36>21,∴他的落地点能超过K 点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.23.(1)1,1,114S S =(2)①OMN1-(3)tan ,1tan 4522αα⎛⎫-︒- ⎪⎝⎭【解析】【分析】(1)如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,OE 与OC 重合,此时重叠部分的面积=△OBC 的面积=14正方形ABCD 的面积=1;当OF 与BC 垂直时,OE ⊥BC ,重叠部分的面积=14正方形ABCD 的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=14S.利用全等三角形的性质证明即可;(2)①结论:△OMN是等边三角形.证明OM=ON,可得结论;②如图3中,连接OC,过点O作OJ⊥BC于点J.证明△OCM≌△OCN(SAS),推出∠COM=∠CON=30°,解直角三角形求出OJ,即可解决问题;(3)如图4-1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.如图4-2中,当CM=CN时,S2最大.分别求解即可.(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=14正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=14正方形ABCD的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=14 S.理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM⊥AB于点M,ON⊥BC 于点N.∵O是正方形ABCD的中心,∴OM=ON,∵∠OMB=∠ONB=∠B=90°,∴四边形OMBN是矩形,∵OM=ON,∴四边形OMBN是正方形,∴∠MON=∠EOF=90°,∴∠MOJ=∠NOK,∵∠OMJ=∠ONK=90°,∴△OMJ≌△ONK(AAS),∴S△PMJ=S△ONK,∴S四边形OKBJ =S正方形OMBN=14S正方形ABCD,∴S1=14 S.故答案为:1,1,S1=14 S.(2)①如图2中,结论:△OMN是等边三角形.理由:过点O作OT⊥BC,∵O是正方形ABCD的中心,∴BT=CT,∵BM=CN,∴MT=TN,∵OT⊥MN,∴OM=ON,∵∠MON=60°,∴△MON是等边三角形;②如图3中,连接OC,过点O作OJ⊥BC于点J.∵CM =CN ,∠OCM =∠OCN ,OC =OC ,∴△OCM ≌△OCN (SAS ),∴∠COM =∠CON =30°,∴∠OMJ =∠COM +∠OCM =75°,∵OJ ⊥CB ,∴∠JOM =90°-75°=15°,∵BJ =JC =OJ =1,∴JM =OJ∴CM =CJ -MJ =1-(,∴S四边形OMCN =2×12×CM ×OJ .(3)如图4,将HOG ∠沿OH 翻折得到HOG '∠,则MON M ON ' ≌,此时则当,M N 在BC 上时,2S 比四边形NOM C '的面积小,设,=M C a CN b '=,则当MNM S ' 最大时,2S 最小,MNM S ' 211222a b ab +⎛⎫=≤ ⎪⎝⎭,即M C NC '=时,MNM S ' 最大,此时OC 垂直平分M N ',即ON OM '=,则OM ON =如图5中,过点O 作OQ ⊥BC 于点Q ,OM ON =,OQ MN⊥∴BM =CN∴当BM =CN 时,△OMN 的面积最小,即S 2最小.在Rt △MOQ 中,MQ =OQ •tan2α=tan 2α,∴MN =2MQ =2tan2α,∴S 2=S △OMN =12×MN ×OQ =tan 2α.如图6中,同理可得,当CM =CN 时,S 2最大.,,OC OC OCN OCM CN CM =∠=∠=则△COM ≌△CON ,∴∠COM =2α,∵∠COQ =45°,答案第22页,共22页∴∠MOQ =45°-2α,QM =OQ •tan (45°-2α)=tan (45°-2α),∴MC =CQ -MQ =1-tan (45°-2α),∴S 2=2S △CMO =2×12×CM ×OQ =1-tan (45°-2α).【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2023年江西省中考数学真题试卷(解析版)
2023年江西省中考数学真题试卷及答案一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 下列各数中,正整数是()A. B. C. D.【答案】A【解析】根据有理数的分类即可求解.解:是正整数,是小数,不是整数,不是正数,不是正数,故选:A.【点拨】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.2. 下列图形中,是中心对称图形的是()A. B. C.D.【答案】B【解析】根据中心对称图形的定义:把一个图形绕某一点旋转,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解:选项A.C.D均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形;选项B能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形;故选:B.【点拨】本题主要考查了中心对称图形,关键找出对称中心.3. 若有意义,则的值可以是( )A. B.C.D.【答案】D 【解析】根据二次根式有意义的条件即可求解.解:∵有意义,∴,解得:,则的值可以是故选:D .【点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 4. 计算的结果为( )A. B.C.D.【答案】A 【解析】根据积的乘方计算法则求解即可.解:,故选A .【点拨】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.5. 如图,平面镜放置在水平地面上,墙面于点,一束光线照射到镜面上,反射光线为,点在上,若,则的度数为( )A. B. C. D.【答案】C 【解析】根据题意可得,进而根据直角三角形的两个锐角互余即可求解.解:依题意,,∴,∵,∴,故选:C.【点拨】本题考查了直角三角形中两个锐角互余,入射角等于反射角,熟练掌握以上知识是解题的关键.6. 如图,点,,,均在直线上,点在直线外,则经过其中任意三个点,最多可画出圆的个数为()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】根据不共线三点确定一个圆可得,直线上任意2个点加上点可以画出一个圆,据此列举所有可能即可求解.解:依题意,;;;;,加上点可以画出一个圆,∴共有6个,故选:D.【点拨】本题考查了确定圆的条件,熟练掌握不共线三点确定一个圆是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7. 单项式的系数为______.【答案】【解析】根据单项式系数的定义:单项式中的数字因数,得出结果即可.解:单项式的系数是.故答案是:.【点拨】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.8. 我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为_______.【答案】【解析】根据科学记数法的表示形式进行解答即可.解:,故答案为:.【点拨】本题考查科学记数法,熟练掌握科学记数法的表示形式为(,a为整数)的形式,n的绝对值与小数点移动的位数相同是解题的关键.9. 计算:(a+1)2﹣a2=_____.【答案】2a+1【解析】原式利用完全平方公式展开,然后合并同类项即可得到结果.(a+1)2﹣a2=a2+2a+1﹣a2=2a+1,故答案为2a+1.【点拨】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键.10. 将含角的直角三角板和直尺按如图所示的方式放置,已,点,表示的刻度分别为,则线段的长为_______cm.【答案】【解析】根据平行线的性质得出,进而可得是等边三角形,根据等边三角形的性质即可求解.解:∵直尺的两边平行,∴,又,∴是等边三角形,∵点,表示的刻度分别为,∴,∴∴线段的长为,故答案为:.【点拨】本题考查了平行线的性质,等边三角形的性质与判定,得出是解题的关键.11. 《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点,,在同一水平线上,和均为直角,与相交于点.测得,则树高______m.【答案】【解析】根据题意可得,然后相似三角形的性质,即可求解.解:∵和均为直角∴,∴,∴∵,∴,故答案为:.【点拨】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.12. 如图,在中,,将绕点逆时针旋转角()得到,连接,.当为直角三角形时,旋转角的度数为_______.【答案】或或【解析】连接,根据已知条件可得,进而分类讨论即可求解.解:连接,取的中点,连接,如图所示,∵在中,,∴,∴是等边三角形,∴,,∴∴,∴∴,如图所示,当点在上时,此时,则旋转角的度数为,当点在的延长线上时,如图所示,则当在的延长线上时,则旋转角的度数为,如图所示,∵,,∴四边形是平行四边形,∵∴四边形是矩形,∴即是直角三角形,综上所述,旋转角的度数为或或故答案为:或或.【点拨】本题考查了平行四边形的性质与判定,等边三角形的性质与判定,矩形的性质与判定,旋转的性质,熟练掌握旋转的性质是解题的关键.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:(2)如图,,平分.求证:.【答案】(1)2;(2)证明见解析【解析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到,再利用证明即可.解:(1)原式;(2)∵平分,∴,在和中,,∴.【点拨】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.14. 如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角,使点C在格点上;(2)在图2中的线段上作点Q,使最短.【答案】(1)作图见解析(2)作图见解析【解析】(1)如图,取格点,使,在的左上方的格点满足条件,再画三角形即可;(2)利用小正方形的性质取格点,连接交于,从而可得答案.【小问1详解】解:如图,即为所求作的三角形;【小问2详解】如图,即为所求作的点;【点拨】本题考查的是复杂作图,同时考查了三角形的外角的性质,正方形的性质,垂线段最短,熟记基本几何图形的性质再灵活应用是解本题的关键.15. 化简.下面是甲、乙两同学的部分运算过程:解:原式……解:原式……(1)甲同学解法的依据是________,乙同学解法的依据是________;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.【答案】(1)②,③ (2)见解析【解析】(1)根据所给的解题过程即可得到答案;(2)甲同学的解法:先根据分式的基本性质把小括号内的分式先同分,然后根据分式的加法计算法则求解,最后根据分式的乘法计算法则求解即可;乙同学的解法:根据乘法分配律去括号,然后计算分式的乘法,最后合并同类项即可.【小问1详解】解:根据解题过程可知,甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】解:甲同学的解法:原式;乙同学的解法:原式.【点拨】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.16. 为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动,根据活动要求,每班需要2名宣传员,某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是_______事件:(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.【答案】(1)随机(2)【解析】(1)由确定事件与随机事件的概念可得答案;(2)先画树状图得到所有可能的情况数与符合条件的情况数,再利用概率公式计算即可.【小问1详解】解:“甲、乙同学都被选为宣传员”是随机事件;【小问2详解】画树状图为:共有12种等可能的结果,其中选中的两名同学恰好是甲,丁的结果数为2,所以选中的两名同学恰好是甲,丁的概率.【点拨】本题考查的是事件的含义,利用画树状图求解随机事件的概率,熟记事件的概念与分类以及画树状图的方法是解本题的关键.17. 如图,已知直线与反比例函数的图象交于点,与y轴交于点B,过点B 作x轴的平行线交反比例函数的图象于点C.(1)求直线和反比例函数图象的表达式;(2)求的面积.【答案】(1)直线的表达式为,反比例函数的表达式为(2)6【解析】(1)利用待定系数法求函数解析式即可;(2)由一次函数解析式求得点B的坐标,再根据轴,可得点C的纵坐标为1,再利用反比例函数表达式求得点C坐标,即可求得结果.【小问1详解】解:∵直线与反比例函数的图象交于点,∴,,即,∴直线的表达式为,反比例函数的表达式为.【小问2详解】解:∵直线的图象与y轴交于点B,∴当时,,∴,∵轴,直线与反比例函数的图象交于点C,∴点C纵坐标为1,∴,即,∴,∴,∴.【点拨】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)18. 今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?【答案】(1)该班的学生人数为45人(2)至少购买了甲树苗80棵【解析】(1)设该班的学生人数为x人,根据两种方案下树苗的总数不变列出方程求解即可;(2)根据(1)所求求出树苗的总数为155棵,设购买了甲树苗m棵,则购买了乙树苗棵树苗,再根据总费用不超过5400元列出不等式求解即可.【小问1详解】解:设该班的学生人数为x人,由题意得,,解得,∴该班的学生人数为45人;【小问2详解】解:由(1)得一共购买了棵树苗,设购买了甲树苗m棵,则购买了乙树苗棵树苗,由题意得,,解得,∴m得最小值为80,∴至少购买了甲树苗80棵,答:至少购买了甲树苗80棵.【点拨】本题主要考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系列出方程,找到不等关系列出不等式是解题的关键.19. 如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点,,,均在同一直线上,,测得.(结果保小数点后一位)(1)连接,求证:;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:)【答案】(1)见解析(2)雕塑的高约为米【解析】(1)根据等边对等角得出,根据三角形内角和定理得出,进而得出,即可得证;(2)过点作,交的延长线于点,在中,得出,则,在中,根据,即可求解.(1)解:∵,∴∵即∴即∴;(2)如图所示,过点作,交的延长线于点,在中,∴,∴∴在中,,∴(米).答:雕塑的高约为米.【点拨】本题考查了等腰三角形的性质,三角形内角和定理的应用,解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20. 如图,在中,,以为直径的与相交于点D,E为上一点,且.(1)求长;(2)若,求证:为的切线.【答案】(1)(2)证明见解析【解析】(1)如图所示,连接,先求出,再由圆周角定理得到,进而求出,再根据弧长公式进行求解即可;(2)如图所示,连接,先由三角形内角和定理得到,则由圆周角定理可得,再由是的直径,得到,进而求出,进一步推出,由此即可证明是的切线.(1)解:如图所示,连接,∵是的直径,且,∴,∵E为上一点,且,∴,∴,∴的长;(2)证明:如图所示,连接,∵,,∴,∴,∵是的直径,∴,∴,∵,∴,即,∵是的半径,∴是的切线.【点拨】本题主要考查了切线的判定,求弧长,圆周角定理,三角形内角和定理等等,正确作出辅助线是解题的关键.五、解答题(本大题共2小题,每小题9分,共18分)21. 为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下80.7160.8280.934m及以上46n合计200高中学生视力情况统计图(1)_______,_______;(2)被调查的高中学生视力情况的样本容量为_______;(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由:②约定:视力未达到为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.【答案】(1);;(2);(3)①小胡的说法合理,选择中位数,理由见解析;②14300人,合理化建议见解析,合理即可.【解析】(1)由总人数乘以视力为的百分比可得的值,再由视力1.1及以上的人数除以总人数可得的值;(2)由条形统计图中各数据之和可得答案;(3)①选择视力的中位数进行比较即可得到小胡说法合理;②由中学生总人数乘以样本中视力不良的百分比即可,根据自身体会提出合理化建议即可.(1)解:由题意可得:初中样本总人数:人,∴(人),;(2)由题意可得:,∴被调查的高中学生视力情况的样本容量为;(3)①小胡说:“初中学生的视力水平比高中学生的好.”小胡的说法合理;初中学生视力的中位数为第100个与第101个数据的平均数,落在视力为这一组,而高中学生视力的中位数为第160个与第161个数据的平均数,落在视力为的这一组,而,∴小胡的说法合理.②由题意可得:(人),∴该区有26000名中学生,估计该区有名中学生视力不良;合理化建议为:学校可以多开展用眼知识的普及,规定时刻做眼保健操.【点拨】本题考查的是从频数分布表与频数分布直方图中获取信息,中位数的含义,利用样本估计总体,理解题意,确定合适的统计量解决问题是解本题的关键.22. 课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在中,对角线,垂足为.求证:是菱形.(2)知识应用:如图,在中,对角线和相交于点,.①求证:是菱形;②延长至点,连接交于点,若,求的值.【答案】(1)见解析(2)①见解析;②【解析】(1)根据平行四边形的性质证明得出,同理可得,则,,进而根据四边相等的四边形是菱形,即可得证;(2)①勾股定理的逆定理证明是直角三角形,且,得出,即可得证;②根据菱形的性质结合已知条件得出,则,过点作交于点,根据平行线分线段成比例求得,然后根据平行线分线段成比例即可求解.(1)证明:∵四边形是平行四边形,∴,,∵∴,在中,∴∴,同理可得,则,又∵∴∴四边形是菱形;(2)①证明:∵四边形是平行四边形,.∴在中,,,∴,∴是直角三角形,且,∴,∴四边形是菱形;②∵四边形是菱形;∴∵,∴,∵,∴,∴,如图所示,过点作交于点,∴,∴,∴.【点拨】本题考查了菱形的性质与判定,勾股定理以及勾股定理的逆定理,等腰三角形的性质与判定,平行线分线段成比例,熟练掌握菱形的性质与判定是解题的关键.六、解答题(本大题共12分)23. 综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系(1)初步感知:如图1,当点P由点C运动到点B时,①当时,_______.②S关于t的函数解析式为_______.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形的面积.【答案】(1)①3;②(2),(3)①4;②【解析】(1)①先求出,再利用勾股定理求出,最后根据正方形面积公式求解即可;②仿照(1)①先求出,进而求出,则;(2)先由函数图象可得当点P运动到B点时,,由此求出当时,,可设S关于t的函数解析式为,利用待定系数法求出,进而求出当时,求得t的值即可得答案;(3)①根据题意可得可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,由此可得,则,根据题意可以看作,则;②由(3)①可得,再由,得到,继而得答案.(1)解:∵动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,∴当时,点P在上,且,∵,,∴,∴,故答案为:3;②∵动点P以每秒1个单位的速度从C点出发,在匀速运动,∴,∵,,∴,∴;(2)解:由图2可知当点P运动到B点时,,∴,解得,∴当时,,由图2可知,对应的二次函数的顶点坐标为,∴可设S关于t的函数解析式为,把代入中得:,解得,∴S关于t的函数解析式为,在中,当时,解得或,∴;(3)解:①∵点P在上运动时,,点P在上运动时,∴可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,∴,∴,∵存在3个时刻()对应的正方形的面积均相等.∴可以看作,∴,故答案为:4;②由(3)①可得,∵,∴,∴,∴..【点拨】本题主要考查了二次函数与图形运动问题,待定系数法求函数解析式,勾股定理等等,正确理解题意利用数形结合的思想求解是解题的关键.。
江西省2023年中考数学真题及参考答案
江西省2023年中考数学真题及参考答案一、单项选择题(本大题共6小题,每小题3分,共18分)1.下列各数中,正整数是()A .3B .1.2C .0D .2-2.下列图形中,是中心对称图形的是()3.若4-a 有意义,则a 的值可以是()A .1-B .0C .2D .64.计算()322m 的结果为()A .68mB .66mC .62mD .52m 5.如图,平面镜MN 放置在水平地面CD 上,墙面CD PD ⊥于点D ,一束光线AO 照射到镜面MN 上,反射光线为OB ,点B 在PD 上,若︒=∠35AOC ,则OBD ∠的度数为()A .︒35B .︒45C .︒55D .︒656.如图,点D C B A ,,,均在直线l 上,点P 在直线l 外,则经过其中任意三个点,最多可画出圆的个数为()A .3个B .4个C .5个D .6个二、填空题(本大题共6小题,每小题3分,共18分)7.单项式ab 5-的系数为.8.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设总规模约1800万千瓦,比上一年同期翻一番,将18000000用科学计数法表示应为.9.化简:()=-+221a a .10.将含30°角的直角三角板和直尺按如图所示的方式放置,已知︒=∠60α,点C B ,表示的刻度分别为cm cm 31,,则线段AB 的长为cm .11.《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点Q B A ,,在同一水平线上,ABC ∠和AQP ∠均为直角,AP 与BC 相交于点D .测得m AQ cm BD cm AB 122040===,,,则树高=PQ m .12.如图,在▱ABCD 中,︒=∠60B ,AB BC 2=,将AB 绕点A 逆时针旋转角()︒<<︒3600αα得到AP ,连接PD PC ,.当PCD ∆为直角三角形时,旋转角α的度数为.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:03345tan 8-︒+;(2)如图,AD AB =,AC 平分BAD ∠.求证:ADC ABC ∆≅∆.14.如图是44⨯的正方形网格,请仅用无刻的的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角ABC ∆,使点C 在格点上;(2)在图2中的线段AB 行作点Q ,使PQ 最短.15.化简x x x x x x 1112-⋅⎪⎭⎫ ⎝⎛-++.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是,乙同学解法的依据是;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配率;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.如图,已知直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,与y 轴交于点B ,过点B 作x 轴的平行线交反比例函数()0>=x xk y 的图象于点C .(1)求直线AB 和反比例函数图象的表达式;(2)求ABC ∆的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.今年植树节,某班同学共同发种植一批树苗,如果没人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.图1时某红色是文化主题公园内的雕塑,将其抽象成如图2所示的示意图,已知点B ,E D A ,,均在同一直线上,AD AC AB ==,测得︒=∠55B ,m DE m BC 28.1==,.(结果保留小数点后一位)(1)连接CD ,求证:BC DC ⊥;(2)求雕塑的高(即点E 到直线BC 的距离).(参考数据:82.055sin ≈︒,57.055cos ≈︒,43.155tan ≈︒)20.如图,在ABC ∆中,︒=∠=644C AB ,,以AB 为直径的☉O 与AC 相交于点E D ,为弧ABD 上一点,且︒=∠40ADE .(1)求E B 的长;(2)若︒=∠76EAD ,求证:CB 为☉O 的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.为了解中学生的示例情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.(1)=m ,=n ;(2)被调查的高中学生视力情况的样本容量为;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由;②约定:视力未达到1.0的视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD 中,对角线AC BD ⊥,垂足为O .求证:▱ABCD 是菱形.知识应用(2)如图②,在▱ABCD 中,对角线AC 和BD 相交于点O ,685===BD AC AD ,,①求证:▱ABCD 是菱形;②延长BC 至点E ,连接OE 交CD 与点F ,若ACD E ∠=∠21,求EFOF 的值.六、解答题(本大题共12分)23.综合与实践问题提出某兴趣小组开展综合实践活动:在ABC Rt ∆中,︒=∠90C ,D 为AC 上一点,2=CD .动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿A B C →→匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为ts ,正方形DPEF 的面积为S ,探究S 与t 的关系.初步感知(1)如图1,当点P 由点C 运动到点B 时,①当1=t 时,=S ;②S 关于t 的函数解析式为.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S 关于t 的函数解析式及线段AB 的长.延伸探究(3)若存在3个时刻321,,t t t (321t t t <<)对应的正方形DPEF 的面积均相等.①=+21t t ;②当134t t =时,求正方形DPEF 的面积.参考答案一、选择题1.A2.B3.D4.A5.C6.D 二、填空题7.5-8.7108.1⨯9.12+a 10.211.612.90°或180°或270°三、解答题13.(1)解:原式=2+1-1=2(2)证明:∵AC 平分BAD ∠,∴DAC BC ∠=∠.在ABC ∆和ADC ∆中,⎪⎩⎪⎨⎧=∠=∠=AC AC DAC BAC AD AB ,∴ABC ∆≌()SAS ADC ∆.14.解:(1)如下左图(右图中的51~C C 亦可):答:ABC ∆即为所求.(2)如下图:答:点Q 即为所求.15.解:(1)②,③;(2)按甲同学的解法化简:原式()()()()()()x x x x x x x x x x 11111112-⋅⎥⎦⎤⎢⎣⎡+-++-+-=()()()()()()()()()()x xx x x x x x x x x x x x x x 2111121111112=-+⋅-+=-+⋅-+++-=按乙同学的解法化简:原式()()()()xx x x x x x x x x x x x x x x x x 111111111122-+⋅-+-+⋅+=-⋅-+-⋅+=x x x 211=++-=.16.解:(1)随机(2)解法一:列表如下:由上表可知,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.解法二:画树状图如下:由树状图可以看出,所有可能结果共有12种,且每种结果出现的可能性相等,其中甲、丁同学都被选为宣传员的结果有2种.∴P (甲、丁同学都被选为宣传员)61122==.17.解:(1)∵直线b x y +=与反比例函数()0>=x x k y 的图象交于点()32,A ,∴32=+b ,23k =.∴1=b ,6=k .∴直线AB 的表达式为1+=x y ,反比例函数图象的表达式为()06>=x xy .(2)过点A 作BC AD ⊥,垂足为D .∵直线1+=x y 与y 轴交点B 的坐标为()1,0,x BC ∥轴,∴C 点的纵坐标为1.∴616==x x ,,即6=BC .由x BC ∥轴,得BC 与x 轴的距离为1.∴2=AD .∴6262121=⨯⨯=⋅=∆AD BC S ABC .四、解答题18.解:(1)设该班的学生人数为x 人.依题意,得254203-=+x x .解得45=x .答:该班的学生人数为45人.(2)由(1)可知,树苗总数为155203=+x .设购买甲种树苗y 棵,则购买乙种树苗()y -155棵.依题意得()54001554030≤-+y y .解得80≥y .答:至少购买了甲种树苗80棵.19.(1)证明:∵AD AC AB ==,∴点D C B ,,在以点A 为圆心,BD 为直径的圆上.∴︒=∠90BCD ,即BC DC ⊥.(2)解:过点E 作BC EF ⊥,垂足为F .在BCD Rt ∆中,BDBC B =cos ,8.1=BC ,∴16.355cos 8.1cos ≈︒==B BC BD .∴16.5216.3=+=+=DE BD BE .在EBF Rt ∆中,BEEF B =sin ,∴2.455sin 16.5sin ≈︒⨯=⋅=B BE EF .因此,雕塑的高约为m 2.4.20.解:(1)连接OE .∵︒=∠40ADE ,∴︒=∠=∠802ADE AOE .∴︒=∠-︒=∠100180AOE BOE .∴E B 的长ππ9101802100=⋅⋅=l .(2)证明:∵︒=∠=80AOE OE OA ,,∴︒=∠-︒=∠502180AOE OAE .∵︒=∠76EAD ,∴︒=∠-∠=∠26OAE EAD BAC .又︒=∠64C ,∴︒=∠-∠-︒=∠90180C BAC ABC ,即BC AB ⊥.又OB 是☉O 的半径,∴CB 为☉O 的切线.五、解答题21.解:(1)68,23%.(2)320.(3)①小胡的说法正确.理由如下:理由一:从中位数看,初中生视力的中位数为1.0,高中生视力的中位数为0.9,∴初中生的视力水平好于高中生.理由②:从众数看,初中生视力的众数为1.0,高中生视力的众数为0.9,∴初中生的视力水平好于高中生.②1430032020082604414342816826000=++++++++⨯(名).∴估计该区有14300名中足额生视力不良.建议:①勤做眼保健操;②不要长时间用眼;③不要在强光下看书;④加强户外运动.22.(1)证明:∵四边形ABCD 是平行四边形,∴OCOA =又AC BD ⊥,∴BD 垂直平分AC .∴BC BA =.∴▱ABCD 是菱形.(2)①证明:∵四边形ABCD 是平行四边形,68==BD AC ,,∴321421====BD OD AC OA ,.∴25342222=+=+OD OA .又25522==AD ,∴222AD OD OA =+,∴︒=∠90AOD ,即AC BD ⊥.∴▱ABCD 是菱形.②解:如图,取CD 的中点G ,连接OG .∵▱ABCD 是菱形,∴ACDACB OD OB AD BC ∠=∠===,,5∵ACD E ∠=∠21,∴ACB E ∠=∠21,即E ACB ∠=∠2,又COE E ACB ∠+∠=∠,∴COE E ∠=∠,∴4==CO CE ∵GD GC OD OB ==,,∴OG 为DBC ∆的中位线11∴BC OG ∥,且2521==BC OG ,∴CE OG ∥,∴ECF OGF ∆∆~,∴85==CE OG EF OF .六、解答题23.解:(1)①3.②22+=t S (2)由图象可知,当点P 运动到点B 时,6=S .将6=S 代入22+=t S ,得262+=t ,解得2=t 或2-=t (舍),当点P 由点B 运动到点A 时,设S 关于t 的函数解析式为()242+-=t a S .将()6,2代入,,得()24262+-=a ,解得1=a .故S 关于t 的函数解析式为()242+-=t S .由图像可知,当P 运动到A 时,18=S .由()24182+-=t ,得8=t 或0=t (舍)∴()6128=⨯-=AB .(3)①4.由(1)(2)可得()⎪⎩⎪⎨⎧≤≤+-<≤+=82,2420,222t t t t S .在图②中补全20<≤t 内的图象,根据图象可知20≤≤t 内的图象与42≤≤t 内的图象关于直线2=x 对称.因此421=+t t .②根据二次函数的对称性,可知832=+t t .由①可知421=+t t ,∴413=-t t .又134t t =,∴4411=-t t ,得341=t .此时正方形DPEF 的面积93422=+=t S.。
江西省中考数学真题试题(含解析)
江西省中考数学真题试题说明:1.全卷满分120分,考试时间120分钟。
2.请将答案写在答题卡上,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1. ﹣2的绝对值是A. B. C. D.【解析】本题考察有理数中的绝对值的概念,容易,但注意与倒数,相反数的区别. 【答案】 B ★2.计算的结果为A. B. C. D.【解析】本题考察代数式的乘法运算,容易,注意 ,约分后值为.【答案】 A★3.如图所示的几何体的左视图为第3题A B C D【解析】本题考察三视图,容易,但注意错误的选项B和C.【答案】 D ★4.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【解析】本题考察条形统计图,容易,对相关概念要理解清楚. 【答案】 C ★频数(人数)2084612(第4题)乓球径毛球球球252015105D5.小同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有A. 3个B. 4个C. 5个D. 无数个【解析】本题考察图形变换,平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【答案】 C ★★6.在平面直角坐标系中,分别过点,作轴的垂线和 ,探究直线和与双曲线的关系,下列结论中错误..的是A.两直线中总有一条与双曲线相交B.当=1时,两条直线与双曲线的交点到原点的距离相等C.当时,两条直线与双曲线的交点在轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【解析】本题考察直线与双曲线的关系,当=0时,与双曲线有交点,当=-2时,与双曲线有交点,当时,和双曲线都有交点,所以正确;当时,两交点分别是(1,3),(3,1),到原点的距离都是,所以正确;当时,在轴的左侧,在轴的右侧,所以正确;两交点分别是),两交点的距离是 ,当无限大时,两交点的距离趋近于2,所以不正确;注意是错误的选项.【答案】 D ★★★二、填空题(本大题共6小题,每小题3分,共18分)7.若分式有意义,则的取值范围是 .【解析】本题考察分式有意义的条件,当分母不为0时,分式有意义,所以.【答案】★8.5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为 .【解析】 本题考察科学记数法,把60000写成的形式,注意【答案】★9.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十 两。
2024年江西省中考真题数学试卷含答案解析
2024年江西省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数5-的相反数是( )A .5B .5-C .15D .15-【答案】A【分析】本题主要考查了相反数的判断,根据相反数的定义解答即可.【详解】5-的相反数是5.故选:A .2.“长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A .60.2510⨯B .52.510⨯C .42.510⨯D .32510⨯3.如图所示的几何体,其主视图为( )A .B .C .D .【答案】B 【分析】根据从正面看得到的图形是主视图,可得答案.本题主要考查常见几何体的三视图,解题的关键是熟练掌握主视图是从物体正面看到的图形.【详解】解:从正面看到的是两个长方形,上面一个小的,下面一个大的,4.将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A .B .C .D .【答案】C【分析】本题考查了函数图象,根据温度计上升到一定的温度后不变,可得答案;注意温度计的温度升高到60℃时温度不变.【详解】解:将常温中的温度计插入一杯60℃(恒温)的热水中,注意温度计的温度升高到60℃时温度不变,故C 选项图象符合条件,故选:C .5.如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A .五月份空气质量为优的天数是16天B .这组数据的众数是15天C .这组数据的中位数是15天D .这组数据的平均数是15天【点睛】本题考查了折线统计图、一组数据的中位数、众数、平均数等知识,掌握以上基础知识是解本题的关键.6.如图是43⨯的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种【答案】B 【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B .二、填空题7.计算:()21-= .【答案】1【分析】根据乘方运算法则进行计算即可.【详解】解:()()()21111-=-⨯-=.故答案为:1.【点睛】本题主要考查了有理数的乘方运算,熟练掌握乘方运算法则,是解题的关键.8.因式分解:22a a +=.【答案】(2)a a +【详解】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).9.在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为 .【答案】()3,4【分析】本题考查了坐标与图形变化-平移.利用点平移的坐标规律,把A 点的横坐标加2,纵坐标加3即可得到点B 的坐标.【详解】解:∵点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,∴点B 的坐标为()12,13++,即()3,4.故答案为:()3,4.10.观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为 .【答案】100a 【分析】此题考查了单项式规律探究.分别找出系数和次数的规律,据此判断出第n 个式子是多少即可.【详解】解:∵a ,2a ,3a ,4a ,…,∴第n 个单项式的系数是1;∵第1个、第2个、第3个、第4个单项式的次数分别是1、2、3、4,…,∴第n 个式子是n a .∴第100个式子是100a .故答案为:100a .11.将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB ∠= .12.如图,AB 是O 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ⊥,将 DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为 .∵1122DC DE ∴==, 2232OC OD DC ∴=-=,232BC OB OC -∴=-=,223BF BC ∴==-;同理可得232BC+=,223BF BC∴==+,综上,可得线段FB的长为23-或23+三、解答题13.(1)计算:0π5+-;(2)化简:888xx x---.14.如图,AC为菱形ABCD的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)作直线BD ,由菱形的性质可得BD AC ⊥,即BD 为AC 的垂线;(2)连接CE 并延长,与DA 的延长线相交于点M ,作直线BM ,因为点E 为线段AB 的中点,所以AE BE =,因为AM BC ∥,所以EAM EBC ∠=∠,EMA ECB ∠=∠,故可得AEM BEC ≌△△,得到ME CE =,所以四边形ACBM 为平行四边形,即BM AC ∥;本题考查了菱形的性质,平行四边形的判定,掌握菱形的性质及平行四边形的判定方法是解题的关键.【详解】(1)解:如图,BD 即为AC 所求;(2)解:如图,BM 即为所求.15.某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.共有9个等可能的结果,甲、乙两位新生分到同一个班的有∴甲、乙两位新生分到同一个班的概率为16.如图,AOB 是等腰直角三角形,90∠=︒ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.∵AOB 是等腰直角三角形,∠ABO ∴4OA =,∴2BD OD AD ===,∴()2,2B ,故答案为:()2,2;17.如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求 AC 的长.【答案】(1)见解析(2)2π【分析】本题考查了直径所对的圆周角为直角,等边三角形的判定和性质,弧长公式,熟知相关性质和计算公式是解题的关键.(1)根据直径所对的圆周角为直角结合已知条件,可得30CAB ∠=︒,即可得90ABD Ð=°,进而可证得结论;(2)连接OC ,证明OBC △为等边三角形,求得120AOC ∠=︒,利用弧长公式即可解答.【详解】(1)证明: AB 是半圆O 的直径,90ACB ∴∠=︒,60D ABC ∠=∠=︒ ,9030CAB ABC ∴∠=︒-∠=︒,18090ABD CAB D ∴∠=︒-∠-∠=︒,BD ∴是半圆O 的切线;(2)解:如图,连接OC ,,60OC OB CBA =∠=︒ ,OCB ∴ 为等边三角形,60COB ∴∠=︒,3OC CB ==,180120AOC COB ∴∠=︒-∠=︒,18.如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【分析】本题主要考查了一元一次方程及不等式的应用,解题的关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.(1)首先设这层书架上数学书有x 本,则语文书有(90)x -本,根据题意可得等量关系:x 本数学书的厚度(90)x +-本语文书的厚度84=,根据等量关系列出方程求解即可;(2)设数学书还可以摆m 本,根据题意列出不等式求解即可.【详解】(1)解:设书架上数学书有x 本,由题意得:0.8 1.2(90)84x x +-=,解得:60x =,9030x -=.∴书架上有数学书60本,语文书30本.(2)设数学书还可以摆m 本,根据题意得:1.2100.884m ⨯+≤,解得:90m ≤,∴数学书最多还可以摆90本.19.图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ⊥,DN MN ⊥,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE ∠=︒.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88︒≈,cos620.47︒≈,tan62 1.88︒≈)∵矩形碗底BEFC ,∴EH AD ⊥,∴四边形AMEH 是矩形,∵152ABE ∠=︒,∴180ABH ABE ∠=︒-∠20.追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC 中,BD 平分ABC ∠,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC ∠,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.【答案】(1)BDE 是等腰三角形;理由见解析;(2)①B ;②2CF =.【分析】本题考查了平行四边形的性质和等腰三角形的判定和性质等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键;(1)利用角平分线的定义得到ABD CBD ∠=∠,利用平行线的性质得到BDE CBD ∠=∠,推出BDE ABD ∠=∠,再等角对等边即可证明BDE 是等腰三角形;(2)①同(1)利用等腰三角形的判定和性质可以得到四个等腰三角形;②由①得DA DF =,利用平行四边形的性质即可求解.【详解】解:(1)BDE 是等腰三角形;理由如下:∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ∥,∴BDE CBD ∠=∠,∴BDE ABD ∠=∠,∴EB ED =,∴BDE 是等腰三角形;(2)①∵ABCD Y 中,∴AE BC ∥,AB CD ∥,同(1)ABE CBE AEB ∠=∠=∠,∴AB AE =,∵AF BE ⊥,∴BAF EAF ∠=∠,∵AE BC ∥,AB CD ∥,∴BGA EAF ∠=∠,BAF F ∠=∠,∵BGA CGF ∠=∠,∴BGA BAG ∠=∠,DAF F ∠=∠,CGF F ∠=∠,∴AB AG =,DA DF =,CG CF =,即ABE 、ABG 、ADF △、CGF △是等腰三角形;共有四个,故选:B .②∵ABCD Y 中,3AB =,5BC =,∴3AB CD ==,5BC AD ==,由①得DA DF =,∴532CF DF CD =-=-=.21.近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI ≤<为正常;2428BMI ≤<为偏胖;28BMI ≥为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI ≤<;B .2024BMI ≤<;C .2428BMI ≤<;D .2832BMI ≤<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m ) 1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m ) 1.46 1.62 1.55 1.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A 1620BMI ≤<32B 2024BMI ≤<46C 2428BMI ≤<t 2D 2832BMI ≤<10应用数据(1)s=______,t=______α=______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI≥的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22.如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.23.综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE ∠=︒,连接BE ,CE CB m CD CA==.特例感知m=时,BE与AD之间的位置关系是______,数量关系是______;(1)如图1,当1类比迁移m≠时,猜想BE与AD之间的位置关系和数量关系,并证明猜想.(2)如图2,当1拓展应用(3)在(1)的条件下,点F与点C关于DE对称,连接DF,EF,BF,如图3.已知=,四边形CDFE的面积为y.6AC=,设AD x①求y与x的函数表达式,并求出y的最小值;②当2BF=时,请直接写出AD的长度.此时32DH x =-,同理可得:2y CD =∴y 与x 的函数表达式为当32x =时,y 的最小值为②如图,∵AD BE ⊥,正方形∴DBE DFE ∠=∠=∠∴,,,,D C E B F 在O 上,且∴90CBF ∠=︒,综上:当2BF=时,AD为2【点睛】本题考查的是全等三角形的判定与性质,正方形的判定与性质,勾股定理的应用,相似三角形的判定与性质,直角三角形斜边上的中线的性质,圆周角定理的应用,本题难度大,作出合适的辅助线是解本题的关键。
江西省中考数学试卷含答案解析版
2018年江西省中考数学试卷一、选择题(本大共6分,每小题3分,共18分。
每小题只有一个正确选项)1.(分)(2018?江西)﹣2的绝对值是()A.﹣2 B.2 C.﹣12D.122.(分)(2018?江西)计算(﹣a)2?bb2的结果为()A.b B.﹣b C.ab D.b b3.(分)(2018?江西)如图所示的几何体的左视图为()A. B. C.D.4.(分)(2018?江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生 D.最喜欢田径的人数占总人数的10% 5.(分)(2018?江西)小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形、如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个 C.5个 D.无数个6.(分)(2018?江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=3b的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2二、填空题(本大题共6小题,每小题3分,共18分)7.(分)(2018?江西)若分式1b−1有意义,则x的取值范围为.8.(分)(2018?江西)2018年5月13口,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为.9.(分)(2018?江西)中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛羊各直金几何?”译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为 .10.(分)(2018?江西)如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=FF ,则AB 的长为 .11.(分)(2018?江西)一元二次方程x 2﹣4x+2=0的两根为x 1,x 2.则x 12﹣4x 1+2x 1x 2的值为 .12.(分)(2018?江西)在正方形ABCD 中,AB=6,连接AC ,BD ,P 是正方形边上或对角线上一点,若PD=2AP ,则AP 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(分)(2018?江西)(1)计算:(a+1)(a ﹣1)﹣(a ﹣2)2;(2)解不等式:x ﹣1≥b −22+3.14.(分)(2018?江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.15.(分)(2018?江西)如图,在四边形ABCD中,AB∥CD,AB=2CD,E为AB的中点,请仅用无刻度直尺分别按下列要求画图(保留画图痕迹).(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.16.(分)(2018?江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.17.(分)(2018?江西)如图,反比例函数y=bb(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tanC的值.四、(本大题共3小题,每小题8分,共24分)18.(分)(2018?江西)4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人漱养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)30608150401101301469010060811201407081102010081整理数据:按如下分段整理样本数据并补全表格:课外阅读时间x0≤x<4040≤x<8080≤x<120120≤x<160(min)等级D C B A人数38分析数据:补全下列表格中的统计量:平均数中位数众数80得出结论:(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为;(2)如果该校现有学生400人,估计等级为“B”的学生有多少名?(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?19.(分)(2018?江西)图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关.图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽(所OC=OB=60m,点B固定,当点C在AB上左右运动时,OC与OB的长度不变.有的结果保留小数点后一位)(1)若∠OBC=50°,求AC的长;(2)当点C从点A向右运动60cm时,求点O在此过程中运动的路径长.参考数据:sn50°≈.cos50°≈,tan50°≈,π取.20.(分)(2018?江西)如图,在△ABC中,O为AC上一点,以点O为圆心,OC为半径做圆,与BC相切于点C,过点A作AD⊥BO交BO的廷长线于点D,且∠AOD=∠BAD.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=43,求AD的长.五、(本大题共2小题,每小题9分,共18分)21.(分)(2018?江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y (千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(分)(2018?江西)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=2√3BE=2√19求四边形ADPE的面积.六、(本大题共12分23.(分)(2018?江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为yn ;其顶点为An…(n为正整数)求AnAn+1的长(用含n的式子表示).2018年江西省中考数学试卷参考答案与试题解析一、选择题(本大共6分,每小题3分,共18分。
2023年江西省中考数学试卷及答案解析
2023年江西省中考数学试卷一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。
错选、多选或未选均不得分。
1.(3分)下列各数中,正整数是()A.3B.2.1C.0D.﹣22.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)若有意义,则a的值可以是()A.﹣1B.0C.2D.64.(3分)计算(2m2)3的结果为()A.8m6B.6m6C.2m6D.2m55.(3分)如图,平面镜MN放置在水平地面CD上,墙面PD⊥CD于点D,一束光线AO 照射到镜面MN上,反射光线为OB,点B在PD上,若∠AOC=35°,则∠OBD的度数为()A.35°B.45°C.55°D.65°6.(3分)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A.3个B.4个C.5个D.6个二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)单顶式﹣5ab的系数为.8.(3分)我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约1800万千瓦,比上一年同期翻一番,将18000000用科学记数法表示应为.9.(3分)化简:(a+1)2﹣a2=.10.(3分)将含30°角的直角三角板和直尺按如图所示的方式放置,已知∠α=60°,点B,C表示的刻度分别为1cm,3cm,则线段AB的长为cm.11.(3分)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40cm,BD=20cm,AQ=12m,则树高PQ=m.12.(3分)如图,在▱ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)计算:+tan45°﹣30.(2)如图,AB=AD,AC平分∠BAD.求证:△ABC≌△ADC.14.(6分)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作锐角△ABC,使点C在格点上;(2)在图2中的线段AB上作点Q,使PQ最短.15.(6分)化简(+)•.下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是,乙同学解法的依据是;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.16.(6分)为了弘扬雷锋精神,某校组织“学雷锋,争做新时代好少年”的宣传活动.根据活动要求,每班需要2名宣传员.某班班主任决定从甲、乙、丙、丁4名同学中随机选取2名同学作为宣传员.(1)“甲、乙同学都被选为宣传员”是事件;(填“必然”、“不可能”或“随机”)(2)请用画树状图法或列表法,求甲、丁同学都被选为宣传员的概率.17.(6分)如图,已知直线y=x+b与反比例函数y=(x>0)的图象交于点A(2,3),与y轴交于点B,过点B作x轴的平行线交反比例函数y=(x>0)的图象于点C.(1)求直线AB和反比例函数图象的表达式;(2)求△ABC的面积.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)今年植树节,某班同学共同种植一批树苗,如果每人种3棵,则剩余20棵;如果每人种4棵,则还缺25棵.(1)求该班的学生人数;(2)这批树苗只有甲、乙两种,其中甲树苗每棵30元,乙树苗每棵40元.购买这批树苗的总费用没有超过5400元,请问至少购买了甲树苗多少棵?19.(8分)图1是某红色文化主题公园内的雕塑,将其抽象成如图2所示的示意图.已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)20.(8分)如图,在△ABC中,AB=4,∠C=64°,以AB为直径的⊙O与AC相交于点D,E为上一点,且∠ADE=40°.(1)求的长;(2)若∠EAD=76°,求证:CB为⊙O的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n合计200100%(1)m=,n=;(2)被调查的高中学生视力情况的样本容量为;分析处理(3)①小胡说:“初中学生的视力水平比高中学生的好.”请你对小胡的说法进行判断,并选择一个能反映总体的统计量说明理由;②约定:视力未达到1.0为视力不良.若该区有26000名中学生,估计该区有多少名中学生视力不良?并对视力保护提出一条合理化建议.22.(9分)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.定理证明(1)为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.已知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.知识应用(2)如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=∠ACD,求的值.六、解答题(本大题共12分)23.(12分)综合与实践问题提出某兴趣小组开展综合实践活动:在Rt△ABC中,∠C=90°,D为AC上一点,CD=,动点P以每秒1个单位的速度从C点出发,在三角形边上沿C→B→A匀速运动,到达点A时停止,以DP为边作正方形DPEF.设点P的运动时间为ts,正方形DPEF的面积为S,探究S与t的关系.初步感知(1)如图1,当点P由点C运动到点B时,①当t=1时,S=;②S关于t的函数解析式为.(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象.请根据图象信息,求S关于t的函数解析式及线段AB的长.延伸探究(3)若存在3个时刻t1,t2,t3(t1<t2<t3)对应的正方形DPEF的面积均相等.①t1+t2=;②当t3=4t1时,求正方形DPEF的面积.2023年江西省中考数学试卷参考答案与试题解析一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置。
2022年江西省中考数学真题(解析版)
160 140
故答案为: x
x
.
10
【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键.
11. 沐沐用七巧板拼了一个对角线长为 2 的正方形,再用这副七巧板拼成一个长方形(如图
所示),则长方形的对角线长为__________.
【答案】 5
【解析】 【分析】根据图形可得长方形的长是正方形的对角线为 2,长方形的宽是正方形对角线的一 半为 1,然后利用勾股定理即可解决问题. 【详解】解:根据图形可知:长方形的长是正方形的对角线为 2,长方形的宽是正方形对角 线的一半为 1,
它们出现的可能性相同,所有的结果中,被抽到的 两名护士都是共产党员的(记为事件 A)
的结果有 6 种,则 P A 6 1 ,
12 2
则被抽到的两名护士都是共产党员的概率为 1 .
2
【点睛】本题考查的是用列表法或画树状图法求概率,随机事件.解决本题的关键是掌握列 表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到 的知识点为:概率所求情况数与总情况数之比.
∵OA=5,
∴
a2
12 a
2
5,
解得: a1 3, a2 4 ,
∴A(3,4)或(4,3),
∴AB= 3 52 42 2 5 或 AB= 4 52 32 10 ;
综上所述,AB 的长为 5 或 2 5 或 10 . 故答案为:5 或 2 5 或 10 .
【点睛】本题考查了等腰三角形的性质,反比例函数图象上点的坐标特征,考查分类讨论的 思想,当时,求出点的坐标是解题的关键.
三、解答题(本大题共 5 小题,每小题 6 分,共 30 分) 13. (1)计算: | 2 | 4 20 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省2018年中等学校招生考试数学试卷解读说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。
2.本卷分为试卷卷和答题卷,答案要求写在答题卷上,不得在试卷卷上作答,否则不给分。
一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是().A.1 B.-1 C.±1D.0【答案】B.【考点解剖】本题考查了实数的运算性质,要知道什么是倒数.【解题思路】根据倒数的定义,求一个数的倒数,就是用1除以这个数,所以-1的倒数1?(?1)??1,选为B.1?(?1)??1,∴选B【解答过程】∵.【方法规律】根据定义直接计算.【关键词】实数倒数2.下列计算正确的是().325222 6233226 b-ab=)aa=ab aD=aB .(3a-b)=9a.-baC.(b÷A.a+【答案】D.【考点解剖】本题考查了代数式的有关运算,涉及单项式的加法、除法、完全平方公式、幂的运算性质中的同底数幂相除、积的乘方和幂的乘方等运算性质,正确掌握相关运算性质、法则是解题的前提.【解题思路】根据法则直接计算.32325aaaaa是完与;相乘才得与不是同类项,不能相加(合并),B.【解答过程】A.全平方公式的应用,结果应含有三项,这里结果只有两项,一看便知是错的,正确为222bab???b)6?9a(3a;C.两个单项式相除,系数与系数相除,相同的字母相除(同624b?aab?a考查幂的运算性;底数幂相除,底数不变,指数相减),正确的结果为D.质(积的乘方等于把积中的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不D.变,指数相乘),正确,选. 熟记法则,依法操作【方法规律】幂的运算【关键词】单项式多项式7日6点公布的中国六大城市的空气污染指数情况:33.下列数据是2018年月南昌合肥南京哈尔滨成都城市北京163 227 45 342 163 165 污染指数).则这组数据的中位数和众数分别是(.C105和164 163 105B 和.A164163 .和164 和163.D.【答案】A1 / 20【考点解剖】本题考查的是统计初步中的基本概念——中位数、众数,要知道什么是中位数、众数.【解题思路】根据中位数、众数的定义直接计算.【解答过程】根据中位数的定义——将一组数据从小到大或从大到小排序,处于中间(数据个数为奇数时)的数或中间两个数的平均数(数据为偶数个时)就是这组数据的中位数;众数是指一组数据中出现次数最多的那个数,所以342、163、165、45、227、163的中位数是163和165的平均数164,众数为163,选A.【方法规律】熟知基本概念,直接计算.【关键词】统计初步中位数众数4交于A,By=两点,则当线段AB的长度取最小值.如图,直线y=x+a-2与双曲线4x).a时,的值为(C.2D.A.0 B.15【答案】C.【考点解剖】本题以反比例函数与一次函数为背景考查了反比例函数的性质、待定系数法,以及考生的直觉判断能力.【解题思路】反比例函数图象既是轴对称图形又是中心对称图形,只有当A、B、O三点共OA?OB?AB,(当直线线时,才会有线段ABAB的长度最小的表达式中的比例系数不为1时,也有同样的结论).a?22x?a?y?.中,得0)代入选C..0【解答过程】把原点(,【方法规律】要求a的值,必须知道x、y的值(即一点的坐标)由图形的对称性可直观判断出直线AB过原点(0,0)时,线段AB才最小,把原点的坐标代入解读式中即可求出a的值.【关键词】反比例函数一次函数双曲线线段最小5.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是().【答案】C.【考点解剖】本题考查的投影与视图中的画已知物体的三视图,要正确掌握画三视图的有关法则.2 / 20【解题思路】可用排除法,B、D两选项有迷惑性,B是主视图,D不是什么视图,A少了上面的一部分,正确答案为C.【解答过程】略.【方法规律】先要搞准观看的方向,三视图是正投影与平行投影的产物,反映物体的轮廓线,看得到的画成实线,遮挡部分画成虚线.【关键词】三视图坐凳6.若二次涵数y=ax+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x,0),(x,0),21且x<x,图象上有一点M (x,y)在x轴下方,则下列判断正确的是().00212-4ac≥0 C.x<x<B.bx D.a(x-.Aa>0 0012x)( x-x)<0 210【答案】D.【考点解剖】本题考查的是二次函数的性质,要求对二次函数的性质有比较深刻地理解,并能熟练地画函数草图作出分析.20?4acb?选BB【解题思路】抛物线与x轴有不同的两个交点,则矛盾,可排除,与两种情况画出两个草图来分析<0>0,a、D不能直接作出正误判断,我们分a项;剩下A、C.(见下图)由图可知a的符号不能确定(可正可x,x,x的大小就无法确定;在图1中,负,即抛物线的开口可向上,也右向下),所以201x?x?xa(x?x)(x?x)有<0且图2中,a在的值有a>0且为负;,则2110002a(x?x)(x?x)x?x?x D. 所以正确选项为,则的值也为负.2012001【解答过程】略.【方法规律】先排除错误的,剩下的再画图分析(数形结合)【关键词】二次函数结论正误判断二、填空题(本大题共8小题,每小题3分,共24分)2-4=.7.分解因式x【答案】(x+2)(x-2).【考点解剖】本题的考点是因式分解,因式分解一般就考提取公因式法和公式法(完全平方公式和平方差公式),而十字相乘法、分组分解等方法通常是不会考的.3 / 20【解题思路】直接套用公式即.22)?x?2)(xx?4?(【解答过程】.. 先观察式子的特点,正确选用恰当的分解方法【方法规律】因式分解【关键词】平方差公式°,BC,若∠1=155∥=90°点D在AC边上,DE8.如图△ABC中,∠A 的度数为.则∠B.°【答案】65两锐角互余等知识,题目较本题考查了平行线的性质、邻补角、直角三角形【考点解剖】?35155??180??为简单,但有些考生很简单的计算都会出错,如犯之类的错误.?B?65?CDE?25???1?155??BCD? ,,可求得最后求【解题思路】由..=25°∴∠ADE=155°, EDC【解答过程】∵∠BC,又∵DE∥,=25°∴∠C=∠EDC.B=65°C=90°,∴∠在△ABC中,∠A=90°,∴∠B+∠一般求角的大小要搞清楚所求角与已知角之间的等量关系,本题涉及三角形【方法规律】. 内角和定理、两直线平行,内错角相等,等量代换等知识和方法互补内错角互余【关键词】邻补角人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的349.某单位组织人,到瑞金的人数x倍多1人,求到两地的人数各是多少?设到井冈山的人数为人数的2 人,请列出满足题意的方程组是.为y,y?34x??.【答案】?12y?x??本题考查的是列二元一次方程组解应用题(不要求求出方程组的解),准确【考点解剖】找出数量之间的相等关系并能用代数式表示.瑞金人数×,井冈山人数=【解题思路】这里有两个等量关系:井冈山人数+瑞金人数=3434,?x?y? 2+1.所以所列方程组为.?1.??2yx?.略【解答过程】【方法规律】抓住关键词,找出等量关系列二元一次方程组【关键词】,分别取BFCD的中点,连接DE和ABE10.如图,矩形ABCD中,点、F分别是、23,则图中阴影部分的ABMNCNAMNMBFDE、的中点、,连接,,,若=2,BC=24 / 20面积为.6.2【答案】【考点解剖】本题考查了阴影部分面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,若分别计算再相加,则26),这耗时耗力,仔细观察不难发现阴影部分的面积其实就是原矩形面积的一半(即种“整体思想”事半功倍,所以平时要加强数学思想、方法的学习与积累.口口BEMN的面积也相等,DFMN与全等,面积也相等,【解题思路】△BCN与△ADM所以阴影部分的面积其实就是原矩形面积的一半.1262?2?3?226. 【解答过程】,即阴影部分的面积为2【方法规律】仔细观察图形特点,搞清部分与整体的关系,把不规则的图形转化为规则的来计算.【关键词】矩形的面积二次根式的运算整体思想11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(用含n的代数式表示).2.+1)【答案】(n【考点解剖】本题考查学生的观察概括能力,发现规律,列代数式.【解题思路】找出点数的变化规律,先用具体的数字等式表示,再用含字母的式子表示..略【解答过程】【方法规律】由图形的变化转化为数学式子的变化,加数为连续奇数,结果为加数个数的平方.【关键词】找规律连续奇数的和12.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S=3,请写出ABC△一个符合题意的一元二次方程...5 / 202-5x【答案】x+6=0.【考点解剖】本题是道结论开放的题(答案不唯一),已知直角三角形的面积为3(直角边长未定),要写一个两根为直角边长的一元二次方程,我们尽量写边长为整数的情况(即保证方程的根为整数),如直角边长分别为2、3的直角三角形的面积就是3,以2、3206??5x?x为直角边长,得方程为、为根的一元二次方程为6;也可以以12?7x?6?x0.(求作一元二次方程,属“一元二次方程根与系数的关系”知识范畴,这种题型在以前相对考得较少,有点偏了.)【解题思路】先确定两条符合条件的边长,再以它为根求作一元二次方程.【解答过程】略.【方法规律】求作方程可以用根与系数的关系,也可由因式分解法解一元二次方程.求作方程直角三角形根【关键词】□□DCFE的周长相等,且∠BAD=60°,∠与F=110°,则∠DAE13.如图,的度ABCD数为.【答案】25°.【考点解剖】本题考查了平行四边形的性质,等腰三角形的判定与性质.【解题思路】已知两个平行四边形的周长相等,且有公共边CD,则有AD=DE,即△ADE为等腰三角形,顶角∠ADE=∠BCF=60°+70°=130°,∴∠DAE=25°.□□DCFE的周长相等,且有公共边CDABCD与,【解答过程】∵∴AD=DE, ∠ADE=∠BCF=60°+70°=130°.11(180???ADE)??50??25?. ∴∠DAE=22【方法规律】先要明确∠DAE的身份(为等腰三角形的底角),要求底角必须知道另一角的度数,分别将∠BAD=130°转化为∠BCD=130°,∠F=110°转化为∠DCF=70°,从而求得∠ADE=∠BCF=130°.求角度等腰三角形周长【关键词】平行四边形14.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.【答案】2,3,4.【考点解剖】本题主要考查学生阅读理解能力、作图能力、联想力与思维的严谨性、周密性,所涉及知识点有等腰三角形、圆的有关知识,分类讨论思想,不等式组的整数解,在运动变化中抓住不变量的探究能力.6 / 20【解题思路】由∠AOB=120°,AO=BO=2画出一个顶角为120°、腰长为2的等腰三角60?120?60?120?的一半,点C互补,形,由是动点想到构造圆来解决此题.是与【解答过程】【方法规律】构造恰当的图形是解决此类问题的关键.整数值【关键词】圆三、(本大题共2小题,每小题5分,共10分)x?2?1,?并将解集在数轴上表示出来.15.解不等式组?2(x?3)?3?3x,?【答案】解:由x+2≥1得x≥-1,由2x+6-3x得x<3,∴不等式组的解集为-1≤x<3.解集在数轴上表示如下:【考点解剖】本题考查不等式组的解法,以及解集在数轴上的表示方法.【解题思路】分别把两个不等式解出来,再取它们解集的公共部分得到不等式组的解集,最后画出数轴表示出公共部分(不等式组的解集),注意空心点与实心点的区别.【解答过程】【方法规律】要保证运算的准确度与速度,注意细节(不要搞错符号).数轴不等式组【关键词】16.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无.刻度的直尺按要求画图...(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.【答案】(1)如图1,点P就是所求作的点;(2)如图2,CD为AB边上的高.7 / 20【考点解剖】本题属创新作图题,是江西近年热点题型之一.考查考生对圆的性质的理解、读图能力,题(1)是要作点,题(2)是要作高,都是要解决直角问题,用到的知识就是“直径所对的圆周角为直角”.【解题思路】图1点C在圆外,要画三角形的高,就是要过点B作AC的垂线,过点A作BC 的垂线,但题目限制了作图的工具(无刻度的直尺,只能作直线或连接线段),说明必须用所给图形本身的性质来画图(这就是创新作图的魅力所在),作高就是要构造90度角,显然由圆的直径就应联想到“直径所对的圆周角为90度”.设AC与圆的交点为E, 连接BE,就得到AC边上的高BE;同理设BC与圆的交点为D, 连接AD,就得到BC边上的高AD,则BE与AD的交点就是△ABC的三条高的交点;题(2)是题(1)的拓展、升华,三角形的三条高相交于一点,受题(1)的启发,我们能够作出△ABC的三条高的交点P,再作射线PC与AB交于点D,则CD就是所求作的AB边上的高.【解答过程】略.【方法规律】认真分析揣摩所给图形的信息,结合题目要求思考.三角形的高圆【关键词】创新作图四、(本大题共2小题,每小题6分,共12分)22?2xx?4xx?4??1,在0,1,2,三个数中选一个合适的,17.先化简,再求值:22xx代入求值.22)?(x2x【答案】解:原式=·+12x x(x?2)x?2?1 =2x.=21. 当x=1时,原式=2【考点解剖】本题考查的是分式的化简求值,涉及因式分解,约分等运算知识,要求考生具有比较娴熟的运算技能,化简后要从三个数中选一个数代入求值,又考查了考生的细心答题的态度,这个陷阱隐蔽但不刁钻,看到分式,必然要注意分式成立的条件.【解题思路】先将分式的分子分母因式分解,再将除法运算转化为乘法运算,约分后得到x?2x?2x x?2x?22x?1?1????1求解.化为,也可将,可通分得22222228 / 20【解答过程】略.【方法规律】根据式子的特点选用恰当的解题顺序和解题方法.化简求值【关键词】分式18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是().A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.【答案】(1)A.(2)依题意画树状图如下:从上图可知,所有等可能结果共有6种,其中第4、5种结果符合,∴21= P=.(A)36【考点解剖】本题为概率题,考查了对“随机事件”、“必然事件”两个概念的理解,画树形图或表格列举所有等可能结果的方法.【解题思路】(1)是选择题,根据必然事件的定义可知选A;(2)三个人抽取三件礼物,恰好每人一件,所有可能结果如上图所示为6种,其中只有第4、5种结果符合,∴21== ;也可以用直接列举法:甲从三个礼物中抽到的礼物恰好不是自己的只有两P(A)36种,要么是乙的要么是丙的,若甲抽到乙的,乙必须抽到丙的才符合题意;若甲抽到的是1丙的,乙必须抽到甲的才符合题意,∴P =.(A)3【解答过程】略.【方法规律】要正确理解题意,画树形图列举所有可能结果,本质就是一种分类,首先要明确分类的对象,再要确定分类的标准和顺序,实现不重不漏.抽取礼物概率【关键词】必然事件五、(本大题共2小题,每小题8分,共16分)k y(x>0)的图象和矩形ABCD19.如图,在平面直角坐标系中,反比例函数的第一象x限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6) .(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解读式.9 / 20【答案】(1)B(2,4),C(6,4),D(6,6).A'B'C'D',向下平移后得到矩形(2)如图,矩形ABCD设平移距离为a,则A′(2,6-a),C′(6,4-a)k的图象上,= ′在A′,点Cy∵点x,a)∴2(6-a)=6(4-=3a,解得3),∴点A′(2,6.∴反比例函数的解读式为y=x【考点解剖】本题以矩形为背景考查用待定系数法求反比例函数的解读式.【解题思路】先根据矩形的对边平行且相等的性质得到B、C、D三点的坐标,再从矩形的平移过程发现只有A、C两点能同时在双曲线上(这是种合情推理,不必证明),把A、C k中,得到关于a、k的方程组从而求得k的值.两点坐标代入y=x【解答过程】略.【方法规律】把线段的长转化为点的坐标,在求k的值的时候,由于k的值等于点的横坐标与纵坐标之积,所以直接可得方程2(6-a)=6(4-a),求出a后再由坐标求k,实际上也k中,得到关于a、k的方程组从而直接求得kyA可把、C两点坐标代入=的值. x待定系数法【关键词】矩形反比例函数20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A.全部喝完;10 / 201;C.喝剩约一半;DB.喝剩约.开瓶但基本未喝.同学们根据统计结果绘制如下两个3统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫.升?.(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学计算器).1的人数是总人数的50%)根据所给扇形统计图可知,喝剩约,(【答案】13∴25÷50%=50,参加这次会议的总人数为50人,5×360°=36∵°,50∴D所在扇形圆心角的度数为36°,补全条形统计图如下;(2)根据条形统计图可得平均每人浪费矿泉水量约为:11×500+10×500×+5×500)÷50 (25×3227500毫升;=÷50≈1833(3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.【考点解剖】本题考查的是统计初步知识,条形统计图与扇形统计图信息互补,文字量大,要求考生具有比较强的阅读理解能力.本题所设置的问题比较新颖,并不是象传统考试直接叫你求平均数、中位数、众数或方差,而是换一种说法,但考查的本质仍然为求加权平均数、以样本特性估计总体特性.显然这对考生的能力要求是非常高的.11 / 20(遗憾的是扇形中【解题思路】(1)由扇形统计图可看出B类占了整个圆的一半即50%没有用具体的数字(百分比)表示出来,这是一种很不严谨的命题失误),从条形统计图人,已知部又知B类共25人,这样已知部分数的百分比就可以求出总人数,而D类有5类所占总数百分比,再由百分比确定所占圆的圆心角的度数;已知分数和总数可以求出D)210人,将条形统计图中补完整;(D类的人数可求出C类的人数为总人数和A、B、次会,每次会议将)每年开6050用总的浪费量除以总人数就得到平均每人的浪费量;(3)中乘以(2人参加,这样折中取平均数算一年将有3000人参加会议,用3000有40至60 的结果(平均每人的浪费量),得到一年总的浪费量,再转换成瓶数即可..略【解答过程】能从实际问题中抽出数学问题,从题中抽出关键词即要弄清已知什么,要求【方法规律】. 什么(不要被其它无关信息干扰)统计初步【关键词】矿泉水分)9分,共18六、(本大题共2小题,每小题,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一121.如图,∠AB长为48cm2条折线OAB,如图所示,量得连杆OA长为10cm,雨刮杆3所示.平线OAB=120°.若启动一次刮雨器,雨刮杆AB正好扫到水CD的位置,如图)0.01 (1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到的整数倍)(2)求雨刮杆AB扫过的最大面积.(结果保留π133721,可使用科学计≈,26.851,tan60°(参考数据:sin60°==,cos60°=22算器).AB解:(1)雨刮杆旋转的最大角度为180°【答案】EH点作AB的垂线交BA的延长线于,OB连接,过O=120°,∵∠OAB °∴∠OAE=60 OAERt△中,在OA=10,∵∠OAE=60°,OEOE∴sin ∠OAE,==10OA3=5,∴OE=5.∴AE AE+,AB=53EB∴= 中,△OEB在Rt3,∵OE=5EB,=53227212884BEOE =53.70OB ∴==2≈;12 / 20(2)∵雨刮杆AB旋转180°得到CD,即△OCD与△OAB关于点O中心对称,∴△BAO≌△OCD,∴S=S,OCDBAO△△122) -π(OBOA∴雨刮杆AB扫过的最大面积S=2 =1392π.【考点解剖】本题考查的是解直角三角形的应用,以及扇形面积的求法,难点是考生缺乏生活经验,弄不懂题意(提供的实物图也不够清晰,人为造成一定的理解困难).【解题思路】将实际问题转化为数学问题,(1)AB旋转的最大角度为180°;在△OAB中,已知两边及其夹角,可求出另外两角和一边,只不过它不是直角三角形,需要转化为直角三角形来求解,由∠OAB=120°想到作AB边上的高,得到一个含60°角的Rt△OAE和一个非特殊角的Rt△OEB.在Rt△OAE中,已知∠OAE=60°,斜边OA=10,可求出OE、AE的长,进而求得Rt△OEB中EB的长,再由勾股定理求出斜边OB的长;(2)雨刮杆AB扫过的最大面积就是一个半圆环的面积(以OB、OA为半径的半圆面积之差).【解答过程】略.【方法规律】将斜三角形转化为直角三角形求解.在直角三角形中,已知两边或一边一角都可求出其余的量.扇形的面积解直角三角形中心对称【关键词】刮雨器三角函数22.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标;(3)求直线AB的解读式.【答案】(1)证明:依题意可知,A(0,2)∵A(0,2),P(4,2),∴AP∥x轴.∴∠OAP=90°,且点A在⊙O上,∴PA是⊙O的切线;(2)解法一:连接OP,OB,作PE⊥x轴于点E,BD⊥x轴于点D,∵PB切⊙O于点B,∴∠OBP=90°,即∠OBP=∠PEC,又∵OB=PE=2,∠OCB=∠PEC.∴△OBC≌△PEC.13 / 20OC=PC.∴OC=PC也可)△OAP≌△OBP,再得到(或证Rt x,设OC=PC=-xCE=OE,OC=4-则有OE=AP=4,222 CE,+在Rt△PCE中,∵PCPE=5222 =分,……………………=(4-x) 4+2,解得∴xx235,BC=CE=4-=∴226511311.,∴BD=×2×=××BD∵OB·BC=OC·BD,即522222236822?4BD?OB=∴OD,== 52568?);B由点在第四象限可知B(,55解法二:连接OP,OB,作PE⊥x轴于点E,BD⊥y轴于点D,∵PB切⊙O于点B,∴∠OBP=90°即∠OBP=∠PEC.又∵OB=PE=2,∠OCB=∠PEC,∴△OBC≌△PEC.∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC也可)设OC=PC=x,-OC=4-x=4OE=AP,CE=OE,则有222, +PC=CEPE在Rt△PCE中,∵5222,………………………………4=分x)+2 ,解得x∴x-=(4253=-=∴BCCE=4,22∵BD∥x轴,∴∠COB=∠OBD,又∵∠OBC=∠BDO=90°,14 / 20OBCBOC==,∽△BDO,∴∴△OBC BDODBO53222.= =即BD BD268∴BD=,OD=.5568?);B在第四象限可知B(,由点55(3)设直线AB的解读式为y=kx+b,b?2,?68??),可得;,2),B(由A(0,?6855k?b???55?b?2,?∴直线AB的解读式为y=-2x+2.解得?k??2,?【考点解剖】本题考查了切线的判定、全等、相似、勾股定理、等面积法求边长、点的坐标、待定系数法求函数解读式等.【解题思路】(1)点A在圆上,要证PA是圆的切线,只要证PA⊥OA(∠OAP=90°)即可,由A、P两点纵坐标相等可得AP∥x轴,所以有∠OAP+∠AOC=180°得∠OAP=90°;(2)要求点B的坐标,根据坐标的意义,就是要求出点B到x轴、y轴的距离,自然想到构造Rt△OBD,由PB又是⊙O的切线,得Rt△OAP≌△OBP,从而得△OPC为等腰三角形,在Rt△PCE中, PE=OA=2, PC+CE=OE=4,列出关于CE的方程可求出CE、OC的长,△OBC的三边的长知道了,就可求出高BD,再求OD即可求得点B的坐标;(3)已知点A、点B的坐标用待定系数法可求出直线AB的解读式.【解答过程】略.【方法规律】从整体把握图形,找全等、相似、等腰三角形;求线段的长要从局部入手,若是直角三角形则用勾股定理,若是相似则用比例式求,要掌握一些求线段长的常用思路和方法.【关键词】切线点的坐标待定系数法求解读式七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)1AB;②MD=ME;③整个图形是轴对称图形;④∠DAB==∠DMB.AG①AF=2●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,..如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:15 / 20在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.【答案】解:●操作发现:①②③④●数学思考:答:MD=ME,MD⊥ME,1、MD=ME;如图2,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,∵M是BC的中点,1AC.,MF=∴MF∥AC2斜边上的中线,Rt△AEC又∵EG是等腰1=EG⊥AC,AC且∴EG2.∴MF=EG .同理可证DF=MG ,MF∥AC∵°.BAC=180∴∠MFA+∠°,BAC=180同理可得∠MGA+∠.∠MGA∴∠MFA= =90°.EGAEG⊥AC,∴∠又∵=90°,同理可得∠DFA EGA,MGA=∠AMFA+∠DF=∠∴∠,DF=MG,又MF=EG,即∠DFM=∠MEG ),MGE(SAS∴△DFM≌△.∴MD=ME ;⊥ME、2MD ,∥AB证法一:∵MG =180°,∠MFA+FMG∴∠. ∠MDF,∴∠MEG=MGE又∵△DFM≌△°,MDF=180+∠FMD+∠DME∠MF∴∠A+ =90°,FMD+∠MDFA其中∠MF+∠. °∴∠DME=90 ME;MD即⊥HABMD2证法二:如图,与交于点,16 / 20∵AB∥MG,∴∠DHA=∠DMG,又∵∠DHA=∠FDM+∠DFH,即∠DHA=∠FDM+90°,∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形【考点解剖】本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.【解题思路】(1)由图形的对称性易知①、②、③都正确,④∠DAB=∠DMB=45°也正确;(2)直觉告诉我们MD和ME是垂直且相等的关系,一般由全等证线段相等,受图1△DFM≌△MGE 的启发,应想到取中点构造全等来证MD=ME,证MD⊥ME就是要证∠DME=90°,由△DFM ≌△MGE得∠EMG=∠MDF, △DFM中四个角相加为180°,∠FMG可看成三个角的和,通过变形计算可得∠DME=90°.(3)只要结论,不要过程,在(2)的基础易知为等腰直角三解形.【解答过程】略.【方法规律】由特殊到一般,形变但本质不变(仍然全等)开放探究课题学习全等【关键词】2+a(n为正整数,且0<a<a-a)<…<a)与x轴的交点为=24.已知抛物线抛物线y -(x nnnn122+a与xa)轴的交点为A时,第1条抛物线y=-(x-bA(,0)和A(b,0),当n=101nn-11n1n-1(0,0)和A(b,0),其他依此类推.11(1)求a,b的值及抛物线y 的解读式;211(2)抛物线y的顶点坐标为(,);3依此类推第n条抛物线y的顶点坐标为(,)。