1N5823中文资料

合集下载

ADC0832中文资料

ADC0832中文资料

A/D 转换芯片ADC0832的应用作者:杜洋 2005年10月11日ADC0832是美国国家半导体公司生产的一种8位分辨率、双通道A/D 转换芯片。

由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。

学习并使用ADC0832可是使我们了解A/D 转换器的原理,有助于我们单片机技术水平的提高。

ADC0832具有以下特点:· 8位分辨率;· 双通道A/D 转换;· 输入输出电平与TTL/CMOS 相兼容; · 5V 电源供电时输入电压在0~5V 之间; · 工作频率为250KHZ ,转换时间为32μS ; · 一般功耗仅为15mW ;· 8P 、14P —DIP (双列直插)、PICC 多种封装;· 商用级芯片温宽为0°C to +70°C ,工业级芯片温宽为−40°C to +85°C ;芯片顶视图:(图1、图2)图1 图2ww w .t ai -ya n.c o m /bb s 电子工程技术论坛:IC资料查询网站:电子器件采购平台: /bbs芯片接口说明:·CS_ 片选使能,低电平芯片使能。

· CH0 模拟输入通道0,或作为IN+/-使用。

· CH1 模拟输入通道1,或作为IN+/-使用。

· GND 芯片参考0电位(地)。

· DI 数据信号输入,选择通道控制。

· DO 数据信号输出,转换数据输出。

· CLK 芯片时钟输入。

· Vcc/REF 电源输入及参考电压输入(复用)。

ADC0832与单片机的接口电路:图3ww w .t a i -y a n .c o m /bb s 电子工程技术论坛:IC资料查询网站:电子器件采购平台: /bbsADC0832为8位分辨率A/D 转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。

1N5822RLG;1N5820RLG;1N5821RLG;1N5822G;1N5821G;中文规格书,Datasheet资料

1N5822RLG;1N5820RLG;1N5821RLG;1N5822G;1N5821G;中文规格书,Datasheet资料

1N5820, 1N5821, 1N58221N5820 and 1N5822 are Preferred DevicesAxial Lead RectifiersThis series employs the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features chrome barrier metal, epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.Features•ăExtremely Low V F•ăLow Power Loss/High Efficiency•ăLow Stored Charge, Majority Carrier Conduction•ăShipped in plastic bags, 500 per bag•ăAvailable in Tape and Reel, 1500 per reel, by adding a “RL'' suffix tothe part number•ăPb-Free Packages are Available*Mechanical Characteristics:•ăCase: Epoxy, Molded•ăWeight: 1.1 Gram (Approximately)•ăFinish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable•ăLead Temperature for Soldering Purposes:260°C Max. for 10 Seconds•ăPolarity: Cathode indicated by Polarity Band*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.CASE 267-05(DO-201AD)STYLE 1SCHOTTKY BARRIERRECTIFIERS3.0 AMPERES20, 30, 40 VOLTSPreferred devices are recommended choices for future use and best overall value.MARKING DIAGRAMSee detailed ordering and shipping information on page 3 of this data sheet.ORDERING INFORMATIONA= Assembly Location1N582x= Device Codex= 0, 1, or 2YY= YearWW= Work WeekG= Pb-Free Package(Note: Microdot may be in either location)A1N582xYYWW GGMAXIMUM RATINGSStresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.*THERMAL CHARACTERISTICS (Note 5)Characteristic Symbol Max Unit Thermal Resistance, Junction-to-Ambient R q JA28°C/W*ELECTRICAL CHARACTERISTICS (T L = 25°C unless otherwise noted) (Note 1)Characteristic Symbol1N58201N58211N5822UnitMaximum Instantaneous Forward Voltage (Note 2) (i F = 1.0 Amp)(i F = 3.0 Amp)(i F = 9.4 Amp)V F0.3700.4750.8500.3800.5000.9000.3900.5250.950VMaximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2)T L = 25°CT L = 100°C i R2.0202.0202.020mA1.Lead Temperature reference is cathode lead 1/32″ from case.2.Pulse Test: Pulse Width = 300 m s, Duty Cycle =2.0%.*Indicates JEDEC Registered Data for 1N5820-22.ORDERING INFORMATIONDevice Package Shipping†1N5820Axial Lead500 Units/Bag500 Units/Bag1N5820G Axial Lead(Pb-Free)1N5820RL Axial Lead1500/T ape & Reel1500/T ape & Reel1N5820RLG Axial Lead(Pb-Free)1N5821Axial Lead500 Units/Bag500 Units/Bag1N5821G Axial Lead(Pb-Free)1N5821RL Axial Lead1500/T ape & Reel1500/T ape & Reel1N5821RLG Axial Lead(Pb-Free)1N5822Axial Lead500 Units/Bag500 Units/Bag1N5822G Axial Lead(Pb-Free)1N5822RL Axial Lead1500/T ape & Reel1500/T ape & Reel1N5822RLG Axial Lead(Pb-Free)†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.NOTE 3 — DETERMINING MAXIMUM RATINGSReverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 V RWM. Proper derating may be accomplished by use of equation (1).T A(max) = T J(max)* R q JA P F(A V)* R q JA P R(A V)(1) where T A(max) = Maximum allowable ambient temperature T J(max) = Maximum allowable junction temperature(125°C or the temperature at which thermalrunaway occurs, whichever is lowest) P F(A V) = Average forward power dissipationP R(A V) = Average reverse power dissipationR q JA = Junction-to-ambient thermal resistance Figures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2).T R = T J(max)* R q JA P R(A V)(2) Substituting equation (2) into equation (1) yields:T A(max) = T R* R q JA P F(A V)(3) Inspection of equations (2) and (3) reveals that T R is the ambient temperature at which thermal runaway occurs or where T J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2, and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is:V R(equiv) = V(FM) F(4) The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.EXAMPLE: Find T A(max) for 1N5821 operated in a 12-volt dc supply using a bridge circuit with capacitive filter such that I DC = 2.0 A (I F(A V) = 1.0 A), I(FM)/I(A V) = 10, Input V oltage = 10 V(rms), R q JA =40°C/W.Step 1. Find V R(equiv).Read F = 0.65 from Table 1,N V R(equiv) = (1.41) (10) (0.65) = 9.2 V. Step 2. Find T R from Figure 2. Read T R = 108°C@ V R = 9.2 V and R q JA = 40°C/W.Step 3. Find P F(A V) from Figure 6. **Read P F(A V) = 0.85 W@I(FM)I(AV)+10andĂI F(AV)+1.0ĂA.Step 4. Find T A(max) from equation (3).T A(max) = 108 * (0.85) (40) = 74°C.**Values given are for the 1N5821. Power is slightly lower for the 1N5820 because of its lower forward voltage, and higher for the 1N5822. Variations will be similar for the MBR-prefix devices, using P F(A V) from Figure 6.Table 1. Values for Factor FCircuit Half Wave Full Wave, BridgeFull Wave, Center Tapped*†Load Resistive Capacitive*Resistive Capacitive Resistive Capacitive Sine Wave0.5 1.30.50.65 1.0 1.3 Square Wave0.75 1.50.750.75 1.5 1.5*Note that V R(PK)[ 2.0 V in(PK).†Use line to center tap voltage for V in.Figure 1. Maximum Reference Temperature1N5820Figure 2. Maximum Reference Temperature1N5821Figure 3. Maximum Reference Temperature1N5822Figure 4. Steady-State Thermal Resistance152.0V R , REVERSE VOLTAGE (VOLTS)115125105304.0V R , REVERSE VOLTAGE (VOLTS)125115105958575L, LEAD LENGTH (INCHES)1/8252015105.002/840T R , R E F E R E N C E T E M P E R A T U R E ( C )T R J L , T H E R M A L R E S I S T A N C E9585755.03.0 4.07.01020° 5.07.01015203/84/85/86/87/81.0403530q J U N C T I O N -T O -L E A D ( C /W )°, R E F E R E N C E T E M P ER A T U R E ( C )R °15V R , REVERSE VOLTAGE (VOLTS)115105T R , R E F E R E N C E T E M P E R A T U R E ( C )9585755.03.0 4.07.01020°12530r (t ), T R A N S I E N T T H E R M A L R E S I S T A N C E (N O R M A L I Z E D )0.20.51.02.05.01020501002005001.0 k2.0 k5.0 k10 k0.050.030.020.010.1t, TIME (ms)0.50.30.21.0Figure 5. Thermal Response20 k3.00.1I F(AV), AVERAGE FORWARD CURRENT (AMP)5.0P 0.20.30.5 2.0, A V E R A G E P O W E R D I S S I P A T I O N (W A T T S )F (A V )0.7 1.07.010Figure 6. Forward Power Dissipation 1N5820-22NOTE 4 - APPROXIMATE THERMAL CIRCUIT MODELUse of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink.Terms in the model signify:T A = Ambient Temperature T C = Case Temperature T L = Lead Temperature T J = Junction Temperature R q S = Thermal Resistance, Heatsink to Ambient R q L = Thermal Resistance, Lead-to-Heatsink R q J = Thermal Resistance, Junction-to-Case P D = Total Power Dissipation = P F + P R P F = Forward Power Dissipation P R = Reverse Power Dissipation(Subscripts (A) and (K) refer to anode and cathode sides,respectively.) Values for thermal resistance components are:R q L = 42°C/W/in typically and 48°C/W/in maximum R q J = 10°C/W typically and 16°C/W maximumThe maximum lead temperature may be found as follows:T L = T J(max) * n T JL where n T JL [ R q JL · P DNOTE 6 — HIGH FREQUENCY OPERATIONSince current flow in a Schottky rectifier is the result ofmajority carrier conduction, it is not subject to junction di‐ode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit ana‐lysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance.(See Figure 10.)Figure 7. Typical Forward VoltageFigure 8. Maximum Non-Repetitive SurgeCurrentFigure 9. Typical Reverse Current1.2v F , INSTANTANEOUS FORWARD VOLTAGE (VOLTS)505.0NUMBER OF CYCLES5.01001.010V R , REVERSE VOLTAGE (VOLTS)8.0500.20.0116i F , I N S T A N T A N E O U S F O R W A R D C U R R E N T (A M P )I 0.50.400.20.60.87.0102.0 3.01002432400.051.4100200.1, P E A K H A L F -W A V E C U R R E N T (A M P )F S M 705030201.00.30.20.10.070.71.02.03.07.0102030V R , REVERSE VOLTAGE (VOLTS)1.00.5200702.03.05.010500300100C , C A P A C I T A N C E (p F )0.77.0203020305070Figure 10. Typical CapacitanceI , R E V E R S E C U R R E N T (m A )R 0.020.05101.00.55.02.0 4.0122028361.10.30.10.50.7 1.30.9PACKAGE DIMENSIONSAXIAL LEAD CASE 267-05(DO-201AD)ISSUE GNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.STYLE 1:PIN 1.CATHODE (POLARITY BAND)2.ANODEDIMMIN MAX MIN MAX MILLIMETERSINCHES A 0.2870.3747.309.50B 0.1890.209 4.80 5.30D 0.0470.051 1.20 1.30K1.000---25.40---ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.PUBLICATION ORDERING INFORMATION分销商库存信息:ONSEMI1N5822RLG1N5820RLG1N5821RLG 1N5822G1N5821G1N5820G1N5820RL1N5821RL1N5822RL。

XL4501自带恒压恒流环路的降压型单片车充专用芯片(官方中文版)

XL4501自带恒压恒流环路的降压型单片车充专用芯片(官方中文版)

XL4501⾃带恒压恒流环路的降压型单⽚车充专⽤芯⽚(官⽅中⽂版)n输出电压从1.25V到32V可调n最⼩压差0.3Vn固定150KHz开关频率n最⼤5A开关电流n内置功率MOSn出⾊的线性与负载调整率n内置恒流环路n内置频率补偿功能n内置输出短路保护功能n内置输⼊过压保护功能n内置热关断功能n TO263-5L封装应⽤n车载充电器n电池充电器n LCD电视与显⽰屏n便携式设备供电n通讯设备供电n降压恒流驱动n显⽰器LED背光n通⽤LED照明器,可⼯作在DC8V到36V输⼊电压范围,低纹波,内置功率MOS。

XL4501内置固定频率振荡器与频率补偿电路,简化了电路设计。

PWM控制环路可以调节占空⽐从0~100%之间线性变化。

内置输出过电流保护功能。

内部补偿模块可以减少外围元器件数量。

图1.XL4501封装引脚配置图2. XL4501引脚配置表1.引脚说明引脚号引脚名称引脚描述1 GND 接地引脚。

2 FB 反馈引脚,通过外部电阻分压⽹络,检测输出电压进⾏调整,参考电压为1.25V。

3 SW 功率开关输出引脚,SW是输出功率的开关节点。

4 CS 输出电流检测引脚(IOUT=0.11V/RCS)。

5 VIN 输⼊电压,⽀持DC8V~36V宽范围电压操作,需要在VIN与GND 之间并联电解电容以消除噪声。

150KHz 36V 5A开关电流⾃带恒流环路降压型DC-DC转换器XL4501 ⽅框图图3. XL4501⽅框图典型应⽤图4. XL4501系统参数测量电路图5.XL4501系统参数测量电路(LED恒流驱动订购信息产品型号打印名称封装⽅式包装类型XL4501E1 XL4501E1 TO263-5L 800只每卷XLSEMI⽆铅产品,产品型号带有“E1”后缀的符合RoHS标准。

绝对最⼤额定值(注1)参数符号值单位输⼊电压Vin -0.3到40 V反馈引脚电压V FB-0.3到40 V输出开关引脚电压V SW-0.3到VIN V功耗P D内部限制mW热阻(TO263-5L)R JA30 oC/W (结到环境,⽆外部散热⽚)最⼤结温T J-40到150 oC操作结温T J-40到125 oC贮存温度范围T STG-65到150 oC引脚温度(焊接10秒) T LEAD260 oC ESD (⼈体模型) >2000 V注1: 超过绝对最⼤额定值可能导致芯⽚永久性损坏,在上述或者其他未标明的条件下只做功能操作,在绝对最⼤额定值条件下长时间⼯作可能会影响芯⽚的寿命。

XL4301芯龙(XLSEMI)一级代理推荐自带恒压恒流环路的降压型单片车充专用芯片(中文版)

XL4301芯龙(XLSEMI)一级代理推荐自带恒压恒流环路的降压型单片车充专用芯片(中文版)

180KHz 45V 3A 开关电流自带恒流环路降压型DC-DC 转换器 XL4301特点8V 至40V 工作电压范围 输出电压从1.25V 至VIN-2V 可调 最小压差0.3V 固定180KHz 开关频率 最大3A 开关电流 内置功率MOSFET 出色的线性与负载调整率 内置恒流环路 内置频率补偿功能内置输出线损补偿功能 内置输出短路保护功能 内置热关断功能 推荐输出功率小于13W SOP8-EP 封装应用车载充电器 电池充电器 LCD 电视与显示屏 便携式设备供电 通讯设备供电 降压恒流驱动描述XL4301是一款高效降压型DC-DC 转换器,可工作在DC8V 至40V 输入电压范围,低纹波,内置功率MOSFET 。

XL4301内置固定频率振荡器与频率补偿电路,简化了电路设计。

PWM 控制环路可以调节占空比从0~100%之间线性变化。

内置输出过电流保护功能。

内部补偿模块可以减少外围元器件数量。

XL4301内部集成了一个简单的、用户可编程的输出线损补偿功能。

在表2中选择合适的补偿电阻值对输出电压进行补偿。

图1.XL4301封装180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL43012. XL4301引脚配置引脚名称180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL4301图3. XL4301方框图典型应用(车载充电)图4. XL4301180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL4301180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL4301180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL4301图5.XL4301系统参数测量电路(VIN=8V~40V,VOUT=5V/0.1A~2.5A)Efficiency VS Output current180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL4301 图10.XL4301系统参数测量电路(VIN=8V~40V,VOUT=5V/0.1A~2.5A)180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL4301180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL4301物理尺寸SOP8-EP180KHz 45V 3A开关电流自带恒流环路降压型DC-DC转换器XL4301重要申明XLSEMI保留在任何时间、在没有任何通报的前提下,对所提供的产品和服务进行更正、修改、增强的权利。

1N5822中文资料_数据手册_参数

1N5822中文资料_数据手册_参数

Handling precaution:None
1.Electrical Characteristic
Maximum & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.
Parameter Symbol
Fig 3. – Typical Instantaneous Forward
100
Characteristics
TJ = 25°C Pulse width = 300µs
10 1% Duty Cycle
1.0
0
1
10
100
Number of Cycles at 60Hz
Fig 4. – Typical Reverse Characteristics 10
295±3
W
外箱标签cartoon label
L
3 按以上包装方式,编带数量和外包装箱产品数量:typing and cartoon spec.
每根编带数量 quantity/ammo
A-405 & DO-41 & R-1 3K
外箱数量(T52编带) quantity/cartoon
30K
外箱数量(T26编带)
Parameter Symbol
symbol
1N5820
1N5821
1N5822
Unit
Maximum instantaneous forward voltage at 3.0A
VF
0.475
0.500
Maximum DC reverse current TA = 25°C at rated DC blocking voltage TA = 100°C

1N5829中文资料

1N5829中文资料


元器件交易网
1N5829 thru 1N5831
Figure 4 Typical Reverse Characteristics 500 400 300 600 200 100 60 40 20 mAmps 10 6 4 2 1 .6 .4 .2 .1 20 40 TA= 25°C 50 60 Volts Instantaneous Reverse Leakage Current - MicroAmperes versus Percent Of Rated Peak Reverse Voltage - Volts 70 80 90 TA=125°C 0 1 2 4 Amps 500 400 300 200 800
MCC
Figure 2 Forward Derating Curve
15
Single Phase, Half Wave 60Hz Resistive or Inductive Load 0 30 50 70 °C 100 125 150
Average Forward Rectified Current - Amperes versus Ambient Temperature - °C
Figure 3 Junction Capacitance
1000 600 400 200 pF TJ=25°C 100 60 40 20 10 .1 .2 .4 1 Volts 2 4 10 20 40 100 200 400 1000
Junction Capacitance - pF versus Reverse Voltage - Volts
E A
DIMENSIONS
VF
.44V
IFM = 25 A; TA = 125°C .46V .48V

1SMA5913BT3中文资料(motorola)中文数据手册「EasyDatasheet-矽搜」

1SMA5913BT3中文资料(motorola)中文数据手册「EasyDatasheet-矽搜」

1SMA5913BT3中文资料(motorola)中文数据手册「EasyDatasheet-矽搜」摩托罗拉半导体技术资料订购此文件通过1SMA5913BT3 / D1SMA5913BT3通过1.5瓦塑料表面安装硅齐纳二极管1.5瓦齐纳二极管这个完整新行提供以下优点.规格特点:电压范围 - 3.3至68五ESD额定值3级(16千伏)每人体模型平操作面精确定位包装设计顶部侧面或底部电路电路板安装薄型封装可在磁带和卷轴理想替代MELF软件包机械特性:案例:无空洞,转移模塑塑料最大外壳焊接温度目:260℃,10秒表面处理:所有外部表面耐腐蚀用随手可焊leads极性:负极通过模压极性缺口指示安装位置:任何1SMA5945BT3塑料表面MOUNT ZENER二极管1.5瓦3.3-68伏SMACASE 403B–01塑料最大额定值和特性等级DC功率耗散@ TL = 75°C(注1)减免上述75℃DC功耗@ TA = 25°C(注1)减免上述25℃热阻结到铅从结到环境热阻峰值正向浪涌@ TA = 25°C,(JEDEC方法,注3)典型Ppk耗散@ TL 25°C,(注2,PW-10/1000μs每图8)典型Ppk耗散@ TL 25°C,(注2,PW-8/20μs按照图9)工作和存储结温范围符号PDPDR JLR JAIFSMPpkPpkTJ, Tstg值1.5209007.229111202001000150单元WattsmW/°CmWmW/°C°C/W°C/WA mpsWattsWatts°C1. FR4电路板,采用摩托罗拉最低推荐足迹,如图情况403B外形尺寸规格.2.不重复电流脉冲.3.在测量8.3ms单一正弦半波或等效方波,占空比=每分钟最多4个脉冲.REV 1Motorola, Inc. 19961SMA5913BT3通过1SMA5945BT31电气特性(V F = 1.5伏特@ IF = 200 mA时所有类型)最大齐纳阻抗设备额定齐纳电压VZ @IZT伏特3.3 3.63.94.34.75.15.66.26.87.58.29.11011121315161820222427303336394347566268测试当前IZT毫安113.6 104.2 96.1 87.2 79.8 73.5 66.9 60.5 55.1 50 45.7 41.2 37.5 34.1 31.2 28.8 25 23.4 20.8 18.7 17 15.6 13.911.4 10.49.68.78.07.36.76.05.5ZZT @ IZT Ohms109.07.56.05.04.02.02.02.53.03.54.04.55.56.57.09.01014 17.5 19 23 26 33 38 45 53 67 70 86 100 120 ZZK Ohms 500 500 500 500 500 350 250 200 200 400 400 500 500550 550 600 600 650 650 650 700 700 750 800 850 900 950 1000 1100 1300 1500 1700 IZK mA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00.50.50.50.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.25最大反向漏电流IRμA5035.52.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5VR Volts 1.0 1.0 1.0 1.01.52.03.04.05.26.56.87.08.08.49.1 9.911.412.213.715.216.7 18.2 20.6 22.8 25.1 27.4 29.735.8 38.8 42.6 47.1 51.7最大DC 齐纳电流IZM mAdc 455 417 385 349 319 294 268 242 221 200 183 165 150 136 125 115 100948375635650454238353229272422Devce标志1SM A5913BT3 1SM A5914BT3 1SM A5915BT3 1SM A5916BT3 1SM A5917BT3 1SM A5918BT3 1SM A5919BT3 1SM A5920BT3 1SM A5921BT3 1SM A5922BT3 1SM A5923BT3 1SM A5924BT3 1SM A5925BT3 1SM A5926BT3 1SM A5927BT3 1SM A5928BT3 1SM A5929BT3 1SM A5930BT3 1SM A5931BT3 1SM A5932BT3 1SM A5933BT3 1SM A5934BT3 1SM A5935BT3 1SM A5936BT3 1SM A5937BT3 1SM A5938BT3 1SM A5939BT3 1SM A5940BT3 1SM A5941BT3 1SM A5942BT3 1SM A5943BT3 1SM A5944BT3 1SM A5945BT3813B 814B 815B 816B 817B 818B 819B 820B 821B 822B 823B 824B 825B 826B 827B 828B 829B 830B 831B 832B 833B 834B 835B 836B 837B 838B 839B 840B 841B 842B 843B 844B 845B注:公差和电压指定公差代号 - 列出型号数字表示公差±5%.24100PD,最大功耗(瓦)1251503.2102.4TL1.610.80025TA0.15075100T,温度(℃)0246V Z,齐纳电压(伏)810图1.稳态功率降额图2:VZ - 3.3通10伏86420–2–42V Z @ IZTV Z,温度系数(毫伏/°C) V Z,温度系数(毫伏/°C)10100V Z @ IZT468V Z,齐纳电压(伏)10121010100图3.齐纳电压 - 3.3?12伏特图4.齐纳电压 - 14到68伏特ZZ,动态阻抗(欧姆)100IZ(dc) = 1 mA1010毫安IZ (有效值)= 0.1 IZ (直流)100V Z,齐纳电压(伏)20毫安10图5.影响齐纳电压1SMA5913BT3通过1SMA5945BT3 31000测量@零偏置测量@V Z/210非重复,指数脉冲波形,TJ = 25°C1100PPK,峰值功率(KW )100C,电容(pF )0.1TJ = 25°C10击穿电压(V )0.010.010.11TP,脉冲宽度(毫秒)10图6.电容曲线图7.典型脉冲额定值曲线120IPPM ,峰值脉冲电流(%)= 10μs100806040200TA = 25°CPW (ID ),被定义为点峰值电流峰值衰减到伊普50%. Ippm半值 - IPP / 210/1000μs 波形A S 定义R.E.A . td123T,时间(ms )45120IPPM ,峰值脉冲0.9 IPEA K电流(%)806040200.1 IPEA KT = 8μs00T 20μs0.020.040.06T,时间(ms )0.080.18/20μs 波形A S 定义A NSI C62.1和IEC 801-5.0.5 IPEA K图8.脉冲波形图9.脉冲波形4外形尺寸S A0.1574.00.07872.0D B0.07872.0inchesmmSMACNOT ES:1.DIM ENSIONING AND T OLERANCING PER ANSI Y14.5M, 1982.2.CONT ROLLING DIM ENSION: INCH.INCHESMIN MA X0.1600.1800.0900.1150.0750.1050.0500.0640.0040.0080.0060.0160.0300.0600.1900.220MILLIMETERSMIN MA X4.06 4.572.29 2.921.912.671.27 1.630.100.200.150.410.76 1.524.835.59K J H DIMABCDHJKSCA SE 403B–01 发行?5。

XL4201 中文规格书

XL4201 中文规格书

150KHz 40V 3A 开关电流自带恒流环路降压型DC-DC 转换器 XL4201特点n 8V 到40V 宽输入电压范围 n 输出电压从1.25V 到37V 可调 n 最小压差0.3V n 固定150KHz 开关频率 n 最大3A 开关电流 n 内置功率MOSn 出色的线性与负载调整率 n 内置恒流环路 n 内置频率补偿功能 n 内置输出短路保护功能 n 内置输入过压保护功能 n 内置热关断功能 n 推荐输出功率小于13Wn SOP8-EP 封装应用n 车载充电器 n 电池充电器 n LCD 电视与显示屏 n 便携式设备供电 n 通讯设备供电 n 降压恒流驱动 n 显示器LED 背光 n 通用LED 照明描述XL4201是一款高效降压型DC-DC 转换器,可工作在DC8V 到40V 输入电压范围,低纹波,内置功率MOS 。

XL4201内置固定频率振荡器与频率补偿电路,简化了电路设计。

PWM 控制环路可以调节占空比从0~100%之间线性变化。

内置输出过电流保护功能。

内部补偿模块可以减少外围元器件数量。

图1.XL4201封装150KHz 40V 3A开关电流自带恒流环路降压型DC-DC转换器XL4201引脚配置图2. XL4201引脚配置表1.引脚说明引脚号引脚名称引脚描述1,6 NC 无连接。

2 SW 功率开关输出引脚,SW是输出功率的开关节点。

3 GND 接地引脚。

4 FB 反馈引脚,通过外部电阻分压网络,检测输出电压进行调整,参考电压为1.25V。

5 CS 输出电流检测引脚(IOUT=0.11V/RCS)。

7 VC 内部电压调节旁路电容,需要在VC与VIN之间并联1uF电容。

8 VIN 输入电压,支持DC8V~40V宽范围电压操作,需要在VIN与GND 之间并联电解电容以消除噪声。

背部焊盘为SW150KHz 40V 3A开关电流自带恒流环路降压型DC-DC转换器XL4201 方框图图3. XL4201方框图典型应用(车载充电)图4. XL4201系统参数测量电路150KHz 40V 3A开关电流自带恒流环路降压型DC-DC转换器XL4201典型应用(降压LED恒流驱动)ILED=0.11V/RCS图5.XL4201系统参数测量电路(LED恒流驱动)订购信息产品型号打印名称封装方式包装类型XL4201E1 XL4201E1 SOP8-EP 2500只每卷XLSEMI无铅产品,产品型号带有“E1”后缀的符合RoHS标准。

1N6373中文资料

1N6373中文资料

1N6373 - 1N6381 Series (ICTE-5 - ICTE-36, MPTE-5 - MPTE-45) 1500 Watt Peak Power Mosorb™ Zener TransientVoltage Suppressors Unidirectional*Mosorb devices are designed to protect voltage sensitive components from high voltage, high–energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are ON Semiconductor’s exclusive, cost-effective, highly reliable Surmetic™ axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.Specification Features:•Working Peak Reverse V oltage Range – 5 V to 45 V•Peak Power – 1500 Watts @ 1 ms•ESD Rating of Class 3 (>16 KV) per Human Body Model •Maximum Clamp V oltage @ Peak Pulse Current•Low Leakage < 5 m A Above 10 V•Response Time is Typically < 1 nsMechanical Characteristics:CASE:V oid-free, transfer-molded, thermosetting plasticFINISH:All external surfaces are corrosion resistant and leads are readily solderableMAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16″ from the case for 10 secondsPOLARITY:Cathode indicated by polarity bandMOUNTING POSITION:AnyMAXIMUM RATINGSfor Bidirectional DevicesAXIAL LEADCASE 41APLASTICL = Assembly LocationMPTE–xx = ON Device CodeICTE–xx = ON Device Code1N63xx = JEDEC Device CodeYY = YearWW = Work WeekDevice Package ShippingORDERING INFORMATIONMPTE–xx Axial Lead500 Units/Box MPTE–xxRL4Axial Lead1500/T ape & Reel ICTE–xx Axial Lead500 Units/Box ICTE–xxRL4Axial Lead1500/T ape & ReelNOTES:LICTE–xxYYWW1N63xx Axial Lead500 Units/Box1N63xxRL4*Axial Lead1500/T ape & ReelLMPTE–xx1N63xxYYWW1.Nonrepetitive current pulse per Figure 5 and der-ated above T A = 25°C per Figure 2.2.1/2 sine wave (or equivalent square wave), PW =8.3 ms, duty cycle = 4 pulses per minute maxi-mum.*1N6378 Not Available in 1500/Tape & ReelUni–Directional TVSELECTRICAL CHARACTERISTICS (T A = 25°C unlessotherwise noted, V= 3.5 V Max. @ I (Note 3.) = 100 A)ELECTRICAL CHARACTERISTICS (T= 25°C unless otherwise noted, V = 3.5 V Max. @ I (Note 3.) = 100 A)NOTES:3.Square waveform, PW = 8.3 ms, Non–repetitive duty cycle.4. A transient suppressor is normally selected according to the maximum working peak reverse voltage (V RWM ), which should be equal to or greater than the dc or continuous peak operating voltage level.5.V BR measured at pulse test current I T at an ambient temperature of 25°C and minimum voltage in V BR is to be controlled.6.Surge current waveform per Figure 5 and derate per Figures 1 and 2.*Not Available in the 1500/Tape & ReelFigure 1. Pulse Rating Curve 1008060402000255075100125150175200P E A K P U L S E D E R A T I N G I N % O F P E A K P O W E R O R C U R R E N T @ T A = 25C°T A , AMBIENT TEMPERATURE (°C)Figure 2. Pulse Derating CurveP D , S T E A D Y S T A T E P O W E R D I S S I P A T I O N (W A T T S )T L , LEAD TEMPERATURE (°C)t, TIME (ms)100101t P , PULSE WIDTHP P K, P E A K P O W E R (k W )Figure 3. Capacitance versus Breakdown VoltageFigure 4. Steady State Power Derating Figure 5. Pulse Waveform1N6373, ICTE-5, MPTE-5,through1N6389, ICTE-45,C, MPTE-45,CV BR , BREAKDOWN VOLTAGE (VOLTS)C , C A P A C I T A N C E (p F )1N6373, ICTE-5, MPTE-5,through1N6389, ICTE-45,C, MPTE-45,C1.5KE6.8CA through 1.5KE200CAFigure 6. Dynamic Impedance1000500200100D V BR , INSTANTANEOUS INCREASE IN V BR ABOVE V BR(NOM) (VOLTS)D V BR , INSTANTANEOUS INCREASE IN V BR ABOVE V BR(NOM) (VOLTS)I T , T E S T C U R R E N T (A M P S )Figure 7. Typical Derating Factor for Duty CycleD E R A T I N G F A C T O R10.70.50.30.050.10.010.020.030.07D, DUTY CYCLE (%)APPLICATION NOTESRESPONSE TIMEIn most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitance effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 8.The inductive effects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 9. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot. Some input impedance represented by Z in is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.DUTY CYCLE DERATINGThe data of Figure 1 applies for non-repetitive conditions and at a lead temperature of 25°C. If the duty cycle increases, the peak power must be reduced as indicated by the curves of Figure 7. Average power must be derated as the lead or ambient temperature rises above 25°C. The average power derating curve normally given on data sheets may be normalized and used for this purpose.At first glance the derating curves of Figure 7 appear to be in error as the 10 ms pulse has a higher derating factor than the 10 m s pulse. However, when the derating factor for a given pulse of Figure 7 is multiplied by the peak power value of Figure 1 for the same pulse, the results follow the expected trend.TYPICAL PROTECTION CIRCUITVFigure 8. Figure 9.OUTLINE DIMENSIONS1500 Watt MosorbTransient Voltage Suppressors – Axial LeadedMOSORB CASE 41A–04ISSUE DDIMA MIN MAX MIN MAX MILLIMETERS0.3350.3748.509.50INCHES B 0.1890.209 4.80 5.30D 0.0380.0420.96 1.06K 1.000---25.40---P---0.050--- 1.27NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.LEAD FINISH AND DIAMETER UNCONTROLLED IN DIMENSION P.4.041A-01 THRU 041A-03 OBSOLETE, NEW STANDARD 041A-04.NotesMosorb and Surmetic are trademarks of Semiconductor Components Industries, LLC.ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031Phone: 81–3–5740–2700Email: r14525@。

XL4501自带恒压恒流环路的降压型单片车充专用芯片(官方中文版)

XL4501自带恒压恒流环路的降压型单片车充专用芯片(官方中文版)

n输出电压从1.25V到32V可调n最小压差0.3Vn固定150KHz开关频率n最大5A开关电流n内置功率MOSn出色的线性与负载调整率n内置恒流环路n内置频率补偿功能n内置输出短路保护功能n内置输入过压保护功能n内置热关断功能n TO263-5L封装应用n车载充电器n电池充电器n LCD电视与显示屏n便携式设备供电n通讯设备供电n降压恒流驱动n显示器LED背光n通用LED照明器,可工作在DC8V到36V输入电压范围,低纹波,内置功率MOS。

XL4501内置固定频率振荡器与频率补偿电路,简化了电路设计。

PWM控制环路可以调节占空比从0~100%之间线性变化。

内置输出过电流保护功能。

内部补偿模块可以减少外围元器件数量。

图1.XL4501封装引脚配置图2. XL4501引脚配置表1.引脚说明引脚号引脚名称引脚描述1 GND 接地引脚。

2 FB 反馈引脚,通过外部电阻分压网络,检测输出电压进行调整,参考电压为1.25V。

3 SW 功率开关输出引脚,SW是输出功率的开关节点。

4 CS 输出电流检测引脚(IOUT=0.11V/RCS)。

5 VIN 输入电压,支持DC8V~36V宽范围电压操作,需要在VIN与GND 之间并联电解电容以消除噪声。

150KHz 36V 5A开关电流自带恒流环路降压型DC-DC转换器XL4501 方框图图3. XL4501方框图典型应用图4. XL4501系统参数测量电路图5.XL4501系统参数测量电路(LED恒流驱动订购信息产品型号打印名称封装方式包装类型XL4501E1 XL4501E1 TO263-5L 800只每卷XLSEMI无铅产品,产品型号带有“E1”后缀的符合RoHS标准。

绝对最大额定值(注1)参数符号值单位输入电压Vin -0.3到40 V反馈引脚电压V FB-0.3到40 V输出开关引脚电压V SW-0.3到VIN V功耗P D内部限制mW热阻(TO263-5L)R JA30 ºC/W (结到环境,无外部散热片)最大结温T J-40到150 ºC操作结温T J-40到125 ºC贮存温度范围T STG-65到150 ºC引脚温度(焊接10秒) T LEAD260 ºC ESD (人体模型) >2000 V注1: 超过绝对最大额定值可能导致芯片永久性损坏,在上述或者其他未标明的条件下只做功能操作,在绝对最大额定值条件下长时间工作可能会影响芯片的寿命。

1N829中文资料

1N829中文资料

Philips Semiconductors
Product specification
Voltage reference diodes
PACKAGE OUTLINE
1N821 to 1N829 1N821A to 1N829A
handbook, full pagewidth
0.55 max 1.6 max 25.4 min 3.04 max 25.4 min
1996 Mar 20
2Hale Waihona Puke 元器件交易网Philips Semiconductors
Product specification
Voltage reference diodes
ELECTRICAL CHARACTERISTICS Tj = 25 °C unless otherwise specified. SYMBOL Vref ∆Vref PARAMETER reference voltage reference voltage excursion 1N821; 1N821A 1N823; 1N823A 1N825; 1N825A 1N827; 1N827A 1N829; 1N829A SZ temperature coefficient 1N821; 1N821A 1N823; 1N823A 1N825; 1N825A 1N827; 1N827A 1N829; 1N829A rdif differential resistance 1N821 to 1N829 1N821A to 1N829A Notes IZ = 7.5 mA; see Fig.4 − − IZ = 7.5 mA: see Fig.3; notes 1 and 2 CONDITIONS IZ =7.5 mA IZ =7.5 mA; test points for Tamb: −55; +25; +75; +100 °C; see Fig.2; notes 1 and 2 MIN. 5.89 − − − − − − − − − −

MIC5822YN;MIC5821YN;MIC5821BN;MIC5822BN;中文规格书,Datasheet资料

MIC5822YN;MIC5821YN;MIC5821BN;MIC5822BN;中文规格书,Datasheet资料

February 20051MIC5821/5822General DescriptionBiCMOS technology gives the MIC5821/5822 family flexibil-ity beyond the reach of standard logic buffers and power driver arrays. These devices each have an eight-bit CMOS shift register, CMOS control circuitry, eight CMOS data latches, and eight bipolar current-sink Darlington output drivers. The 500mA outputs are suitable for use with incan-descent bulbs and other moderate to high current loads. The drivers can be operated with a split supply where the negative supply is down to –20V. Except for maximum driver output voltage ratings, the MIC5821 and MIC5822 are identical.These devices have greatly improved data-input rates. With a 5V logic supply they will typically operate faster than 5MHz. With a 12V supply significantly higher speeds are obtained. The CMOS inputs are compatible with standard CMOS, PMOS, and NMOS logic levels. TTL and DTL circuits may require the use of appropriate pull-up resistors. By using the serial data output, the drivers can be cascaded for interface applications requiring additional drive lines.Features• 3.3 MHz Minimum Data-Input Rate•CMOS, PMOS, NMOS, TTL Compatible •Internal Pull-Down or Pull-Up Resistors •Low-Power CMOS Logic and Latches •High-Voltage Current-Sink Outputs •Single or Split Supply OperationSERIAL DATA OUT V SSV DDSTROBEOUTPUT ENABLE (ACTIVE LOW)87654321GND V EEFunctional DiagramPin Configuration1OUT 2OUT 3OUT 4OUT 5OUT 6OUT 7OUT 8OUT (Plastic DIP)Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • Ordering InformationPart NumberStandard Pb-Free Temp Range PackageMIC5821BN MIC5821YN –40°C to +85°C 16-Pin Plastic DIP MIC5822BNMIC5822YN–40°C to +85°C16-Pin Plastic DIP/MIC5821/58222February 2005 /February 20053MIC5821/5822Micrel, Inc.MIC5821/5822Electrical Characteristics (Note 4) T A = –55°C, V DD = 5V, V SS = V EE = 0V (unless otherwise noted)LimitsCharacteristicSymbol Test Conditions Min.Max.Unit Output Leakage Current I CEX V OUT = 80V 50µA Collector-Emitter V CE(SAT)I OUT = 100mA 1.3VSaturation Voltage I OUT = 200mA1.5I OUT = 350mA, V DD = 7.0V1.8Input VoltageV IN0)0.8V V IN(1)V DD = 12V 10.5V DD = 5.0V 3.5Input ResistanceRINV DD = 12V 35k ΩV DD = 10V 35V DD = 5.0V35Supply CurrentI DD(ON)One Driver ON, V DD = 12V 5.5mA One Driver ON, V DD = 10V 4.5One Driver ON, V DD = 5.0V 3.0All Drivers ON, V DD = 12V 16All Drivers ON, V DD = 10V 14All Drivers ON, V DD = 5.0V10I DD(OFF)All Drivers OFF, V DD = 12V 3.5All Drivers OFF, V DD = 5.0V2.0Electrical Characteristics (Note 4) at T A = 25°C V DD = 5V, V EE = V SS = 0V (unless otherwise specified)ApplicableLimits CharacteristicSymbol Devices Test Conditions Min.Max.Unit Output Leakage CurrentI CEXMIC5821V OUT = 50V50µAV OUT = 50V, T A = +70°C 100MIC5822V OUT = 80V50V OUT = 80V, T A = +70°C 100Collector-Emitter V CE(SAT)BothI OUT = 100mA 1.1V Saturation Voltage I OUT = 200mA1.3I OUT = 350mA, V DD = 7.0V1.6Input VoltageV IN(0)Both 0.8V V IN(1)BothV DD = 12V 10.5V DD = 10V 8.5V DD = 5.0V3.5Input ResistanceR INBothV DD = 12V 50k ΩV DD = 10V 50V DD = 5.0V50Supply CurrentI DD(ON)BothOne Driver ON, V DD = 12V 4.5mA One Driver ON, V DD = 10V 3.9One Driver ON, V DD = 5.0V 2.4All Drivers ON, V DD = 12V 16All Drivers ON, V DD = 10V 14All Drivers ON, V DD = 5.0V8I DD(OFF)BothAll Drivers OFF, V DD = 5.0V, 1.6All Inputs = 0VAll Drivers OFF, V DD = 12V, 2.9All Inputs= 0V/MIC5821/58224February 2005 /MIC5821/5822Micrel, Inc.Timing Conditions(T A = +25°C, Logic Levels are V DD and V SS)V DD = 5.0VA. Minimum Data Active Time Before Clock Pulse (Data Set-Up Time).......................................................................75 nsB. Minimum Data Active Time After Clock Pulse (Data Hold Time).............................................................................75 nsC. Minimum Data Pulse Width....................................................................................................................................150 nsD. Minimum Clock Pulse Width...................................................................................................................................150 nsE. Minimum Time Between Clock Activation and Strobe............................................................................................300 nsF. Minimum Strobe Pulse Width..................................................................................................................................100 nsG. Typical Time Between Strobe Activation and Output Transition.............................................................................500 nsSERIAL DATA present at the input is transferred to the shift register on the logic “0” to logic “1” transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.Information present at any register is transferred to its respective latch when the STROBE is high (serial-to-parallel conversion).The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the ENABLE input be high during serial entry.When the ENABLE input is high, all of the output buffers are disabled (OFF) without affecting the information stored in the latches or shift register. With the ENABLE input low, the outputs are controlled by the state of the latches.Typical ApplicationsMIC5822 Level Shifting Lamp Driver with Darlington Emitters Tied to a Negative SupplySERIAL DATA CLOCK/MIC5821/58226February 2005 /MIC5821/5822Micrel, Inc.February 20057MIC5821/5822/Micrel, Inc.MIC5821/5822MIC5821/58228February 2005MICREL INC.2180 FORTUNE DRIVE SAN JOSE, CA 95131USATEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnifyMicrel for any damages resulting from such use or sale.© 1998 Micrel Incorporated/分销商库存信息:MICRELMIC5822YN MIC5821YN MIC5821BN MIC5822BN。

1N5288中文资料

1N5288中文资料
元器件交易网
MOTOROLA
SEMICONDUCTOR
TECHNICAL DATA
Current Regulator Diodes
Field-effect current regulator diodes are circuit elements that provide a current essentially independent of voltage. These diodes are especially designed for maximum impedance over the operating range. These devices may be used in parallel to obtain higher currents. Manufacturing Locations: WAFER FAB: Phoenix, Arizona ASSEMBLY/TEST: Phoenix, Arizona
TJ, Tstg
–55 to +200
°C
1.5 Watt DC Power Data Sheet 9-2
Motorola TVS/Zener Device Data
元器件交易网
1N5283 through 1N5314
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
1N5283 1N5284 1N5285 1N5286 1N5287
1N5288 1N5289 1N5290 1N5291 1N5292 1N5293 1N5294 1N5295 1N5296 1N5297
1N5298 1N5299 1N5300 1N5301 1N5302

5833中文资料

5833中文资料

5833中⽂资料Designed to reduce logic supply current, chip size, and system cost, the UCN5833A/EP integrated circuits offer high-speed operation for thermal printers. These devices can also be used to drive multi-plexed LED displays or incandescent lamps within their 125 mA peak output current rating. The combination of bipolar and MOS technolo-gies gives BiMOS II smart power ICs an interface flexibility beyond the reach of standard buffers and power driver circuits.These 32-bit drivers have bipolar open-collector npn Darlington outputs, a CMOS data latch for each of the drivers, a 32-bit CMOS shift register, and CMOS control circuitry. The high-speed CMOS shift registers and latches allow operation with most microprocessor-based systems at data input rates above 3.3 MHz. Use of these drivers with TTL may require input pull-up resistors to ensure an input logic high.The UCN5833A is supplied in a 40-pin dual in-line plastic package with 0.600" (15.24 mm) row spacing. At an ambient temperature of +75°C, all outputs of the DlP-packaged device will sustain 50 mA continuously. For high-density applications, the UCN5833EP is available. This 44-lead plastic chip carrier (quad pack) is intended for surface-mounting on solder lands with 0.050" (1.27 mm) centers.CMOS serial data outputs permit cascading for applications requiring additional drive lines.FEATURESI To 3.3 MHz Data Input Rate I 30 V Minimum Output Breakdown I Darlington Current-Sink Outputs I Low-Power CMOS Logic and LatchesBiMOS II 32-BIT SERIAL-INPUT,LATCHED DRIVERAlways order by complete part number:Part Number Package UCN5833A 40-Pin DIP UCN5833EP 44-Lead PLCCData Sheet 26185.16A*58335833BiMOS II 32-BIT SERIAL-INPUT,LATCHED DRIVER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000SERIAL DATA IN POWER STROBE OUT OUT OUT OUT OUT OUT 123456OUT7OUT 8OUT 9OUTOUT OUTOUT OUTLOGIC SUPPLY OUT OUT Dwg. No. A-13,051TYPICAL OUTPUT DRIVERSUBOUT115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000Copyright ? 1986, 1995, Allegro MicroSystems, Inc.5833BiMOS II 32-BIT SERIAL-INPUT,LATCHED DRIVERTRUTH TABLEL = Low Logic Level H = High Logic Level X = Irrelevant P = Present State R = Previous StateELECTRICAL CHARACTERISTICS at T A = +25°C, V DD = 5 V (unless otherwise noted).Limits CharacteristicSymbol Test Conditions Min.Max.Units Output Leakage Current I CEX V OUT = 30 V, T A = 70°C —10µA Collector-Emitter V CE(SAT)l OUT = 50 mA — 1.2V l OUT = 100 mA— 1.7V Input VoltageV IN(1) 3.5 5.3V V IN(0)-0.3+0.8V Input Currentl IN(1)V IN = 5.0 V — 1.0µA l IN(0)V IN = 0 V —-1.0µA Serial Output VoltageV OUT(1)I OUT = -200 µA 4.5—V V OUT(0)I OUT = 200 µA—0.3V Supply Currentl DD One output ON, l OUT = 100 mA — 1.0mA All outputs OFF—50µA Output Rise Time t r l OUT = 100 mA, 10% to 90%—500ns Output Fall Timet fl OUT = 100 mA, 90% to 10%—500nsNOTE: Positive (negative) current is defined as going into (coming out of) the specified device pin.Saturation Voltage5833BiMOS II 32-BIT SERIAL-INPUT,LATCHED DRIVER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000TIMING CONDITIONS(V DD = 5.0 V, Logic Levels are V DD and Ground)A.Minimum Data Active Time Before Clock Pulse(Data Set-Up Time)..........................................................................75 ns B.Minimum Data Active Time After Clock Pulse(Data Hold Time).............................................................................75 ns C.Minimum Data Pulse Width ................................................................150 ns D.Minimum Clock Pulse Width...............................................................150 nsE.Minimum Time Between Clock Activation and Strobe.......................300 nsF.Minimum Strobe Pulse Width .............................................................100 nsG.Typical Time Between Strobe Activation andOutput Transition ...........................................................................500 nsDwg. No. A-12,276ASerial Data present at the input is transferred to the shift register on the logic “0” to logic “1” transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.Information present at any register is transferred to its respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the OUTPUT ENABLE input be low during serial data entry.When the OUTPUT ENABLE input is low, all of the output buffers are disabled (OFF) without affecting the information stored in the latches or shift register. With the OUTPUT ENABLE input high, the outputs are controlled by the state of the latches.CLOCK DATA INSTROBE NOUTPUT ENABLEOUT5833BiMOS II 32-BIT SERIAL-INPUT,LATCHED DRIVERNOTES:1.Exact body and lead configuration at vendor’s option within limits shown.2.Lead spacing tolerance is non-cumulative.3.Lead thickness is measured at seating plane or below.UCN5833ADimensions in Inches (controlling dimensions)Dimensions in Millimeters (for reference only)123Dwg. MA-003-40 mm20421123Dwg. MA-003-40 in2045833BiMOS II 32-BIT SERIAL-INPUT,LATCHED DRIVER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000UCN5833EPDimensions in Inches (controlling dimensions)Dimensions in Millimeters (for reference only)Dwg. MA-005-44A mm0.53340Dwg. MA-005-44A in0.021740NOTES:1.Exact body and lead configuration at vendor’s option within limits shown.2.Lead spacing tolerance is non-cumulative.5833BiMOS II 32-BITSERIAL-INPUT,LATCHED DRIVERThe products described here are manufactured under one or more U.S. patents or U.S. patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsi-bility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. 5833BiMOS II 32-BIT SERIAL-INPUT,LATCHED DRIVER115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000POWERINTERFACE DRIVERSFunctionOutput Ratings*Part Number ?SERIAL-INPUT LATCHED DRIVERS8-Bit (saturated drivers)-120 mA 50 V?58958-Bit 350 mA 50 V 58218-Bit 350 mA 80 V 58228-Bit 350 mA 50 V?58418-Bit 350 mA 80 V?58428-Bit (constant-current LED driver)75 mA 17 V 62758-Bit (DMOS drivers)250 mA 50 V 65958-Bit (DMOS drivers)350 mA 50 V?6A5958-Bit (DMOS drivers)100 mA 50 V 6B59510-Bit (active pull-downs)-25 mA 60 V 5810-F and 6809/1012-Bit (active pull-downs)-25 mA 60 V 5811 and 681116-Bit (constant-current LED driver)75 mA 17 V 627620-Bit (active pull-downs)-25 mA 60 V 5812-F and 681232-Bit (active pull-downs)-25 mA 60 V 5818-F and 681832-Bit100 mA 30 V 583332-Bit (saturated drivers)100 mA 40 V 5832PARALLEL-INPUT LATCHED DRIVERS4-Bit350 mA 50 V?58008-Bit -25 mA 60 V 58158-Bit350 mA 50 V?58018-Bit (DMOS drivers)100 mA 50 V 6B2738-Bit (DMOS drivers)250 mA 50 V 6273SPECIAL-PURPOSE DEVICESUnipolar Stepper Motor Translator/Driver 1.25 A 50 V?5804Addressable 8-Bit Decoder/DMOS Driver 250 mA 50 V6259Addressable 8-Bit Decoder/DMOS Driver 350 mA 50 V?6A259Addressable 8-Bit Decoder/DMOS Driver 100 mA 50 V 6B259Addressable 28-Line Decoder/Driver 450 mA30 V6817*Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltagelimits.Negative current is defined as coming out of (sourcing) the output.Complete part number includes additional characters to indicate operating temperature range and package style. Internal transient-suppression diodes included for inductive-load protection.。

MUN5213T1资料

MUN5213T1资料
R1 PIN1 R2 BASE (INPUT) PIN2 EMITTER (GROUND) PIN3 COLLECTOR (OUTPUT)
MUN5211T1 SERIES
Motorola Preferred Devices
NPN SILICON BIAS RESISTOR TRANSISTORS
3
1 2
1
元器件交易网 MUN5211T1 SERIES
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SC-70/SOT-323 package which is designed for low power surface mount applications. • Simplifies Circuit Design • Reduces Board Space • Reduces Component Count • The SC-70/SOT-323 package can be soldered using wave or reflow. The modified gull-winged leads absorb thermal stress during soldering eliminating the possibility of damage to the die. • Available in 8 mm embossed tape and reel Use the Device Number to order the 7 inch/3000 unit reel. Replace “T1” with “T3” in the Device Number to order the 13 inch/10,000 unit reel. MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

1N5347B中文资料

1N5347B中文资料

·Voltage Range 8.2V - 200V ·Glass Passivated Junction ·5W Steady State·High Surge Capability·±5% Voltage Tolerance on Nominal V Z is Standard ·100% Tested1N5344B - 1N5388B5W ZENER DIODENotes:1.Nominal Zener Voltage (V Z ) is read with the device in standard test clips with 3/8- to 1/2-inch spacing between clip and case of the diode. Before reading, the diode is allowed to stabilize for a period of 40 ±10 milliseconds at 25°C +8, -2°C.2.The Zener Impedance (Z Zor Z ZK ) is derived from the 60 Hz ac voltage, which results when an ac current having an rmsvalue equal to 10% of the dc zener current (I ZT or I ZK ) is superimposed on I ZT or I ZK, respectively.3.The Surge Current (I ZSM ) is specified as the maximum peak of a nonrecurrent sine wave of 8.3 milliseconds duration.4.Voltage regulation (D V Z ) is the difference between the voltage measured at 10% and 50% of I ZM .Maximum Ratings@ T A= 25°C unless otherwise specifiedFeaturesMechanical Data·Case: Molded Plastic Over Glass Passivated Junction·Leads: Solderable per MIL-STD-202,Method 208·Polarity: Cathode Band ·Approx. Weight: 1.2 gramsElectrical Characteristics@ T A = 25°C unless otherwise specifiedV F = 1.2V max at I F = 1.0A all types.Suffix ‘B’ denotes 5% tolerance which is standard.11010010000.11.010100V ,REVERSE VOLTAGE (V)R Fig.1, Typ.Capacitance vs.Reverse VoltageC ,C A P A C I T A N C E (p F )j123456255075100125150175200T LEAD TEMPERATURE 9.5mm FROM BODY (ºC)L,Fig.3,Power Derating CurveP ,P O W E R D I S S I P A T I O N (W )d 1.0101001000I ,ZENER CURRENT (mA)ZT Fig.2,Typ.Zener Impedance vs.Zener CurrentZ ,Z E N E R I M P E D A N C E (W )Z T。

NCP583中文资料

NCP583中文资料
"100 ppm/°C
• Fold Back Protection Circuit • Input Voltage up to 6.5 V • These are Pb−Free Devices
Typical Applications
• Portable Equipment • Hand−Held Instrumentation • Camcorders and Cameras
1.2
1.0
0.8
0.6
0.4
0.2
0.0 0
1.0
2.0
3.0
Vout = 2.8 V
4.0
5.0
6.0
INPUT VOLTAGE Vin (V)
Figure 4. Quiescent Current vs. Input Voltage
OUTPUT VOLTAGE, Vout (V)
2.86
2.84
Vout = 2.8 V
60
Vin = 3.8 V + 0.5 Vp−p
Cout = 0.1 mF
50
40
30
20
10
0 0.1
Iout = 1.0 mA
Iout = 30 mA
Iout = 50 mA
1
10
100
FREQUENCY, f (kHz) Figure 11. Ripple Rejection vs. Frequency
Figure 7. Quiescent Current vs. Temperature
3
QUIESCENT CURRENT, Iq (mA)
元器件交易网
DROPOUT VOLTAGE, VDO (V)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档