管理运筹学期中复习题答案
管理运筹学复习题及部分参考答案
一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策二、简答题 1.简述运筹学的工作步骤。
2.运筹学中模型有哪些基本形式 3.简述线性规划问题隐含的假设。
4.线性规划模型的特征。
5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解 6.简述对偶理论的基本内容。
7.简述对偶问题的基本性质。
8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。
9.简述运输问题的求解方法。
10.树图的性质。
11.简述最小支撑树的求法。
12.绘制网络图应遵循什么规则。
三、书《收据模型与决策》2.13 14. 有如下的直线方程:2x 1 +x 2 =4 a. 当x 2 =0 时确定x 1 的值。
当x 1 =0 时确定x 2 的值。
b. 以x 1 为横轴x 2 为纵轴建立一个两维图。
使用a 的结果画出这条直线。
c. 确定直线的斜率。
d. 找出斜截式直线方程。
然后使用这个形式确定直线的斜率和直线在纵轴上的截距。
答案: 14. a. 如果x 2 =0,则x 1 =2。
如果x 1 =0,则x 2 =4。
c. 斜率= -2 d. x 2 =-2 x 1 +4 2.40 你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。
模型的代数形式如下所示。
Maximize 成本=15 x 1 +20 x 2 约束条件约束1:x 1 + 2x 2 10 约束2:2x 1 3x 2 6 约束3:x 1 +x 2 6和x 1 0,x 2 0 a. 用图解法求解这个模型。
b. 为这个问题建立一个电子表格模型。
c. 使用Excel Solver 求解这个模型。
答案: a. 最优解:(x 1 , x 2 )=(2, 4),C=110 b c.活动获利 1 2总计水平A B C 1 2 2 3 1 1 10 10 8 6 6 6 单位成本方案15 20 2 4 $110.00 3.2 考虑具有如下所示参数表的资源分配问题: 资源每一活动的单位资源使用量可获得的资源数量 1 2 1 2 3 2 3 2 1 3 4 10 20 20 单位贡献$20 $30 单位贡献=单位活动的利润b. 将该问题在电子表格上建模。
《管理运筹学》复习题及参考答案
四、把下列线性规划问题化成标准形式:2、minZ=2x1-x2+2x3五、按各题要求。
建立线性规划数学模型1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。
月销售分别为250,280和120件。
问如何安排生产计划,使总利润最大。
2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。
六、用单纯形法求解下列线性规划问题:七、用大M法求解下列线性规划问题。
并指出问题的解属于哪一类。
八、下表为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为maxZ=5x 1+3x 2,约束形式为“≤”,X 3,X 4为松驰变量.表中解代入目标函数后得Z=10(1)求表中a ~g 的值 (2)表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解第四章 线性规划的对偶理论五、写出下列线性规划问题的对偶问题1.minZ=2x 1+2x 2+4x 3六、已知线性规划问题应用对偶理论证明该问题最优解的目标函数值不大于25七、已知线性规划问题maxZ=2x1+x2+5x3+6x4其对偶问题的最优解为Y l﹡=4,Y2﹡=1,试应用对偶问题的性质求原问题的最优解。
七、用对偶单纯形法求解下列线性规划问题:八、已知线性规划问题(1)写出其对偶问题 (2)已知原问题最优解为X﹡=(2,2,4,0)T,试根据对偶理论,直接求出对偶问题的最优解。
《管理运筹学》期中复习题答案
《管理运筹学》期中复习题答案标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-《管理运筹学》期中测试题 第一部分 线性规划 一、填空题 1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。
2.图解法适用于含有 两个 _ 变量的线性规划问题。
3.线性规划问题的可行解是指满足 所有约束条件_ 的解。
4.在线性规划问题的基本解中,所有的非基变量等于 零 。
5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关 6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。
7.若线性规划问题有可行解,则 一定 _ 有基本可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。
9.满足 非负 _ 条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。
12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。
13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。
14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。
15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。
17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。
18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。
19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。
运筹学期中测试参考答案汇总
1线性规划问题,设为问题的最优解。
若目标函数中用代替后,问题的最优解变为,证明:证明:因为为问题的最优解,同时为问题的可行解。
所以有:(1)同理可得:(2)由不等式(1),(2)可知:2、已知线性规划:要求:(1)用单纯形法求解该线性规划问题的最优解和最优值;(2)写出线性规划的对偶问题;(3)根据对偶问题的性质求解对偶问题的最优解和最优值;解:(1)化标准型:根据标准型列单纯形表jB 1 2 3 4 53 14 25 1Z34 31 1Z 9 33 2/5 1/5 /52 /5 /5 3/51 8/5 /5 /5 Z 12 1所以,此线性规划有无穷多最优解最优解之一(18/5,3/5,32/5,0,0)最优值 Zmax=12(2)线性规划的对偶问题为:(3)由原问题的最优单纯形表可知:对偶问题的最优解为:(0,1,0)最优值为:Wmin=123 下表给出了各产地和各销地的产量和销量,以及各产地至各销地的单位运价,试用表上作业法求最优解:销地产地B1B2B3B4产量A122213A 218546A376686销量4344解:利用Vogel法求解第一个运输方案:32221311 0825446131 7362686004344 54333214利用对偶变量法求解检验数:21212113-54 1038546-17663860 43447665所有非基变量的检验数全部大于零,所以此运输方案是最优的运输方案。
最优值为:3*2+1*7+3*6+2*6+2*5+4*4=694 某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻井费用最小。
若10个井位的代号为,相应的钻井费用为,并且井位选择上要满足下列限制条件:①选择和就不能选择钻探;反过来也一样;②选择了或就不能选,反过来也一样;③在中最多只能选两个;试建立这个问题的整数规划模型。
(不求解)解:设用xi表示第i个井位是否钻井探油,即由题意可知数学模型如下:5 友谊农场有3万亩(每亩等于666.66平方米)农田,欲种植玉米、大豆和小麦三种农作物。
《管理运筹学》期中复习题答案
《管理运筹学》期中测试题第一部分 线性规划一、填空题1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。
2.图解法适用于含有 两个 _ 变量的线性规划问题。
3.线性规划问题的可行解是指满足 所有约束条件_ 的解。
4.在线性规划问题的基本解中,所有的非基变量等于 零 。
5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。
7.若线性规划问题有可行解,则 一定 _ 有基本可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。
9.满足 非负 _ 条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。
12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。
13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。
14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。
15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。
17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。
18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。
19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。
20.表达线性规划的简式中目标函数为 线性函数 _ 。
21.线性规划一般表达式中,a ij 表示该元素位置在约束条件的 第i 个不等式的第j 个决策变量的系数 。
(完整word版)最全的运筹学复习题及答案
5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2)。
表示约束条件的数学式都是线性等式或不等式;(3)。
表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2.图解法适用于含有两个变量的线性规划问题.3.线性规划问题的可行解是指满足所有约束条件的解。
4.在线性规划问题的基本解中,所有的非基变量等于零.5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7.线性规划问题有可行解,则必有基可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解.9.满足非负条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13.线性规划问题可分为目标函数求极大值和极小_值两类。
14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解. 17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18。
如果某个约束条件是“≤"情形,若化为标准形式,需要引入一松弛变量。
19。
如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j =X j ′- X j 。
运筹学复习题目加答案
一、单选题1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。
A. maxZB. max(-Z)C. –max(-Z)D.-maxZ2. 下列说法中正确的是( )。
A .基本解一定是可行解B .基本可行解的每个分量一定非负C .若B 是基,则B 一定是可逆D .非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为 ( )A.多余变量 B .松弛变量 C .人工变量 D .自由变量4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。
A .多重解B .无解C .正则解D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。
A .等式约束B .“≤”型约束C .“≥”约束D .非负约束6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。
A .多余变量B .自由变量C .松弛变量D .非负变量7.在运输方案中出现退化现象,是指数字格的数目( )。
A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-1二、判断题1.线性规划问题的一般模型中不能有等式约束。
2.对偶问题的对偶一定是原问题。
3.产地数与销地数相等的运输问题是产销平衡运输问题。
4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。
5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。
6.线性规划问题的基本解就是基本可行解。
三、填空题1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。
2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为:3. 线性规划解的情形有4. 求解指派问题的方法是 。
《管理运筹学》复习题及参考答案
《管理运筹学》复习题及参考答案一、选择题1. 管理运筹学的研究对象是()A. 生产过程B. 管理活动C. 经济活动D. 运筹问题参考答案:D2. 以下哪个不属于管理运筹学的基本方法?()A. 线性规划B. 整数规划C. 非线性规划D. 人力资源规划参考答案:D3. 在线性规划中,约束条件是()A. 等式B. 不等式C. 方程组D. 矩阵参考答案:B4. 以下哪种方法不属于线性规划的对偶问题求解方法?()A. 单纯形法B. 对偶单纯形法C. 拉格朗日乘数法D. 牛顿法参考答案:D5. 在目标规划中,以下哪个不是目标约束的类型?()A. 等式约束B. 不等式约束C. 目标函数约束D. 线性约束参考答案:C二、填空题1. 管理运筹学的核心思想是______。
参考答案:最优化2. 在线性规划中,最优解存在的条件是______。
参考答案:可行性、有界性3. 整数规划的求解方法主要有______和______。
参考答案:分支定界法、动态规划法4. 在目标规划中,目标函数的求解方法有______、______和______。
参考答案:单纯形法、拉格朗日乘数法、动态规划法5. 非线性规划问题可以分为______、______和______。
参考答案:无约束非线性规划、约束非线性规划、非线性规划的对偶问题三、判断题1. 管理运筹学的研究对象是管理活动。
()参考答案:正确2. 在线性规划中,最优解一定存在。
()参考答案:错误3. 整数规划的求解方法比线性规划复杂。
()参考答案:正确4. 目标规划的求解方法与线性规划相同。
()参考答案:错误5. 非线性规划问题一定比线性规划问题复杂。
()参考答案:错误四、计算题1. 某工厂生产甲、乙两种产品,甲产品每件利润为10元,乙产品每件利润为8元。
生产甲产品每件需消耗2小时机器工作时间,3小时人工工作时间;生产乙产品每件需消耗1小时机器工作时间,2小时人工工作时间。
工厂每周最多可利用机器工作时间100小时,人工工作时间150小时。
管理运筹学期中测试答案
一、下表为求解某线性规划问题的最终单纯形表,已知该LP 问题的目标函数为极大化类型,表中为x 4、x 5为松弛变量,原问题的约束全部为“≤”形式。
C B x B b c 1 c 2 c 3 0 0 x 1 x 2 x 3 x 4 x 5 c 3 x 3 5/2 0 1/2 1 1/2 0 c 1 x 15/2 1 -1/2 0 -1/6 1/3 σn-4-4-2(1)写出原线性规划问题; (2)写出原问题的对偶问题;(3)直接由表写出对偶问题的最优解。
(1)【解一】511222(1)25511111126322632010012105(|)10100404204042A b z z ⨯⎛⎫⎛⎫ ⎪ ⎪=--−−−→-- ⎪ ⎪⎪ ⎪------⎝⎭⎝⎭ 16(2)(1)'101113333(3)(1)'4012105100080220z +⨯+⨯⎛⎫ ⎪−−−−→- ⎪ ⎪-+⎝⎭(2)'3(3)'(2)'6012105311011062100040z ⨯+⨯⎛⎫ ⎪−−−−→- ⎪ ⎪-+⎝⎭因此,原问题为:()12323123max 621025..31001,2,3jz x x x x x s t x x x x j =-+⎧+≤⎪-+≤⎨⎪≥=⎩【解二】由最优表可知12111630B -⎛⎫= ⎪-⎝⎭,则2013B ⎛⎫= ⎪⎝⎭。
由此: 51122251112632012001210510133110110⎛⎫⎛⎫⎛⎫→ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭。
求目标函数系数c 1、c 2、c 3,在最终单纯形表中,考虑变量x 5的检验数的计算应有:11302c -=-,得c 1=6,考虑变量x 4的检验数的计算应有:11312604c c -+=-,得c 3=10,在此基础上,考虑变量x2的检验数计算应有:11231224c c c -+=-,得c 2=-2。
128505-管理运筹学-运筹学期中考试题14-15-2答案
1、某网络图如下(1)用标号法求出1点至各点的最短路。
(2)建立从1点到6点的数学规划模型(不用求解)求出该项工程的最低成本日程。
3、某产品每月用量为4件,装配费用为50元,存贮费每月每件为8元,求产品每次最佳生产量及最小费用。
若生产速度为每月可生产10件,求每次生产量及最小费用。
4、某商店代销一种产品,每件产品的购进价格为800元,存储费每件40元,缺货费每件试确定该商店的最佳订货数量。
结论:1点出发至各点最短路线及最短路线长为(2) 设⎩⎨⎧=的最短路不经过该弧到从的最短路经过该弧到从610611ij x1,01000015235382min 564656543525465424352313252423121312565446352524231312==+=-++=-+=-+=---=+++++++++=ij x x x x x x x x x x x x x x x x x x x x x x x x x x x x z2、由题绘制网络图如下所示:由该图可得关争路线为:1->2->4->7->8;对应的关键工序为:B->G->H 。
工程工期为15天时,直接费用为15300元,间接费用为7500元,总费用为15300+7500=22800元; 通过缩短关键路线中G 的工序1天后,总费用为:22800+300-500=22600,此时为最优方案。
3、(1)由题意,该问题属于“不允许缺货,生产时间很短”模型,已知350C =,4R=,18C=,由E.O.Q 模型计算Q 0,得07Q ==≈件,最小费用为056.6C ==≈(2)该问题属于“不允许缺货,生产需要一定时间”模型,已知350C =,4R =,18C =,10P =,则可得09Q ==≈,最小费用为043.8C ==≈。
4、本题中12800,40,1015K C C ===,故有21210158000.2038401015C K C C --==++又3040()0.2,()0.4r r P r P r ≤≤==∑∑,应订购40件。
《管理运筹学》试题及参考答案
《管理运筹学》试题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是(A )A.销售数量B.销售价格C.顾客的需求D.竞争价格2.我们可以通过(C )来验证模型最优解。
A.观察B.应用C.实验D.调查3.建立运筹学模型的过程不包括(A )阶段。
A.观察环境B.数据分析C.模型设计D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
运筹学试题及答案
运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。
运筹学期中试题参考答案
运筹学期中试题参考答案(2010-2011 第一学期)试题一:单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题2分,共16分)1 •线性规划具有唯一最优解,是指( B )。
A .最优单纯形表中存在有常数项为零B.最优单纯形表中非基变量的检验数全部不等于零C •最优单纯形表中存在非基变量的检验数为零D .可行解集有界2•设线性规划的约束条件为x1x2x3= 32 x1 2 x2x4二4x1,…,x4兰0下可行列解中,非基可行解为( D )。
A. (0,2,1,0)TB. (0, 0,3,4)TC . (2,0,1, 0)T D. (1, 1, 1, 0)T3. 设线性规划原问题为(P),其对偶问题为(D),则下列说法错误的是(D )。
A . (P)、(D)均有可行解则都有最优解;B .若(P )有m个变量,则(D)就有m个约束条件;C .若(P)的约束均为等式,则(D)的所有变量均无非负限制;D .若(P)的约束均为不等式,则(D)的约束也均为不等式。
4、maxZ 二CX,AX < b, X - 0 及minW 二Yb,YA_C,Y - 0 是互为对偶的两个线性规划问题,则对于其任意可行解X和Y,存在关系( D )。
5•有6个产地4个销地的平衡运输问题模型具有特征( B )。
A .有10个变量24个约束B .有24个变量10个约束C .有24个变量9约束D.有9个基变量10个非基变量6. 互为对偶的两个线性规划问题存在关系(D )。
A .原问题无可行解,对偶问题也无可行解B .对偶问题有可行解,原问题也有可行解C .原问题有最优解,对偶问题可能没有最优解D .原问题有无界解,对偶问题无可行解7. 下列说法正确的是(D )oA. 线性规划问题的基解对应可行域的顶点。
B、若X i, X2分别是某一线性规划问题的可行解,贝V X=収! +冰2也是该线性规划问题的可行解,其中心?2为正的实数。
管理运筹学复习题及部分参考答案
管理运筹学复习题及部分参考答案一、填空题1. 运筹学起源于________时期,它是一门研究如何有效地进行决策的学科。
答案:二战2. 线性规划问题中,约束条件通常表示为________。
答案:线性不等式3. 在目标规划中,若目标函数为多个目标的加权和,则称为________目标规划。
答案:加权目标规划4. 整数规划中的0-1变量表示________。
答案:决策变量是否取值5. 动态规划是一种用于解决________决策问题的方法。
答案:多阶段二、选择题1. 在线性规划中,若约束条件均为等式,则该线性规划问题称为________。
A. 线性方程组B. 线性不等式组C. 线性规划问题D. 线性方程组与线性不等式组的混合答案:C2. 在目标规划中,以下哪项不是目标规划的约束条件?A. 目标约束B. 系统约束C. 系统等式D. 目标等式答案:D3. 在整数规划中,若决策变量必须是整数,则该问题称为________。
A. 整数规划B. 线性规划C. 非线性规划D. 动态规划答案:A4. 动态规划问题的最优策略是________。
A. 阶段决策的最优解B. 子问题的最优解C. 整个问题的最优解D. 阶段决策的最优解与子问题的最优解的组合答案:C三、判断题1. 线性规划问题的目标函数必须是线性的。
()答案:正确2. 在目标规划中,目标函数与约束条件均可以是非线性的。
()答案:错误3. 整数规划问题可以转化为线性规划问题求解。
()答案:错误4. 动态规划适用于解决线性规划问题。
()答案:错误四、计算题1. 某企业生产两种产品,甲产品每件利润为100元,乙产品每件利润为150元。
甲产品需要2小时加工时间,乙产品需要3小时加工时间。
企业每周最多可加工60小时。
求企业如何安排生产计划以使利润最大化。
答案:设甲产品生产件数为x,乙产品生产件数为y。
目标函数:Z = 100x + 150y约束条件:2x + 3y ≤ 60(加工时间)x, y ≥ 0(非负约束)求解得:x = 15,y = 10,最大利润为2000元。
运筹学试习题及答案
运筹学试习题及答案《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m行解的个数最为_C_。
′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
运筹学试题及答案
运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m 行解的个数最为_C_。
′〞′A、m个B、n个C、CnD、Cm个2、下列图形中阴影部分构成的集合是凸集的是A mn3、线性规划模型不包括下列_ D要素。
运筹学期中试题答案汇总
《管理运筹学》期中考试试题班级学号姓名成绩注意:①答题可直接写明题号和答案,不必抄题。
②考试过程中,不得抄袭。
一、多项选择题(每小题3分,共24分1、线性规划模型有特点()。
A、所有函数都是线性函数;B、目标求最大;C、有等式或不等式约束;D、变量非负。
2、下面命题正确的是()。
A、线性规划的最优解是基本可行解;B、基本可行解一定是基本解;C、线性规划一定有可行解;D、线性规划的最优值至多有一个。
3、一个线性规划问题(P)与它的对偶问题(D)有关系()。
A、(P)有可行解则(D)有最优解;B、(P)、(D)均有可行解则都有最优解;C、(P)可行(D)无解,则(P)无有限最优解;D、(P)(D)互为对偶。
4、运输问题的基本可行解有特点()。
A、有m+n-1个基变量;B、有m+n个位势;C、产销平衡;D、不含闭回路。
5、下面命题正确的是()。
A、线性规划标准型要求右端项非负;B、任何线性规划都可化为标准形式;C、线性规划的目标函数可以为不等式;D、可行线性规划的最优解存在。
6、单纯形法计算中哪些说法正确()。
A、非基变量的检验数不为零;B、要保持基变量的取值非负;C、计算中应进行矩阵的初等行变换;D、要保持检验数的取值非正。
7、线性规划问题的灵敏度分析研究()。
A、对偶单纯形法的计算结果;B、目标函数中决策变量系数的变化与最优解的关系;C、资源数量变化与最优解的关系;D、最优单纯形表中的检验数与影子价格的联系。
8、在运输问题的表上作业法选择初始基本可行解时,必须注意()。
A、针对产销平衡的表;B、位势的个数与基变量个数相同;C、填写的运输量要等于行、列限制中较大的数值;D、填写的运输量要等于行、列限制中较小的数值。
二、回答下列各题(每小题8分,共24分)1、考虑线性规划问题Min f(x = -x1 + 5 x2S.t. 2x1– 3x2≥3 (P)5x1 +2x2=4x1≥ 0写出(P)的标准形式;答案:( P 的标准形式:Max z(x = x1 - 5 x2’+ 5 x2’’S.t. 2x1– 3x2’+ 3 x2’’- x3 = 35x1 +2x2’ - 2 x2’’ = 4x1, x2’, x2’’, x3≥ 02、某企业生产3种产品甲、乙、丙,产品所需的主要原料有A、B两种,原料A 每单位分别可生产产品甲、乙、丙底座12、18、16个;产品甲、乙、丙每个需要原料B分别为13kg、8kg、10kg,设备生产用时分别为10.5、12.5、8台时,每个产品的利润分别为1450元、1650元、1300元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《管理运筹学》期中测试题第一部分 线性规划一、填空题1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。
2.图解法适用于含有 两个 _ 变量的线性规划问题。
3.线性规划问题的可行解是指满足 所有约束条件_ 的解。
4.在线性规划问题的基本解中,所有的非基变量等于 零 。
5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。
7.若线性规划问题有可行解,则 一定 _ 有基本可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。
9.满足 非负 _ 条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。
12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。
13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。
14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。
15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。
17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。
18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。
19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。
20.表达线性规划的简式中目标函数为 线性函数 _ 。
21.线性规划一般表达式中,a ij 表示该元素位置在约束条件的 第i 个不等式的第j 个决策变量的系数 。
22.线性规划的代数解法主要利用了代数消去法的原理,实现_ 基变量 的转换,寻找最优解。
23.对于目标函数最大值型的线性规划问题,用单纯型法代数形式求解时,当非基变量检验数_ 非正 时,当前解为最优解。
24.在单纯形迭代中,选出基变量时应遵循_ 最小比值 法则。
二、单选题1. 如果一个线性规划问题有n 个变量,m 个约束方程(m<n),系数矩阵的秩为m ,则基本解的个数最多为_C_ 。
A .m 个 B .n 个 C .m n C 个 D .n m C 个2.下列图形中阴影部分构成的集合是凸集的是 A3.线性规划模型不包括下列_D 要素。
A .目标函数B .约束条件C .决策变量D .状态变量4.线性规划模型中增加一个约束条件,可行域的范围一般将_B 。
A .增大B .缩小C .不变D .不定5.若针对实际问题建立的线性规划模型的解是无界的,不可能的原因是_A 。
A .出现矛盾的条件B .缺乏必要的条件C .有多余的条件D .有相同的条件6.在下列线性规划问题的基本解中,属于基本可行解的是_ B 。
A .(一1,0,O)TB .(1,0,3,0)TC .(一4,0,0,3)TD .(0,一1,0,5)T7.关于线性规划模型的可行域,下面_ D 的叙述正确。
A .可行域内必有无穷多个点B .可行域必有界C .可行域内必然包括原点D .可行域必是凸的8.下列关于可行解,基本解,基本可行解的说法错误的是_B__.A .可行解中包含基本可行解B .可行解与基本解之间无交集C .线性规划问题有可行解必有基本可行解D .满足非负约束条件的基本解为基本可行解9.线性规划问题有可行解,则 AA 必有基本可行解B 必有唯一最优解C 无基可行解D 无唯一最优解10.线性规划问题有可行解且凸多边形无界,这时 _ CA 没有无界解B 没有可行解C 可能有有无界解D 有有限最优解11.若目标函数为求max ,一个基本可行解比另一个基本可行解更好的标志是 AA 使Z 更大B 使Z 更小C 绝对值更大D Z 绝对值更小12.如果线性规划问题有可行解,那么该解必须满足 AA 所有约束条件B 变量取值非负C 所有等式要求D 所有不等式要求13.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在_D 集合中进行搜索即可得到最优解。
A 基B 基本解C 基可行解D 可行域14.线性规划问题是针对 D 求极值问题.A 约束B 决策变量C 秩D 目标函数15如果第K 个约束条件是“≤”情形,若化为标准形式,需要 AA 左边增加一个变量B 右边增加一个变量C 左边减去一个变量D 右边减去一个变量16.若某个b k ≤0, 化为标准形式时原不等式 DA 不变B 左端乘负1C 右端乘负1D 两边乘负117.为化为标准形式而引入的松弛变量在目标函数中的系数应为 AA 0B 1C 2D 318.若线性规划问题没有可行解,可行解集是空集,则此问题 BA 没有无穷多最优解B 没有最优解C 有无界解D 有有界解19.用单纯形法的代数形式求解最大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部<0,则说明本问题 B 。
A .有惟一最优解B .有多重最优解C .无界D .无解20. 单纯形法代数形式当中,入基变量的确定应选择检验数 CA 绝对值最大B 绝对值最小C 正值最大D 负值最小三、多选题1. 在线性规划问题的标准形式中,不可能存在的变量是_ A .A .决策变量B .松驰变量c .剩余变量D .人工变量2.下列选项中符合线性规划模型标准形式要求的有_BCDA .目标函数求极小值B .右端常数非负C .变量非负D .约束条件为等式E .约束条件为“≤”的不等式3.某线性规划问题,n 个变量,m 个约束方程,系数矩阵的秩为m(m<n)则下列说法正确的是_ BDE 。
A .基本可行解的非零分量的个数不大于m B .基本解的个数不会超过m n C 个 C .该问题不会出现退化现象 D .基本可行解的个数不超过基本解的个数 E .该问题的基是一个m×m 阶方阵4.若线性规划问题的可行域是无界的,则该问题可能 _ ABCDEA .无有限最优解B .有有限最优解C .有唯一最优解D .有无穷多个最优解E .有有限多个最优解5.判断下列数学模型,哪些为线性规划模型(模型中a 、b 、c 为常数;θ为可取某一常数值的参变量,x ,y 为变量) _ ADE6.下列模型中,属于线性规划问题的标准形式的是_ D7.下列说法错误的有_ AB 。
A . 基本解是大于零的解B .最优点与基本解一一对应C .线性规划问题的最优解是唯一的D .满足约束条件的解就是线性规划的可行解8.在线性规划的一般表达式中,变量x ij 为 _ABCDEA 大于等于0B 小于等于0C 大于0D 小于0E 等于09.在线性规划的一般表达式中,线性约束的表现有 ABCDEA <B >C ≤D ≥E =10.若某线性规划问题有无界解,应满足的条件有 ADA P k <0B 非基变量检验数为零C 基变量中没有人工变量D δj >OE 所有δj ≤011.在线性规划问题中a 23表示 AEA i =2B i =3C i =5D j=2E j=312..线性规划问题若有最优解,则最优解 ADA 定在其可行域顶点达到B 只有一个C 会有无穷多个D 唯一或无穷多个E 其值为013.线性规划模型包括的要素有 ABCA .目标函数B .约束条件C .决策变量D 状态变量E 环境变量第二部分 运输问题一、填空题1. 物资调运问题中,有m 个供应地,A l ,A 2…,A m ,A j 的供应量为a i (i=1,2…,m),n 个需求地B 1,B 2,…B n ,B 的需求量为b j (j=1,2,…,n),则产销平衡条件为 ∑=m i i a 1=∑=n j i b 12.运输方案的最优性判别准则是:当全部检验数 大于等于0 时,当前的方案一定是最优方案。
3.可以作为表上作业法的初始基本可行解的填有数字的方格数应为 m+n-1 个(设问题中含有m 个产地和n 个销地)4.若调运方案中的某一空格的检验数为1,则在该空格的闭回路上增加单位运量,则总运费增加 1 。
5.按照表上作业法给出的初始调运方案,从每一代表非基变量的空格出发可以找到且仅能找到 一条闭回路。
6.在运输问题中,单位运价为C ij ,位势分别用u i ,V j 表示,则在基变量处有C ij = u i +V j 。
7、供大于求的、供不应求的产销不平衡运输问题,分别是指∑=m i i a 1>∑=n j i b 1的运输问题、∑=m i i a 1<∑=n j i b 1的运输问题。
8.在表上作业法所得到的调运方案中,从某空格出发的闭回路的转角点所对应的变量必为 基变量 。
9.在某运输问题的调运方案中,点(2,2)的检验数为负值,(调运方案为表所示)则相应的调整量应为 300。
10.2的含义是 增加一个单位的该位置的运输量,可使总运费减少2 。
11.运输问题的初始方案中的基变量取值为 调运量 。
12.运输问题中,每一行或列若有闭回路的顶点,则必有 偶数 个。
二、单选题1、在运输问题中,可以作为表上作业法的初始基可行解的调运方案应满足的条件是 A 。
A .含有m+n —1个基变量B .基变量不构成闭回路C .含有m+n 一1个基变量且不构成闭回路D .含有m+n 一1个非负的基变量且不构成闭回2.若运输问题的单位运价表的某一行元素分别加上一个常数k ,最优调运方案将 C 。
A .发生变化B .不发生变化C .A 、B 都有可能3.在表上作业法求解运输问题中,非基变量的检验数 D 。
A .大于0B .小于0C .等于0D .以上三种都可能4.运输问题的初始方案中,没有分配运量的格所对应的变量为 BA 基变量B 非基变量C 松弛变量D 剩余变量5.表上作业法的基本思想和步骤与单纯形法类似,那么基变量所在格为 CA 有单位运费格B 无单位运费格C 有调运量的格D 无调运量的格6.表上作业法中初始方案均为 AA 可行解B 非可行解C 待改进解D 最优解7.闭回路是一条封闭折线,每一条边都是 DA 水平B 垂直C 水平+垂直D 水平或垂直 8当产量大于销量时,欲化为平衡问题,可虚设一销地,并令其相应运价为 AA 0B 所有运价中最小值C 所有运价中最大值D 最大与最小运量之差 9.所有运输问题,应用表上作业法最后均能找到一个 DA 可行解B 非可行解C 待改进解D 最优解10.一般讲,在给出的初始调运方案中,最接近最优解的是 BA 西北角法B 最小元素法C 闭回路法D 位势法11.在运输问题中,调整对象的确定应选择 CA 检验数为负B 检验数为正C 检验数为负且绝对值最大D 检验数为负且绝对值最小12.运输问题中,调运方案的调整应在检验数为 C 负值的点所在的闭回路内进行。