【新课标-精品卷】2017-2018学年最新安徽省七年级数学下册期末质量数学试卷(有答案)
2017-2018学年安徽省马鞍山市和县七年级下期末素质数学试卷(含答案)
和县2017—2018学年度第二学期期末素质测试七年级数学试卷一、 选择题(共10小题,第小题4分,满分40分) 1.下列说法正确的是( )A.有且只有一条直线与已知直线平行B.垂直于同一条直线的两条直线互相垂直C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
D.在平面内过一点有且只有一条直线与已知直线垂直。
2. 如果点P (x,y )在坐标轴上,那么( ) A. 0x = B. 0y = C. 0xy = D. 0x y +=3.要了解某校1000名初中生的课外负担情况,若采用抽样调查的方法进行调查,则在下面哪种调查方式具有代表性?( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八年级各100名学生4. 把一根7米的钢管截成1米长和2米长两种规格的钢管,有几种不同的截法?( ) A.3种 B.4种 C.5种 D.6种5.若a b <,则下列不等式中正确的是( )A. 22a b >B. 0a b ->C. 33a b ->-D. 45a b -<- 6.2的值( )A.在1到2之间B.在3到4之间C.在2到3之间D.在4到5之间 7. 如图,直线a b ,1120=︒,240∠=︒,则3∠等于( ) A. 60︒ B. 70︒ C. 80︒ D. 90︒1412842第9题图第8题图8.如图所示,内错角共有( ) A.4对 B.6对 C.8对 D.10对9. 某次考试中,某班级的数学成绩统计如图,下列说法错误的是( ) A.得分在70—80分之间的人数最多 B.该班的总人数为40C.得分在90—100分之间的人数最少D.及格(≥60分)人数是2610.某次知识竞赛共20道,每一题答对得10分,答错或不答都要扣5分,小英得分不低于90分。
设她答对了x 道题,则根据题意可列出不等式为( ) A. 10x-5(20-x)90≥ B. 105(20x)90x --> C. 10x-(20-x)90≥ D. 10(20x)90x --> 二、填空题(共4小题,每小题5分,满分20分)11.若点(a,3)A 在y 轴上,则点(a 3,a 2)B -+在第________象限。
2017-2018学年安徽省安庆市七年级(下)期末数学试卷
2017-2018学年安徽省安庆市七年级(下)期末数学试卷副标题一、选择题(本大题共10小题,共40.0分)1.8的立方根是()A. 2B. ±2C.D. 42.下列计算正确的是()A. a3•a2=a6B. b4•b4=2b4C. x5+x5=x10D. (a3)2=a63.若m>n,下列不等式不一定成立的是()A. m+2>n+2B. 2m>2nC. >D. m2>n24.石墨烯是世界上目前最薄却也最坚硬的纳米材料,还是导电性最好的材料,其理论厚度仅为0.00000000034米,该厚度用科学记数法表示为()A. 0.34×10-9米B. 34.0×10-11米C. 3.4×10-10米D. 3.4×10-9米5.在两个连续整数a和b之间,a<<b,那么a+b的值是()A. 11B. 13C. 14D. 156.当式子的值为零时,x等于()A. 4B. -3C. -1或3D. 3或-37.已知x2+y2=2,x+y=1,则xy的值为()A. -B. -1C. -1D. 38.如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有()A. 4个B. 5个C. 6个D. 7个9.一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()A. 第一次往返航行用的时间少B. 第二次往返航行用的时间少C. 两种情况所用时间相等D. 以上均有可能10.已知x≠y,且x2-x=10,y2-y=10,则x+y=()A. 1B. -1C. 5D. -5二、填空题(本大题共4小题,共20.0分)11.因式分解:x2(m-2)+(2-m)=______.12.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE的度数是______.13.下面是一个运算程序图,若需要经过两次运算才能输出结果y,则输入的x的取值范围是______.14.规定:当ab≠0时,a⊗b=a+b-ab,下面给出了关于这种运算的四个结论:①3⊗(-3)=-9;②若a⊗b=0,则+=1;③若⊗=0,则a+b=1;④若a⊗(4-a)=0,则a=2.其中正确结论的序号是______(填上你认为所有正确结论的序号)三、计算题(本大题共3小题,共30.0分)15.解不等式组:并把它的解集在数轴上表示出来.16.观察下列等式:①1×3-22=-1;②2×4-32=-1.③3×5-42=-1(1)按以上等式的规律,写出第4个等式;(2)根据以上等式的规律,写出第n个等式;(3)说明(2)中你所写的等式是否一定成立.17.(1)分解下列因式,将结果直接写在横线上:x2+4x+4=______,16x2+24x+9=______,9x2-12x+4=______(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(-12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系.①请你用数学式子表示a、b、c之间的关系;②解决问题:若多项式x2-2(m-3)x+(10-6m)是一个完全平方式,求m的值.四、解答题(本大题共6小题,共60.0分)18.计算:|2-|-(-)-1+(π-)0+19.如图是由边长为1的小正方形构成的格点图形,A、B、C在格点上,将三角形ABC向右平移3个单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1;(2)求线段AB在变换到A1B1过程中扫过的区域面积(重叠部分不重复计算).20.先化简,再求值:(-)÷,其中x=3.21.如图,已知AD⊥BC,EF⊥BC,垂足分别是D、F,∠1=∠2,∠3=110°,试求∠BAC的度数.22.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)华昌中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么华昌中学此次最多可购买多少个B品牌足球?23.如图,已知AD∥BC,∠A=∠C=50°,线段AD上从左到右依次有两点E、F(不与A、D重合)(1)AB与CD是什么位置关系,并说明理由;(2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BE与AD是何种位置关系?。
人教版2017-2018学年第二学期期末考试七年级数学测试卷及答案
2017-2018学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是()A.沙漠B.体温C.时间D.骆驼2.两根长度分别为3cm、7cm的钢条,下面为第三根的长,则可组成一个三角形框架的是()A.3cmB.4cmC.7cmD.10cm3.计算2x2·(-3x3)的结果是()A.-6x3B.6x5C.-2x6D.2x64.如图,已知∠1=70°,如果CD//BE,那么∠B的度数为()A.100°B.70°C.120°D.110°E5.下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据0.0000025用科学记数法表示为()A.25×10-7B.0.25×10-8C.2.5×10-7D.2.5×10-8下列世界博览会会徽图案中是轴对称图形的是()7.A. B C. D.8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是( )A.(ab )2=a 2b 2B.2(a +1)=2a +1C.a 2+a 3=a 6D.a 6÷a 2=a 310.如图,已知∠1=∠2,要说明△ABD ≌△ACD ,还需从下列条件中选一个,错误的选法是( ) A.∠ADB =∠ADC B.∠B =∠C C.DB =DC D.AB =ACC11.如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,CD 、BE 交于点P ,∠A =50°,则∠BPC 是( )A.150°B.130°C.120°D.100°BC12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 B.11 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) A.15或12 B.9 C.12 D.1514.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log n N (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( ) A.32 B.23C.2D.315.如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。
2017~2018学年第二学期初一数学期末试卷含答案
2017~2018学年第二学期初一数学期末试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号填写在题后的括号内) 1.下列运算中,正确的是( )A .22x x x =⋅B .22)(xy xy = C .632)(x x = D .422x x x =+ 2.如果a b <,下列各式中正确的是( ) A .22ac bc < B .11a b > C .33a b ->- D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .5 5.如图,不能判断l 1∥l 2的条件是( )A .∠1=∠3B .∠2+∠4=180°C .∠4=∠5D .∠2=∠3 6.下列长度的四根木棒,能与长度分别为2cm 和5cm 的木棒构成三角形的是( ) A .3 B .4 C .7 D .10 7.下列命题是真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若a 2=b 2,则a =b D .同角的余角相等8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断△ABC ≌△DFE 的依据是( )A .SASB .AASC .HLD .ASA9.若关于x 的不等式组0321x m x -<⎧⎨-≤⎩的所有整数解的和是10,则m 的取值范围是( )A .45m <<B .45m <≤C .45m ≤<D .45m ≤≤(第5题图)(第8题图)EDA(第15题图)(第17题图)10.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则S 5的值为( )A .81B 91C .101D .111二、填空题(本大题共有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在题中的横线上)11.肥皂泡额泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm . 12.分解因式:23105x x -= . 13.若4,9nnx y ==,则()nxy = . 14.内角和是外角和的2倍的多边形是 边形.15.如图,A 、B 两点分别位于一个池塘的两端,C 是AD 的中点,也是BE 的中点,若DE =20米,则AB 的长为____________米.16.若多项式9)1(2+-+x k x 是一个完全平方式,则k 的值为 .17.如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =88°,则∠C 的度数为= .18.若二元一次方程组⎩⎨⎧=++=+m y x m y x 232的解x ,y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为____________.三、解答题(本大题共有8小题,共54分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题共有2小题,满分8分)计算:(1)201701)1()2017(21(---+-π (2)32423)2()(a a a a ÷+⋅-1FEDCB A 20.(本题共有2小题,满分8分)因式分解: (1)a a a +-232 (2)14-x21.(本题共有2小题,满分8分) (1)解方程组:⎩⎨⎧=++=18223y x y x (2)求不等式241312+<--x x 的最大整数解.22.(本题满分5分)先化简,再求值: 22(3)(2)(2)2x x x x +++--,其中1x =-.23.(本题满分5分)已知63=-y x .(1)用含x 的代数式表示y 的形式为 ; (2)若31≤<-y ,求x 的取值范围.24.(本题满分6分)如图,在△ABC 和△DEF 中,已知AB = DE ,BE = CF ,∠B =∠1, 求证:AC ∥DF .25.(本题满分7分)规定两数a ,b 之间的一种运算,记作(a ,b ):如果b a c ,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3. (1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,41)=_______. (2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n 所以3x =4,即(3,4)=x , 所以(3n ,4n )=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)25.(本题满分7分)9岁的小芳身高1.36米,她的表姐明年想报考北京的大学.表姐的父母打算今年暑假带着小芳及其表姐先去北京旅游一趟,对北京有所了解.他们四人7月31日下午从无锡出发,1日到4日在北京旅游,8月5日上午返回无锡.无锡与北京之间的火车票和飞机票价如下:火车 (高铁二等座) 全票524元,身高1.1~ 1.5米的儿童享受半价票;飞机 (普通舱) 全票1240元,已满2周岁未满12周岁的儿童享受半价票.他们往北京的开支预计如下:住宿费 (2人一间的标准间) 伙食费 市内交通费 旅游景点门票费 (身高超过1.2米全票)每间每天x 元每人每天100元每人每天y 元每人每天120元假设他们四人在北京的住宿费刚好等于上表所示其他三项费用之和,7月31日和8月5日合计按一天计算,不参观景点,但产生住宿、伙食、市内交通三项费用. (1)他们往返都坐火车,结算下来本次旅游总共开支了13668元,求x ,y 的值; (2)若去时坐火车,回来坐飞机,且飞机成人票打五五折,其他开支不变,他们准备了14000元,是否够用? 如果不够,他们准备不再增加开支,而是压缩住宿的费用,请问他们预定的标准间房价每天不能超过多少元?2017~2018学年第二学期初一数学期末试卷答案一、选择题:1.C 2.C 3.B 4.A 5.D 6.B 7.D 8.B 9.B 10.D 二、填空题:11.4107-⨯ 12.)2(52-x x 13.36 14.六 15.20 16.7或-5 17.46° 18.2 三、解答题:19.(1)原式=)1(12--+ (2分) =4 (4分) (2)原式=3854a a a ÷+- (2分) =53a (4分) 20.(1)原式=)12(2+-a a a (2分) =2)1(-a a (4分) (2)原式=)1)(1(22-+x x (2分) = )1)(1)(1(2-++x x x (4分)21.(1)⎩⎨⎧==28y x (解对一个得2分,共4分)(2)20<x (3分),x 的最大整数解是19(4分)22.化简得56+x (2分),求值得1-(4分) 23.(1)63-=x y (2分) (2)335≤<x (5分) 24. 证得:BC=EF (1分)证得:△ABC ≌△DEF (3分)证得:∠ACB =∠F (4分) 证得:AC ∥DF (6分) 25.(1)3,0,-2(每空1分) (2)(具体情况具体给分,满分4分)设(3,4)=x ,(3,5)=y则43=x,y 3=5∴20333=⋅=+y x yx∴(3,20)=x+y∴(3,4)+(3,5)=(3,20) 26.(1)往返高铁费:(524×3+524÷2)×2=3668元 ⎩⎨⎧++++=++⨯⨯=⨯1920202000103668136681920204510052y x y x解得:⎩⎨⎧==54500y x (3分)(2)往返交通费:524×3+524÷2+1240×0.55×3+1240÷2=45004500+5000+2000+1080+1920=14500>14000,不够;(5分) 设预定的房间房价每天a 元则4500+2000+1080+1920+10a ≤14000, 解得a ≤450,答:标准间房价每日每间不能超过450元.(7分)。
2017-2018学年度第二学期期末考试初一数学试题及答案
2017—2018学年度第二学期期末考试初一数学试题一、填空题(每空1分,共22分)1、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。
2、从80减少到50,减少了()%;从50增加到80,增加了()%。
3、某班有60人,缺席6人,出勤率是()%。
4、如果3a=5b(a、b≠0),那么a:b=()。
5、一个圆锥的体积12dm3 ,高3dm,底面积是()。
6、甲、乙两数的比是5:8,甲数是150,乙数是()。
7、比较大小:-7○-5 1.5○5 20○-2.4 -3.1○3.18、某服装店一件休闲装现价200元,比原价降低了50元,相当于打()折。
照这样的折扣,原价800元的西装,现价()元。
9、一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是4米,圆锥的是高()米。
10、一桶油连桶称7.5千克,用去一半油后,连桶称还重4.5千克。
桶重()千克,油重()千克。
11、13只鸡放进4个鸡笼里,至少有()只鸡要放进同一个笼子里。
12、一个圆柱形的木料,底面半径是3厘米,高是8厘米,这个圆柱体的表面积是()平方厘米。
如果把它加工成一个最大的圆锥体,削去部分的体积是()立方厘米。
13、找出规律,填一填。
3,11,20,30,(),53,()。
二、判断题:对的在括号打√,错的打×。
(每小题1分共5分)1、0是负数。
()2、书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是不亏也不赚。
()3、时间一定,路程和速度成正比例。
()4、栽120棵树,都成活了,成活率是120%。
()5、圆柱的体积大于与它等底等高的圆锥的体积。
()三、选择题(每题3分,共15分)1、规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()A、9吨记为-9吨B、12吨记为+2吨C、6吨记为-4吨D、+3吨表示重量为13吨2、在a12=13中,a的值是()A、12B、4C、6D、83、把长1.2米的圆柱形钢材按2:3:7截成三段,表面积比原来增加56平方厘米,这三段圆钢中最长的一段比最短的一段体积多()A、700立方厘米B、800立方厘米C、840立方厘米D、980立方厘米4、小刚把1000元钱按年利率2.4%存入银行,存期为两年,那么计算到期时她可以从银行取回多少钱(不计利息税),列式正确的是()。
【新课标-精品卷】2017-2018学年最新安徽省初中七年级下数学期末精选模拟试卷有答案
2017-2018学年度下学期七年级数学期末精选模拟试卷(含答案)学校:班级:姓名:学号:一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是() A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.=-43.已知a >b >0,那么下列不等式组中无解..的是() A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()(A)先右转50°,后右转40°(B)先右转50°,后左转40° (C)先右转50°,后左转130°(D)先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是()A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是()A .1000B .1100C .1150D .1200PBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是() A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是() A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为()A .10cm 2B .12cm 2C .15cm 2D .17cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______. 14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度. 16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______. 17.给出下列正多边形:①正三角形;②正方形;③正六边形;④正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.CB AD20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图,AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
新课标人教版2017-2018学年七年级(下)期末质量调研数学试卷附答案
2017-2018学年七年级(下)期末质量调研数学试卷一、选择题(本题共有10个小题,每小题3分,共30分.每小题给出的四个选项中,只有个是正确的)1.(3分)的算术平方根是()A.±B.﹣C.D.2.(3分)下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.(3分)下列各数是无理数的为()A.﹣9 B. C.4.121121112 D.4.(3分)如图,若象棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),那么“炮”位于点()A.(1,﹣1)B.(﹣1,1)C.(﹣1,2)D.(1,﹣2)5.(3分)如图,现有图1所示的长方形纸板360张和正方形纸板140张,制作图2所示的A,B两种长方体形状的无盖纸盒,刚好全部用完.问能制作A型盒子、B型盒子各多少个?若设能做成x个A型盒子,y个B型盒子,则依题意可列出方程组.如果设做A型盒子用了正方形纸板x张,做B型盒子用了正方形纸板y张,则以下列出的方程组中正确的为()A.B.C.D.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C. D.7.(3分)已知△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(﹣3,2)在经过此次平移后对应点A1(4,﹣3),则a﹣b﹣c+d的值为()A.12 B.﹣12 C.2 D.﹣28.(3分)甲、乙两人同求方程ax﹣by=7的整数解,甲正确地求出一个解为,乙把ax﹣by=7看成ax﹣by=1,求得一个解为,则a,b的值分别为()A.B.C.D.9.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定10.(3分)如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(1,﹣1)B.(2,0)C.(﹣1,1)D.(﹣1,﹣1)二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)=.12.(3分)将一长方形纸条按如图所示折叠,∠2=55°,则∠1=.13.(3分)已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=.14.(3分)某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯,已知这种红色地毯的售价为每平方米32元,主楼道宽2米,其侧面与正面如图所示,则购买地毯至少需要元.15.(3分)在平面直角坐标系中,对于不在坐标轴上的任意一点P (x,y),我们把点P′(,)称为点P的“倒影点”.若点A在x 轴的下方,且点A的“倒影点”A′与点A是同一个点,则点A的坐标为.16.(3分)对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x<n+,则<x>=n.如:<0.48>=0,<3.5>=4.如果<2x﹣1>=3,则实数x的取值范围为,如果<x>=x,则x=.三、解答题(本题有9个小题,共72分)17.(6分)计算:+﹣(﹣1)2017.18.(6分)解方程组:.19.(6分)解不等式组:并把解集在数轴上表示出来.20.(8分)自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)该班共有名学生;(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数为;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数有名.21.(6分)如图,已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF解:∵AB∥CD,(已知)∴∠AMN=∠DNM(两直线平行,内错角相等)∵ME、NF分别是∠AMN、∠DNM的角平分线,(已知)∴∠EMN=∠AMN,∠FNM=∠DNM (角平分线的定义)∴∠EMN=∠FNM(等量代换)∴ME∥NF(内错角相等,两直线平行)由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行.22.(8分)如图,在平面直角坐标系中,已知点A(3,3),B(5,3).(1)在y轴的负方向上有一点C(如图),使得四边形AOCB的面积为18,求C点的坐标;(2)将△ABO先向上平移2个单位,再向左平移4个单位,得△A1B1O1①直接写出B1的坐标:B1()②求平移过程中线段OB扫过的面积.23.(8分)某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)问:改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市决定首批先向A、B两类共8所学校提供改造资金,资金由国家和地方共同承担.若国家投入的资金不超过770万元,地方投入的资金不少于210万元,且地方决定投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出各种可供选择的方案.24.(12分)问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)=.25.(12分)如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M 点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N 的大小是否变化?若不变,求出其值,若变化,说明理由.参考答案CBBBC CB8.解:把代入ax﹣by=7中得:a+b=7 ①,把代入ax﹣by=1中得:a﹣2b=1 ②,把①②组成方程组得:,解得:,选:B.9.解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.选:B.10.解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;此时甲乙回到原出发点,则每相遇三次,甲乙两物体回到出发点,∵2018÷3=672…2,∴两个物体运动后的第2018次相遇地点的是DE边相遇,且甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,此时相遇点的坐标为:(﹣1,﹣1),选:D.11.﹣4.12.70°.13.=3.14.512元.15.(1,﹣1),(﹣1,﹣1).16.≤x<,0,,.解:由<2x﹣1>=3可得.解不等式①,得:x≥,解不等式②,得:x<,∴≤x<;设x=k(k为非负整数),则x=k,根据题意可得:k﹣≤k<k+,即﹣2<k≤2,则k=0,1,2,x=0,,,答案为:≤x<;0,,.17.解:原式=3﹣4+1=0.18.解:②×3﹣①,得11y=22,解得y=2,将y=2代入①,得3x=3,解得x=1,原方程组的解为.19.解:∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是﹣2≤x<3,在数轴上表示为.20.(1)40(3)108°;(4)有300名.解:(1)20÷50%=40名;(2)C组人数为40×20%=8名;如图:(3)B组所占圆心角为:360°×(1﹣50%﹣20%)=108°.(4)1000×30%=300名.21.解:∵AB∥CD,(已知),∴∠AMN=∠DNM(两直线平行,内错角相等),∵ME、NF分别是∠AMN、∠DNM的角平分线(已知),∴∠EMN=∠AMN,∠FNM=∠DNM(角平分线的定义),∴∠EMN=∠FNM(等量代换),∴ME∥NF(内错角相等,两直线平行),由此我们可以得出一个结论:两条平行线被第三条直线所截,一对内错角的平分线互相平行,答案为:两直线平行,内错角相等,,,内错角相等,两直线平行,内错,平行.22.①B1((1,5))解:(1)设点C的坐标为(0,﹣a),∵S=S△BCD﹣S△AOD=18,四边形AOCB∴×5×(a+3)﹣×3×3=18,解得:a=6,所以点C的坐标为(0,﹣6);(2)①如图所示,△A1B1O1即为所求,B1(1,5 );②线段OB扫过的面积=2×5+4×3=22.答案为:(1,5 ).23.解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B 类学校的校舍所需资金y万元,则,解得;答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所,则,解得由①的a≤3,由②得a≥1,则1≤a≤3,即a=1,2,3.答:有3种改造方案.24.解:【应用】:(1)AB的长度为|﹣1﹣2|=3.答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).答案为:(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.答案为:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.答案为:2或﹣2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴|x|×3=3,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.答案为:4或8.25.解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S=16.四边形AOBC∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°。
2018-2019学年新课标最新安徽省七年级下册期末数学试卷及答案解析-精品试卷
最新安徽省七年 级(下)期末数学试卷一、选择题.本题共有10道小题,每小题3分,共30分1 .与无理数J 五最接近的整数是( )A. 4B.5C.6D.72 .在0,2, (-3)0, -5这四个数中,最大的 数是( )A. 0B. 2C. (-3)0 D . - 53 .当1 <x<2时,ax+2 >0,则a 的取值范围是( )A. a> - 1B. a>-2C. a>0D. a> - 1 且 aw04 .下列运算中,正确的是( )A. x 3+x=x 4B. (x 2) 3=x 6C. 3x - 2x=1D. (a - b ) 2=a 2 - b 25 .若(x - 2) (x 2+ax+b )的积中不含x 的二次项和一次 项,则a 和b 的值(7 .分式-可变形为( )1 - X1 I 1 1 1A.------- r B- C. -7^ D .——-x -1 1+K L+X x -18.若关于x 的分式方程 一-=2的解为非负数,则m 的取值范围是(x - 1A . m> —1 B. m >1 C. m> —1 且 mw1 D. m>— 1 且 mw19 .如 图,AB // CD, / 1=58° , FG 平分/ EFD ,贝U / FGB 的度数等于(A. 122 B . 151° C, 116° D, 97°10 .如图,^DEF 是由△ ABC 通过平移得到,且点B, E, C, F 在同一条直线上.若BF=14 , EC=6 .则A. a=0 ; b=2 B . a=2 ; b=0 6 .把a 2-2a 分解因式,正确的是( A. a (a - 2) B . a ( a+2 ) C. a= T ; b=2 D. a=2 ; b=4)C. a a a - 2)D. a (2-a)A. 2 B . 4 C. 5 D. 316 .计算:(-3) 2+幻2_ 2016 0 _«+ (羡)1「Bn -17 .解不等式组 「 、 .[4(x- 1)+332K四、本题满分10分,每小题5分18 .先化简,再求值:a (a - 3) +(1 - a) ( 1+a ),其中 a=4r.J19 .将a 2+ (a+1 ) 2+ (a 2+a) 2分解因式,并用分解结果计算62+7 2+42 2五、本题满分12分,每小题6分20 .化简+9_2+福),并从—2,1 , 2三个数中选择一个合适的数作为^+2| a*2 21 .已知,如图,/ 1= ZABC= /ADC , / 3=/5, / 2= Z4, / ABC+ /BCD=180 ,补充完整:(1 ) 1= Z ABC (已知)AD // BC ()(2) .一/ 3=/5 (已知) 、填空题.本题共有5道小题,每小题4分,共20分)11 .已知 m+n=mn ,则(m —1) (n —1)= .12 .多项式 x 2+mx+5 因式分解得(x+5 ) ( x+n ),贝U m=, n=八_ 2工46 /日13 .化简予 -------- 得14 .如图,点 A 、C 、F 、B 在同一直 线上,CD 平分/ ECB , FG // CD .若/ ECA=58 ,则/GFB 的大小 a 的值代入求值. 将下列推理过程/ ABC=35 , 则/ 1的度数为三、本题满分8分,每小题4分.//(内错角相等,两直线平行)(3) .. /ABC+ /BCD=180 (已知)六、阅读填空,并按要求解答,本 题满分8分22 .阅读理解题 阅读下列解题过程,并按要求填空: 已知:J ②- y ),=1,飞飞二为尸=T ,求*^的值.解:根据算 术平方根的意 义,由出[7P =1,得(2x - y ) 2=1 , 2x -y=1第一步根据立方根的意 义,由 比[2y )力-1,得x - 2y= - 1…第二步忽略了;正确的 结论是 (直接 写出答案)七、应用题.本题满分12分23 .计划在某广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1) A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能 种植A 花木610棵或B 花木40棵,应分别 安排多少人 种植A 花木和B 花木,才能确保同 时完成各自的任 务?参考答案与试题解析一、选择题.本题共有10道小题,每小题3分,共30分1 .与无理数J 史最接近的整数是()A. 4B.5C.6D.7【考点】估算无理 数的大小. 【分析】根据无理 数的意义和二次根式的性 质得出J 强品,即可求出答案.【解答】解::亚V 疽〈同,•••万最接近的整数是丁丞,后=6,故选:C.【点评】本题考查了二次根式的性 质和估计无理数的大小等知 识点,主要考 查学生能否知道何在5和6 之间,题目比较典型.2K -产 1由①、②,得 L 2干1解得 K=1 …第三步把x 、y 的值分别代入分式包上中,得X - y 3打y ---- =0 K - y …第四步以上解题过程中有两处错误,一处是第 步,忽略了 处是第 ______________ 步, // , ()2.在0,2, (-3)0, -5这四个数中,最大的数是( )A. 0B. 2C. (-3)0 D . - 5【考点】实数大小比较;零指数哥.【分析】先利用a0=1 (aw0)得(-3) 0=1 ,再利用两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可得出结果.【解答】解:在0,2, (-3)0, -5这四个数中,最大的数是2,故选B.【点评】本题考查了有理数的大小比较和零指数哥,掌握有理数大小比较的法则和a0=1 (aw0)是解答本题的关键.3.当1 <x<2时,ax+2 >0,则a的取值范围是( )A. a> - 1B. a>-2C. a>0D. a> - 1 且aw0【考点】不等式的性质.【分析】当x=1时,a+2 >0;当x=2 , 2a+2 >0,解两个不等式,得到a的范围,最后综合得到a的取值范围. 【解答】解:当x=1时,a+2 >0解得:a> - 2;当x=2 , 2a+2 >0 ,解得:a> - 1 , ,a的取值范围为:a> - 1.【点评】本题考查了不等式的性质,解决本题的关键是熟记不等式的性质.4.下列运算中,正确的是( )A. x3+x=x 4B. ( x2) 3=x 6C. 3x - 2x=1D. ( a - b) 2=a2- b2【考点】哥的乘方与积的乘方;合并同类项;完全平方公式.【分析】根据同类项、哥的乘方和完全平方公式计算即可.【解答】解:A、x3与x不能合并,错误;B、(x2) 3=x6,正确;C、3x — 2x=x ,错误;D、( a—b) 2=a2—2ab+b 2 ,错误;故选B【点评】此题考查同类项、哥的乘方和完全平方公式,关键是根据法则进行计算.5.若(x-2) (x2+ax+b )的积中不含x的二次项和一次项,则a和b的值( )A . a=0 ; b=2B . a=2 ; b=0 C. a= - 1 ; b=2 D. a=2 ; b=4【考点】多项式乘多项式.【分析】把式子展开,找出所有关于x的二次项,以及所有一次项的系数,令它们分别为0,解即可.【解答】解:-.1 ( x - 2) ( x2+ax+b ) =x3+ax 2+bx - 2x2 - 2ax - 2b=x 3+ (a-2)x2+ (b-2a) x - 2b,又「积中不含x的二次项和一次项,卜- 2=0%一加丁解得a=2 , b=4 .故选D.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.6.把a2-2a分解因式,正确的是( )A . a (a-2)B . a ( a+2 ) C. a(a2-2) D. a(2-a)【考点】因式分解-提公因式法.【专题】计算题.【分析】原式提取公因式得到结果,即可做出判断.【解答】解:原式=a (a-2),故选A .【点评】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.•可变形为( )【考点】分式的基本性质.【分析】先提取-1,再根据分式的符 号变化规律得出即可.故选D.【点评】本题考查了分式的基本性 质的应用,能正确根据分式的基本性 质进行变形是解此题的关键,注意: 分式本身的符 号,分子的符 号,分母的符 号,变换其中的两个,分式的值不变.8 .若关于x 的分式方程 工二工=2的解为非负数,则m 的取值范围是()x - 1 A . m> —1 B. m >1 C. m> —1 且 mwl D. m>— 1 且 mwl【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母 转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不 为0 求出m 的范围即可.【解答】解:去分母得:m - 1=2x -2, 解得:乂二典3, ,口H ZQ LI# 1 1由题思得:~o ~ >0且一厂W1 ,解得:m > - 1且m w1 ,故选D【点评】此题考查了分式方程的解,需注意在任何 时候都要考 虑分母不为0.9.如 图,AB // CD , / 1=58° , FG 平分/ EFD ,贝U / FGB 的度数等于(A. 122° B , 151° C, 116° D, 97°【考点】平行线的性质.【分析】根据 两直线平行,同位角相等求出/ EFD,再根据角平分 线的定义求出/ GFD,然后根据 两直线 平行,同旁内角互补解答.【解答】解:: AB II CD , 1 1=58° , EFD= Z 1=58° ,A.B. 1 1+sC. 1 1+xD.【解答】解:-- 1)••• FG 平分/ EFD ,,/GFD==/ EFD= —X58° =29° , :■••• AB // CD, ・ ./ FGB=180 - ZGFD=151 .故选B.【点评】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键.10 .如图,4DEF是由△ ABC通过平移得到,且点B, E, C, F在同一条直线上.若BF=14 , EC=6 .则BE的长度是( )A. 2 B . 4 C. 5 D.3【考点】平移的性质.【分析】根据平移的性质可得BE=CF ,然后列式其解即可.【解答】解:.「△ DEF是由△ ABC通过平移得到,BE=CF ,BE= — (BF - EC),BF=14 , EC=6 ,BE= y (14-6) =4 .故选B.【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE=CF是解题的关键.二、填空题.本题共有5道小题,每小题4分,共20分)11.已知m+n=mn ,贝U (m —1) (n —1) = 1 .【考点】整式的混合运算一化简求值.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m — 1) ( n — 1) =mn — (m+n ) +1 ,m+n=mn ,( m - 1 ) ( n T ) =mn — (m+n ) +1=1 ,故答案为1.【点评】本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则, 此题难度不大.12.多项式x2+mx+5 因式分解得(x+5 ) (x+n ),贝U m= 6 , n= 1 .【考点】因式分解的意义.【专题】计算题;压轴题.【分析】 将(x+5 ) (x+n )展开,得到,使得x2+ (n+5 ) x+5n 与x 2+mx+5 的系数对应相等即可. 【解答】解:-.1 ( x+5 ) (x+n ) =x 2+ (n+5 ) x+5n ,1-x 2+mx+5=x 2+ (n+5 ) x+5n ■区二面忑n 二5%二1 np6故答案为:6 , 1 .【点评】本题考查了因式分解的意 义,使得系数对应相等即可.13 •化简了——【考点】约分.【分析】首先分 别把分式的分母、分子因式分解,然后 约去分式的分子 与分母的公因式即可.| 2 (K +3)Q+3) G - 3)【点评】此题主要考查了约分问题,要熟练掌握,解答此 题的关键是要明确:①分式 约分的结果可能是最 简分式,也可能是整式.② 当分子与分母含有负号时,一般把负号提到分式本身的前面.③ 约分时,分子 与分母都必须是乘积式,如果是多 项式的,必 须先分解因式. 14 .如图,点A 、C 、F 、B 在同一直 线上,CD 平分/ ECB , FG // CD .若/ ECA=58 , 则/ GFB 的大小为 61 ;【解答】解:【分析】求出/ DCF ,根据两直线平行同位角相等即可求出/ GFB .【解答】解:.一/ ECA=58 ,ECD=180 - /ECA=122 ,. CD 平分/ ECF ,,/DCF= —Z ECF= —X122° =61° , 2 2••• CD // GF,/ GFB= / DCF=61 .故答案为61 ° .【点评】本题考查平行线的性质、角平分线的定义、邻补角的性质等知识.解题的关键是利用两直线平行 同位角相等解 决问题,属于中考常考 题型.15 .如图,AB // CD , AC ± BC , / ABC=35 , 【分析】首先根据平行 线的性质可得/ ABC= /BCD=35 ,再根据垂 线的定义可得/ ACB=90 ,再利用平 角的定义计算出/ 1的度数.【解答】解:= AB // CD ,/ ABC= / BCD=35 , . AC ± BC,・・./ACB=90 ,・ ・/ 1=180° — 90° — 35° =55° ,故答案为:55° .【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.三、本题满分8分,每小题4分16 .计算:(-3) 2+[( _ 2] > 2016 0 —①+ (y)1 【考点】实数的运算;零指数哥;负整数指数哥.则/1的度数为 55°【考点】平行线的性质;垂线.【专题】计算题.【分析】此 题涉及负整数指数哥、零指数哥、有理数的乘方、平方根的求法,在 计算时,需要针对每个考 点分别进行计算,然后根据 实数的运算法则求得计算结果即可.【解答】解:(-3) 2+2 - 2016 0 -百 + (y) 1=9+2 -1-3+2=11 - 1 - 3+2=9【点评】此题主要考查了实数的综合运算能力,解 决此类题目的关键是熟练掌握负整数指数哥、零指数哥、 有理数的乘方、平方根的运算.3<4sMx-【考点】解一元一次不等式组.【专题】计算题.【分析】分 别求出不等式 组中两不等式的解集,找出解集的公共部分即可.5K -① 4Cz- D+3>2i@i ,由①得:x < 3 ,由②得:x >4,则不等式组的解集为序wx<3.【点评】此题考查了解一元一次不等式 组,熟练掌握运算法则是解本题的关键.四、本题满分10分,每小题5分18 .先化简,再求值:a (a - 3) +(1 - a) ( 1+a ),其中 a=4r . J【考点】整式的混合运算一化简求值.【分析】根据 单项式乘多项式的法则、平方差公式把原式化 简,把已知数据代入计算即可.【解答】解:原式=a 2 - 3a+1 - a 2=1 — 3a,当a= $寸,原式=1-3 x 亍=0 .【点评】本题考查的是整式的化 简求值,掌握整式的混合 运算法则、灵活运用平方差公式和完全平方公式 是解题的关键.19 .将a 2+ (a+1 ) 2+ (a 2+a) 2分解因式,并用分解结果计算62+7 2+42 2.【考点】因式分解的应用.【分析】先 将a 2+ (a+1 ) 2+ (a 2+a ) 2去括号,进行变形,分解因式 为(a 2+a+1 ) 2,根据结果计算 62+7 2+42 2. 【解答】解:a 2+ (a+1 ) 2+ (a 2+a ) 2, 17 .解不等式组 解:=a2+a 2+2a+1+ (a2+a ) 2 ,=(a2+a ) 2+2 (a2+a ) +1 ,=(a2+a+1 ) 2,.•.62+7 2+42 2= (36+6+1 ) 2=43 2=1849 ,【点评】本题是分解因式的应用,主要考查了利用因式分解简化计算问题;具体做法是:①根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入;②用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.五、本题满分12分,每小题6分20.化简+ (a-2+—I),并从-2, 1, 2三个数中选择一个合适的数作为a的值代入求值.a+2 a+2【考点】分式的化简求值.【分析】先将括号内的部分统分,再将除法转化为乘法,同时因式分解,然后约分,再代入求值. 21 2 I【解答】解:原式=(时' 屈一堂3a+2 a+2=:口 1 ’?a+2 (afl) (□ 1)a+1~ a -1一⑶1/=―X - • - -a+Z (a+1) (a-1)a+1当a=2 时,I 2+1]原式=5二丁=3 -【点评】本题考查了分式的化简求值,熟悉因式分解同时要注意分母不为0.21 ,已知,如图,/ 1= /ABC= / ADC , /3=/5, / 2= / 4 , / ABC+ /BCD=18 0 , 将下列推理过程补充完整:(1 ) 1= Z ABC (已知),AD//BC(同位角相等,两直线平行)(2).一/ 3=/5 (已知)・ AB // CD (内错角相等,两直线平行)(3).. /ABC+ /BCD=180 (已知)同旁内角互补,两直线平行)【考点】平行线的判定.【专题】推理填空题.【分析】(1)根据同位角相等,两直线平行得出结论;(2 )根据内错角相等,两直线平行得出结论;(3)根据同旁内角互补,两直线平行得出结论.【解答】解:(1))•••/ 1=Z ABC (已知)• .AD // BC (同位角相等,两直线平行).故答案为:同位角相等,两直线平行;(2),一/ 3=/5,・♦.AB // CD (内错角相等,两直线平行)故答案为:AB , CD ;(3))/ ABC+ ZBCD=180 (已知)•.AB // CD,(同旁内角互补,两直线平行).故答案为:AB , CD ,同旁内角互补,两直线平行.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.六、阅读填空,并按要求解答,本题满分8分22 .阅读理解题阅读下列解题过程,并按要求填空:已知:J⑵- y),=1 ,可%12V)* = T,求聿差的值. 舄J解:根据算术平方根的意义,由必二彳=1,得(2x - y)2=1 , 2x -y=1第一步根据立方根的意义,由区[2*)- T ,得x - 2y= - 1…第二步步,忽略了 2x - y= - 1 ; 一处是第 四 步,忽略了 x 3工4y0c=1 (直接写出答案).K - y 【考点】实数的运算;解二元一次方程 组. 【专题】阅读型.【分析】熟悉平方根和立方根的性 质:正数的平方根有 两个,且它们互为相反数;负数没有平方根;0的平方根是0.正数有一个正的立方根,负数有一个负的立方根,0的立方根是0.【解答】解:在第一步中,由(2x — y ) 2=1 应得到 2x — y= ±1 , 忽略了 2x - y= - 1 ;在第四步中,当时,分式 也匕无意义,忽略了分式有意 义的条件的检验,K - y【点评】此题主要考查了平方根、立方根的性 质,同时还要注意求分式的 值时,首先要保 证分式有意义.七、应用题.本题满分12分23 .计划在某广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1) A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能 种植A 花木610棵或B 花木40棵,应分别 安排多少人 种植A 花木和B 花木,才能确保同 时完成各自的任 务?【考点】分式方程的 应用;一元一次方程的 应用.【分析】(1)首先设A 种花木的数量为x 棵,B 种花木的数量为y 棵,根据题意可得等量关系:①A 、 B 两种花木共6600棵;②A 花木数量=8花木数量的2倍- 600棵,根据等量 关系列出方程,再解即可;(2)首先设应安排a 人种植A 花木,则安排(26 - a )人种植B 花木,由题意可等量关系:种植A 花木 所用时间=种植B 花木所用时间,根据等量 关系列出方程,再解即可.【解答】解:(1)设A 种花木的数量为x 棵,B 种花木的数量为y 棵,由题意得:由①、②,得 以一尸1 X- 2y=1…第三步把x 、y 的值分别代入分式…第四步以上解题过程中有 两处错误,一处是第-y=0 ;正确的结论是 所以正确的结论是:;:=1.卜+产6800(x=2y-60Q,加曰「产42。
2017-2018学年安徽省合肥市包河区七年级(下)期末数学试卷-普通用卷
2017-2018学年安徽省合肥市包河区七年级(下)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.在下列各实数中,属于无理数的是()A. B. C. D.2.-的绝对值是()A. B. C. D. 23.若m<n,则下列不等式中一定成立的是()A. B. C. D.4.计算-(-2x3y4)4的结果是()A. B. C. D.5.下列各式中,自左向右变形属于分解因式的是()A. B.C. D.6.将直尺和直角三角板按如图方式摆放,已知∠1=25°,则∠2的大小是()A.B.C.D.7.如图,已知AD∥BC,在①∠BAC=∠BDC,②∠DAC=∠BCA,③∠ABD=∠CDB,④∠ADB=∠CBD中,可以得到的结论有()A. ①②B. ③④C. ①③D. ②④8.小明步行到距家2km的图书馆借书,然后骑共享单车返家,骑车的平均速度比步行的平均速度每小时快8km,若设步行的平均速度为xkm/h,返回时间比去时省了20min,则下面列出的方程中正确的是()A. B. C. D.9.关于x的方程=1的解是非负数,则a的取值范围是()A. B.C. 且D. 且10.观察下列各式及其展开式:(a-b)2=a2-2ab+b2(a-b)3=a3-3a2b+3ab2-b3(a-b)4=a4-4a3b+6a2b2-4ab3+b4(a-b)5=a5-5a4b+10a3b2-10a2b3+5ab4-b5…请你猜想(a-b)10的展开式第三项的系数是()A. B. 45 C. D. 66二、填空题(本大题共7小题,共21.0分)11.9的算术平方根是______.12.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=______度.13.计算=______.14.小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,已知这种地毯每平方米售价为50元,楼梯宽2m,其侧面如图所示,则铺设地毯至少需要______元.15.已知a2+ab+b2=7,a2-ab+b2=9,则(a+b)2=______.16.如图,点O,A在数轴上表示的数分别是0,l,将线段OA分成1000等份,其分点由左向右依次为M1,M2 (999)将线段OM1分成1000等份,其分点由左向右依次为N1,N2 (999)将线段ON1分成1000等份,其分点由左向右依次为P1,P2 (999)则点P314所表示的数用科学记数法表示为______.17.已知y>1,x<-1,若x-y=m成立,求x+y的取值范围______(结果用含m的式子表示).三、计算题(本大题共3小题,共18.0分)18.解不等式组:>,并把解集在数轴上表示出来.19.解方程:-=2.20.先化简,后求值:(x+1-),其中x=2+.四、解答题(本大题共4小题,共34.0分)21.计算:(-1)1001+(π-2)0+()-222.已知x-=,求x2+的值.23.(1)请在横线上填写合适的内容,完成下面的证明:如图①如果AB∥CD,求证:∠APC=∠A+∠C.证明:过P作PM∥AB.所以∠A=∠APM,(______)因为PM∥AB,AB∥CD(已知)所以∠C=______(______)因为∠APC=∠APM+∠CPM所以∠APC=∠A+∠C(等量代换)(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C=______.(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m=______(用x、y、z表示)24.某公司为了更好治理污水质,改善环境,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:经调查:购买一台型设备比购买一台型设备多万元,购买2台A型设备比购买3台B型设备少1万元.求a,b的值;经预算:市治污公司购买污水处理设备的资金不超过78万元,你认为该公司有哪几种购买方案;在间的条件下,若每月要求处理的污水量不低于1620吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.答案和解析1.【答案】C【解析】解:0.1010010001,-,=13是有理数,是无理数.故选:C.根据无理数的定义进行解答即可.本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.2.【答案】C【解析】解:-的绝对值是,故选:C.根据绝对值的性质:负数的绝对值是它的相反数,可得答案.本题考查了实数的性质,熟记绝对值的性质是解题关键.3.【答案】A【解析】解:∵m<n,∴m-2<n-2,-m>-n,>;当m=-1,n=1,则m2=n2.故选:A.利用不等式的性质对A、B、C进行判断,然后利用特例对D进行判断.本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.【答案】B【解析】解:-(-2x3y4)4=-16x12y16.故选:B.直接利用积的乘方运算法则计算得出答案.此题主要考查了积的乘方运算,正确掌握相关运算法则是解题关键.5.【答案】D【解析】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.根据因式分解的定义逐个判断即可.本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式叫因式分解.6.【答案】C【解析】解:∵∠1+∠3=90°,∠1=25°,∴∠3=65°.∵直尺的两边互相平行,∴∠2=∠3=65°.故选:C.先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.【答案】D【解析】解:∵AD∥BC,∴∠DAC=∠BCA,(两直线平行,内错角相等)∠ADB=∠CBD,(两直线平行,内错角相等)故选:D.依据平行线的性质进行判断,即可得到正确结论.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.8.【答案】C【解析】解:设步行的平均速度为xkm/h,则骑车的平均速度为(x+8)km/h,根据题意得:=+.故选:C.设步行的平均速度为xkm/h,则骑车的平均速度为(x+8)km/h,根据时间=路程÷速度结合返回时间比去时省了20min,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.【答案】D【解析】解:解方程=1,得:x=-a-3,∵方程=1的解是非负数,∴-a-3≥0且-a-3≠,解得:a≤-3且a≠-,故选:D.首先解此分式方程,可得x=-a-3,由关于x的方程的解是非负数,即可得-a-3≥0且-a-3≠,解不等式组即可求得答案.此题考查了分式方程的解法、分式方程的解以及不等式组的解法.此题难度适中,注意不要漏掉分式方程无解的情况.10.【答案】B【解析】解:根据题意得:第五个式子系数为1,-6,15,-20,15,-6,1,第六个式子系数为1,-7,21,-35,35,-21,7,-1,第七个式子系数为1,-8,28,-56,70,-56,28,-8,1,第八个式子系数为1,-9,36,-84,126,-126,84,-36,9,-1,第九个式子系数为1,-10,45,-120,210,-252,210,-120,45,-10,1,则(a-b)10的展开式第三项的系数是45,故选:B.根据各式与展开式系数规律,确定出所求展开式第三项系数即可.此题考查了完全平方公式,弄清题中的规律是解本题的关键.11.【答案】3【解析】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.9的平方根为±3,算术平方根为非负,从而得出结论.本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.【答案】60【解析】解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°-30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.【答案】【解析】解:=-===,故答案为:.先通分,再加减,最后再约分即可得出结论.此题主要考查了分式的加减,通分,约分,分解因式,找出最简公分母是解本题的关键.14.【答案】550【解析】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为3米,2.5米,则地毯的长度为3+2.5=5.5(米),面积为5.5×2=11(m2),故买地毯至少需要11×50=550(元).故答案为:550.根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.此题主要考查了生活中的平移现象,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.15.【答案】6【解析】解:∵a2+ab+b2=7①,a2-ab+b2=9②,∴①+②得:2(a2+b2)=16,即a2+b2=8,①-②得:2ab=-2,即ab=-1,则原式=a2+b2+2ab=8-2=6,故答案为:6已知两等式相加减求出a2+b2与ab的值,原式利用完全平方公式化简,将各自的值代入计算即可求出值.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16.【答案】3.14×10-7【解析】解:M1表示的数为1×=10-3,N1表示的数为×10-3=10-6,P1表示的数为10-6×=10-9,P314=314×10-9=3.14×10-7.故答案为:3.14×10-7.由题意知M1表示的数为10-3,N1表示的数为10-6,P1表示的数为10-9,进一步可得P314所表示的数.此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.17.【答案】m+2<x+y<-m-2【解析】解:由x-y=m得x=y+m,由x<-1得y+m<-1,y<-m-1,又∵y>1,∴1<y<-m-1,由x-y=m得y=x-m,由y>1得x-m>1,x>m+1,又∵x<-1,∴m+1<x<-1,∴m+2<x+y<-m-2,故答案为:m+2<x+y<-m-2.由x-y=m得x=y+m,由x<-1得知y<-m-1,根据y>1得1<y<-m-1,同理得出m+1<x<-1,相加即可得出答案.本题主要考查不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.18.【答案】解:>①②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.【答案】解:去分母得:x+1=2x-14,解得:x=15,经检验x=15是分式方程的解.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.20.【答案】解:原式=(-)•=•=x-2,当x=2+时,原式=2+-2=.【解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.【答案】解:原式=-1+1+4=4.【解析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:∵x-=,∴(x-)2=5,∴x2+-2=5,∴x2+=7.【解析】把x-=的两边平方,进一步整理即可求得x2+的值.此题考查代数式求值,注意所给算式的特点,灵活选用适当的方法解决问题.23.【答案】两直线平行,内错角相等∠CPM两直线平行,内错角相等540°x-y+z 【解析】解:(1)过P作PM∥AB,所以∠A=∠APM,(两直线平行,内错角相等)因为 PM∥AB,AB∥CD (已知)所以 PM∥CD,所以∠C=∠CPM,(两直线平行,内错角相等)因为∠APC=∠APM+∠CPM所以∠APC=∠A+∠C (等量代换),故答案为:两直线平行,内错角相等;∠CPM;两直线平行,内错角相等.(2)如图②,过点P作PM∥AB,过点Q作QN∥CD,∴∠A+∠APM=180°,∠C+∠CQN=180°,又∵AB∥CD,∴PM∥QN,∴∠MPQ+∠NQP=180°,则∠A+∠APQ+∠CQP+∠C=∠A+∠APM+∠MPQ+∠NQP+∠CQN+∠C=540°,故答案为:540°.(3)如图③,延长PQ交CD于点E,延长QP交AB于点F,∵AB∥CD,∴∠BFP=∠CEQ,又∵∠BPQ=∠BFP+∠B,∠PQC=∠CEQ+∠C,即∠BFP=∠BPQ-∠B,∠CEQ=∠PQC-∠C,∴∠BPQ-∠B=∠PQC-∠C,即y-x=z-m,∴m=x-y+z,故答案为:x-y+z.(1)根据平行线的性质可得;(2)过点P作PM∥AB,过点Q作QN∥CD,将∠A、∠P、∠Q、∠C划分为6个3对同旁内角,由平行线的性质可得;(3)延长PQ交CD于点E,延长QP交AB于点F,可得∠BFP=∠CEQ,根据三角形外角定理知∠BFP=∠BPQ-∠B、∠CEQ=∠PQC-∠C,整理后即可得.本题主要考查平行线的性质,作出合适的辅助线将待求角恰当分割是解题的关键.24.【答案】解:(1)设一台A型设备的价格是a万元,一台B型设备的价格是b万元,由题意得:,解得:;(2)设购买A型设备x台,则购买B型设备(10-x)台,由题意得:10x+7(10-x)≤78,解得:x≤,∵x为整数,∴x≥0,∴x=0,1,2,①购买A型设备0台,则购买B型设备10台;②购买A型设备1台,则购买B型设备9台;③购买A型设备2台,则购买B型设备8台;(3)由题意得:200x+160(10-x)≥1620,解得:x≥0.5,∵x≤,∴0.5≤x≤,∴x=1,2,∵B型设备便宜,∴为了节约资金,尽可能多买B型,∴x=1.答:最省钱的购买方案为购买A型设备1台,购买B型设备9台.【解析】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程(组)和不等式.(1)设一台A型设备的价格是a万元,一台B型设备的价格是b万元,根据题意得等量关系:购买一台A型设备-购买一台B型设备=3万元,购买3台B型设备-购买2台A型设备=1万元,根据等量关系,列出方程组,再解即可;(2)设购买A型设备x台,则购买B型设备(10-x)台,由题意得不等关系:购买A型设备的花费+购买B型设备的花费≤78万元,根据不等关系列出不等式,再解即可;(3)由题意可得:A型设备处理污水量+B型设备处理污水量≥1620吨,根据不等关系,列出不等式,再解即可.。
2017~2018学年第二学期人教版七年级下期末数学质量检测卷及答案
XX市XX中学2017—2018学年度第二学期期末调研测试七年级数学试题(全卷共五个大题满分150分考试时间120分钟)注:所有试题的答案必须答在答题卡上,不得在试卷上直接作答.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.方程20x=的解是A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,.102232yxyx时,由②-①得A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为A.2B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是A.x>3 B.x≥3 C.x>1 D.x≥6.将方程31221+=--xx去分母,得到的整式方程是A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是5题图432-1 118题图P A .1,2,3.x y z =⎧⎪=-⎨⎪=⎩ B .1,0,1.x y z =⎧⎪=⎨⎪=⎩ C .0,1,0.x y z =⎧⎪=-⎨⎪=⎩ D .0,1,2.x y z =⎧⎪=⎨⎪=-⎩10.将△ABC 沿BC 方向平移3个单位得△DEF .若 △ABC 的周长等于8, 则四边形ABFD 的周长为A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为A .30°B .50°C .80°D .90°二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.在方程21x y -=中,当1x =-时,y = . 14.一个正八边形的每个外角等于 度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为 . 16.不等式32>x 的最小整数解是 . 17.若不等式组0,x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为 .18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出 发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值 范围是 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩…A BECDF10题图12题图C′15题图DEABC四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上. (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠ 交AD 于点E .若︒=∠60C ,︒=∠70BED . 求ABC ∠和BAC ∠的度数. ADBCE23题图21题图24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±. 例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x -1|+|x +2|=5的解是x =2或x =-3.(1)方程|x +3|=4的解为 ; -21-1342-20 1226.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.CABDMP26题图1BDMNAC PQ26题图2XX 市XX 中学2017-2018学年度二学期期末调研测试七年级数学试题参考答案及评分意见一、选择题:13.3-; 14.45; 15.4; 16.2x =; 17.4,3.x y =-⎧⎨=-⎩ 18.0<x ≤43或2x =.三、解答题:19.解:由①,得 2x y =.③………………………………………………………………1分将③代入②,得 4321y y +=.解得 3y =.…………………………………………………………………………3分将3y =代入①,得 6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分 20.解:解不等式①,得 2x <.……………………………………………………………3分解不等式②,得 x ≥3-.…………………………………………………………6分∴ 不等式组的解集为:3-≤2x <.………………………………………………7分 四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 (1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得 800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ······························································ 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ············································· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.AM PCM BMCP A ABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ······························· 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴ 34140k k +=°, 解得 20k =°.∴360A k ∠==°. ····························································································· 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190. ··························································································· 9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠BCN , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴ )(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··············································· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,………………………………………8分………………………………………6分。
2017---2018学年度第二学期期末考试七年级数学试卷含答案
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017-2018学年第二学期七年级数学期末试题(含答案)
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
2017-2018学年新课标最新安徽省七年级下学期期末数学试卷(有答案)-精品试卷
2017-2018学年安徽省七年级(下)期末数学试卷一、选择题1.实数9的平方根是()A.±3 B.3 C.±D.2.人体中成熟的红细胞的平均直径为0.000 007 7m,将0.000 007 7用科学记数法表示为()A.7.7×10﹣5B.77×10﹣6C.77×10﹣5D.7.7×10﹣63.在下列各实数中,属于无理数的是()A.0.23 B.﹣C.D.4.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.(2x2)3=6x5D.x•x3=x45.下列变形中,从左向右是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6x B.x2﹣8x+16=(x﹣4)2C.(x﹣1)2=x2﹣2x+1 D.x2+1=x(x+)6.如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46°B.48°C.56°D.72°7.若n<﹣1<n+1(n是正整数),则n的值是()A.2 B.3 C.4 D.58.若分式的值为零,则x的值是()A.4 B.﹣4 C.4或﹣4 D.169.下列说法中不正确的是()A.若a>b,则a﹣1>b﹣1 B.若3a>3b,则a>bC.若a>b,且c≠0,则ac>bc D.若a>b,则7﹣a<7﹣b10.某公司承担了制作500套校服的任务,原计划每天制作x套,实际平均每天比原计划多制作了12套,因此提前4天完成任务.根据题意,下列方程正确的是()A.﹣=12 B.﹣=12C.﹣=4 D.+12=二、填空题11.分解因式:ax2﹣4a= .12.若m﹣n=3,mn=1,则m2+n2= .13.若记y=f(x)=,并且f(1)表示:当x=1时,y的值,即f(1)==,那么f(1)+f(2)+f()+f(3)+f()+…+f(2016)+f()= .14.如图所示,下列结论正确的有(把所有正确结论的序号都选上)①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则∠1=59°.三、解答题15.(6分)计算:()﹣2+﹣(2016+π)0+.16.(6分)化简:(2x﹣3)(x﹣2)﹣(x﹣1)2.17.(8分)解不等式组:,并将解集在数轴上表示出来.18.(8分)解方程:1+=.19.(8分)某种品牌毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买几条毛巾?20.(10分)如图,∠AED=∠C,∠1=∠B,说明:EF∥AB请结合图形,补全下面说理过程,括号中填说理依据.因为∠AED=∠C(已知)所以DE∥BC()又因为∠1=∠()所以∠B=∠EFC()所以(同位角相等,两直线平行)21.(10分)先化简(+)÷,再求值,其中﹣2≤a≤2且a为整数,请你从中选取一个喜欢的数代入求值.22.(10分)我们把分子为1的分数叫做单位分数,如,,,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,=+,…(1)根据对上述式子的观察,你会发现,请写出□,○所表示的数;(2)进一步思考,单位分数=+,(n是不小于2的正整数)请写出△,☆所表示的式子,并对等式加以验证.23.(12分)△ABC在网格中的位置如图所示,请根据下列要求解答:(1)过点C作AB的平行线;(2)过点A作BC的垂线段,垂足为D;(3)比较AB和AD的大小,并说明理由;(4)将△ABC先向下平移5格,再向右平移6格得到△EFG(点A的对应点为点E,点B 的对应点为点F,点C的对应点为点G).24.(12分)利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性(1)根据图1写出一个代数恒等式;(2)恒等式:(2a+b)(a+b)=2a2+3ab+b2,也可以用图2面积表示,请用图形面积说明(2a+b)(a+b)=2a2+3ab+b2(3)已知正数a、b、c和m、n、l满足a+m=b+n=c+l=k,试构造边长为k的正方形,利用面积来说明al+bm+cn<k2.参考答案与试题解析一、选择题1.实数9的平方根是()A.±3 B.3 C.±D.【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵(±3)2=9,∴实数9的平方根是±3,故选:A.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.2.人体中成熟的红细胞的平均直径为0.000 007 7m,将0.000 007 7用科学记数法表示为()A.7.7×10﹣5B.77×10﹣6C.77×10﹣5D.7.7×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 007 7=7.7×10﹣6,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.在下列各实数中,属于无理数的是()A.0.23 B.﹣C.D.【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【解答】解:A、0.23是有理数,故本选项错误;B、﹣是有理数,故本选项错误;C、是无理数,故本选项正确;D、=4,是有理数,故本选项错误;故选C.【点评】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.4.下列运算正确的是()A.x+x=x2B.x6÷x2=x3C.(2x2)3=6x5D.x•x3=x4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加;同底数幂的除法底数不变指数相减;积的乘方等于乘方的积;同底数幂的乘法底数不变指数相加;可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、积的乘方等于乘方的积,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.下列变形中,从左向右是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6x B.x2﹣8x+16=(x﹣4)2C.(x﹣1)2=x2﹣2x+1 D.x2+1=x(x+)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式化成几个整式乘积的形式,可得答案.【解答】解:A、没把一个多项式化成几个整式乘积的形式,故A错误;B、把一个多项式化成几个整式乘积的形式,故B正确;C、是整式的乘法,故C错误;D、没把一个多项式化成几个整式乘积的形式,故D错误;故选:B.【点评】本题考查了因式分解的意义,因式分解是把一个多项式化成几个整式乘积的形式.6.如图,a∥b,将﹣块三角板的直角顶点放在直线a上,若∠1=42°,则∠2的度数为()A.46°B.48°C.56°D.72°【考点】平行线的性质.【分析】求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:如图:∵∠1=42°,∴∠3=90°﹣42°=48°,∵a∥b,∴∠2=∠3,∴∠2=48°,故选B.【点评】本题考查了平行线的性质的应用,能求出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.7.若n<﹣1<n+1(n是正整数),则n的值是()A.2 B.3 C.4 D.5【考点】估算无理数的大小.【分析】先估算出的取值范围,进而可得出结论.【解答】解:∵16<21<25,∴4<<5,∴3<﹣1<4,∴n=3.故选B.【点评】本题考查的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.8.若分式的值为零,则x的值是()A.4 B.﹣4 C.4或﹣4 D.16【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣16=0解得:x=±4.而x=4时分母x﹣4=4﹣4=0,分式没有意义.当x=﹣4时分母x﹣4=﹣8≠0,所以x=﹣4,故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.9.下列说法中不正确的是()A.若a>b,则a﹣1>b﹣1 B.若3a>3b,则a>bC.若a>b,且c≠0,则ac>bc D.若a>b,则7﹣a<7﹣b【考点】不等式的性质.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵a>b,∴a﹣1>b﹣1,故本选项正确;B、∵a>b,∴3a>3b,故本选项正确;C、∵a>b且c≠0,∴ac>bc,故本选项错误;D、∵a>b,∴﹣a<﹣b,∴7﹣a<7﹣b,故本选项正确.故选C.【点评】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.某公司承担了制作500套校服的任务,原计划每天制作x套,实际平均每天比原计划多制作了12套,因此提前4天完成任务.根据题意,下列方程正确的是()A.﹣=12 B.﹣=12C.﹣=4 D.+12=【考点】由实际问题抽象出分式方程.【分析】设原计划每天制作x套,实际平均每天制作(x+12)套,根据实际提前4天完成任务,列方程即可.【解答】解:设原计划每天制作x套,实际平均每天制作(x+12)套,由题意得,﹣=4.故选C.【点评】本题考查了有实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题11.分解因式:ax2﹣4a= a(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a,=a(x2﹣4),=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若m﹣n=3,mn=1,则m2+n2= 11 .【考点】完全平方公式.【分析】直接利用完全平方公式将原式变形进而将已知代入求出答案.【解答】解:∵m﹣n=3,mn=1,∴m2+n2=(m﹣n)2+2mn=32+2×1=11,故答案为:11.【点评】此题主要考查了完全平方公式,正确将原式变形是解题关键.13.若记y=f(x)=,并且f(1)表示:当x=1时,y的值,即f(1)==,那么f(1)+f(2)+f()+f(3)+f()+…+f(2016)+f()= .【考点】函数值.【分析】根据已知公式分别代入计算后可得从第二项开始每两项的和均为1,据此可得答案.【解答】解:原式=+++++…++=+++++…++=+1+1+…+1=+2015=,故答案为:.【点评】本题主要考查函数的求值,根据已知公式代入后发现算式的规律是解题的关键.14.如图所示,下列结论正确的有①③④(把所有正确结论的序号都选上)①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则∠1=59°.【考点】平行线的判定与性质.【分析】根据平行线的判定和性质解答即可.【解答】解:①若AB∥CD,则∠3=∠4;正确;②若∠1=∠BEG,则AB∥CD;错误;③若∠FGH+∠3=180°,则EF∥GH;正确④∵AB∥CD,∴∠3=∠4=62°,∵∠BEF=180°﹣∠4=118°,∵EG平分∠BEF,∴∠2=59°,∴∠1=180°﹣∠2﹣∠3=59°,正确;故答案为:①③④.【点评】本题考查了平行线的判定和性质,角平分线的定义,三角形的内角和,熟练掌握平行线的定义是解题的关键.三、解答题15.计算:()﹣2+﹣(2016+π)0+.【考点】实数的运算;零指数幂;负整数指数幂.【分析】直接利用负整数指数幂的性质以及零指数幂的性质和算术平方根和立方根的性质分别化简求出答案.【解答】解:原式=4+2﹣1+2=7.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.16.化简:(2x﹣3)(x﹣2)﹣(x﹣1)2.【考点】多项式乘多项式;完全平方公式.【分析】根据多项式乘以多项式和完全平方公式,即可解答.【解答】解:(2x﹣3)(x﹣2)﹣(x﹣1)2.=2x2﹣4x﹣3x+6﹣x2+2x﹣1=x2﹣5x+5.【点评】本题考查了多项式乘以多项式和完全平方公式,解决本题的关键是熟记完全平方公式.17.解不等式组:,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x>﹣1,由②得,x≤4,故不等式组的解集为:﹣1<x≤4.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.解方程:1+=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣4﹣1=3﹣x,解得:x=4,经检验x=4是增根,分式方程无解.【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.19.某种品牌毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买几条毛巾?【考点】一元一次不等式的应用.【分析】设购买x条毛巾,根据两种不同计费方式列出不等式求解即可.【解答】解:设购买x条毛巾,由题意可得:2×6+6×0.7(x﹣2)<6×0.8x,解得:x>6,∵x为正整数,∴x最小值是7,答:若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买7条毛巾.【点评】本题主要考查一元一次不等式的应用,根据题意得出不等关系并列出不等式是解题的关键.20.(10分)(2016春•瑶海区期末)如图,∠AED=∠C,∠1=∠B,说明:EF∥AB请结合图形,补全下面说理过程,括号中填说理依据.因为∠AED=∠C(已知)所以DE∥BC(同位角相等,两直线平行)又因为∠1=∠EFC (两直线平行,内错角相等)所以∠B=∠EFC(等量代换)所以EF∥AB (同位角相等,两直线平行)【考点】平行线的判定;同位角、内错角、同旁内角.【分析】先同位角相等,得出两直线平行,再根据两直线平行,得出内错角相等,最后根据同位角相等,得出两直线平行即可.【解答】证明:∵∠AED=∠C(已知)∴DE∥BC(同位角相等,两直线平行)又∵∠1=∠EFC(两直线平行,内错角相等)∴∠B=∠EFC(等量代换)∴EF∥AB(同位角相等,两直线平行)【点评】本题主要考查了平行线的判定与性质,填写说理依据时注意区分平行线的判定与平行线的性质在表述上的不同之处.21.(10分)(2016春•瑶海区期末)先化简(+)÷,再求值,其中﹣2≤a≤2且a为整数,请你从中选取一个喜欢的数代入求值.【考点】分式的化简求值.【分析】括号内通分后相加,同时可将除法转化为乘法,再将分子因式分解,最后约分即可化简,从﹣2≤a≤2中选取一个使分式有意义的整数代入求值即可.【解答】解:原式=•=•=,∵﹣2≤a≤2且a为整数,∴a只能取﹣1或0,当a=﹣1时,原式==.【点评】本题主要考查分式的化简求值,熟练掌握分式的基本性质与通分、约分及分式的混合运算顺序是解题的关键,注意选取x的值时需使所有分式有意义.22.(10分)(2016春•瑶海区期末)我们把分子为1的分数叫做单位分数,如,,,…任何一个单位分数都可以拆分成两个不同的单位分数的和,如=+,=+,= +,…(1)根据对上述式子的观察,你会发现,请写出□,○所表示的数;(2)进一步思考,单位分数=+,(n是不小于2的正整数)请写出△,☆所表示的式子,并对等式加以验证.【考点】分式的加减法;有理数的加法.【分析】(1)观察已知等式确定出□,○所表示的数即可;(2)进一步思路,确定出△,☆所表示的式子,验证即可.【解答】解:(1)=+,则□=6,○=30;(2)△=n+1,☆=n(n+1),可得=+,右边=+===左边,则等式成立.【点评】此题考查了分式的加减法,以及有理数的加法,熟练掌握运算法则是解本题的关键.23.(12分)(2016春•瑶海区期末)△ABC在网格中的位置如图所示,请根据下列要求解答:(1)过点C作AB的平行线;(2)过点A作BC的垂线段,垂足为D;(3)比较AB和AD的大小,并说明理由;(4)将△ABC先向下平移5格,再向右平移6格得到△EFG(点A的对应点为点E,点B 的对应点为点F,点C的对应点为点G).【考点】作图-平移变换;作图—复杂作图.【分析】(1)平移AB,使它经过点C,则可得到直线l满足条件;(2)利用网格特点作AD⊥BC于D;(3)利用垂线段最短比较大小;(4)利用网格特点和平移的性质画图.【解答】解:(1)如图,直线l为所作;(2)如图,AD为所作;(3)AB>AD.理由为:连结直线外一点与直线上各点的所有连线段中,垂线段最短.(4)如图,△EFG为所作.【点评】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.24.(12分)(2016春•瑶海区期末)利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性(1)根据图1写出一个代数恒等式;(2)恒等式:(2a+b)(a+b)=2a2+3ab+b2,也可以用图2面积表示,请用图形面积说明(2a+b)(a+b)=2a2+3ab+b2(3)已知正数a、b、c和m、n、l满足a+m=b+n=c+l=k,试构造边长为k的正方形,利用面积来说明al+bm+cn<k2.【考点】多项式乘多项式.【分析】(1)利用面积分割法,各部分用代数式表示即可;(2)利用图2的2种面积表示方法即可求解;(3)利用面积分割法,可构造正方形,使其边长等于a+m=b+n=c+l=k(注意a≠b≠c,m ≠n≠l),并且正方形里有边长是a、l;b、m;c、n的长方形,通过画成的图可发现,al+bm+cn <k2.【解答】解:(1)由图可得,4ab=(a+b)2﹣(a﹣b)2;(2)∵图2的面积为(2a+b)(a+b)或2a2+3ab+b2,∴(2a+b)(a+b)=2a2+3ab+b2;,(3)构造一个边长为k的正方形,如图所示:显然a+m=b+n=c+l=k,根据图形可知,正方形内部3个矩形的面积和小于正方形的面积,故al+bm+cn<k2.【点评】本题主要考查完全平方公式的几何背景及公式间的相互转化,利用几何图形推导代数恒等式,要注意几何图形整体面积与各部分面积的关系.。
2017-2018学年度新人教版初中数学七年级下册期末教学质量检测及答案解析-精品试卷
2017-2018学年度下学期初中期末教学质量抽查初一年数学试题(满分:150分;时间:120分钟)题号一二 三总分1-78-17 18 19 20 21 22 23 24 25 26 得分一、选择题(单项选择,每小题3分,共21分). 1.若a >b ,则下列结论正确的是( ).A.55-<-b aB.b a +<+22C. b a 33>D. 33ba < 2.下列电视台的台标,是中心对称图形的是( ). A .B .C .D .3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以...是( ). A .正三角形; B .正四边形; C .正六边形; D .正八边形.4. 把不等式组123x x >-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是( ).A .B .C .D .5. 如图,若∠1=100°,∠C=70°,则∠A 的度数为( ).A .020 B .030 C .070 D .0806. 二元一次方程组⎩⎨⎧=-=+31y x y x 的解为( ).A .21x y ⎧⎨⎩=-=-B .21x y ⎧⎨⎩=-= C .21x y ⎧⎨⎩==-D . 21x y ⎧⎨⎩==7. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ).A .12B .15C .18D .12或15 二、填空题(每小题4分,共40分).8. 不等式3x ﹣2>4的解集是_______________.9. 已知一个多边形的内角和是900°,这个多边形的边数是_______________. 10. 在方程31x y +=中,用含x 的代数式表示y ,则y =_______________.11. 若⎩⎨⎧==23y x 是方程1=-ay x 的解,则a =_______________.12. 如图所示的图案绕其旋转中心旋转后能够与自身重合,那么它的旋转角的度数可能是_______________(填写一个你认为正确的答案) . 13. 根据“a 的3倍与2的差不小于...0”列出的不等式是:_______________.14. 如图,C B A '''∆是由ABC ∆沿射线AC 方向平移得到,若5,'C 2AC cm A cm ==,则所平移的距离为___________cm .15. 如图,AD 是ABC ∆的一条中线,若BD =3,则BC =_______________.16. 如图,ABC ∆≌DEF ∆,请根据图中提供的信息,写出x =_______________. 17. 如图所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别在边AB 、AC 上,将ABC △沿着DE 折叠压平,使点A 与点N 重合. (1)若035=∠B ,060=∠C ,则A ∠的度数为________; (2)若070=∠A ,则21∠+∠的度数为______________.三、解答题(共89分).18. 解不等式(组)(每小题7分,共14分). (1)3(1)64x x +-≤(2)211314x x -≥-⎧⎨+<⎩,并把解集在数轴上表示出来.19.(7分)解方程组:⎩⎨⎧=-=+3273y x y x20.(7分)解方程组:⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x .21.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的三个顶点都在格点上,请按要求完成下列各题.(1)画出△ABC 向左平移6个单位长度得到的图形△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.22.(9分)如图,在△ABC 中,︒=∠90ACB ,CD ⊥AB , 垂足为D ,︒=∠35BCD . 求:(1)EBC ∠的度数;(2)A ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式). 解:(1)∵AB CD ⊥(已知)∴CDB ∠= ∵EBC ∠是BCD ∆的外角∴BCD CDB EBC ∠+∠=∠( ) ∴=∠EBC +35°= . (等量代换) (2)∵EBC ∠是ABC ∆的外角∴ACB A EBC ∠+∠=∠∴ACB EBC A ∠-∠=∠( ) ∵︒=∠90ACB (已知)∴A ∠= -90°= . (等量代换)23.(9分)小明家新房装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. (1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过...3200元,那么彩色地砖最多能采购多少块?24.(9分)如图, 正方形ABCD 中, ADE ∆经顺时针...旋转后与ABF ∆重合. (1)旋转中心是点_________,旋转了__________度;(2)如果8,4CF CE ==,求:四边形AFCE 的面积.25.(13分)某商店收银台现有零钱1元、5元、10元三种纸币,共计130张,合计300元,其中10元纸币比5元纸币少10张.假设一元纸币数量为x张,5元纸币数量为y 张.(1)根据题意,填写下表中的空格:1元5元10元合计数量(张)x y130钱数(元)x5y300 (2)求出x、y的值;(3)现有一名顾客拿一张100元纸币要向收银员换取1元或5元的零钱,要求1元的张数不超过5元的张数,求收银员在分配1元、5元的张数时共有哪几种方案?26.(13分)在ABC ∆中,已知A α∠=.(1)如图1,ACB ABC ∠∠、的平分线相交于点P .①当70α=时,∠BPC 的度数=_____________°(直接写出结果); ②BPC ∠的度数为 (用含α的代数式表示);(2)如图2,ACB ABC ∠∠、的平分线相交于点P ,作ABC ∆外角NCB ∠∠、MBC的角平分线交于点Q .求BQC ∠的度数(用含α的代数式表示).(3)拓展:如图3,点M N 、分别为AB AC 、延长线上的一点, 点P 、Q 分别在ABC ∆内部、外部,且满足ABC n PBC ∠=∠,n ACB PCB ∠=∠,MBC n QBC ∠=∠, QCB n NCB ∠=∠.求:BPC ∠、BQC ∠的度数(用含n α、的代数式表示)._ P_ A_ B_ C(图1)_ A_ B_ C _ P_ Q_ M_ N(图3)_ Q_ P_ A_ B_ C _ M_ N(图2)南安市2014—2015学年度下学期期末教学质量抽查初一数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确作完该步应得的累计分数. (四)评分最小单位是1分,得分或扣分都不出现小数. 一、选择题(每小题3分,共21分)1.C ; 2.B ; 3.D ; 4.A ; 5.B ; 6.C ; 7.B ; 二、填空题(每小题4分,共40分)8、x >2 9、7 10、x 31- 11、1 12、答案不唯一,如072 等 13、023≥-a 14、3 15、6 16、20 17、(1)085 (2)0140 三、解答题(9题,共89分) 18.(1)(本小题7分)(1)解:3364x x +-≤……………………………………………………………(2分)3643-≤-x x ……………………………………………………………(4分)3x -≤……………………………………………………………(5分) 3x ≥-……………………………………………………………(7分)(2)(本小题7分)解:解不等式①,得x ≥0;……………………………………………(2分) 解不等式②得,x<1,……………………………………………(4分) 在数轴上表示为:……………………………………(5分)故此不等式的解集为:0≤x ≤1.……………………………………………(7分) 19、(本小题7分) 解:,①+②得:5x =10,∴ x =2,…………………………………………………………(3分) 将x =2代入①得:y =1,…………………………………………………………(6分)∴方程组的解为.…………………………………………………………(7分)20、(本小题7分)⎪⎩⎪⎨⎧=-=+++=9310y x z y x z y x 解法1:把①分别代入②、③得,⎩⎨⎧=+=+9321022z y z y ……………………………………………(2分) 解得,⎩⎨⎧-==16z y ……………………………………………(4分) 把⎩⎨⎧-==16z y 代入①得 5=x ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)解法2:把①代入②得,102=x ……………………………………………(2分) 解得,5=x…………………① …………………②…………………③把5=x 代入③得 915=-y ……………………………………………(4分) 解得,6=y把5=x ,6=y 代入①得,1-=z ……………………………………………(6分)∴方程组的解为⎪⎩⎪⎨⎧-===165z y x .……………………………………………(7分)21、解:(1)如图所示:△A 1B 1C 1,即为所求; (2)如图所示:△A 2B 2C 2,即为所求.22、解:(1)∵AB CD ⊥∴CDB ∠=90° ………………………………………(2分) ∵BCD CDB EBC ∠+∠=∠ (三角形的外角等于与它不相邻两个内角的和)…(4分) ∴=∠EBC 90°+35°=125°. …………………………(6分) (2)∵ACB A EBC +∠=∠∴ACB EBC A ∠-∠=∠.(等式的性质)……(7分 )∵︒=∠90ACB (已知)∴A ∠=125°-90°=35°. (等式的性质) ..............................(9分) 23、解:(1)设彩色地砖采购x 块,单色地砖采购y 块,由题意,得 (1)),……………………………………………(3分)解得:.……………………………………………(5分)答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a 块,则单色地砖购进(60﹣a )块,由题意得………………(6分)80a +40(60﹣a )≤3200,……………………………………………(8分)解得:a ≤20.∴彩色地砖最多能采购20块.……………………………………………(9分)24、解:(1)A ,90………………………………………………………………………(4分)(2)解法1:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=……………………………………………(5分) 设DE x =,y CD =,则BF DE x ==,y CD BC ==,又8,4CF CE ==∴⎩⎨⎧=-=+48x y x y ……………………………………………(6分) ∴⎩⎨⎧==26x y …………………………………………………(7分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF (9分)解法2:ADE ∆经顺时针...旋转后与ABF ∆重合 ADE ABF ∆≅∆∴,ADE ABF S S ∆∆=………………………………………………………(5分)设DE x =,则BF DE x ==又8,4CF CE ==8,4BC x CD x ∴=-=+………………………………………………………(6分) 四边形ABCD 为正方形BC CD ∴=,即84x x -=+…………………………………………………………(7分) 解得2x =……………………………………………………………………………(8分) .3662A BCD A BCE A BCE A FCE ===+=+=∴∆∆正方形四边形四边形四边形S S S S S S AD E ABF 9分25. 解:(1)1元 5元 10元 总和 张数x y 10y - 130 钱数 x5y 10(10)y - 300………………(2分)(2)由(1)可列出方程组 10130510(10)300x y y x y y ++-=⎧⎨++-=⎩ ………………………(4分) 即214015400x y x y +=⎧⎨+=⎩解得10020x y =⎧⎨=⎩…………………(6分) (3)设分配1元纸币a 张,5元纸币b 张,由题意得5100a b +=,………………(7分) 所以1005a b =-,………………………………………………………………………(8分)又因为a b ≤,所以1005b b -≤,解得503b ≥………………………………………(9分) 由(2)知5元纸币数量最多为20张,所以取17181920b =、、、……………………(10分) 对应的151050a =、、、 答:收银员在分配1元、5元的张数时共有四种方案:1元15张,5元17张;1元10张,5元18张; 1元5张,5元19张;1元0张, 5元20张. ………………………(13分)26.解:(1)① 125;……………………………………………………………………(2分)②1902BPC α∠=+. ……………………………………………………(4分)(2)由(1)得1902BPC α∠=+; 四边形 BPCQ 中 ,1180902PBQ PCQ ∠=∠=⨯=………………(6分) 360Q PBQ PCQ P ∴∠=-∠-∠-∠………………………………………(7分)11180180(90)9022P αα=-∠=-+=-………………………(8分) (3)①BPC ∠的度数为180180n nα-+,理由如下: ABC ∆中,180A ABC ACB ∠+∠+∠=,A α∠= 180ABC ACB α∴∠+∠=- …………………………………………………(9分) ,ABC n PBC ACB n PCB ∠=∠∠=∠,180n PBC n PCB α∴∠+∠=- 180PBC PCB n nα∴∠+∠=-……………………………………………………(10分) 180180()180BPC PBC PCB n n α∴∠=-∠+∠=-+…………………………(11分)②BQC ∠的度数为180180n nα--,理由如下: 由①得180180BPC n nα∠=-+ ,ABC n PBC MBC n CBQ ∠=∠∠=∠180ABC MBC n PBC n CBQ ∴∠+∠=∠+∠= 180PBC CBQn∴∠+∠=,即180PBQ n ∠= 同理可得180PCQn∠=………………………………………………………(12分)四边形 BPCQ 中,180PBQ PCQ n ∠=∠=,180180BPC n n α∠=-+ 360Q PBQ PCQ P ∴∠=-∠-∠-∠180180180360(180)n n n nα=----+ 180180180360180n n n nα=---+- 180180n n α=--………………………………………………………(13分)。
安徽省淮南市2017-2018学年七年级下学期期末考试数学答案
—七年级数学试卷第1页(共2页)—淮南市2017—2018学年度第二学期期终教学质量检测七年级数学试卷参考答案及评分标准三.解答题(本大题共46分) 19.(本题6分)解:51109110x y y x -=⎧⎨-=⎩①②①+②×5,得:44660y =,解,得:15y =. ……………………3分 把15y =代入①,得:515110x -=,解,得:25x =. ……………………5分所以原方程组的解为25,15.x y =⎧⎨=⎩……………………6分(用代入消元法,做对可得分)20.(本题7分)解:3(2)41213x x x x --≤-⎧⎪⎨+>-⎪⎩①②解不等式①,得: 1.x ≥ ……………………2分 解不等式②,得: 4.x < ……………………4分所以原不等式组的解集为14x ≤<. ……………………6分不等式组的解集在数轴上表示为:……………………7分21.(本题8分)(1)点D (-2,3) . …………………2分 (2)平移后如图所示. …………………6分 (3)(3,2)P a b +-. …………………8分1B1C—七年级数学试卷第2页(共2页)—22.(本题6分) 证明:∵AB ∥CD∴1∠=∠CFE (两直线平行,同位角相等) ……………2分 ∵AE 平分BAD ∠∴1∠=∠2 ……………4分 ∵CFE E ∠=∠(已知) ∴∠2 =∠E ……………5分 ∴AD ∥BC (内错角相等,两直线平行) ……………6分23.(本题9分)(1) 100 ; ……………………2分 (2)如图所示; ……………………5分 360°×(1-20%-36%-19%)=90° ; ……………………7分(3)200036%720⨯=;答:估计对观看“经典咏流传”节目较喜欢的学生有720名.…………………9分 24.(本题10分) 解:(1)设大樱桃的进价为每千克x 元,小樱桃的进价为每千克y 元.依题意有: …………1分 202002008000.x y x y -=⎧⎨+=⎩,…………3分解,得:3010x y =⎧⎨=⎩ …………4分(4030)200(1610)2003200-⨯+-⨯=(元) …………5分答:大樱桃的进价为每千克30元,小樱桃的进价为每千10元;销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为每千克a 元,依题意有: …………6分200200(120%)168000320090%a +⨯-⨯-≥⨯, …………8分 解,得:41.6a ≥ …………9分 答:要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价至少应为每千克41.6元. …………10分5∠°∠°∠° A20% B ____% C 19% D ____% 3625 1A E DB C F 2 ∠°∠°。
《试卷3份集锦》安徽省名校2017-2018年七年级下学期期末学业质量检查模拟数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180B.220C.240D.300【答案】C【解析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.2.在实数35,,2,16,73π-中,无理数有()个A.2B.3C.4D.5【答案】A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.164,∴在实数35,,2,16,73π-中,无理数有2、3π共2个.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.求1+2+22+32+…+20162的值,可令S=1+2+22+32+…+20162,则2S=2+22+32+…+20162+20172,因此2S-S=20172-1,S=20172-1.参照以上推理,计算5+25+35+…+20165的值为()A.20175-1 B.20175-5 C.2017514-D.2017554-【答案】D【解析】仿照例子,设S=1+5+52+53+…+52016,由此可得出5S=5+52+53+…+52017,两者做差除以4即可得出S值,此题得解.【详解】设S=5+52+53+...+52016,则5S=52+53+ (52017)∴5S−S=52017−5,∴S=2017554-故选D.【点睛】本题考查了规律型中的数字的变化类,解题的关键是仿照例子计算1+5+52+53+…+52016, 本题属于基础题,难度不大,本题其实是等比数列的求和公式,但初中未接触过该方面的知识,需要借助于错位相减法来求出结论.4.已知方程组211x yx y+=⎧⎨-=-⎩,则x+2y的值为()A.2 B.1 C.-2 D.3 【答案】A【解析】方程组中两方程相减即可求出x+2y的值.【详解】211x yx y+=⎧⎨-=-⎩①②①-②得:x+2y=2,故选A.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.在等腰三角形ABC中,它的两边长分别为8cm和3cm,则它的周长为()A.19cm B.19cm 或14cm C.11cm D.10cm【答案】A【解析】从①当等腰三角形的腰长为8cm,底边长为3cm时;②当等腰三角形的腰长为3cm,底边长为8cm时,两种情况去分析即可.【详解】当8cm的边是腰时,三角形的周长=8+8+3=19cm,当3cm的边是腰时,因为3+3<8,所以不能组成三角形,所以等腰三角形ABC的周长=19cm,故选A .6.已知a 、b 均为实数,a <b ,那么下列不等式一定成立的是( )A .3﹣|a|>3﹣|b|B .a 2<b 2C .a 3+1<b 3+1D .22a b -<- 【答案】C【解析】利用特例对A 、B 、D 进行判断;利用不等式的性质和立方的性质得到a 3<b 3,然后根据不等式的性质对C 进行判断.【详解】∵a <b ,∴当a =﹣1,b =1,则3﹣|a|=3﹣|b|,a 2=b 2,1122a b ->-, ∴a 3<b 3,∴a 3+1<b 3+1.故选:C .【点睛】本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.7.一件商品按成本价提高40%后标价,再打8折销售,售价为240元,设这件商品的成本价为x 元,根据题意得,下面所列的方程正确的是( )A .40%80%240x ⨯=B .(140%)80%240x +⨯=C .24040%80%x ⨯⨯=D .40%24080%x =⨯ 【答案】B【解析】首先理解题意找出题中存在的等量关系:成本价×(1+40%)×80%=售价240元,根据此列方程即可.【详解】解:设这件商品的成本价为x 元,成本价提高40%后的标价为x(1+40%),再打8折的售价表示为x(1+40%)×80%,又因售价为240元, 列方程为:x(1+40%)×80%=240, 故选B .【点睛】本题考查了一 元一次方程的应用,解此题的关键是理解成本价、标价、售价之间的关系及打8折的含义. 8.关于x 的方程的解为正数,则m 的取值范围是 A . B . C . D . 【答案】B【解析】用含m的代数式表示x,由x>0,通过计算即可得到m的取值范围.【详解】解:,则,∵,∴,解得:,故选择:B.【点睛】本题考查了一元一次不等式的解法,掌握不等式的解法是解题的关键.9.下列调查活动中适合用全面调查的是()A.“最强大脑”节目的收视率B.调查乘坐飞机的旅客是否带了违禁物品C.某种品牌节能灯的使用寿命D.了解我省中学生课外阅读的情况【答案】B【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、“最强大脑”节目的收视率,调查范围广适合抽样调查,故A不符合题意;B、调查乘坐飞机的旅客是否带了违禁物品,事关重大的调查适合普查,故B符合题意;C、某种品牌节能灯的使用寿命,调查具有破坏性,适合抽样调查,故C不符合题意;D、了解我省中学生课外阅读的情况,调查范围广适合抽样调查,故D不符合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.某种服装的进价为240元,出售时标价为320元,由于换季,商店准备打折销售,但要保持利润不低于20%,那么至多打()A.6折B.7折C.8折D.9折【答案】C【解析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x折,由题意得360×0.1x﹣240≥240×20%,解得:x≥1.答:至多打1折.故选C.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.二、填空题题11.已知∠A的两边与∠B的两边分别平行,且∠A比∠B的3倍少40°,那么∠A=______°.【答案】20°或125°【解析】设∠B的度数为x,则∠A的度数为3x-40°,根据两边分别平行的两个角相等或互补得到x=3x-40°或x+3x-40°=180°,再分别解方程,然后计算3x-40°的值即可.【详解】解:设∠B的度数为x,则∠A的度数为3x-40°,当∠A=∠B时,即x=3x-40°,解得x=20°,∴∠A=20°;当∠A+∠B=180°时,即x+3x-40°=180°,解得x=55°,∴∠A=125°;即∠A的度数为20°或125°.故答案为:20°或125°.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,掌握平行线的性质是解题的关键.12.若a2-3b=4,则2a2-6b +2019=_____.【答案】2027【解析】将a2-3b=4代入原式=2(a2-3b)+2019,计算可得.【详解】当a2−3b=4时,原式=2(a2−3b)+2019=2×4+2019=2027,故答案为2027.【点睛】本题考查有理数的加减运算,解题的关键是掌握整体代入法.13.某路口南北方向红绿灯的设置时间为:红灯40s,绿灯60s,黄灯3s.小明的爸爸随机地由南往北开车经过该路口,则他遇到红灯的概率是_____.【答案】40 103【解析】由红灯40s,绿灯60s,黄灯3s,直接利用概率公式求解即可求得答案.【详解】:∵该路口红灯的时间为40s,绿灯时间为60s,黄灯时间为3s,∴小明的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是4040 40603103++=;故答案为:40 103.【点睛】本题主要考查等可能时间的概率,注意解决此题的关键是:测度比为时间长度比.14.一列方程如下排列:1142x x -+=的解是2x =, 2162x x -+=的解是3x =, 3182x x -+=的解是4x =. ……根据观察所得到的规律,请你写出其中解是2019x =的方程是______. 【答案】2018140382x x -+= 【解析】根据观察,可发现规律:第一个的分子是x 分母是解的二倍,第二个分子是x 减比解小1的数,分母是2,可得答案. 【详解】解:∵1142x x -+=的解是2x =, 2162x x -+=的解是3x =, 3182x x -+=的解是4x =, …∴根据观察得到的规律是:第一个的分子是x 分母是解的二倍,第二个分子是x 减比解小1的数,分母是2,解是x=2019的方程:2018140382x x -+=. 故答案为:2018140382x x -+=. 【点睛】本题考查了一元一次方程的解,观察方程得出规律是解题关键.15.已知x ,y 都是实数,且25y =,则3x y +的算术平方根是______. 【答案】1【解析】直接利用二次根式有意义的条件得出x ,y 的值,进而得出答案.【详解】y x 25=-,x 6∴=,则y 25=,故x 3y 81+=的算术平方根是:1.故答案为:1.【点睛】此题主要考查了二次根式有意义的条件,正确得出x,y的值是解题关键.16.一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是_____.【答案】0.1【解析】由于这50个数据被分为5组,所以这5组的数据之和为50,用总数减去第1-4组的频数即为第5组的频数;接下来依据频率=频数÷总数代入数据计算即可得解.【详解】解:(50-12-10-15-8)÷50=0.1故答案为:0.1.【点睛】本题属于频率的计算问题,关键是找出第5组的频数并熟记频率的计算公式:频率=频数÷总数.17.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是______.【答案】3m≤.【解析】先用含有m的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m的不等式,从而解答即可.【详解】在841x xx m+<-⎧⎨>⎩中,由(1)得,3x>,由(2)得,x m>,根据已知条件,不等式组解集是3x>.根据“同大取大”原则3m≤.故答案为:3m≤.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.三、解答题18.如图,AB=EB,BC=BF,ABE CBF∠=∠.EF和AC相等吗?为什么?【答案】见解析【解析】分析:因为∠ABE=∠CBF,所以都加上∠CBE得到∠ABC=∠EBF,再根据“边角边”判定方法判定△ABC 与△EBF 全等,最后根据全等三角形对应边相等解答即可.详解:EF=AC .理由:∵∠ABE=∠CBF,∴∠ABE+∠EBC=∠CBF+∠EBC ,即∠ABC=∠EBF,在△ABC 和△EBF 中,AB=EB ,∠ABC=∠EBF ,BC=BF∴△ABC ≌△EBF (SAS ),∴EF=AC .点睛:本题主要考查三角形全等“边角边”的判定方法,证出对应角∠ABC=∠EBF 是运用判定定理证明的关键.19.如图1是一个五角星.(1)计算:∠A+∠B+∠C+∠D+∠E 的度数.(2)当BE 向上移动,过点A 时,如图2,五个角的和(即∠CAD+∠B+∠C+∠D+∠E )有无变化?说明你的理由.(3)如图3,把图2中的点C 向上移到BD 上时,五个角的和(即∠CAD +∠B +∠ACE +∠D +∠E)有无变化?说明你的理由.【答案】:()1180A B C D E ∠+∠+∠+∠+∠=;()2不变,180CAD B ACE D E ∠+∠+∠+∠+∠=; 理由见解析.(3)无变化.理由见解析.【解析】(1)运用三角形的内角和定理求解;(2)利用三角形的外角等于与它不相邻的两内角之和求解;(3)把五个角转化为一个平角求解即可【详解】(1)AC 与BE 相交于点H ,AD 与BE 相交于点G ,如图,∵∠AHG 是△HCE 的外角,∴∠AHG=∠C+∠E ,∵∠AGH 是△GBD 的外角,∴∠AGH=∠B+∠D ,∵∠A+∠AHG+∠AGH=180,∴∠A+∠B+∠C+∠D+∠E=180°;(2)不变,∠CAD+∠B+∠ACE+∠D+∠E=180°.理由:由三角形的外角性质,知∠BAC=∠E+∠ACE ,∠EAD=∠B+∠D ,∴∠C+∠E+∠CAD+∠B+∠D=180°,即∠CAD+∠B+∠C+∠D+∠E=180°.(3)无变化.∵∠ACB=∠CAD+∠D ,∠ECD=∠B+∠E ,∴∠CAD+∠B+∠ACE+∠D+∠E=∠ACB+∠ACE+∠ECD=180°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系. 20.如图,已知H 、D 、B 、G 在同一直线上,分别延长AB 、CD 至E 、F ,∠1+∠2=180°.(1)求证AE ∥FC .(2)若∠A =∠C ,求证AD ∥BC .(3)在(2)的条件下,若DA 平分∠BDF ,那么BC 平分∠DBE 吗?为什么?【答案】(1)证明见解析;(2)证明见解析;(3)BC 平分DBE ∠,理由见解析.【解析】(1)直接利用已知得出2CDB ∠=∠,进而得出答案;(2)利用平行线的性质结合已知得出180CDA BCF ∠+∠=︒,即可得出答案; (3)利用平行线的性质结合角平分线的定义得出EBC DBC ∠=∠,即可得出答案.【详解】()1证明:12180∠+∠=又1180CDB ∠+∠=,2CDB ∴∠=∠,//AE FC ∴;()2证明://AE FC ,180CDA DAE ∴∠+∠=,DAE BCF ∠=∠,180CDA BCF ∴∠+∠=,//AD BC ∴;()3解:BC 平分DBE ∠,理由://AE FC ,EBC BCF ∴∠=∠,//AD BC ,BCF FDA ∴∠=∠,DBC BDA ∠=∠,又DA 平分BDF ∠,即FDA BDA ∠=∠,EBC DBC ∴∠=∠,BC ∴平分DBE ∠.【点睛】此题主要考查了平行线的判定与性质,正确应用平行线的性质是解题的关键. 21.先化简,再求值(x +2y)2 -(8x 2 y 2 +10xy 3 -2xy) ÷2xy ,其中x =-1,y =-2.【答案】x 2-y 2+1;-2.【解析】利用完全平方公式,同底数幂的除法法则化简代入即可.【详解】(x +2y)2 -(8x 2y 2+10xy 3-2xy)÷2xy=x 2 +4xy +4y 2 -(4xy +5y 2 -1)=x 2 +4xy +4y 2 -4xy -5y 2 +1=x 2 -y 2 +1当 x =-1,y =-2 时,原式=(-1)2 -(-2)2 +1=1-4+1=-2【点睛】本题主要考查完全平方公式,同底数幂的除法法则,熟悉掌握是关键.22.(1)计算:310.0484+--;(2)解不等式:11237x x --,并在数轴上表示它的解集. 【答案】(1) 2.3;(2)4x ,见解析.【解析】(1)化简算术平方根,化简立方根,再计算加减可得;(2)先去分母,再去括号,移项,合并同类项,把化系数为1,再在数轴上表示出其解集即可.【详解】(1)原式=0.2﹣212-=﹣2.1. (2)去分母得:7(1﹣x )≤1(1﹣2x ),去括号得:7﹣7x ≤1﹣6x ,移项得:6x ﹣7x ≤1﹣7,合并同类项得:﹣x ≤﹣2,把化系数为1得:x ≥2.在数轴上表示为:【点睛】本题考查了实数的运算和解一元一次不等式.掌握相关的运算法则和解题步骤是解答本题的关键. 23.小明在拼图时,发现8个大小一样的小长方形,恰好可以拼成一个大的长方形.如图(1)所示,小红看见了,说“我来试一试”,结果小红七拼八凑,拼成如图(2)那样的正方形,可中间还留下一个边长为6cm 的小正方形.请你求出这些小长方形长和宽.【答案】小长方形的长为30cm ,宽为18cm .【解析】设小长方形的长为xcm ,宽为ycm ,观察图形,可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设小长方形的长为xcm ,宽为ycm ,根据题意得:3562x y x y =⎧⎨+=⎩解得:3018x y =⎧⎨=⎩. 答:小长方形的长为30cm ,宽为18cm .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 24.如图,在ABC △中,AB AC =,点D 在AC 上,且BD BC AD ==,求A ∠的度数.【答案】36A ∠=︒【解析】根据等边对等角可得∠ABC=∠C ,∠A=∠ABD ,∠C=∠BDC ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BDC=∠A+∠ABD=2∠A ,然后根据三角形的内角和定理列出方程求解即可.【详解】∵AB=AC ,∴∠ABC=∠C ,∵BD=BC=AD ,∴∠A=∠ABD ,∠C=∠BDC ,在△ABD 中,∠BDC=∠A+∠ABD=2∠A ,在△ABC 中,∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,∴∠A=36°.【点睛】本题考查了等腰三角形的性质,主要利用了等边对等角的性质,三角形的内角和定理,以及三角形的一个外角大于任何一个与它不相邻的内角的性质,熟练掌握相关性质是解题的关键.25.阅读下面材料:小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>1的解集.小明同学的思路如下:先根据绝对值的定义,求出|x|恰好是1时x 的值,并在数轴上表示为点A ,B ,如图所示.观察数轴发现,以点A ,B 为分界点把数轴分为三部分:点A 左边的点表示的数的绝对值大于1;点A ,B 之间的点表示的数的绝对值小于1;点B 右边的点表示的数的绝对值大于1.因此,小明得出结论绝对值不等式|x|>1的解集为:x <-1或x >1.参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式的解集.①|x|>1的解集是.②|x|<2.5的解集是.(2)求绝对值不等式2|x-1|+5>11的解集.(1)直接写出不等式x2>4的解集是 .【答案】(3)①x>3或x<-3;②-2.4<x<2.4;(2)x>7或x<-3;(3)x>2或x<-2.【解析】(3)先根据绝对值的定义,当|x|=3时,x=3或-3.再根据题意即可得;(2)将2|x-3|+4>33化为|x-3|>4后,求出当|x-3|=4时,x=7或-3根据以上结论即可得;(3)将x2>4化为|x|>2,再根据题意即可得.【详解】解:(3)①根据绝对值的定义,当|x|=3时,x=3或-3,分界点把数轴分为三部分:点-3左边的点表示的数的绝对值大于3;点-3,3之间的点表示的数的绝对值小于3;点3右边的点表示的数的绝对值大于3.因此,绝对值不等式|x|>3的解集是 x>3或x<-3.②根据绝对值的定义,当|x|=2.4时,x=2.4或-2.4,分界点把数轴分为三部分:点-2.4左边的点表示的数的绝对值大于2.4;点-2.4,2.4之间的点表示的数的绝对值小于2.4;点2.4右边的点表示的数的绝对值大于2.4.因此,绝对值不等式|x|<2.4的解集是-2.4<x<2.4.故答案是:①x>3或x<-3;②-2.4<x<2.4;(2)2|x-3|+4>33∴2|x-3|>8∴|x-3|>4根据绝对值的定义,当|x-3|=4时,x=7或-3,分界点把数轴分为三部分:点-3左边的点表示的数与3的差的绝对值大于4;点-3,7之间的点表示的数与3的差的绝对值小于4;点7右边的点表示的数与3的差的绝对值大于4∴|x-3|>4的解集为x>7或x<-3;∴2|x-3|+4>33的解集为x>7或x<-3;(3)∵x2>4∴|x|>2根据绝对值的定义,当|x|=2时,x=2或-2,分界点把数轴分为三部分:点-2左边的点表示的数的绝对值大于2;点-2,2之间的点表示的数的绝对值小于2;点2右边的点表示的数的绝对值大于2.因此,绝对值不等式|x|>2的解集是 x>2或x<-2.∴不等式x2>4的解集是 x>2或x<-2.故答案是:x>2或x<-2.【点睛】本题主要考查解绝对值不等式,解题的关键是读懂题目中绝对值的几何意义,利用几何意义进行解题.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.空气是由多种气体混合而成的,为了简明扼要的介绍空气的组成情况,较好的描述数据,最适合使用的统计图是()A.扇形图B.条形图C.折线图D.直方图【答案】A【解析】根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选A.2.16的算术平方根是()A.4 B.﹣4 C.±4 D.2【答案】A【解析】根据算术平方根的定义解答即可.【详解】解:16的算术平方根是4,故选A.【点睛】本题考查了算术平方根,熟记概念是解题的关键.3.将图中的叶子平移后,可以得到的图案是()A.B.C.D.【答案】A【解析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.4.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是 A .2B .3C .4D .5【答案】C【解析】试题分析:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .5.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( ) A . B . C . D .【答案】B【解析】不等式2x>-4,解得x>-2;不等式357x -≤,解得4x ≤;所以不等式组24{357x x --≤>的解集为24x -<≤, 4取得到,所以在数轴上表示出来在4这点为实心,-2取不到,所以在数轴上表示出来在-2这点为空心,表示出来为选项中B 中的图形,故选B【点睛】本题考查不等式组,解答本题需要考生掌握不等式组的解法,会求不等式的解集,掌握数轴的概念和性质 6.下表是两名运动员10次比赛的成绩,21s ,22s 分别表示甲、乙两名运动员测试成绩的方差,则有( )A .2212s s > B .2212s s = C .2212s s < D .无法确定【答案】A【解析】先求甲乙平均数,再运用方差公式求方差.【详解】因为,14892104910x ⨯+⨯+⨯== ,23894103910x ⨯+⨯+⨯==,所以,()()()222211894992109410S ⎡⎤=-⨯+-⨯+-⨯⎣⎦=45,()()()222221893994109310S ⎡⎤=-⨯+-⨯+-⨯⎣⎦=35,所以,2212s s >故选A【点睛】本题考核知识点:方差.解题关键点:熟记方差公式. 7.如果点P (2x+3,x-2)是平面直角坐标系的第四象限内的整数点,那么符合条件的点有()个A .2B .3C .4D .5【答案】B【解析】根据第四象限坐标点可知23020x x +⎧⎨-⎩><,解出x 的取值范围即可判定.【详解】解:点P (2x+3,x-2)是平面直角坐标系的第四象限内的整数点,则23020x x +⎧⎨-⎩>①<②,由①得:32x >-,由②得:2x <,∴32x -<<2,∵P 为整数点,∴x=-1或0或1,则符合条件的点共3个,故选B.【点睛】本题是对坐标系知识的考查,准确根据题意列出不等式组是解决本题的关键.8.不等式732122x x --+<的负整数解有( ) A .0个B .1个C .2个D .4个【答案】B 【解析】先求出不等式的解集,在取值范围内可以找到非负整数解.【详解】解:732122x x --+< 去分母,得:7232x x -+<-,移项、合并,得:23x -<,系数化为1,得:32x >-, ∴不等式的负整数解只有-1这1个,故选:B .【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.如图,将AOB 绕点O 逆时针旋转45后得到DOE ,若15AOB =,则AOE ∠的度数是( )A .25B .30C .35D .40【答案】B 【解析】由已知求出旋转角,再根据角的和差关系求得∠AOE=∠BOE-∠AOB=45〬-15〬.【详解】由已知可得,旋转角:∠BOE=45〬,所以,∠AOE=∠BOE-∠AOB=45〬-15〬=30〬. 故选:B【点睛】本题考核知识点:旋转角,角的和差倍. 解题关键点:理解旋转角的定义.10.关于x 的不等式组0233(2)x m x x ->⎧⎨-≥-⎩恰有四个整数解,那么m 的取值范围为( ) A .10m -≤<B .10m -<<C .1m ≥-D .0m < 【答案】A【解析】可先用m 表示出不等式组的解集,再根据恰有四个整数解可得到关于m 的不等组,可求得m 的取值范围.【详解】在233(2)x mx x->⎧⎨-≥-⎩①②中,解不等式①可得x>m,解不等式②可得x⩽3,由题意可知原不等式组有解,∴原不等式组的解集为m<x⩽3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴−1⩽m<0,故选A.【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键二、填空题题11.若一个多边形的内角和是900º,则这个多边形是边形.【答案】七【解析】根据多边形的内角和公式()2180n-⋅︒,列式求解即可.【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,解得7n=.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.12.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2=_____;【答案】90°【解析】试题解析:AB∥CD,180BAC ACD∠+∠=,∵AE平分∠BAC,CE平分∠ACD,111,222BAC ACD ∴∠=∠∠=∠, 1112()18090.22BAC ACD ∴∠+∠=∠+∠=⨯= 故答案为90.点睛:两直线平行,同旁内角互补.13.如图,直线AB .CD 相交于点E ,EF ⊥AB 于点E ,若∠AED=145°,则∠CEF=______°.【答案】1【解析】直接利用互补的性质得出∠BED 的度数,再利用垂直的定义进而得出答案.【详解】解:∵∠BED 与∠AED 互补,∴∠BED=180°-∠AED=180°-145°=35°,∵EF ⊥AB 且∠AEC=∠BED=35°,∴∠CEF=90°-∠ACE=90°-35°=1°.故答案为1.【点睛】此题主要考查了垂线以及互补的定义,正确得出∠BED 的度数是解题关键.14.如图,△ABC 中,AP 垂直∠ABC 的平分线BP 于点P .若△ABC 的面积为32cm 2,BP=6cm,且△APB 的面积是△APC 的面积的3倍.则AP =________cm.【答案】4【解析】分析:延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△EBP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,再根据已知条件△ABC 的面积为32cm 2,即可求得△APB 的面积,再根据面积公式即可求得AP 的长.详解:如图所示:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP=∠EBP ,∠APB=∠BPE=90°,在△ABP 和△EBP 中,ABP EBP BP BPAPB EPB ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△ABP ≌△EBP (ASA ),∴S △ABP =S △EBP ,AP=EP ,∴△APC 和△CPE 等底同高,∴S △APC =S △PCE ,∵S △ABP =3S △APC ,∴S △EBP =3S △PCE ,设S △PCE =x,则S △APC =x, S △ABP =S △EBP =3x,∵△ABC 的面积为32cm 2∴x+x+3x+3x=32,∴x=4,∴S △ABP =13.∵AP 垂直∠ABC 的平分线BP 于点P ,∴S △ABP =1·2AP BP =12 又∵BP =6cm∴AP=4点睛:主要考查面积及等积变换以及全等三角形的判定与性质,熟练掌握全等三角形的判定和性质是解题的关键.15.已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 【答案】±3【解析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.16.如图,是近几天的天气情况,设今天的气温为x℃,用不等式表示今天的气温为______.【答案】17≤x≤1【解析】直接利用提供的图片得出今天的天气温度范围.【详解】解:由图可得:今天的气温为17≤x≤1.故答案为:17≤x≤1.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确识图、能用不等式表示变量的范围是解题关键.17.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2018根火柴棍,并且正三角形的个数比正六边形的个数多7个,那么能连续搭建正三角形的个数是_____.【答案】1【解析】设搭建了x 个正三角形,y 个正六边形,则搭建正三角形用掉了(2x+1)根火柴棍,搭建正六边形用掉了(5y+1)根火柴棍,根据“搭建正三角形和正六边形共用了2018根火柴棍,并且正三角形的个数比正六边形的个数多7个”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】设搭建了x 个正三角形,y 个正六边形,则搭建正三角形用掉了(2x+1)根火柴棍,搭建正六边形用掉了(5y+1)根火柴棍,依题意,得:721512018x y x y -=⎧⎨+++=⎩, 解得:293286x y =⎧⎨=⎩. 故答案为1.【点睛】本题考查了二元一次方程组的应用以及规律型:图形的变化类,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题18.解不等式组243(1)17252x x x x -≤+⎧⎪⎨+->⎪⎩,并写出不等式组的最大整数解. 【答案】-4【解析】先求出每个不等式的解集,再求出不等式组的解集即可. 【详解】解:解不等式243(1)x x -+得:7x -, 解不等式17252x x +->得:113x <-, ∴不等式组的解集是1173x -<-, ∴该不等式组的最大整数解为4-. 【点睛】本题考查了解一元一次不等式(组),不等式组的整数解的应用,解此题的关键是求出不等式组的解集. 19.先化简,再求值:[(x +y)2-y(2x +y)-8xy ]÷(2x ),其中x =2,y =12. 【答案】1【解析】先根据整式混合运算顺序和运算法则化简原式,再将x 、y 代入计算可得.【详解】原式=(x 2+2xy+y 2-2xy-y 2-8xy )÷(2x )=(x 2-8xy )÷(2x )=12x-4y ,当x=2、y=-12时, 原式=12×2-4×(-12) =1+2=1.【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.20.(1)因式分解:2(2)(2)a b b -+-(2)已知x ≠y ,且210x x -=,210y y -=,则x +y 的值. 【答案】(1)(1)(1)(2)a a b +--或(2)(1)(1)b a a -+-;(2)1x y +=【解析】利用因式分解和平方差公式。
2017-2018学年安徽省芜湖市七年级(下)期末数学试卷
2017-2018学年安徽省芜湖市七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3.00分)4的算术平方根是()A.﹣4 B.4 C.﹣2 D.22.(3。
00分)二元一次方程x+y=5有()个解.A.1 B.2 C.3 D.无数3.(3。
00分)如图,能判断直线AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°4.(3.00分)下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2) D.(3,﹣2)5.(3。
00分)为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57%D.73%6.(3。
00分)如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段()的长.A.PO B.RO C.OQ D.PQ7.(3.00分)若m=﹣4,则估计m的值所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<58.(3.00分)在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式9.(3.00分)如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270° C.360° D.540°10.(3。
00分)如图,周董从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,则∠ABC的度数是()A.80°B.90°C.100° D.95°11.(3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省2017-2018学年度第二学期期末教学质量测试
七年级数学试卷
一、选择题(每小题2分,共18分)
1.下列各式中,是一元一次方程的是 ( ) (A )2x y -= (B )10y -= (C )1
2
x -
(D )2xy = 2.不等式2x ≤4的解集,在数轴上表示正确的是 ( )
(A ) (B ) (C ) (D )
3.下列四个图形中,既是轴对称图形又是中心对称图形的是 ( )
4.已知a >b ,0c ≠,则下列关系式一定成立的是 ( ) (A )ac >bc (B )
c a >c
b
(C )-a >-b (D )c+a >c+b 5.若一个正多边形的一个外角是36
°,则这个正多边形的边数是 ( ) (A )1 0 (B )9
(
C )8 (
D )6
6.用下列一种正多边形铺地板,能恰好铺满地面的是 ( ) (A )正五边形 (
B )正六边形 (
C )正七边形 (
D )正八边形 7.如图,在钝角△ABC 中,画AC 边上的高,正确的是 ( )
(A ) (B )
(C ) (D )
8.两个正方形和一个正六边形按如图方式放置在同一平面内,则∠α的度数为( ) (A )60° (B
)50° (C )40° (D )30°
(A )
(B )
(C )
(D )
B
C
E A
A
B C
A
B
C
E
A E C
B
A
B
C
(8题图)
(9题图)
D C
O
B A
9.如图,△ABC 中AB 边的长为10,则△ABC 的周长可能为 ( ) (A )16 (B )18 (C )20
(D )22
二、填空题(每小题3分,共18分)
10.五边形的内角和为_____________.
11.如图,△AOB ≌△COD ,28B ∠=︒,90C ∠=︒,则COD ∠的度数是________.
12.如图,已知1100∠= ,2140∠
=
,那么3∠= . 13.如图,点A ,B,C,D,O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为______2
(13题图) (14题图)
14.如图,从n 边形的一个顶点....引出的对角线把n 边形分成 个三角形(用含n 的代数式表示).2 15.甲、乙两地距离630千米,一辆快车以90千米/时的速度从甲地出发,2小时后,另有一辆慢车以60
千米/时的速度从乙地出发,求慢车出发几小时后两车相遇.设慢车出发x 小时后两车相遇, 请您列出方程 .
三、解答题(本大题共11小题,共64分)
16.(5分)解方程:()()3312536x x +=-+.
17.(5分)已知在△ABC 中,∠A=60º,∠C=3∠B ,试判断△ABC 的形状
18.(5分)解方程组:⎩⎨
⎧=-=+.
1123,12y x y x
1
3
2 (12题图)
(11题图)
19.(5分)如图,在△ABC 中,∠C =90º,∠B =40º,AD 是∠BAC 的角平分线,求 ∠ADC 的度数.
20.(5分)解不等式组:⎪⎩⎪
⎨⎧>+-≤-x x x x 42
7)1(352
21.(5分)观察以下图形,回答问题:
(1)图②有 个三角形;图③有 个三角形;图④有 个三角形;…… 猜测第七个
图形中有 个三角形.w
(2)第n 个图形中有 个三角形(用含n 的代数式表示).
22.(6分)对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用
整体代入法: 如解方程组:2()31x x y x y ++=---⎧⎨
+=---⎩①②
解:把②代入①得, 213,x +⨯=解得 1.x = 把1x =代入②得, 0.y = 所以方程组的解为 10.
x y =⎧⎨
=⎩,
请用同样的方法解方程组:22025297x y x y y --=----⎧⎪
⎨-++=----⎪⎩
①②
① ② ③
④
……
(19题图)
P
B
A
C
23.(6分)如图, △ABC ≌△ADE,∠BAD =52°. (1)求∠EAC 的度数.
(2)△ADE 可以看做是由△ABC 绕着点 ,按 (填顺时针或逆时针)方向,旋转
度角形成的.2·1·c ·n ·j ·y
24.(7分)如图,在边长均为1cm 的正方形网格中,△ABC 的三个顶点和点A '均在格点上。
(1)在图①中画出△ABC 关于直线l 的对称图形△111A B C ;
(2)在图②中将△ABC 向右平移,使点A 平移至点A '处,得到△C B A ''',在图中画出
△C B A ''',并求出边AC 扫过的图形面积.
25.(7分)如图,△ABC ,点P 是∠B 、∠C 的平分线交点. (1)若∠A=80°,求∠BPC 的度数. (2)有位同学在解答(1)后得出∠
BPC=90°+1
2
∠A 的规律,你认为正确吗?请给出 理由.
E
D
C
B A
(23题图)
′ 图①
图②
(24题图)
(25题图)
26.(8分)长春消夏灯会节将在长春农博园举办.承办方计划在现场安装小彩灯和大彩灯.已知:安装5个小彩灯和4个大彩灯共需150元;安装7个小彩灯和6个大彩灯共需220元.
(1)安装1个小彩灯和1个大彩灯各需多少元.
(2)若承办方安装小彩灯和大彩灯的数量共300个,费用不超过4350元,则最多安装大彩灯
...多少个?
七年级数学参考答案及评分标准
一、选择题(每小题2分,共18分)
10.540°
11.62° 12.60° 13.90°
14.2-n 15.630)6090(290=++⨯x 三、解答题(本大题共11小题,共64分) 16.(5分)解:3(31)2(53)+6x x +=- 931066x x +=-+ (2分)
9103x x -=- (1分)
3x -=- (1分)
3x =. (1分)
17.(5分)∵ ∠A+∠B+∠C=180º ∠A=60º ∴ ∠B+∠C=120º (2分) 又∵ ∠C=3∠B
∴ ∠B+3∠B =120º (1分) ∴∠B=30º ∴∠C=90º (1分) ∴△ABC 是直角三角形 (1分)
18.(5分)解:(1)+ (2):412x = 解得:3x = (2分)
把3x =代入(1) 解得:1y =- (2分) ∴ 3
1
x y =⎧⎨
=-⎩ (1分)
19.(5分)解:∵∠C =90º,∠B =40º
∴∠BAC=50º (2分) ∵AD 是∠BAC 的角平分线 ∴∠BAD=
1
2
∠BAC=25º (2分) ∴∠ADC =∠B+∠BAD= 40º+25º=65º (1分) 20.(5分) 解不等式①得,x ≥2- (2分) 解不等式②得,x <1 (2分)
∴原不等式组的解集为2-≤x <1 (1分) 21.(5分)(1)3, 5, 7, 13. (每空1分,共4分)
(2)(2n-1)或1+2(n-1) (1分)
22.(6分)由①得,22=-y x ③ (2分)
把③代入②得,
927
5
2=++y 4=y (2分) 把4=y 代入③得,3=x (1分) ∴ 34.x y =⎧⎨
=⎩
,
(1分) 23.(6分)(1)由△ABC ≌△ADE ,得DAE BAC ∠=∠,(1分)
BAE DAE BAE BAC ∠-∠=∠-∠,(1分)
即得
52=∠=∠BAD EAC (1分)
(2) A 顺时针 52 (每空1分,共3分)
24.(7分)(1) (图正确2分)
(2)(图正确2分)
边AC 扫过的图形面积为:6×4=24(cm 2
).(3分)
25.(7分)(1)过程(3分) ∠BPC=130°结果(1分) (2)给出∠BPC=90°+
1
2
∠A 正确(1分) 过程(2分)
26.(8分)(1)设安装1个小彩灯需x 元,1个大彩灯需y 元.(1分) ⎩⎨
⎧=+=+220
67150
45y x y x (2分)
/
解得:⎩
⎨⎧==2510
y x (1分)
答:安装1个小彩灯和1个大彩灯各需10元和25元. (2)设安装大彩灯a 个,则小彩灯)300(a -个.(1分) 10)300(a -+25a ≤4350 (1分) a ≤90 (1分) 答:最多安装大彩灯90个. (1分)
注:采用本参考答案以外的解法,只要正确均按步骤给分。