2.1有理数例题与讲解(2013-2014学年华师大七年级上)

合集下载

2.11有理数的乘方例题与讲解2013-2014学年华师大七年级上

2.11有理数的乘方例题与讲解2013-2014学年华师大七年级上

2.11 有理数的乘方1.有理数乘方的概念 (1)乘方的意义:一般地,n 个相同的因数a 相乘:,记作a n ,即=a n ,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数,a n 读作a 的n 次方(或a 的n 次幂).(2)乘方的表示方法(3)学习乘方的意义,需要注意的几个方面: ①注意乘方的双重含义乘方指的是求几个相同因数的积的运算,其结果叫做幂.由此不难发现,乘方具有双重含义:一是乘方表示一种运算;二是乘方表示一种特殊的乘法运算的结果.如25中,25可以看成一种运算,表示有5个2相乘,即25=2×2×2×2×2,这时,25应读作2的五次方;另一方面,25又可看成5个2相乘的结果,即2×2×2×2×2=25,这时25却读作2的5次幂;②注意乘方底数的书写格式乘方的书写一定要规范,不然会引起误会.当底数是负数或分数时,一定要记住添上括号,以体现底数是负数或分数的整体性.如(-3)×(-3)×(-3)×(-3)应记作(-3)4,不能记作-34.(-3)4与-34表示的意义和结果完全不同.前者表示4个-3相乘,结果为81;后者为4个3相乘的积的相反数,结果为-81.再如54×54×54×54×54×54应记作⎝ ⎛⎭⎪⎫546,不能记作564;③一个数可以看成这个数本身的一次方,如3就是31,a 就是a 1,只是指数1通常省略不写;④a n 与-a n 的区别:ⅰ.a n 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.ⅱ.-a n 表示n 个a 乘积的相反数,底数是a ,指数是n ,读作:a 的n 次方的相反数.如:(-3)3底数是-3,指数是3,读作-3的3次方,表示3个-3相乘,(-3)3=(-3)×(-3)×(-3)=-27.-33底数是3,指数是3,读作3的3次方的相反数.-33=-(3×3×3)=-27.所以(-3)3与-33的结果虽然都是-27,但表示的含义并不同.⑤注意乘方运算的转化.计算乘方运算的结果时,应将乘方运算转化为乘法运算来完成.如计算(-5)3时,应将它转化为计算(-5)×(-5)×(-5)的积;再如计算⎝ ⎛⎭⎪⎫124时,应将它转化为计算12×12×12×12的积.【例1】 把下列各式写成乘方的形式,并指出底数,指数各是什么? (1)(-8.3)×(-8.3)×(-8.3)×(-8.3)×(-8.3); (2)25×25×25×25;(3)a ×a ×a ×…×a (2 011个a ).分析:以上三题都是相同因数相乘,可用乘方的形式表示,相同因数为底数,相同因数的个数为指数,指数写在右上角.解:(1)(-8.3)×(-8.3)×(-8.3)×(-8.3)×(-8.3)=(-8.3)5; (2)25×25×25×25=⎝ ⎛⎭⎪⎫254;(3)a ×a ×a ×…×a (2 011个a )=a 2 011.警误区 书写乘方的注意事项 当底数是负数或分数时,写成乘方的形式时,底数一定要加上括号,如(1),(2)两题.2.乘方运算的符号法则(1)有理数乘方的符号法则:①正数的任何次幂是正数;②负数的偶次幂是正数,奇次幂是负数;③0的任何次幂等于0;1的任何次幂等于1.(2)根据乘方的符号法则和乘方运算的转化,关于乘方有如下几个性质: ①0的任何正整数次幂都是0;互为相反数的偶次幂相等;互为相反数的奇次幂互为相反数.如0n =0(n 是正整数);(-4)6=46;(-4)3=-43.②进行乘方运算时与其他运算一样,先要确定符号,再计算出绝对值,同时还应注意(-a )2n =a 2n ,(-a )2n +1=-a 2n +1(n 是正整数),由乘方的法则我们还知道:a 2n ≥0,即任何有理数的偶次幂是非负数.谈重点 决定乘方结果的符号的因素 有理数乘方结果的符号取决于:一底数的符号,二指数的奇偶.【例2】 利用有理数乘方运算的符号法则计算: (1)(-3)2;(2)1.53;(3)⎝ ⎛⎭⎪⎫-434;(4)(-1)11;(5)(-1)2;(6)(-1)2n ;(7)(-1)2n -1.分析:根据有理数乘方的符号法则:(2)正数的任何次幂都是正数,(1)(3)(5)(6)是负数的偶次幂,结果为正;(4)(7)是负数的奇次幂,结果为负.解:(1)(-3)2=3×3=9; (2)1.53=1.5×1.5×1.5=3.375; (3)⎝ ⎛⎭⎪⎫-434=43×43×43×43=25681; (4)(-1)11=-1; (5)(-1)2=1; (6)(-1)2n =1; (7)(-1)2n -1=-1.3.有理数乘方的运算有理数乘方运算的思路:确定幂的符号;确定幂的绝对值.有理数的乘方是一种特殊的乘法运算——因数相同的乘法运算,幂是乘方运算的结果.因此有理数的乘方运算可以转化为乘法来运算,先根据有理数乘方的符号法则确定幂的符号,再根据乘方的意义把乘方转化为乘法,来运算幂的绝对值,最后得出幂的结果.例如计算(-5)3,先确定幂的符号为“-”号,再计算53=125,即(-5)3=-125;再如,计算(-2)×32时,先算32=9,再算(-2)×9=-18.正确理解有理数乘方的意义是进行乘方运算的前提,千万不能把底数与指数直接相乘.在进行有理数的乘方运算时要辨别清楚底数和指数,以及符号问题,避免出错.【例3-1】计算:(1)-33;(2)(-2)2;(3)(-3×2)3;(4)-(-2)3.分析:运算时,先确定符号,再计算乘方.(1)负号在幂的前面,结果是负数;(2)负数的偶次幂,结果是正数;(3)先计算底数-3×2=-6,再计算(-6)3;(4)先计算(-2)3,其结果是负数,再加上前面的负号,最后结果是正数.解:(1)-33=-(3×3×3)=-27;(2)(-2)2=4;(3)(-3×2)3=(-6)3=-216;(4)-(-2)3=-(-8)=8.警误区勿把底数乘指数在进行乘方运算时,一定要避免出现把底数与指数直接相乘的运算错误.如-33=-(3×3)=-9,这是由于没有理解乘方的意义导致的.【例3-2】计算(-0.25)10×412的值.分析:直接求(-0.25)10和412比较麻烦,但仔细观察可以发现(-0.25)10=0.2510,表示10个0.25相乘,而412表示12个4相乘,这就提醒我们利用乘法的交换律和结合律,比较容易求出结果.解:(-0.25)10×412=(0.25)10×412=[(0.25)10×410]×42=(0.25×4)10×42=1×16=16.4.有理数乘方运算的应用有理数的乘方运算在现实生活中有广泛的应用,给生活中经常出现的大数的读写带来了极大的方便.现代高科技技术离不开数学技术,数学也是一门神奇的艺术,它那神奇的力量常常让人感到意外和惊奇!比如,一层楼高约3米,一张纸的厚度只有0.1毫米,0.1毫米与3米相比几乎可以忽略不计,如果我们将纸对折、再对折,如此这样对折20次后,其厚度将比30层楼房还要高,这就是有理数乘方的神奇魔力,在现实生活中有着很广泛的应用.数学是一门规律性很强的学科,只要掌握了它的规律,很多问题都可以迎刃而解了,乘方的规律也不例外.同学们要认真思考,仔细观察找到有理数乘方应用的规律.【例4】 “兰州拉面”在学校门口开了一个连锁店,今天开张,做拉面的张师傅站在门口进行广告宣传,当众拉起了拉面.他精湛的拉面技术赢得了围观顾客的阵阵喝彩,吃面的人更是络绎不绝.张师傅先是用一根直径约13厘米的粗面条,把两头捏起来拉长,然后再把两头捏起来拉长,不断地这样,张师傅共拉了10次,在他手里出现了一根根直径约0.1毫米的细面条.算一算:张师傅拉10次共拉出了多少根细面条?若拉n 次呢?(请把探索的结果填入下表中)分析:第一次拉出21=2根,第二次拉出22=4根,第三次拉出23=8根,所以第n 次拉出2n 根.解:拉面的根数与拉面的次数n 有关系,拉面的根数=2n .5.与乘方相关的探究题探究题是近几年中考中的亮点,渗透多个知识点,形式多样.解题时,一般遵循从特殊到一般的探究思路,先准确计算几个特例的结果,再通过对这些结果的分析、归纳得到一个较一般的结论,最后再应用这个结论解决问题.由于乘方是一种新运算,它是一种特殊的乘法,特殊在因数相同,是同学们新接触的运算,所以解决问题时要注意,当底数是分数或负数时,写成幂时底数要加括号.与有理数的乘方有关的探究题主要有以下几种:(1)个位数字是几,在中考中经常涉及到,例如3n 的个位数字是3,9,7,1,3,9,7,1,…依次循环;(2)拉面的条数、折纸的张数、握手的次数、绳子的长度、细胞分裂的个数等,都利用2n或⎝ ⎛⎭⎪⎫12n求解.【例5-1】 有一张厚度是0.1毫米的纸,将它对折1次后,厚度为2×0.1毫米.(1)对折2次后,厚度为多少毫米? (2)对折20次后,厚度为多少毫米?分析:此题的关键是将纸的层数化为幂的形式,找出对应关系.根据问题容易得到当对折两次后厚度为4×0.1=22×0.1毫米,对折3次后厚度变为8×0.1=23×0.1毫米,对折4次是16×0.1=24×0.1毫米,对折5次是32×0.1=25×0.1毫米,……,从中探寻规律,解答问题.解:(1)0.1×22=0.4(毫米). (2)(220×0.1)毫米.【例5-2】 1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多少米长?分析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.解:第7次后剩下的小棒有⎝ ⎛⎭⎪⎫127×1=1128(米).。

2.7有理数的减法例题与讲解(2013-2014学年华师大七年级上)

2.7有理数的减法例题与讲解(2013-2014学年华师大七年级上)

2.7 有理数的减法1.有理数减法的法则(1)有理数减法的意义与小学学过的减法意义相同,已知两个数的和与其中的一个加数求另一个加数的运算叫做减法.减法是加法的逆运算.但是有理数的减法不像小学里那样直接减,而是把减法转化为加法,再按加法法则和运算律进行运算.(2)有理数减法法则:减去一个数,等于加上这个数的相反数.用字母表示为:a -b =a +(-b ),a -0=a ,0-a =0+(-a ).(3)有理数减法运算的基本步骤是:①将减法转化为加法;②按有理数加法法则运算.(4)有理数的减法法则实际上是运算的转化,它体现了数学中的一种重要思想——化归思想,将减法运算化归为加法运算来完成.学习时注意理解以下几点:①弄清减数是什么?它的相反数又是什么?例如,在3-5中,减数是5而不是-5,运用法则转化为加法运算后是:3-5=3+(-5);同样地,在3-(-5)中,减数是-5而不是5,转化为加法运算后是:3-(-5)=3+(+5)或3+5;②将减法运算转化为加法运算时,只改变减数的符号,而被减数不变.例如,运用法则把(-6)-(-8)转化为加法运算时,被减数-6不变,减数-8改变符号为+8(或8),减号“-”转化为加号“+”,即(-6)-(-8)=(-6)+(+8),不要错误地做成(+6)+(+8); ③并不是所有的减法运算都要转化为加法运算.例如,计算15-5时,运用小学里学过的方法可以直接得出结果为10,而运用法则计算则要先转化为加法运算,然后再运用有理数加法法则进行计算,即15-5=15+(-5)=10,如此运算反而显得复杂;④一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算.例如,0-(-2)=0+2=2;3-(-3)=3+3=6;(-2)-(-5)=(-2)+5=3;(-6)-6=(-6)+(-6)=-12;3-8=3+(-8)=-5.谈重点 转化思想在减法运算中的应用 转化思想是中学数学中重要的思想方法之一,减法转化为加法便体现了这一思想.【例1】 计算:(1)(-9)-0;(2)0-(-5);(3)0-5;(4)5-(-6);(5)(-3.2)-(-7);(6)⎝⎛⎭⎫-12-23. 分析:回忆有理数的减法法则,把有理数的减法转化为加法时,正数前面的正号通常省略不写,但负号不能省略.解:(1)(-9)-0=(-9)+0=-9;(2)0-(-5)=0+(+5)=5; (3)0-5=0+(-5)=-5;(4)5-(-6)=5+(+6)=11;(5)(-3.2)-(-7)=(-3.2)+(+7)=3.8;(6)⎝⎛⎭⎫-12-23=⎝⎛⎭⎫-12+⎝⎛⎭⎫-23=-76. 2.有理数减法的应用有理数减法的应用比较常见的题型有(1)计算高度;(2)计算温差;(3)计算销售利润;(4)计算距离;(5)计算时差等.有理数减法的应用题虽然比较简单,却能让大家主动地从数学角度运用所学知识和方法寻求解决问题的策略,充分体现课程标准所要求的“数学应用意识”.因此,我们要有意识地加强数学知识与现实生活联系密切的问题的训练,提高自己的能力.【例2】下表列出了外国几个城市与北京的时间差(带正号的数表示同一时刻比北京时间早的数值)城市东京纽约巴黎芝加哥时差+1-13-7-14(1)(2)如果现在的纽约时间是7:00,那么现在的北京时间是多少?(3)远在芝加哥的姑妈,在当地时间是7:00时想给在巴黎的舅妈打电话,你认为合适吗?分析:通过审题发现:同一时刻,纽约时间相当于在北京时间的基础上,减去13个小时;相反,同一时刻,北京时间相当于在纽约时间的基础上,加上13个小时;同理,同一时刻,芝加哥时间相当于在巴黎时间的基础上减去7个小时.解:(1)因为7-13=7+(-13)=-6,相当于18点(-6+24=18),所以北京时间7:00时,纽约时间是前一天的18:00;(2)因为7+13=20,所以纽约时间7:00时,北京时间是当天的20:00;(3)我认为不合适.理由如下:因为7-7=7+(-7)=0,所以巴黎时间7:00时,芝加哥时间是零点,此时是睡眠时间,不适合通电话.3.有理数减法运算中明确符号“-”的含义我们知道,“-”号在小学里就是减号,表示两个数做减法运算,在有理数中,符号“-”有三种含义:减号、负号、表示一个数的相反数.那么,在一个式子中,遇到“-”号时应按哪种含义来理解呢?例如,计算-(-5)-(+8)时,式子中有三个“-”号,根据本题整体情况,第一个“-”号应理解为取(-5)的相反数,第二个“-”号应理解为负号,第三个“-”号可理解为减号.这样-(-5)-(+8)=(+5)+(-8)=-3.再如,-9-5中,第一个“-”号理解为负号最为恰当,第二个“-”号可有两种理解,一是理解为负号,此时,-9-5就表示-9与-5省略了加号的和,即-9-5=-9+(-5)=-14;再是理解为减号,据减法法则仍有-9-5=-9+(-5)=-14.谈重点“-”号的双重身份“-”号有两个身份——性质符号、运算符号,“一号一用”是正确计算的前提.对于“-”号的含义,要结合题目的具体情况来确定,但要注意“一号一用”,即某个“-”号定为某种用途后,它就不能再来做另一种用途.【例3-1】计算:(1)(-15)-(-12)=__________;(2)18-23=__________;(3)25-(-25)=__________;(4)96-69=__________;(5)(3-7)-(9-12)=__________.解析:(1)减数是-12,根据法则把减法化为加法时,被减数-15不变,减数-12变为它的相反数12,得(-15)-(-12)=(-15)+12=-3;(2)减数是23,把“18-”化为“18+”时,减数23要变为它的相反数-23,故18-23=18+(-23)=-5;(3)被减数是25,减数是-25,先把减法运算转化为加法运算,得25-(-25)=25+25=50;(4)直接用96减去69得27就可以了;(5)根据运算顺序,要先算括号里面的,再把结果相减.答案:(1)-3(2)-5(3)50(4)27(5)-1.【例3-2】计算:(1)-(-5)-(-7)-5-(-6);(2)[(-4)-(+8)]-[3-(-3)].分析:(1)算式中的“-”号分别是一个数(-5)的相反数、负号、减号、负号、减号、减号、负号;(2)负号、减号、减号、减号、负号.解:(1)-(-5)-(-7)-5-(-6)=5+(+7)-5+(+6)=5+7+(-5)+6=13;(2)[(-4)-(+8)]-[3-(-3)]=[(-4)+(-8)]-[3+(+3)]=-12-6=-18.4.“转化—求解”的思想方法有理数的减法是转化为加法来运算的,这种“转化-求解”的思想方法,是本节课应当重点掌握的.这与有理数绝对值的化简方法是一致的,例如求一个数的绝对值就要转化为求这个数本身或这个数的相反数.有理数的大小比较也可以转化为有理数的减法运算.我们知道较大的数减去较小的数,结果一定是正数;反之,较小的数减去较大的数,结果一定为负数;若两数相等,结果一定为0.即若a>b,则a-b>0;若a<b,则a-b<0;若a=b,则a-b=0.表现在数轴上就是右边的点所表示的数减去左边的点所表示的数,结果为正数;反之,左边的点所表示的数减去右边的点所表示的数,结果为负数.解技巧求差法利用求两个有理数的差的方法可以比较有理数的大小.若a-b>0,则a>b;若a-b<0,则a<b;若a-b=0,则a=b.【例4-1】如果|a|=3,|b|=1,且a,b异号,求|a-b|的值.分析:本题是有理数减法与相反数和绝对值的综合,解题时应仔细思考它们各自的意义和运算的方法.绝对值等于3的有理数有两个,它们是3和-3;绝对值等于1的数也有两个,它们是1和-1.又根据a,b异号,可知a=3时,b=-1;a=-3时,b=1.从而求出|a -b|的值.解:∵|a|=3,∴a=3或-3.∵|b|=1,∴b=1或-1.又∵a,b异号,∴|a-b|=|3-(-1)|=4,或|a-b|=|-3-1|=4.综上|a-b|=4.【例4-2】用“>”或“<”填空:(1)如果a>0,b<0,那么a-b______0,a______b;(2)如果a<0,b>0,那么a-b______0,a______b;(3)如果a<0,b<0,那么a-(-b)______0,a______-b;(4)如果a=0,b<0,那么a-(-b)______0,a______-b.解析:先按照减法法则把减法变成加法,代入特殊值求差,再根据两个数的差与其大小之间的关系判断两数的大小关系.答案:(1)>>(2)<<(3)<<(4)<<5.利用有理数减法求数轴上两点间的距离有理数的减法有着广泛的应用,求数轴上两点间的距离是有理数减法最典型的应用之一.数轴上任意两点之间的距离,都可以用数轴上表示这两点的有理数的差的绝对值来表示.点A,B在数轴上分别表示有理数a、b,A,B两点之间的距离表示为|AB|.(1)当两点中有一点在原点时,不妨设点A在原点,如图,|AB|=|OB|=|b|=|a-b|.(2)当A,B两点都不在原点时,①点A,B都在原点的右边,如图,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②点A,B都在原点的左边,如图,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③点A,B在原点的两边,如图,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|.【例5-1】如图所示的数轴上,表示-2和5的两点之间的距离是__________,数轴上表示2和-5的两点之间的距离是__________,数轴上表示-1和-3的两点之间的距离是__________.解析:数轴上表示-2和5两点之间的距离是|-2-5|或|5-(-2)|;数轴上表示2和-5两点之间的距离是|2-(-5)|或|-5-2|;数轴上表示-1和-3的两点之间的距离是|-1-(-3)|或|-3-(-1)|.答案:77 2【例5-2】点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为|AB|,下面来探究在数轴上A,B两点之间的距离|AB|如何用数a,b来表示.回答下列问题:(1)数轴上表示2和5两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;(2)数轴上表示x和-3的两点之间的距离表示为__________;(3)数轴上表示a,b的两点之间的距离表示为________.解析:本题阅读部分将计算数轴上两点A、B之间的距离,先由特殊到一般地展示其发生发展的过程,然后归纳概括出公式|AB|=|a-b|,即数轴上任意两点之间的距离用表示这两点的有理数的差的绝对值表示.再根据这个公式解答问题.答案:(1)334(2)|x+3|(3)|a-b|析规律数轴上两点间的距离公式数轴上两点A,B之间的距离公式是|AB|=|a-b|,利用此公式可以求出数轴上任意两点之间的距离.解题时,注意求两个负数之间的距离时,要添加括号.。

2.6有理数的加法例题与讲解(2013-2014学年华师大七年级上)

2.6有理数的加法例题与讲解(2013-2014学年华师大七年级上)

2.6 有理数的加法1.有理数的加法法则(1)有理数的加法法则:①同号两数相加,取相同的正负号,并把绝对值相加.如,(+3)+(+2)=+(|3|+|2|)=5,(-3)+(-2)=-(|3|+|2|)=-5.②绝对值不等的异号两数相加,取绝对值较大的加数的正负号,并用较大的绝对值减去较小的绝对值.如,3+(-2)=+(|3|-|-2|)=1,(-3)+(+2)=-(|-3|-|2|)=-1.③互为相反数的两个数相加得0.如,(-5)+5=0.④一个数同0相加,仍得这个数.如,(-5)+0=-5,5+0=5.(2)从有理数的加法法则可以得出:如果两个数的和为0,那么这两个数互为相反数.即:如果a +b =0,那么a =-b .例如:(-3)+a =0,则a =3.(3)进行有理数加法运算的步骤:①观察符号;②回忆法则;③计算绝对值.(4)注意:在小学学过的加法中,和一定大于等于每一个加数,在数的范围扩大到有理数之后这个结论就不成立了.两个加数的和不一定大于其中的每一个加数.当两个加数都是负数时,和一定小于其中每一个加数.【例1】 计算:(1)(-3)+(-12);(2)⎝⎛⎭⎫+213+⎝⎛⎭⎫-12; (3)(-12.5)+(+12.5);(4)⎝⎛⎭⎫-1023+0. 分析:(1)小题属于同号两数相加,先确定符号——取相同的符号“-”号,再进行绝对值的运算——把绝对值相加“3+12”;(2)小题属于异号两数相加,先确定符号——取绝对值较大的加数的符号“+”号,再进行绝对值的运算——用较大的绝对值减去较小的绝对值“213-12”;(3)(4)小题分别属于“互为相反数的两数相加”和“一个数与0相加”,根据法则分别得0和-1023. 解:(1)原式=-(3+12)=-15;(2)原式=+⎝⎛⎭⎫213-12 =+⎝⎛⎭⎫226-36 =+156=156; (3)原式=0;(4)原式=-1023. 谈重点 进行有理数加法运算的关键 一个有理数由正负号与绝对值两部分组成,所以进行有理数加法运算时,必须分别确定和的正负号与和的绝对值.2.有理数加法的运算律(1)有理数的加法仍满足加法交换律和结合律.①加法交换律:两个数相加,交换加数的位置,和不变.即a +b =b +a .②加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即(a +b )+c =a +(b +c ).(2)这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化.根据加法结合律和交换律,三个或三个以上的有理数相加,可以写成这些数的连加式.对于连加式,可以任意交换加数的位置,也可以把其中的几个数相加,使计算简化.在连加式中,任意交换加数的位置时,也要注意不能漏掉加数的符号.(3)在有理数的加法运算中一般交换律与结合律同时使用,由于数的范围扩大到了有理数,在这里,a ,b ,c 除了表示正数外,还可以表示负数和零,所以应用运算律时,要特别注意加数的符号.【例2】 计算:(1)(+7.6)+(-18)+(+3.4)+(-12);(2)1.75+⎝⎛⎭⎫-612+338+⎝⎛⎭⎫-134+⎝⎛⎭⎫+258. 分析:(1)小题中的四个加数,两个正数,两个负数,并且两个正数相加得较整的数,所以运用有理数加法运算律,可以先把两个正数和两个负数分别相加,再把所得的结果相加.(2)小题中考虑到1.75与-134是互为相反数,其和为0,338与258是同分母,其计算较简单,因此可以先把它们分别相加;再把结果与-612相加即可. 解:(1)原式=[(+7.6)+(+3.4)]+[(-18)+(-12)]=11+(-30)=-19;(2)原式=⎣⎡⎦⎤1.75+⎝⎛⎭⎫-134+⎝⎛⎭⎫338+258+⎝⎛⎭⎫-612=0+6+⎝⎛⎭⎫-612=6+⎝⎛⎭⎫-612=-⎝⎛⎭⎫612-6=-12. 释疑点 运用有理数加法运算律的关键认真观察各数的特点,合理运用有理数加法运算律,把易于计算的数(如可以凑整的数,和为零的数,分母相同的数,符号相同的数等),集中先算,使计算简化.3.有理数加法的应用随着社会的发展,根据实际生活的需要,有理数的加法在实际生活中的应用更加广泛,也成为近几年的热点问题.比较常见的有理数的加法应用有两种:一是用绝对值相加解决问题;二是用原数相加解决问题.解题时将现实生活中的实际问题转化为数学模型,然后应用数学方法解决.谈重点 有理数加法应用的两种类型 绝对值相加——只考虑数量;原数相加——不仅考虑数量,还考虑意义.【例3】 某日小明在一条南北方向的公路上跑步,他从A 地出发,每隔10分钟记录下自己的跑步情况(向南为正方向,单位:米):-1 008,1 100,-976,1 010,-827,946.1小时后他停下来休息,此时他在A 地的什么方向?距A 地多远?小明共跑了多少米?分析:(1)求出记录的各数的和,由于向南为正,所以若和为正,则小明在A 地的南方,若和为负,则小明在A 地的北方;(2)求总路程,与方向无关,即与数的符号无关,也就是求各数的绝对值的和.解:(-1 008)+1 100+(-976)+1 010+(-827)+946=245(米),因此,小明在A 地的南边,距A 地245米.|-1 008|+|1 100|+|-976|+|1 010|+|-827|+|946|=5 867(米).所以小明共跑了5 867米.警误区 路程问题中负数的意义 这里的负数不是代表路程为负数,而是代表方向,路程是所有数字绝对值的和.4.含有字母的有理数加法的运算我们可以用字母表示有理数加法的运算法则:①同号两数相加:若a >0,b >0,则a +b =+(|a |+|b |);若a <0,b <0,则a +b =-(|a |+|b |).②异号两数相加:若a >0,b <0,且|a |=|b |,则a +b =0;若a >0,b <0,且|a |>|b |,则a +b =+(|a |-|b |);若a >0,b <0,且|a |<|b |,则a +b =-(|b |-|a |).③一个数与0相加:a +0=a .警误区 字母并不一定表示正数 不少同学看到字母a ,b 时总认为是正数,这是错误的,因为我们已经学习了负数,要在脑子里逐渐形成分类讨论的思维方式.【例4-1】 根据加法法则填空:(1)如果a >0,b >0,那么a +b __________0;(2)如果a <0,b <0,那么a +b __________0;(3)如果a >0,b <0,|a |>|b |,那么a +b __________0;(4)如果a <0,b >0,|a |>|b |,那么a +b __________0.解析:(1)(2)和的符号与加数的符号相同;(3)(4)和的符号由绝对值较大的加数的符号决定.答案:(1)> (2)< (3)> (4)<【例4-2】 已知有理数a ,b ,c 在数轴上的对应点如图所示,且|a |>|b |>|c |,则(1)|a +(-b )|=__________;(2)|a +b |=__________; (3)|a +c |=__________;(4)|b +(-c )|=__________;(5)|b +c |=__________.解析:(1)(3)(4)是同号两数相加,和的绝对值等于绝对值的和;(2)(5)是异号两数相加,和的绝对值等于绝对值的差.答案:(1)|a |+|b | (2)|a |-|b | (3)|a |+|c |(4)|b |+|c | (5)|b |-|c |5.应用运算律求多个有理数的和 为使运算简捷,可根据数字的特征,利用加法的运算律求和,常见的技巧有:(1)凑零凑整:互为相反数的两个数结合先加,和为整数的加数结合先加;(2)同号集中:按加数的正负分成两类分别结合相加,再求和;(3)同分母结合:把分母相同或容易通分的结合起来.当同一个算式中既有分母,又有小数时,一般要统一化为分数或小数(选择计算简便的那种形式)后,再计算.(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加.利用有理数加法的运算律,通常可以求多个按规律排列的有理数的和,解题的关键是找出这些加数的特征和内在联系,其中运用凑1法和凑-1法是常见的方法.【例5-1】 计算:(1)(-7)+5+(-3)+4;(2)16.96+(-3.8)+5.2+(-0.2)+(-0.96);(3)(-4)+223+⎝⎛⎭⎫-12+⎝⎛⎭⎫-223. 分析:(1)将正、负数分别结合相加;(2)16.96+(-0.96)和(-3.8)+(-0.2)都是整数,应当先相加;(3)将互为相反数的两个数相加.解:(1)原式=(5+4)+[(-7)+(-3)]=9+(-10)=-1.(2)原式=[16.96+(-0.96)]+[(-3.8)+(-0.2)]+5.2=16+(-4)+5.2=17.2.(3)原式=(-4)+⎝⎛⎭⎫-12+⎣⎡⎦⎤223+⎝⎛⎭⎫-223=(-4)+⎝⎛⎭⎫-12+0=-412. 【例5-2】 计算1+(-2)+3+(-4)+…+2 009+(-2 010).分析:运用结合律把2 010个加数分成1 005组,每相邻的两个数分为一组,容易算出每一组的和都是-1.所以共有1 005个-1相加,结果就是-1 005.解:1+(-2)+3+(-4)+…+2 009+(-2 010)=[1+(-2)]+[3+(-4)]+…+[2 009+(-2 010)]==-1 005.6.“互为相反数的两个数的和为0”的推广与应用(1)两个非负数的和为0,则两个数均为0.理由:两个数的和为0有两种情形:①正+负;②0+0,由于两个数均不为负,所以只可能是第二种情形“0+0”,即每一个加数均为0.(2)若干个非负数的和为零,则它们分别为零.本章主要类型是|a|+|b|+|c|=0,则a=0,b=0,c=0.绝对值的非负性是中考中的热点考题,一定要熟练掌握.【例6-1】已知:|a|+|b-2|=0,则a×b=__________.解析:因为|a|≥0,|b-2|≥0,且|a|+|b-2|=0,所以a=0,b-2=0,所以b=2,所以a×b=0×2=0.答案:0【例6-2】若|a-5|+|b+2|+|c-1|=0,求a+b+c的值.分析:由“若干个非负数的和为零,则它们分别为零”,易得:a-5=0,b+2=0,c -1=0,从而易求出a=5,b=-2,c=1,所以a+b+c=5+(-2)+1=4.解:因为|a-5|≥0,|b+2|≥0,|c-1|≥0,且|a-5|+|b+2|+|c-1|=0,所以|a-5|=0,|b+2|=0,|c-1|=0,得a=5,b=-2,c=1.所以a+b+c=5-2+1=4.。

华师大版七年级上册数学二单元(有理数)习题复习课件

华师大版七年级上册数学二单元(有理数)习题复习课件
15.图纸上注明一个零件的直径是ø20-0.03+0.02(单位:mm),表示加 20.02mm 工这种零件要求直径最大不超过______________ ,最小不小于
19.97mm . ___________
16.张老师把七(2)班第三组五名同学的成绩简记为:+10,-5,0,
+8,-3,又知道记为0的实际成绩表示90分,正数表示超过90分,
华师大版数学 精品课件
只本 供课 免件 费来 交源 流于 使网 用络
七年级数学上册(华师版)
第2章 有理数
2.1 有理数
2.1.1 正数和负数
2 2 1.像-3,-7,-4.6,-10%这样的数是_______ 负数 ,像 25,0.92,83,
正数 ,正数前面有时也可以放上一个____ + 号. 7%这样的数是_______ 零 既不是正数,也不是负数. 2.____
18.科学家发现当某物体的温度低于一个特定的温度时,物体就变为 超导体.若规定把特定温度记作0℃,低于特定温度记为负数,回答 下列问题: (1)高于特定温度2.1℃记作什么?低于特定温度0.9℃记作什么? (2)+1.6℃表示什么?-3.2℃表示什么? (3)对于+0.6℃和-0.1℃,哪种情况下,该物体能变为超导体? 解:(1)+2.1 ℃,-0.9 ℃ (2)+1.6 ℃表示高于特定温度1.6 ℃,- 3.2 ℃表示低于特定温度3.2 ℃ (3)-0.1 ℃时,该物体能变为超导体
(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多
相差( B ) A.0.8 kg B.0.6 kg
C.0.5 kg D.0.4 kg
13.某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则 下调5.6元 -5.6元的意义是_______________ ,如果这种食用油的原价是76元,那

2.1.2 有理数-七年级数学上册同步教学辅导讲义(华师大版)

2.1.2 有理数-七年级数学上册同步教学辅导讲义(华师大版)

2.1.2有理数同步讲义基础知识按整数、分数的关系分类:按正数、负数与0的关系分类:例题例、在下列空格里打“√”,表示该数属于哪种类型的数:类型数有理数正整数负整数正分数负分数非负数+3﹣11 30.5﹣6【答案】见解析【分析】依据有理数的分类,按整数、分数的关系分类可得:有理数包含正整数、0、负整数,正分数、负分数;按正数、负数与0的关系分类可得:有理数包含正整数、正分数、0、负整数、负分数.【详解】解:+3属于有理数,正整数,非负数;﹣113属于有理数,负分数;0属于有理数,非负数;0.5属于有理数,正分数,非负数;﹣6属于有理数,负整数.类型有理数正整数负整数正分数负分数非负数【点睛】本题考查了有理数的分类,解题的关键是熟练掌握它们之间的区别,注意0是整数,但不是正数. 练习1.下列四个选项中的数,不是分数的是( )A .80%B C .213D .2272.在下列各数中,负分数有( )1-, 3.141559-,2,13-,13,0,12,5%-,34A .1个B .2个C .3个D .4个3.零一定是( ) A .整数B .负数C .正数D .奇数4.下列语句中正确的有 ( )① 所有整数都是正数;② 所有正数都是整数;③ 自然数都是正数;④ 分数是有理数;⑤ 在有理数中除了正数就是负数. A .1 个B .2 个C .3 个D .4 个5.下列各数中,属于正有理数的是( ) A .-0.1B .0C .-1D .26.在下列各数中,正数的个数有______个.( ) -6,0.1234,152-,0.3,0,19,15A .2B .3C .4D .57.下列各数中,既不是正数又不是负数的是( ) A .2B .1C .3-D .08.下列说法正确的是( )A .正数和负数统称为有理数B .正整数包括自然数和零C .零是最小的整数D .非负数包括零和正数9.在4-, 3.5-,0,4π,54%,1,23-中,负数有_______个,分数有_______个. 10.下列各数:﹣1,2π,1.01001…(每两个1之间依次多一个0),0,227,3.14,其中有理数有_____个.11.把下列各数分别填在相应的大括号里.13,3.1415,﹣31,﹣21%,13,0,﹣0.216,﹣2020整数:{ …}; 正整数:{ …}; 负分数:{ …}; 负整数:{ …}.12.将下列各数填入适当的括号内: 9-,227,0.314-,2020,0,338-,π-,66. (1)整数集合{______…}; (2)负分数集合{______…}; (3)非负整数集合{______…}.13.在数-23,5,23,0,4,35,5.2中,是整数的_____;非正数集合____14.有理数1.7,-17,0,257-,-0.001,92-,2003和-1中,负数有____________个,其中负整数有____________个,负分数有____________个. 15.把下列各数填在相应的集合内.15,12-,0.81,3-,8%;31-.,171,0,3.14 负数集合:{ } 分数集合:{ } 非负整数集合:{ } 16.把下列各数填入它所在的集合里:-2,7,23-,0,2 015,0.618,3.14,-1.732,-5,+3①正数集合:{___________________________________…} ②负数集合:{___________________________________…} ③整数集合:{___________________________________…}④非正数集合:{_________________________________…}⑤非负整数集合:{_______________________________…}⑥有理数集合:{_________________________________…}练习参考答案1.B 【分析】根据有理数包括分数和整数,无理数一定不是分数判断即可. 【详解】故选:B . 【点睛】本题考查实数的分类,解题的关键是掌握无理数一定不是分数. 2.C 【分析】根据负分数的意义,可得答案. 【详解】解:负分数有: 3.141559-,13-,5%-,共3个,故选:C . 【点睛】本题考查了有理数,熟记有理数的分类是解题关键. 3.A 【分析】0是介于-1和1之间的整数,既不是正数也不是负数,0可以被2整除,所以0是一个特殊的偶数. 【详解】0是介于-1和1之间的整数,既不是正数也不是负数,0可以被2整除,所以0是一个特殊的偶数,只有A 选项符合. 故选:A . 【点睛】本题考查了零的相关知识,熟记并理解是解决本题的关键. 4.A 【分析】根据有理数的分类及相关概念可直接进行排除选项.解:①所有整数都是正数,错误,比如-1;②所有正数都是整数,错误,比如0.5;③自然数都是正数,错误,比如0;④分数是有理数,正确;⑤在有理数中除了正数就是负数,错误,还有零;∴正确的有一个;故选A.【点睛】本题主要考查有理数的分类,熟练掌握有理数的分类是解题的关键.5.D【分析】根据正有理数的定义即可得出答案.【详解】解:A. -0.1为负有理数,此选项不符合题意;B. 0即不是正数也不是负数,此选项不符合题意;C. -1为负有理数,此选项不符合题意;D. 2为正有理数,此选项符合题意.故选D.【点睛】本题考查了正有理数的定义,正确理解正有理数的概念是解答本题的关键.6.C【分析】根据大于0的数是正数可得结果.【详解】解:在-6,0.1234,152,0.3,0,19,15中,正数有:0.1234,0.3,19,15共4个,故选C.【点睛】本题考查了正数的定义,熟记概念是解题的关键,要注意0既不是正数也不是负数.7.D【分析】根据正数与负数的定义即可求出答案.解:0既不是正数又不是负数, 故选:D . 【点睛】本题考查正数与负数,解题的关键是正确理解正数与负数,本题属于基础题型. 8.D 【分析】按照有理数的分类进行选择. 【详解】解:A 、正数、负数和零统称为有理数;故本选项错误; B 、零既不是正整数,也不是负整数;故本选项错误; C 、零是最小是自然数,负整数比零小;故本选项错误; D 、非负数包括零和正数;故本选项正确; 故选:D . 【点睛】本题考查了有理数的分类、正数和负数;注意0是整数,但不是最小的整数. 9.2 2 【分析】根据负数及分数的定义进行解答即可. 【详解】解:4-, 3.5-,0,4π,54%,1,23-中, 负数有:4-,23-,共2个, 分数有: 3.5-,54%,共2个, 故答案为:2,2. 【点睛】本题考查的是有理数的概念,解答此题时要注意0既不是正数也不是负数,但0是有理数. 10.4. 【分析】根据有理数的定义逐一判断即可. 【详解】解:在所列实数中,有理数有﹣1、0、227、3.14,故答案为:4.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.11.13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020【分析】依题意,根据整数、正整数、负分数、负整数的定义把有关的数填入相应的集合即可.【详解】由题知:整数:{13,﹣31,0,﹣2020…};正整数:{13…};负分数:{﹣21%,﹣0.216…};负整数:{﹣31,﹣2020…}.故填:13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020.【点睛】本题考查对数的分类,难点在熟练的理解数分类之间依据;12.(1)9-,2020,0,66;(2)30.314,38--;(3)2020,0,66.【分析】根据整数、负分数、非负整数的意义,逐个进行判断即可.【详解】解:(1)整数有:9-,2020,0,66,故答案为:9-,2020,0,66;(2)负分数有:3 0.314,38--,故答案为:3 0.314,38--;(3)非负整数有:2020,0,66,故答案为:2020,0,66.【点睛】本题考查整数集合,负分数集合,非负整数集合,掌握有理数的分类是解题关键.13.-23,5,0,4,-23,0【分析】整数和分数统称为有理数,整数包含正整数、0、负整数;比0大的数是正数,非正数即0与负数,据此解题.【详解】解:在数-23,5,23,0,4,35,5.2中,整数的有:-23,5,0,4;非正数的有:-23,0,故答案为:-23,5,0,4;-23,0.【点睛】本题考查有理数的分类、带“非”字的有理数等知识,是重要考点,难度较易,掌握相关知识是解题关键.14.5 2 3【分析】根据负数的定义(以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数)以及负整数、负分数的定义,求解即可求得答案.【详解】解:负数为:-17,257-,-0.001,92-,-1共5个;负整数有:-17,-1,共2个;负分数有:257-,-0.001,92-,共3个.故答案为:5,2,3.【点睛】此题考查了有理数的分类,注意掌握负数,负整数,负分数的定义.15.12-,3-,31-.;12-,0.81,8%,31-.,3.14;15,171,0【分析】根据负数、分数及非负整数的定义即可分别判断.【详解】15,12-,0.81,3-,8%;31-.,171,0,3.14负数集合:{12-,3-,31-.…}分数集合:{12-,0.81,8%,31-.,3.14…}非负整数集合:{15,171,0…}.【点睛】此题主要考查有理数的分类,解题的关键是熟知有理数的性质及分类方法.16.①正数集合:{7,2 015,0.618,3.14,+3…};②负数集合:{-2,23-,-1.732,-5,…};③整数集合:{-2,7,0,2 015,-5,+3…};④非正数集合:{-2,23-,0,-1.732,-5,…};⑤非负整数集合:{7,0,2 015,+3…};⑥有理数集合:{-2,7,2 3-,0,2 015,0.618,3.14,-1.732,-5,+3…}【分析】根据有理数的分类即可得出答案.【详解】解:①正数集合:{7,2 015,0.618,3.14,+3…}②负数集合:{-2,23-,-1.732,-5,…}③整数集合:{-2,7,0,2 015,-5,+3…}④非正数集合:{-2,23-,0,-1.732,-5,…}⑤非负整数集合:{7,0,2 015,+3…}⑥有理数集合:{-2,7,23-,0,2 015,0.618,3.14,-1.732,-5,+3…}【点睛】本题考查了有理数的分类,解题的关键是熟练掌握它们之间的区别,注意0是整数,但不是正数.。

华师大版数学七年级上册第2章《有理数》教学设计

华师大版数学七年级上册第2章《有理数》教学设计

华师大版数学七年级上册第2章《有理数》教学设计一. 教材分析华东师范大学版数学七年级上册第2章《有理数》是学生在小学阶段学习的基础上,进一步深化对数学概念的理解和运用的关键章节。

本章主要包括有理数的定义、分类、运算、大小比较等内容,为学生后续学习实数、代数式等知识打下基础。

本章内容与生活实际紧密相连,有助于提高学生的数学素养和解决问题的能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念和运算规则有一定的了解。

但部分学生可能对有理数的定义和运算规则理解不透彻,需要通过实例和练习来加深理解。

此外,学生可能对有理数的大小比较存在一定的困难,需要通过对比和实际操作来掌握。

三. 教学目标1.理解有理数的定义,掌握有理数的分类。

2.掌握有理数的运算规则,包括加、减、乘、除、乘方等。

3.学会有理数的大小比较方法。

4.能够运用有理数解决实际问题,提高解决问题的能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的运算规则。

3.有理数的大小比较方法。

五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论来理解有理数的概念和运算规则。

2.运用实例和实际操作,让学生在实践中掌握有理数的定义和运算方法。

3.采用小组合作学习,培养学生的团队合作意识和交流能力。

4.运用多媒体辅助教学,提高学生的学习兴趣和效果。

六. 教学准备1.准备相关教学PPT和多媒体素材。

2.准备纸质教学资料和练习题。

3.准备黑板和粉笔。

4.准备相关教具和实物模型。

七. 教学过程1.导入(5分钟)利用生活实际情境,引出有理数的概念。

例如,描述一段距离、计算物品价格等,让学生感受到有理数在生活中的应用。

2.呈现(10分钟)通过PPT展示有理数的定义、分类和运算规则。

用简洁明了的语言解释有理数的概念,并通过实例来展示有理数的分类和运算方法。

3.操练(10分钟)让学生进行有理数的运算练习。

可以设置一些简单的题目,让学生独立完成,并及时给予反馈和指导。

华师大版七年级数学上册课件:2.1.2有理数

华师大版七年级数学上册课件:2.1.2有理数

分数
正整数、0、负整数统称整数 正分数和负分数统称分数 整数和分数统称有理数
正整数 整数零 负整数 有理数 分数正分数 负分数
Z.x.x. K
正整数 正有理数 正分数 有理数零 负整数 负有理数 负分数
22/7, 3.1416, 2001, 95%. ,…… 正数集 –18, –3/5, –0.142857 , …… 负数集
–18, 0, 2001, ……. 整数集
–18, 22/7, 3.1416, 0, 2001, –3/5, –0.142857, 95%. , ……
有理数集
课堂小结
到现在为止我们学过的数都是 有理数(圆周率除外),有理数 可以按不同的标准进行分类,标 准不同,分类的结果也不同。
请一位同学随便报一个数,然后点名叫另 一位同学说出它是什么类型的数。
说出是什么类型的数
1
-0.10
5 8

-789 0
-20
-20.10

-5.6%
0.16 8
. .
3.14
把一些数放在一起,就组成了一个数的 集合,简称数集。 类似的, 所有整数组成的数集叫做整数集。 所有正数组成的数集叫做正数集。 所有负数组成的数集叫做负数集。 所有正整数和零组成的数集叫做自然数集。
, 0.1, -5.32,

-80,

123, 2.333.
正整数集合

负整数集合

正分数集合
负分数集合
Zx.xk
Zx.xk
例1:把下列各数表示它所在的数集的圈内.
–18, 22/7, 3.1416, 0, 2001,–3/5, –0.142857, 95%.

华师大版七年级上册数学第二单元有理数课件

华师大版七年级上册数学第二单元有理数课件

华师大版七年级上册数学第二单元有理数课件一、教学内容本节课我们将学习华师大版七年级上册数学第二单元“有理数”的相关知识。

具体内容包括:1. 有理数的定义及分类(教材第二章第一节)2. 有理数的加减法运算(教材第二章第二节)3. 有理数的乘除法运算(教材第二章第三节)4. 有理数的乘方及混合运算(教材第二章第四节)二、教学目标1. 理解有理数的定义,掌握有理数的分类。

2. 学会有理数的加减法、乘除法运算,并能熟练进行混合运算。

3. 培养学生的运算能力,提高解决实际问题的能力。

三、教学难点与重点教学难点:有理数的混合运算。

教学重点:有理数的定义、分类及加减乘除法运算。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:课本、练习本、计算器。

五、教学过程1. 实践情景引入(5分钟)通过生活中的实例,让学生了解有理数的概念,激发学习兴趣。

2. 知识讲解(15分钟)(1)介绍有理数的定义、分类。

(2)讲解有理数的加减法运算规则。

(3)讲解有理数的乘除法运算规则。

(4)讲解有理数的乘方及混合运算。

3. 例题讲解(15分钟)讲解典型例题,引导学生理解和掌握有理数的运算规则。

4. 随堂练习(10分钟)布置随堂练习题,让学生独立完成,巩固所学知识。

5. 互动讨论(10分钟)针对学生在练习中遇到的问题,进行讨论和解答。

六、板书设计1. 有理数的定义及分类2. 有理数的加减法运算规则3. 有理数的乘除法运算规则4. 有理数的乘方及混合运算七、作业设计1. 作业题目:(1)计算:(3) + 5, 4 (2), 3 × (4), (6) ÷ 3。

(2)混合运算:(2)² × 3 5 ÷ (2)。

2. 答案:(1)2, 6, 12, 2(2)7八、课后反思及拓展延伸1. 反思:本节课学生对有理数的概念及运算规则掌握情况,对重难点的理解程度。

2. 拓展延伸:探讨有理数在实际问题中的应用,如温度、高度等。

华师大版-数学-七年级上册-2.1.2 有理数 教案

华师大版-数学-七年级上册-2.1.2 有理数 教案

2.1.2有理数教学目标知识与技能:1.进一步加深对负数的认识2.能正确地将有理数进行分类.过程与方法:对有理数按照一定的标准进行分类,培养分类能力情感态度价值观:通过师生合作,使整数、分数在引入负数后能够达到完善,从而体验获得成功的快乐教学重点有理数的分类教学难点有理数的分类及其分类标准教学过程教学过程(师生活动)创设情境,引入新课通过前面的学习,我们已经知道很多不同类型的数,现在请同学们在草稿纸上任意写出你认为是不同类型的5个数.你所知道的数可以分成哪些种类?说一说你是按照什么划分的?观察黑板上的15个数,并给它们进行分类.学生思考讨论和交流分类的情况.(学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

)明确概念,探究分类问题1:整数包括什么数?回答:正整数、0、负整数问题2:负数包括什么数?回答:正分数和负分数.有理数的概念:整数和分数统称有理数。

统称”是指“合起来总的名称”的意思。

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)(在多媒体上展示有理数的分类表,分类的标准要引导学生去体会)有理数的分类1.按定义分类2.按性质符号分类思考:有理数可分为正数和负数两大类,对吗?为什么?(使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类)应用练习,熟能生巧例 把下列各数填入表示它所在的数集的圈子里:-18, 227, 3.1416, 0, 2012, −35, -0.142857, 95%正数集 负数集整数集 有理数集解:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0课堂练习1. 请说出两个正整数,两个负整数,两个正分数,两个负分数.它们都是有理数吗?2. 有理数集中有没有这样的数,它既不是正数,也不是负数?若有,请说出这样的数?解:有,如0.3. 把下列各数填入它所属于的集合的圈内:15,﹣,﹣5,,,0.1,﹣5.32,﹣80,123,2.333.解:如图所示:4. 0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?解:0既不是正数也不是负数,0是自然数也是整数课堂小结有理数可以按不同的标准进行分类,标准不同,分类的结果也不同本节课你还有哪些疑问?。

最新华东师大版七年级上册数学2.1.2有理数

最新华东师大版七年级上册数学2.1.2有理数

B
)
②一个有理数,不是正数就是负数
③一个整数,不是正数就是负数 ④一个分数,不是正数就是负数
A.1个 B.2个
C.3个 D.4个 7.(4分)如图所示表示整数集合与负数集合,则图中重合部分A处可以填 入的数是____________ .(只需填入一个满足条件的数即可) -5Βιβλιοθήκη 整数集A负数集
1 2 8.(4分)下列各数:3,-5,- 2 ,0,2,0.97,-0.21,-6,9, 3 ,
负整数 的是___________ .
不存在 . 1 17.有理数中,最小的正整数是_______ ,最小的非负数是________
18.(12分)有理数的分类有不同的分类标准,你能把有理数按不同的分类 标准进行正确的分类吗?根据不同的标准,把下列各数填在相应的括号里. 3 1 -7,5,2009,0,-3,+8.4,-5%,-0.0103, 10 + 5 ,-0.21. 负数集:{ -7,-1,-5%,-0.0103,-0.21… 3 有理数集:{ 全部都是… } 负整数集:{ 自然数集:{ }
-7 …
} }
2009,0…
19.(8分)请把下列各数填入图中适当的位置. 1 2 13 15,-9,15,- 8 ,0.1,-5.32,123,2.333.
2 1 13 解:15,123; ,0.1,2.333;- ,- ,-5.32 15 9 8
20.(12分)将一串有理数按下列规律排列,回答下列问题: … D
D
)
3 4.(4分)已知下列各数:-8,50.9,-5,0.3,其中非负数有( C ) A.0个 B.1个 C.2个 D.3个 5.(4分)下列说法中正确的是( A.所有整数都是正数 B.所有小数都是有理数 C.自然数不都是正数 D.有理数除了正有理数就是负有理数

华师版数学七年级上册 有理数

华师版数学七年级上册 有理数

正整数
有 理数
整数
分数
0 负整数
正分数
负分数
有 理 数
正有理数正整数
正分数
0
负有理数
负整数
负分数
3. 注意 0 的特殊性:0 既不是正数,也不是负数.
正数和 0 统 称为非负数.
问题1:这里面出现的数分别是什么数? 6,7 是正数; -10,-3 是负数; 0 既不是正数也不是负数.
问题2: 像 1 ,2 ,15,0.1,5.32,...,分别被称为什么数? 23 7
分数
讲授新课
一 有理数的概念
我们以前学过的数,像 1,2,3,… 称为正整数;
2 ,4 ,1 354
,…,称为正分数.
D. 一个有理数不是正数就是负数
2. 下列各数:-2,5, 1 ,0.63,0,7,-0.05,-6,9,
11 5
,5
4
.
3
其中正数有__6__个,负数有__4__个,正分数有__3__个,
负分数有__2__个,自然数有__4__个,整数有__6__个.
3. 判断: (1) 0 是整数.( √ ) (2) 自然数一定是整数.( √ ) (3) 0 一定是正整数.( × ) (4) 整数一定是自然数.( × )
4. 填空: (1) 有理数中,是整数而不是正数的是_负__整__数__和___0_;
是负数而不是分数的是__负__整__数____. (2) 零是__有__理__数___,也是_整__数___,但不是 正数 ,
也不是__负__数__.
5.下列给出的各数,哪些是正数?哪些是负数?哪些
是整数?哪些是分数?哪些是有理数?
2 3
,-3.6, -4.5 …

华师版七年级数学上册第1章2 有理数

华师版七年级数学上册第1章2 有理数

负整数 负分__数__
1.下列关于 0 的说法,不正确的是 A. 既不是正数,也不是负数 B. 不是有理数,是整数 C. 是整数,也是有理数 D. 不是负数,是有理数
( B)
2.把下列各数填入相应的集合内:
,-3.1416,0,2024, ,-0.23456,10%,
10.1,0.67,-89 2024
第一章 有理数
1.1 有理数的引入
2 有理数
华师版七年级(上)
1. 掌握有理数的概念,能对有理数进行识别和分类. 2. 经历对有理数进行分类探索的过程,初步感受分
类讨论的数学思想. 重点:掌握有理数分类的方法. 难点:会把所给的有理数填入相应的集合.
回想一下,我们认识了哪些数? 正数 负数 小数 分数 整数
(答案不限,需要留意 0 ).
负整数 正分数 负分数
符号分类 正有 理数
0 有理数
负有 理数
典例精析
例1 把下列各数填入表示它们所在的数集的圈里:
-18,22 ,3.141 6,0,2 023, 3 ,-0.142 857,95%.
7
22 ,3.141 6,2 023,95%

-18, 3 ,-0.142 857 …
正数集
-18,0,…2 023 整数集
﹣2= 3
·
0.6
有限小数和无 限循环小数部 可以化为分数. 因此它们也可 以看成分数.
可以写成分数形式的数称为有理数. → 比率数
定义总结
探究二 请给下面的家找到家族.
正整数 零
整数
负整数
正分数 负分数
分数
有理数
定义总结
有理数按照定义分类:
1.正整数、0、负 整数统称为整数; 2. 正分数、负分 数统称为分数; 3.整数和分数统 称为有理数.

华师大七年级上数学各单元试卷及问题详解

华师大七年级上数学各单元试卷及问题详解

第一章 走进数学世界略第二章 有理数单元测试题一.判断题:1.有理数可分为正有理数与负有理数 . ( )2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. ( )3.两个有理数的差一定小于被减数. ( )4.任何有理数的绝对值总是不小于它本身. ( )5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( )二.填空题:1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 .2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数是 .3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,立方等于本身的数是 .4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是312,则b = .5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 .6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 .三.选择题:1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdb a cd p 的值是 ( ). A .3 B .2 C .1 D .0 3.若01<<-a ,则2,1,a a a 的大小关系是 ( ).A .21a a a <<B .21a a a << C .a a a <<21 D .a a a 12<< 4.下列说法中正确的是 ( ).A. 若,0>+b a 则.0,0>>b aB. 若,0<+b a 则.0,0<<b aC. 若,a b a >+则.b b a >+D. 若b a =,则b a =或.0=+b a5.cc b b a a ++的值是 ( ) A .3± B .1±C .3±或1±D .3或16.设n 是正整数,则n )1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2四.计算题1.[]24)3(2611--⨯--2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-五、2++b a 与4)12(-ab 互为相反数,求代数式++-+b a ab ab b a 33)(21的值.六、 a 是有理数,试比较2a a 与的大小.七.32-12=8×152-32=8×272-52=8×392-72=8×4……观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.第三章 整式的加减单元测试题(一)一、填空题:(每小题3分,共24分)1.代数式-7,x,-m,x 2y,2x y +, -5ab 2c 3, 1y 中,单项式有______个,其中系数为1 的有_____.系数为-1的有_____,次数是1的有________.2.把4x 2y 3,-3x 2y 4,2x,-7y 3,5 这几个单项式按次数由高到低的顺序写出是_________.3.当5-│x+1│取得最大值时,x=_____,这时的最大值是_______.4.不改变2-xy+3x 2y-4xy 2的值,把前面两项放在前面带有“+”号的括号里, 后面两项放在前面带有“-”号的括号里,得_______.5.五个连续奇数中,中间的一个为2n+1,则这五个数的和是_________.6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0. 8元,以后每天收0.5元,那么一张光盘在租出的第n 天(n 是大于2的自然数),应收租金______元.7.如果m-n=50,则n-m=_____,5-m+n=______,70+2m-2n=________.8.设M=3a 3-10a 2-5,N=-2a 3+5-10a,P=7-5a-2a 2,那么M+2n-3P=_________.M-3N+2P=_______.二、选择题:(每小题3分,共24分)9.下列判断中,正确的个数是( )①在等式x+8=8+x 中,x 可以是任何数;②在代数式18x +中,x 可以是任何数; ③代数式x+8的值一定大于8;④代数式x+8的相反数是x-8A.0个B.1个C.2个D.3个10.一种商品单价为a 元,先按原价提高5%,再按新价降低5%,得到单价b 元,则a 、b 的大小关系为( )A.a>bB.a=bC.a<bD.无法确定11.若x<y<z,则│x-y │+│y-z │+│z-x │的值为( )A.2x-2zB.0C.2x-2yD.2z-2x12.对于单项式-23x 2y 2z 的系数、次数说法正确的是( )A.系数为-2,次数为8B.系数为-8,次数为5C.系数为-23,次数为4D.系数为-2,次数为713.下列说法正确的有( )①-1999与2000是同类项 ②4a 2b 与-ba 2不是同类项③-5x 6与-6x 5是同类项 ④-3(a-b)2与(b-a)2可以看作同类项A.1个B.2个C.3个D.4个14.已知x 是两数,y 是一位数,那么把y 放在x 的左边所得的三位数是( )A.yxB.x+yC.10y+xD.100y+x15.如果m 是三次多项式,n 是三次多项式,则m+n 一定是( )A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的多项式16.若2ax 2-3b x+2=-4x 2-x+2对任何x 都成立,则a+b 的值为( ) A.-2 B.-1 C.0 D.1三、解答题:(共52分)17.如果单项式2a mx y 与235a nxy --是关于x 、y 的单项式,且它们是同类项. (1)求2002(722)a -的值. (2)若2a mx y 235a nxy --=0,且xy ≠0,求2003(25)m n -的值.(8分)18.先化简再求值(12分)(1)5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=11,26y -=-.(2)已知A=x2+4x-7,B=-12x2-3x+5,计算3A-2B.(3)已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值.(4)若3x2-x=1,求6x3+7x2-5x+1994的值.19.某同学做一道数学题,误将求“A-B”看成求“A+B”, 结果求出的答案是3x2-2x+5.已知A=4x2-3x-6,请正确求出A-B.(8分)20.探索规律(8分)(1)计算并观察下列每组算式:88____55____1212____,,79____46____1113____⨯=⨯=⨯=⎧⎧⎧⎨⎨⎨⨯=⨯=⨯=⎩⎩⎩(2)已知25×25=625,那么24×26=__________.(3)从以上的过程中,你发现了什么规律,你能用语言叙述这个规律吗?你能用代数式表示设这个规律吗?21. (8分)有理数a、b、c在数轴上对应点为A、B、C,其位置如图所示, 试去掉绝对值符号并合并同类项: │c│-│c+b│+│a-c│+│b+a│.22.某移动通讯公司开设了两种通讯业务:“全球通”使用者缴50元月租费, 然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0,6 元(本题的通话均指市内通话).若一个月内通话x分钟,两种方式的费用分别为y1 元和y2元.(8分)(1)用含x的代数式分别表示y1和y2,则y1=________,y2=________.(2)某人估计一个月内通话300分钟,应选择哪种移动通讯合算些?第三章 整式的加减单元测试题(二)一、选择题(20分)1.下列说法中正确的是( ).A .单项式223x y -的系数是-2,次数是2 B .单项式a 的系数是0,次数也是0C .532ab c 的系数是1,次数是10D .单项式27a b -的系数是17-,次数是3 2.若单项式421m a b -+与272m m a b +-是同类项,则m 的值为( ).A .4B .2或-2C .2D .-23.计算(3a 2-2a +1)-(2a 2+3a -5)的结果是( ).A .a 2-5a +6B .7a 2-5a -4C .a 2+a -4D .a 2+a +64.当23,32a b ==时,代数式2[3(2)1]b a a --+的值为( ). A .269 B .1113 C .2123D .13 5.如果长方形周长为4a ,一边长为a +b,,则另一边长为( ).A .3a -bB .2a -2bC .a -bD .a -3b6.一个两位数,十位数字是a ,个位数字是b ,则这个两位数可表示为( ).A .abB .10a +bC .10b +aD .a +b7.观察右图给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为( ).( ).A .3n -2B .3n -1C .4n +1D .4n -38. 长方形的一边长为2a+b,另一边比它大a -b ,则周长为( )A.10a+2bB.5a+bC.7a+bD.10a -b9. 两个同类项的和是( )A.单项式B.多项式C.可能是单项式也可能是多项式D.以上都不对10、如果A 是3次多项式,B 也是3次多项式, 那么A +B 一定是( )(A )6次多项式。

华师大七上数学-有理数

华师大七上数学-有理数

XX
PART 03
代数式初步认识与计算
REPORTING
代数式概念及表示方法
01
02
03
代数式
由数、字母和运算符号组 成的数学表达式。
代数式的表示方法
用字母表示数,将数和字 母通过运算符号组合成代 数式。
代数式的分类
按照运算符号的不同,代 数式可分为加法、减法、 乘法和除法代数式。
代数式值计算

工程问题
利用一元一次方程解决工程问 题,如工作量、工作时间、工
作效率之间的关系等。
利润问题
利用一元一次方程解决利润问 题,如进价、售价、利润、折
扣等之间的关系。
配套问题
利用一元一次方程解决配套问 题,如服装加工中的衣料、衣
扣等之间的配套关系。
XX
PART 05
不等式和不等式组解法与 应用
REPORTING
代数式求值
将给定的数值代入代数式,按照运算顺序进行计算,得出代数式的值。
代数式求值的步骤
首先识别代数式中的运算符号和括号,然后按照先乘除后加减的顺序进行计算, 最后得出代数式的值。
合并同类项法则
同类项
所含字母相同,并且相同 字母的指数也相同的项叫 做同类项。
合并同类项法则
把同类项的系数相加,所 得结果作为系数,字母和 字母的指数不变。
合并同类项的步骤
首先识别出同类项,然后 将同类项的系数相加,得 出合并后的结果。
去括号法则
去括号法则
如果括号外的因数是正数,去括号后 原括号内各项的符号与原来的符号相 同;如果括号外的因数是负数,去括 号后原括号内各项的符号与原来的符 号相反。
去括号的步骤
首先识别出括号外的因数,然后根据 因数的正负性确定去括号后各项的符 号,最后进行运算得出结果。

华师大二附中七年级数学上册第一单元《有理数》经典题(培优)

华师大二附中七年级数学上册第一单元《有理数》经典题(培优)

一、选择题1.按如图所示的运算程序,能使输出的结果为12的是()A.x=-4,y=-2 B.x=3, y=3 C.x=2,y=4 D.x=4,y=0 2.2--的相反数是()A.12-B.2-C.12D.23.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位4.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样5.下列说法中,其中正确的个数是()(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a表示正有理数,则-a一定是负数;(4)a是大于-1的负数,则a2小于a3A.1 B.2 C.3 D.46.下列各数中,互为相反数的是()A.+(-2)与-2 B.+(+2)与-(-2) C.-(-2)与2 D.-|-2|与+(+2)7.在数轴上距原点4个单位长度的点所表示的数是().A.4 B.-4 C.4或-4 D.2或-28.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比()A.提高20元B.减少20元C.提高10元D.售价一样9.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.100610.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3 11.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多1012.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12 13.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3 B .﹣1 C .2 D .1 14.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数 15.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题16.绝对值小于2的整数有_______个,它们是______________.17.数轴上A 、B 两点所表示的有理数的和是 ________.18.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____. 19.计算1-2×(32+12)的结果是 _____. 20.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 21.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.22.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出23.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b,a 的形式,则4a b -的值________. 24.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 25.比较大小:364--_____________()6.25--. 26.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.三、解答题27.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 28.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 29.321032(2)(3)5-÷---⨯30.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况: 班级1班 2班 3班 4班 实际购买量(本)a 33 c 21 实际购买量与计划购买量的差值(本) 12+b 8- 9-a =c =(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 有理数1.正数与负数(1)生活中存在大量相反意义的量生活中,有许许多多具有相反意义的词语,例如向东和向西,西北和东南,向前和向后,向左和向右,上升和下降,零上和零下,收入和支出,盈利和亏本,买进和卖出,公元前和公元后等.和相反意义的词语相关联,生活中存在数不清的具有相反意义的量,如前进3 m 与后退5 m ,收入300元与支出80元等.(2)用正数和负数表示具有相反意义的量现实生活中,具有相反意义的量,如昨天的气温是零下1 ℃,而今天的气温是零上2 ℃,怎样表示它们呢?只用原来的那些数很难区分量的相反意义.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示,把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“-”(读作负)号来表示.即把其中一种意义的量规定为正的(用“+”号表示,读作“正”),把另一种和它意义相反的量规定为负的(用“-”号表示,读作“负”),如零下1 ℃记作-1 ℃,零上2 ℃记作+2 ℃;又如规定向东走5 m ,记作+5 m ,则向西走5 m ,记作-5 m.【例1-1】 用正数和负数表示下列各题中的量.(1)一辆公共汽车在一个停车站下去10个乘客和上来8个乘客;(2)珠穆朗玛峰高于海平面8 844.43米和吐鲁番盆地最低点低于海平面155米;(3)商品上涨10%和下降15%.分析:把一种意义的量规定为正的,把另一种和它意义相反的量规定为负,并分别用正数和负数表示即可.解:(1)-10人,+8人;(2)+8 848.43米,-155米;+10%,-15%.警误区 表示相反意义的量时不要忘记加单位 在用正负数表示一对具有相反意义的量时,不要少了后面的单位,同时注意相反意义的量的数值可以不同.(4)正数和负数的概念①负数的概念:为了表示具有相反意义的量,我们引进了像-5,-2,-237,-3.6这样的数,这是一种新数,叫做负数.②正数的概念:过去学过的那些数(零除外),如10,3,500,5.5等,叫做正数.正数前面有时也可放上一个“+”号,如5可以写成+5,+5和5是一样的.③0既不是正数,也不是负数.(5)关于正数、负数和0的几点说明①在正数的前面加上“+”号,以强调它是正数,如正数3写作+3,通常“+”号省略不写;负数前面的“-”号不能省略,如负数5写作-5.②正数和负数是相对而言的,取决于作为基准的量,但一般情况下,人们习惯上这样来规定正数和负数:收入为正,支出为负;零上为正,零下为负;高出海平面为正,低于海平面为负等等. ③判断一个数是否是负数,关键是看是否在正数前面带有“-”号,而不是看它是否有“-”号.例如:-(-3)就不是负数.④0的意义在过去表示“没有”,自引入负数后,它就是正数与负数的分界点,也是相反意义的量的分界点,是我们认识的数中唯一的一个“中性数”.谈重点 正数和负数的关系 负数是在正数的基础上定义的,只有在正数的前面添上“-”号才是负数.【例1-2】 指出下列各数中,哪些是正数,哪些是负数.-2,+213,0,315,204,-0.02,+3.65,-517. 分析:根据正数和负数的意义来判断,尤其要弄明白负数的意义:在正数前面加上“-”号.还要特别注意0既不是正数也不是负数.解:+213,315,204,+3.65是正数;-2,-0.02,-517是负数. 2.有理数(1)有理数的概念正整数(即不为0的自然数)、零和负整数统称为整数;正分数和负分数统称为分数;整数和分数统称为有理数.即整数⎩⎪⎨⎪⎧正整数0负整数 分数⎩⎪⎨⎪⎧ 正分数负分数 有理数⎩⎪⎨⎪⎧ 整数分数 (2)有理数的分类 ①有理数可以按照它的定义分为整数和分数两类.即 有理数⎩⎪⎨⎪⎧ 整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧ 正分数负分数 ②有理数还可以按照性质分为:正有理数、0和负有理数三类.即有理数⎩⎪⎨⎪⎧ 正有理数⎩⎪⎨⎪⎧ 正整数正分数0负有理数⎩⎪⎨⎪⎧ 负整数负分数警误区 进行有理数分类时要注意的问题 有理数在分类之前必须弄清楚分类的标准,不能混淆,要做到不重不漏.(3)数集的概念把一些数放在一起,就组成一个数的集合,简称数集.所有的有理数组成的数集叫做有理数集.类似地,所有的整数组成的数集叫做整数集,所有的正数组成的数集叫做正数集,所有的负数组成的数集叫做负数集,如此等等.所有正整数和正分数合在一起组成正有理数集,所有负整数和负分数合在一起组成负有理数集.【例2】 把下列各数填在相应的横线上:-35,0.7,80,-1909,-0.88,0,3.14,-7.9,234,13,3,-10. 正整数__________;正分数__________;负整数__________;负分数__________. 解析:先把有理数分为正数和负数两类,再把正数分为正整数和正分数两类,把负数分为负整数和负分数两类,分别填写在相应的横线上.答案:80,234,3 0.7,3.14,13 -35,-10 -1909,-0.88,-7.9 3.正确理解具有相反意义的量的意义用正数和负数表示具有相反意义的量,把其中一种意义的量先规定为正的,那么与它意义相反的量就是负的.用正负数表示相反意义的量时,必须要有一个规定的标准.在用正数和负数表示一对具有相反意义的量时,“正”和“负”是相对而言的,用“正”表示其中的一个量,则用“负”来表示另一个与之意义相反的量,但我们一般把“增加”、“上涨”、“盈利”、“高于”等记为“正”,把与它们有相反意义的量记为“负”.通常从两个方面考查:一是用正负数表示具有相反意义的量,二是说出具有相反意义的量表示的意义.把具有相反意义的量的表示方法和取“标准”(或“起始”位置)等知识结合在一起,综合性较强,是近几年中考的热点之一.【例3-1】 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意取出两袋,它们的质量最多相差( ).A .0.8 kgB .0.6 kgC .0.5 kgD .0.4 kg解析:从条件中可以看出,在三袋面粉中,最多可以超出标准质量0.3 kg ,最少低于标准质量0.3 kg ,所以从中任意取出两袋,它们的质量最多相差0.6 kg.答案:B解技巧 解答“标准质量”问题的关键 要正确解答本题,不仅要知道面粉袋上标有质量为(25±m ) kg 的意义,还要考虑到两袋面粉如何搭配才能使差值最大,显然考虑到最大的可能与最小的可能的差值.【例3-2】 某项科学研究,以45分钟为一个时间单位,并记每天上午10:00为0,10:00以前记为负,10:00以后记为正,例如,9:15记为-1,10:45记为1等等.依次类推,上午7:00应记为( ).A .3B .-4C .-2.15D .-7.45解析:本题中的标准是上午10:00为0,表示方法是10:00以前记为负,10:00以后记为正,要求用新规定来表示7:00.7:00到10:00是180分钟,180÷45=4,因为7:00在10:00以前,所以7:00应记为-4.答案:B4.有理数的分类有理数有两种基本的分类方法,一种分类根据定义,另一种分类根据数的符号即有理数的性质.不论哪种分类形式都要明确分类的依据,分类时做到不重不漏,两种分类形式不能混淆.必须弄清楚非负数和非正数的范围.正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.【例4】 把下列各数填在相应的括号内.-3,2,-1,-14,-0.58,0,-3.141 592 6,0.618,139整数集:{ …} 负数集:{ …}分数集:{ …} 非负数集:{ …}负分数集:{ …}分析:非负数包括正数和零,即正整数、正分数和零;分数包括小数.解:整数集:{-3,2,-1,0,…}负数集:⎩⎨⎧⎭⎬⎫-3,-1,-14,-0.58,-3.141 592 6,… 分数集:⎩⎨⎧⎭⎬⎫-14,-0.58,-3.141 592 6,0.618,139,… 非负数集:⎩⎨⎧⎭⎬⎫2,0,0.618,139,… 负分数集:⎩⎨⎧⎭⎬⎫-14,-0.58,-3.141 592 6,…5.按规律排列的有理数当数的范围扩大到有理数之后,按一定的规律排列有理数,就成为考查有理数的意义以及分类的有效手段,并且成为中考命题的热点.研究数学、学习数学、应用数学的过程,实际上就是探索、研究数学规律并运用数学规律的过程.解决此类问题的关键是建立数与它的序号之间的关系,其中数的符号是首先要考虑的,数的符号一般由数的序号的奇、偶性来决定.对于数字规律性问题,我们要注意观察各部分数字的变化规律以及各数字之间的关系.解这一类题目,要用到归纳推理,它是一种重要的数学思想方法.数学史上有很多重要的发现如哥德巴赫猜想、费马大定理等就是由数学家的探索、猜想而得,学习数学必须不断去探索、猜想、不断总结规律,才会有所发现,有所创造.【例5】 (探究题)观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,并说出第99个数是什么?第2 010个数是什么?(1)1,-1,1,-1,1,-1,1,-1,__________,__________,__________,…;(2)1,-2,3,-4,5,-6,7,-8,__________,__________,__________,…;(3)-1,12,-13,14,-15,16,-17,__________,__________,__________,…. 分析:(1)(2)小题全部是按正数、负数、正数、负数的顺序排列的一组整数,(1)去掉数的符号后是1,(2)去掉数的符号后是按顺序排列的自然数;(3)是按负数、正数、负数、正数的顺序排列的一组分数,其分母是按顺序排列的自然数,即分母就是数的序号,分子是1.解:(1)1,-1,1,第99个数是1,第2 010个数是-1;(2)9,-10,11,第99个数是99,第2 010个数是-2 010;(3)18,-19,110,第99个数是-199,第2 010个数是12 010. 解技巧 探索数字变化规律的方法 仔细观察数字以及它的符号的特点,把数和它的序号建立联系,特别注意其中符号的确定方法.。

相关文档
最新文档