复变函数与积分变换全套课件-第八章-拉普拉斯变换

合集下载

《拉氏变换详解》课件

《拉氏变换详解》课件

积分性质
积分性质
若 $f(t)$ 的拉普拉斯变换为 $F(s)$, 则 $int_{0}^{infty} f(t) dt$ 的拉普拉 斯变换为 $- frac{1}{s} F(s)$。
应用
积分性质在求解初值问题和极值问题 时非常有用,可以方便地得到原函数 的表达式。
微分性质
微分性质
若 $f(t)$ 的拉普拉斯变换为 $F(s)$,则 $f^{(n)}(t)$ 的拉普拉斯变换为 $s^{n} F(s) - s^{n-1} f(0-) - s^{n-2} f'(0-) - ldots - f^{(n-1)}(0-)$。
卷积定理
总结词
卷积定理是拉普拉斯变换的一个重要特性, 它描述了函数与其导数之间的卷积关系。
详细描述
卷积定理表明,对于任意实数t,如果函数 f(t)与其导数f'(t)的拉普拉斯变换都存在,则 它们之间的卷积结果等于零。这个定理在信 号处理、控制系统等领域有着广泛的应用, 可以帮助我们更好地理解和分析函数的性质
,再通过反变换得到 (y(t))。
控制系统的稳定性分析
总结词
通过拉普拉斯变换,可以分析控制系统的稳定性,为系 统设计和优化提供依据。
详细描述
对于线性时不变控制系统,通过拉普拉斯变换,可以将 其转化为传递函数的形式。根据传递函数的极点和零点 分布,可以判断系统的稳定性。如果所有极点都在复平 面的左半部分,则系统是稳定的。如果极点在右半部分 或等于零,则系统是不稳定的。此外,系统的动态性能 也可以通过传递函数的极点和零点分布进行分析和优化 。
03
动态行为。
2023
PART 02
拉普拉斯变换的应用
REPORTING
在微分方程中的应用

《复变函数与积分变换》PPT课件

《复变函数与积分变换》PPT课件
浙江大学
复数的乘幂
n个相同复数z的乘积成为z的n次幂
z
n
z n = zzLz = r n (cos nθ + i sin nθ)
复数的方根


z = re
为已知复数,n为正整数,则称满足方程
w =z
n
的所有w值为z的n次方根,并且记为
w= n z
浙江大学

w= ρeiϕ ,

ρ neinϕ = reiθ
w0 = r (cos + i sin ) n n 1 θ + 2π θ + 2π n w1 = r (cos ) + i sin n n 1 θ + 4π θ + 4π n w2 = r (cos + i sin ) n n
1 n
1 n
θ
θ
wn−1 = r (cos
θ + 2(n −1)π
n
+ i sin
Re z 2 = x2 − y2 ≤ 1
Im z 2 ≤ 1
浙江大学
例: 指出不等式 0 < arg 解:
z −i π < 中点z的轨迹所在范围。 z +i 4
z −i x2 + y2 −1 − 2x = 2 +i 2 2 z + i x + ( y +1) x + ( y +1)2
z −i π 因为 0 < arg < , 所以 z +i 4 +i x2 + y2 −1 − 2x > 2 >0 2 2 2 x + ( y +1) x + ( y +1)

复变函数与积分变换第八章

复变函数与积分变换第八章

证明

二、延迟性质与位移性质
1. 延迟性质
性质 设当 t < 0 时
则对任一非负实数 有
注意 在延迟性质中专门强调了当 t < 0 时 因此,本性质也可以直接表述为:
这一约定。
可见,在利用本性质求逆变换时应为:
解 方法一 已知 根据延迟性质有
方法二
方法一 先充零再平移 方法二 先平移再充零
两种方法为什么会得到不同的结果?
一、Laplace 变换的引入
1. Fourier 变换的“局限性”?
广义 Fourier 变换的引入,扩大了古典 Fourier 变换的适 用范围,使得 “缓增” 函数也能进行 Fourier 变换,而且 将周期函数的 Fourier 级数与 Fourier 变换统一起来。
广义 Fourier 变换对以指数级增长的函数如
积分在
上处处发散.
根据定理8.2,存在实数s (或是)使得在
上, 积分
收敛, 而在
上,积分
处处发散. 在收敛区域内,
Laplace变换的像函数
虚轴
析函数.
是s的解
Os
实轴
四、几个常用函数的 Laplace 变换
(1) [1]= [ ] (2) [ ]
解 (2)
含脉冲函数的 拉氏变换问题
四、几个常用函数的 Laplace 变换
因此在进行Laplace变换时,常常略去存在域, 只有在非常必要时才特别注明。
(2) 在 Laplace 变换中的函数一般均约定在 t < 0 时为零, 即函数 等价于函数
比如
类似于幂级数中
,有下面定理.
定理8.2 如果

处收敛,则这个积分在 由这个积分确定的函数

复变函数与积分变换———拉普拉斯变换ppt

复变函数与积分变换———拉普拉斯变换ppt

对并返回结果 F ( s )。
(2) f = ilaplace (F ) 对函数 F ( s ) 进行 Laplace 逆变换, 对并返回结果 f ( t )。
22
3t 例 求函数 f ( t ) t e sin 2t
的 Laplace 变换。
解 Matlab 程序
clear; syms t; f = t*exp(3*t)*sin(2*t); F = laplace(f);
若L[f(t)]=F(s), 则有
F (s) L t f (t ) (2.6)
一般地有
F ( n ) (s) L [(t )n f (t )] (2.7)
利用(2.6) 式
【例2.3】求L[tsinkt]
2ks (答案: 2 2 2 ) (s k )
目录 上页 下页 返回 结束
2 a 2 s 【例3.5】求 L s( s2 a2 )2 t cos at
1
1 【例3.6】求 L1 ( s1)( s2)( s 3)
1 1 1 1 t 1 2t 1 3t 1 6 15 10 L s 1 s 2 s 3 e e e 6 15 10
注:书上对例4,例5,例6的计算是用“查表”的方法作 的.
目录 上页 下页 返回 结束
* 三、利用 Matlab 实现 Laplace 变换
在数学软件 Matlab 的符号演算工具箱中,提供了专用函数 来进行 Laplace 变换与 Laplace 逆变换。 (1) F = laplace (f ) 对函数 f ( t ) 进行 Laplace 变换,
输出 F=atan(1/s)
其中, atan 为反正切函数。

复变函数与积分变换-拉普拉斯变换

复变函数与积分变换-拉普拉斯变换
复变函数与积分变换
Complex Analysis and Integral Transform
第8章 拉普拉斯变换
复习、引入 6.1 拉普拉斯变换的概念 6.2 拉普拉斯变换的基本性质 6.3 拉普拉斯逆变换 6.4 卷积 6.5 拉普拉斯变换的应用
复变函数与积分变换
Complex Analysis and Integral Transform
二.求法举例
例1 求下列函数的拉普拉斯变换
(1)
u(t )

0, 1,
t0 t0
; (2) f (t) ekt ; (3) f (t) sin kt
复变函数与积分变换
Complex Analysis and Integral Transform
解:(1)
L[u(t)] u(t)estdt estdt 1 est
复变函数与积分变换
Complex Analysis and Integral Transform
F(s) 叫做 f (t) 的象函数. f (t) 叫做 F(s) 的拉氏逆变换或象原函数,记为
f (t) = ℒ 1 F(s)
复变函数与积分变换
Complex Analysis and Integral Transform
Complex Analysis and Integral Transform
解:(1) L[ f (t)] (t) cost u(t) sin te-stdt 0
(t)coste-stdt u(t) sin te-stdt
0
0






(t)est dt

《拉普拉斯变换 》课件

《拉普拉斯变换 》课件
详细描述
对于线性时不变控制系统,通过拉普拉斯变换分析其极点和零点,可以判断系 统的稳定性。如果所有极点都位于复平面的左半部分,则系统稳定;否则系统 不稳定。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
总结与展望
拉普拉斯变换的重要性和应用前景
拉普拉斯变换在数学、物理和工程领域中具有广泛的应用,是解决线性常微分方程 、积分方程、偏微分方程等数学问题的有力工具。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
拉普拉斯变换的运算技 巧
积分性质的运用
积分性质
如果函数f(t)的拉普拉斯变换为F(s), 那么对于任意常数a,函数f(at)的拉普 拉斯变换为aF(as)。
应用场景
在求解某些物理问题时,可能需要将 时间变量乘以常数,此时可以利用积 分性质简化拉普拉斯变换的运算。
REPORT
《拉普拉斯变换》 PPT课件
CATALOG
DATE
ANALYSIS
SUMMARY
目录
CONTENTS
• 拉普拉斯变换的基本概念 • 拉普拉斯变换的应用 • 拉普拉斯变换的运算技巧 • 拉普拉斯变换的实例分析 • 总结与展望
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
随着科学技术的发展,拉普拉斯变换的应用 领域也在不断拓展,例如在人工智能、机器 学习、数据科学等领域中的应用前景值得关 注。
未来需要进一步加强拉普拉斯变换 的理论研究,提高其在实际问题中 的应用效果,同时探索新的应用领 域,推动科学技术的发展。

复变函数与积分变换第8章8-1 拉普拉斯变换

复变函数与积分变换第8章8-1 拉普拉斯变换

下面我们通过三个数学过程来引入Laplace变换:
(1) 将全空间(-∞,+∞)上的问题转化成半空间(0,+∞)上的问题.
1 t [0, ) 引进单位阶跃函数u(t ) , 构造函数 0 t ( ,0) g (t ) f (t )u(t ), t ( , )
像函数的微 分性质
前面,由已知函数f (t ),求它的像函数F ( s ).但在实际应用 中常见与此相反的问题 Laplace逆变换.
利用拉氏变 换的性质, 凑!!
s 1 , 求f (t ). 例3 已知f (t )的拉氏变换F ( s) ln s 1 解 1 1 ( s) F ( s) ln( s 1) ln( s 1) F s 1 s 1 根据像函数的微分性质: L [tf (t )] F ( s) 有 1 1 1 1 f (t ) L t s 1 s 1 1 t 1 t kt L [e ] (e e ) (Re( s) k ) t sk
f1 (t ) f 2 (t ) L 1[F1 ( s) F2 ( s)]
2
像原函数的延迟(时移)性质 若 F ( s) L [ f (t )] , 又当t 0时, f (t ) 0, 则对任意实数 0
L [ f (t )] e s F ( s ) L
m st
Re( s) 0
1 m st t m m 1 st t e |t 0 t e dt s s 0 m L [t m 1 ] s m( m 1) m2 L [t ] s2
m ( m 1) 2 m ( m 1) ] L [t m 1 s m ( m 1) 2 1 m! m m ] m 1 L [t m s s

复变函数与积分变换-第八章-Laplace变换

复变函数与积分变换-第八章-Laplace变换

3)、Laplace变换与Fourier变换的关系
F (s) L [ f (t)] f (t)estdt 0 f (t )u(t )e te jwtdt F
[ f (t )u(t )e t ]
例1:求下述函数的 Laplace变换
(1)f
(t)

则 1)f (t)的 Laplace 变换 F (s) f (t ) estdt 在半平 0
面 Re s c上存在,右端积分在 Re s c1 c上绝对收敛 且一致收敛。
2)F(s)在 Re s c解析且
F (s) (t) f (t)estdt L [(t) f (t)] 0
0
证明: L [ f (t )] f (t )e stdt (k1)T f (t )e stdt
0
kT
k0
tkT

T f (kT )e s(kT )d
0
k0


k0
e
sTk


T f ( )es d
认定为包含在积分限内,因此,对于 (t)
L [ (t)]
பைடு நூலகம்

(t )e st dt

e st
1
0
t0
常见的基本Laplace变换对
(1)u(t )
L
1 s
, u(t )t m
L
m! sm1
(2)u( t )t
L
( 1)
s 1
(3)ekt L 1 sk
2)、位移性质
L [eat f (t)] F (s a)
( Re(s a) c)

复变函数与积分变换-第八章-Laplace变换

复变函数与积分变换-第八章-Laplace变换

e 2j
jkt
e st dt
例3: 解:
求函数 f (t ) t m (m为正整数)的 Laplace变换。
1 m st m 1 st [ t e mt e dt ] L [t ] t e dt | 0 0 0 s m m m 1 st [ t m 1] (Re(s) 0) t e dt L [ s s 0 m m( m 1) m m 1 m2 故 L [t ] L [t ] L [ t ] 2 s s m! m( m 1) 2 1 m 1 L [ u ( t )] s sm
证明:
L [u(t ) f (t )]

st

0
u(t ) f (t )e st dt


s ( x ) dx f ( t )e dt 0 f ( x )e
x t
e
s


0
f ( x )e
sx
0
t
称为函数 f1 ( t )和 f 2 ( t )的拉氏卷积,有时也记为 ( L ) f1 ( t ) f 2 ( t ) 。
2、拉氏卷积和傅氏卷积的关系
( L ) f1(t ) f 2 (t ) (F )[ f1(t )u(t )] [ f 2 (t )u(t )]
由于拉氏卷积和傅氏卷积本质上的一致性,与傅氏 卷积一样,拉氏卷积也具有交换律、结合律、分配律, 即:
1)、为什么要引入Laplace变换 经典Fourier变换的存在性定理要求原函数在实轴上

绝对可积,但许多常见函数并不满足该条件,例如sin t , cos t , t n。

积分变换.ppt

积分变换.ppt

L [ekt ] 1 (P145) sk
1
f (t ) L 1[F (s)]
t
24

f
(t
)


1 t
L
1
1[

s1
1] s1
1 (et et ) 1 (et et )
t
t
积分性质 1
设Ff(s()t )=L[ tf(Lt)],1则[F有(s)]
t
2t
解 L [ sht ] =L [1 et 1 et ] 22
1 ( 1 1 ) F(s) 2 s1 s1
由像函数的积分性质, 有 L [ekt ] 1
f (t)
sk
L [ t ] s F (s)ds
27
sht 1 1 1
L
[
t
]
2 s
( s1
但在工程实际应用中, 许多以时间t 作为自 变量的函数往往在 t 0时是无意义的或者 是不需要考虑的. 这样的函数都不能取傅 氏变换. 因此, 傅氏变换的应用范围受到相 当大的限制.
对这些函数f(t)能否经过适当地改造, 使其 进行傅氏变换时克服上述两个缺点呢? 答案是可以的, 就是拉普拉斯变换.
L [ t f (t)dt] 1F (s)
0
s
此外, 我们还有象函数的积分性质
L [ f (t)]
f (t ) est dt

F (s)ds
t
0t
s
26


f(t) = tL 1[ F (s)ds] s
例 求 f (t ) sht et et 的拉氏变换

复变函数及积分变换第八章

复变函数及积分变换第八章

1,
t t

;
的拉普拉斯变换.
解:阶跃函数u(t)的拉普拉斯变换为
L u(t)(s) 1
s 根据延迟性质,有
L u(t )(s) 1 es
s
例8.12 设 fT (t)(t 0)是周期为T的函数,其中T 0 ,即
是指f (t) 0,t 0 ,f (t T ) f (t),t 0 .求 fT (t) 的拉普
例8.14 求函数 f (t) cost的拉普拉斯变换, 其中为常数. 解:由于 f (0) 1 f (0) 0 f (t) 2 cost
L 2 cost (s) L f (s) s2L f (s) sf (0) f '(0)
再由线性性质,有
拉斯变换. 解:定义函数
f
(t
)

0f,T
(t
),
0t T 其余地方,
fT (t) f (t) f (t T ) f (t 2T )
T
记 L f (s) F(s) fT (t)estdt
0
由延迟性质,有
L f (s) F(s) F(s)eTs F(s)e2Ts
F(s)
( 1) 1
由于F(s)和 ( 1)在半平面 Re(s) 0上均为解析函数,
1
而且在正实轴上相等,因此,由解析函数的唯一性
定理知道,在区域 Re(s) 0上处处相等,即是
L
t

(s)

( 1)
s 1
例8.6 求周期为2a的函数 的拉普拉斯变换.

0
tf (t)est
dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档