复变函数与积分变换 复旦大学出版社 习题六答案
(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
《复变函数与积分变换复旦大学修订版》全部_习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z 2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根. 解:πi 4e ⎫⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z . 9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
《复变函数与积分变换复旦大学修订版》全部习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩¢. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z ⑶33i +的平方根. 解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=L证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=L又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=L11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
(完整版)复变函数与积分变换习题答案

lim f (z) lim Arg( a i y)
y 0y 0
lim f (z) lim Arg( a i y)
y 0y 0
显然函数在负实轴上不连续。
lim f (z) lim Arg (rei)
2sin
cos( )
2 2 2
isin(
2
i
2sin e2 2
2
(5)
z3
解:
i3
3i
re
cos3
isin3
(6)
e1 i
解:
ee
cos1 i sin1
(7)
1i
解:
1i
1i
i ei3 /4cos3
/ 4 isin3 /4
1i
1i
、计算下列数值
(1)
a ib
解:
ib
i ar ctgb2k
2 2 abe
cos2
L
L
cosn
1i i(e e
2
L
L
in i i2e ) (e e
L
in
L ein)
1 ei
(1
ine
)e
i(1 ein)
1
ie
(1
in i ie ) 1 e e
(1
in ie ) 1 e
2
1
ie
1 ei
2
2(1cos
)
cos
i i i(n 1) i(n 1) in in
1 e e 2 e e e e
22(1cos )
2sin
2
(8)
sin
复变函数与积分变换第六章测验题与答案

第六章 共形映射一、选择题:1.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( )(A )21<z (B )211<+z (C )21>z (D )211>+z 2.映射iz iz w +-=3在i z 20=处的旋转角为( ) (A )0 (B )2π(C )π (D )2π-3.映射2iz ew =在点i z =0处的伸缩率为( )(A )1 (B )2 (C)1-e (D )e4.在映射ieiz w 4π+=下,区域0)Im(<z 的像为( )(A)22)Re(>w (B )22)Re(->w (C )22)Im(>z (D )22)Im(->w 5.下列命题中,正确的是( )(A )nz w =在复平面上处处保角(此处n 为自然数)(B )映射z z w 43+=在0=z 处的伸缩率为零(C ) 若)(1z f w =与)(2z f w =是同时把单位圆1<z 映射到上半平面0)Im(>w 的分式线性变换,那么)()(21z f z f =(D )函数z w =构成的映射属于第二类保角映射 6.i +1关于圆周4)1()2(22=-+-y x 的对称点是( )(A )i +6 (B )i +4 (C )i +-2 (D )i7.函数iz iz w +-=33将角形域3arg 0π<<z 映射为 ( )(A)1<w (B )1>w (C ) 0)Im(>w (D )0)Im(<w 8.将点1,,1-=i z 分别映射为点0,1,-∞=w 的分式线性变换为( )(A ) 11-+=z z w (B )zz w -+=11(C )z z e w i-+=112π(D) 112-+=z z e w i π9.分式线性变换zz w --=212把圆周1=z 映射为( ) (A ) 1=w (B) 2=w (B ) 11=-w (D) 21=-w10.分式线性变换zz w -+=11将区域:1<z 且0)Im(>z 映射为( ) (A )ππ<<-w arg 2(B ) 0arg 2<<-w π(C )ππ<<w arg 2(D )2arg 0π<<w11.设,,,,d c b a 为实数且0<-bc ad ,那么分式线性变换dcz baz w ++=把上半平面映射为w 平面的( )(A )单位圆内部 (B )单位圆外部 (C )上半平面 (D )下半平面12.把上半平面0)Im(>z 映射成圆域2<w 且满足1)(,0)(='=i w i w 的分式线性变换)(z w 为( )(A )z i z i i+-2 (B )i z i z i +-2 (C )z i z i +-2 (D )iz iz +-2 13.把单位圆1<z 映射成单位圆1<w 且满足0)0(,0)2(>'=w iw 的分式线性变换)(z w 为( )(A)iz i z --22 (B )iz z i --22 (C )iz i z +-22 (D )izzi +-22 14.把带形域2)Im(0π<<z 映射成上半平面0)Im(>w 的一个映射可写为( )(A )z e w 2= (B )z e w 2= (C )z ie w = (D )ize w =15.函数ie ie w z z +---=11将带形域π<<)Im(0z 映射为( )(A )0)Re(>w (B )0)Re(>w (C )1<w (D )1>w 二、填空题1.若函数)(z f 在点0z 解析且0)(0≠'z f ,那么映射)(z f w =在0z 处具有 . 2.将点2,,2-=i z 分别映射为点1,,1i w -=的分式线性变换为 .3.把单位圆1<z 映射为圆域11<-w 且满足0)0(,1)0(>'=w w 的分式线性变换=)(z w 4.将单位圆1<z 映射为圆域R w <的分式线性变换的一般形式为 .5.把上半平面0)Im(>z 映射成单位圆1)(<z w 且满足31)21(,0)1(=+=+i w i w 的分式线性变换的)(z w = .6.把角形域4arg 0π<<z 映射成圆域4<w 的一个映射可写为 .7.映射z e w =将带形域43)Im(0π<<z 映射为 . 8.映射3z w =将扇形域:3arg 0π<<z 且2<z 映射为 .9.映射z w ln =将上半z 平面映射为 . 10.映射)1(21zz w +=将上半单位圆:2<z 且0)Im(>z 映射为 . 三、设2222211111)(,)(d z c b z a z w d z c b z a z w ++=++=是两个分式线性变换,如果记⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-δγβα11111d c b a ,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛d c b a d c b a d c b a 22221111 试证1.)(1z w 的逆变换为δγβα++=-z z z w )(11;2.)(1z w 与)(2z w 的复合变换为dcz baz z w w ++=)]([21.四、设1z 与2z 是关于圆周R a z =-Γ:的一对对称点,试证明圆周Γ可以写成如下形式λ=--21z z z z 其中Ra z a z R-=-=12λ. 五、求分式线性变换)(z w ,使1=z 映射为1=w ,且使i z +=1,1映射为∞=,1w . 六、求把扩充复平面上具有割痕:0)Im(=z 且0)Re(≤<∞-z 的带形域ππ<<-)Im(z 映射成带形域ππ<<-)Im(w 的一个映射.七、设0>>a b ,试求区域a a z D >-:且b b z <-到上半平面0)Im(>w 的一个映射)(z w .八、求把具有割痕:0)Im(=w 且1)Re (21<≤z 的单位圆1<z 映射成上半平面的一个映射. 九、求一分式线性变换,它把偏心圆域⎭⎬⎫⎩⎨⎧<->2511:z z z 且映射为同心圆环域R w <<1,并求R 的值.十、利用儒可夫斯基函数,求把椭圆1452222=+y x 的外部映射成单位圆外部1>w 的一个映射.答案第六章 共形映射一、1.(B ) 2.(D ) 3.(B ) 4.(A ) 5.(D )6.(C ) 7.(A ) 8.(C ) 9.(A ) 10.(D ) 11.(D ) 12.(B ) 13.(C ) 14.(B ) 15.(C ) 二、1.保角性与伸缩率的不变性 2. 236--=iz iz w 3.z +14.az a z w i --=θ1Re (θ为实数,1<a ) 5.iz iz +---11 6.λ-λ-=ϕ444z z ew i (ϕ为实数,0)Im(>λ) 7.角形域43arg 0π<<w 8.扇形域π<<w arg 0且8<w 9.带形域π<<)Im(0w 10.下半平面0)Im(<w 五、)1(1)1(i z z i w ++-+-=. 六、)1l n (-=z e w .七、⎭⎬⎫⎩⎨⎧--π=z a z a b i b w 2exp . 八、221212121⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+=z z z z w . 九、θ++=i e z z w 414(θ为实数),2=R . 十、)9(912-+=z z w .。
复变函数与积分变换(修订版-复旦大学)课后习题答案

习题 七1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有⎰+∞⋅=0d sin )()(ωωωt b t f其中()⎰+∞⋅=0tdt sin π2)(ωωt f b当f (t )为偶函数时,则有⎰+∞⋅=0cos )()(ωωtd w a t f其中⎰+∞⋅=02tdt c f(t))(ωωos a证明:因为ωωωd G t f t i ⎰+∞∞-=e )(π21)(其中)(ωG 为f (t )的傅里叶变换()()()(cos sin )i tG f t edt f t t i t dt ωωωω+∞+∞--∞-∞==⋅-⎰⎰()cos ()sin f t tdt i f t tdt ωω+∞+∞-∞-∞=⋅-⋅⎰⎰当f (t )为奇函数时,t cos f(t)ω⋅为奇函数,从而⎰+∞∞-=⋅0tdt cos f(t)ωt sin f(t)ω⋅为偶函数,从而⎰⎰+∞∞-+∞⋅=⋅0.sin f(t)2tdt sin f(t)tdt ωω故.sin f(t)2)(0tdt iG ωω⋅-=⎰+∞有)()(ωωG G -=-为奇数。
ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+⋅=⋅=⎰⎰+∞∞-+∞∞-=01()sin d ()sin d 2ππi G i t G t ωωωωωω+∞+∞-∞⋅=⋅⎰⎰ 所以,当f(t)为奇函数时,有2()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞+∞=⋅⋅⎰⎰其中同理,当f(t)为偶函数时,有()()cos d f t a t ωωω+∞=⋅⎰.其中02()()cos πa f t tdt ωω+∞=⋅⎰ 2.在上一题中,设()f t =21,0,1t t t ⎧<⎪⎨≥⎪⎩.计算()a ω的值.解:1200111220012012011200222()()cos d cos d 0cos d πππ221cos d d(sin )ππ122sin sin 2d 0ππ2sin 4(cos )π2sin 4cos cos π2sin 4co a f t t t t t t t t t t t t t t t t t tt d t t t tdt ωωωωωωωωωωωωωωπωωωωωπωωπω+∞+∞=⋅=⋅+⋅=⋅=⋅=⋅⋅-⋅=⋅+⋅⎡⎤=+⋅-⎢⎥⎣⎦=+⎰⎰⎰⎰⎰⎰⎰⎰23s 4sin ωωπωπω-3.计算函数sin ,6π()0,6πt t f t t ⎧≤⎪=⎨≥⎪⎩的傅里叶变换. 解:[]6π6π6π6π6π02()()d sin d sin (cos sin )d 2sin sin d sin 6ππ(1)i t i t F f f t e t t e tt t i t ti t t t i ωωωωωωωω+∞---∞--=⋅=⋅=⋅-=-⋅=-⎰⎰⎰⎰4.求下列函数的傅里叶变换 (1)()tf t e -=解: []||(||)0(1)(1)2F f ()()d d d 2d d 1i t t i t t i t t i t i f te t e e t e te t e t ωωωωωωω+∞+∞+∞----+-∞-∞-∞+∞--+-∞==⋅==+=+⎰⎰⎰⎰⎰(2)2()t f t t e-=⋅解:因为22222/4F[].()(2)2.t t t t e ee e t t e ω-----==⋅-=-⋅而所以根据傅里叶变换的微分性质可得224()F()tG t e e ωω--=⋅=(3)2sin π()1tf t t =- 解:222202200sin π()F()()d 1sin π(cos sin )d 11[cos(π)cos(π)]sin πsin 2d 2d 11cos(π+)cos(π-)d d ()11sin ,||π20,|i tt G f e t t tt i t t t t t t t i t i t t t t t i t i t t t iωωωωωωωωωωωωω+∞--∞+∞-∞+∞+∞-∞+∞+∞==⋅-=⋅---+--⋅=-=---=----≤=⎰⎰⎰⎰⎰⎰利用留数定理当当|π.⎧⎪⎨⎪≥⎩(4)41()1f t t=+ 解:4444401cos sin ()d d d 111cos cos 2d d 11i tt t G e t t i t t t t t t t t t t ωωωωωω+∞+∞+∞--∞-∞-∞+∞+∞-∞==-+++==++⎰⎰⎰⎰⎰令41R(z)=1z +,则R(z)在上半平面有两个一级极1)i i +-+. R()d 2π[R())]2π[R()1)]i t i z i z t e t i Res z e i i Res z e i ωωω+∞-∞⋅=⋅⋅++⋅⋅-+⎰故.|244cos ||||d Re[d ]sin )1122i t t e t t t t ωωωωω+∞+∞--∞-∞=+++⎰⎰(5) 4()1tf t t =+ 解:4444()d 1sin cos d d 11sin d 1i t tG e t t t t t t t i t t t t t i tt ωωωωω+∞--∞+∞+∞-∞-∞+∞-∞=⋅+⋅=⋅-++⋅=-+⎰⎰⎰⎰ 同(4).利用留数在积分中的应用,令4R()=1zz z +则44|sin d ()Im(d )11sin22i tt tt e i t i t t t ie ωωωω+∞+∞-∞-∞-⋅⋅-=-++=-⋅⋅⎰⎰.5.设函数F (t )是解析函数,而且在带形区域Im()t δ<内有界.定义函数()L G ω为/2/2()()e d .L i t L L G F t t ωω--=⎰证明当L →∞时,有1p.v.()e d ()2πi t L G F t ωωω∞-∞→⎰ 对所有的实数t 成立.(书上有推理过程) 6.求符号函数 1,0sgn 1,0||t t t t t -<⎧==⎨>⎩的傅里叶变换. 解: 因为1F (())π().u t i δωω=+⋅把函数sgn()t 与u(t)作比较.不难看出 sgn()()().t u t u t =-- 故:[]11F[sgn()]F(())F(())π()[π()]π()22π()()t u t u t i i i i δωδωωδωδωωω=--=+⋅-+⋅--=+--=7.已知函数()f t 的傅里叶变换()00F()=π()(),ωδωωδωω++-求()f t解:[]000-100000001()F (F())=π()()d 2πF(cos )=cos d d 2π[()()]()cos i ti t i t i t i tf t e t t e te e e tf t tωωωωωωδωωδωωωωωδωωδωωω+∞-∞+∞--∞-+∞--∞=⋅++-⋅+=⋅=++-=⎰⎰⎰而所以8.设函数f (t )的傅里叶变换()F ω,a 为一常数. 证明1[()]().f at F a a ωω⎛⎫=⎪⎝⎭1F[()]()()d ()d()i t i t f at f at e t f at e at a ωωω+∞+∞---∞-∞=⋅=⋅⎰⎰解:当a >0时,令u=at .则11F[()]()()d u i a f at f u e u F a a a ωωω-+∞-∞⎛⎫=⋅= ⎪⎝⎭⎰当a <0时,令u=at ,则1F[()]()F()f at a aωω=-. 故原命题成立.9.设()[]();F F f ωω=证明()()[]()F f t ωω=--F .证明:()[]()()()()()[]()[]()()[]()()e d e d e d e d e d .i t i u i i u u i t F f t f uf t u t f u f uu u f t F t ωωωωωωω+∞+∞--∞-∞+∞+∞--⋅-⋅--∞-∞+∞-⋅--∞=⋅=-⋅--=⋅=⋅=⋅=-⎰⎰⎰⎰⎰10.设()[]()F F f ωω=,证明:()[]()()()0001cos 2F f t F F t ωωωωωω⋅=-++⎡⎤⎣⎦以及()[]()()()0001sin .2F f t F F t ωωωωωω⋅=--+⎡⎤⎣⎦ 证明:()[]()()()()()0000000e +e cos 21e e 22212i t i t i t i t F f t F t f t F F f f t t F F ωωωωωωωωω--⎡⎤⋅=⋅⎢⎥⎣⎦⎧⎫⎡⎤⎡⎤=+⋅⋅⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭=-++⎡⎤⎣⎦同理:()[]()()(){}()()0000000e e sin 21e e 212i t i t i t i t Ff t F f t t i F F f f t t i F F i ωωωωωωωωω--⎡⎤-⋅=⋅⎢⎥⎣⎦=-⎡⎤⎡⎤⋅⋅⎣⎦⎣⎦=--+⎡⎤⎣⎦ 11.设()()π0,0sin ,0t 200e ,t t t f g t t t -⎧<⎧≤≤⎪==⎨⎨≥⎩⎪⎩,其他计算()*f g t . 解:()())*(d f y g y t f g t y +∞-∞-=⎰当t y o -≥时,若0,t <则()0,f y =故()*f g t =0.若0,0,2t y t π<≤<≤则()()()0()d sin d *t ty f y g y e y t f g t y t y -=⋅--=⎰⎰若,0..222t t y t y t πππ>≤-≤⇒-≤≤则()()2sin d *ty t e y t f g y t π--⋅-=⎰故()()()20,01,0sin cos e *221e .1e 22t t t t t t f g t t πππ--<⎧⎪⎪<≤-+=⎨⎪⎪>+⎩12.设()u t 为单位阶跃函数,求下列函数的傅里叶变换.()()()0e sin 1at f t u t t ω-=⋅()()()()()()()00000000002002e sin e e sin e e e e e 211e d d d d e 2d 2at i t at i t i t i t ati ta i t a i t ttG F t u f t t t i i i t t a i ωωωωωωωωωωωωωωωω+∞-∞+∞+∞+∞+--------+--++⎡⎤⎡⎤⎣∞⎣⎦⎦=====-=⋅⋅⋅⋅⋅-⋅⋅++⎰⎰⎰⎰⎰解:习题八1.求下列函数的拉普拉斯变换.(1)()sin cos f t t t =⋅,(2)4()etf t -=,(3)2()sin f t t= (4)2()f t t =, (5)()sinh f t bt=解: (1) 1()sin cos sin 22f t t t t =⋅=221121(())(sin 2)2244L f t L t s s ==⋅=++(2)411(())(e )24tL f t L s -==+(3)21cos 2()sin 2t f t t -==221cos21111122(())()(1)(cos2)222224(4)t L f t L L t s s s s -==-=⋅-⋅=++(4)232()L t s = (5)22e e 111111(())()(e )(e )22222bt bt bt bt bL f t L L L s b s b s b ---==-=⋅-⋅=-+-2.求下列函数的拉普拉斯变换.(1)2,01()1,120,2t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩(2)cos ,0π()0,πt t f t t ≤<⎧=⎨≥⎩解: (1) 1220011(())()e 2e e (2e e )st st st s s L f t f t dt dt dt s +∞-----=⋅=⋅+=--⎰⎰⎰(2)πππ2011e (())()e cos e (1e )1s ststsL f t f t dt t dt s s -+∞---+=⋅=⋅=+++⎰⎰3.设函数()cos ()sin ()f t t t t u t δ=⋅-⋅,其中函数()u t 为阶跃函数, 求()f t 的拉普拉斯变换.解:20222(())()e cos ()e sin ()e cos ()e sin e 11cos e 1111st st st st st stt L f t f t dt t t dt t u t dtt t dt t dts t s s s δδ+∞+∞+∞---+∞+∞---∞-==⋅=⋅⋅-⋅⋅=⋅⋅-⋅=⋅-=-=+++⎰⎰⎰⎰⎰4.求图8.5所表示的周期函数的拉普拉斯变换解:2()e 1(())1e (1e )Tst T T as as f t dt as aL f t s s ---⋅+==---⎰5. 求下列函数的拉普拉斯变换.(1)()sin 2tf t lt l=⋅ (2)2()e sin5t f t t -=⋅(3)()1e t f t t =-⋅ (4)4()e cos4t f t t-=⋅(5()(24)f t u t =- (6()5sin 23cos 2f t t t =-(7) 12()e t f t t δ=⋅ (8) 2()32f t t t =++解:(1)222222221()sin [()sin ]221()(())(sin )[()sin ]22112()22()()tf t lt t lt l lt F s L f t L lt L t lt l ll ls s l s l l s l s l =⋅=--⋅==⋅=--⋅-'=-=-⋅=+++(2)225()(())(e sin 5)(2)25t F s L f t L t s -==⋅=++21(3)()(())(1e )(1)(e )(e )1111()1(1)t t t F s L f t L t L L t L t ss s s s ==-⋅=-⋅=+-⋅'=+=--- (4)424()(())(ecos 4)(4)16ts F s L f t L t s -+==⋅=++ (5)1,2(24)0,t u t >⎧-=⎨⎩其他22()(())((24))=(24)e 1=e =e st stsF s L f t L u t u t dtdt s∞-∞--==--⋅⎰⎰(6)222()(())(5sin 23cos2)5(sin 2)3(cos2)210353444F s L f t L t t L t L t s ss s s ==-=--=⋅-⋅=+++ (7)12332213(1)()22()(())(e )()()t F s L f t L t s s δδδΓ+Γ==⋅==-- (8)2221()(())(32)()3()2(1)(232)F s L f t L t t L t L t L s s s ==++=++=++6.记[]()()L f s F s =,对常数0s ,若00Re()s s δ->,证明00[e ]()()s t L f s F s s ⋅=-证明:00000()()00[e ]()e ()e ()e()e ()s t s tsts s ts s t L f s f t dtf t dt f t dt F s s ∞-∞∞---⋅=⋅⋅=⋅=⋅=-⎰⎰⎰7 记[]()()L f s F s =,证明:()()[(t)()]()n nF s L f t s =-⋅证明:当n=1时,0()()e st F s f t dt +∞-=⋅⎰0()[()e ][()e ]()e (())st stst F s f t dt f t dt t f t dt L t f t s+∞--+∞+∞-''=⋅∂⋅==-⋅⋅=-⋅∂⎰⎰⎰所以,当n=1时, ()()[(t)()]()n nFs L f t s =-⋅显然成立。
复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①:∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+=+z . 2551cos πisin πi 662=+=z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3) 13i +解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7) 11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值 (1) a ib +解:1ar 2ar 2222421ar 22421ar 2242 b b i ctg k i ctg k a a bi ctg abi ctg a a ib a b ea b ea b ea b e ππ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭+=+=+⎧+⎪=⎨⎪-+⎩(2)3i解:62263634632323322322i k i i i i k i e i i eee e iπππππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)ii解:()1/2222ii k k i i e eππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i e e ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=(1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=(1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换(修订版-复旦大学)课后的习题答案

(
)
证明∵ z + w = ( z + w) ⋅ ( z + w) = ( z + w) z + w = z ⋅ z + z ⋅ w + w⋅ z + w⋅ w = z + zw+ z⋅ w + w = z + w
≤
2 2 2 2
(
)
∴ −8π 1 + 3i = 16π ⋅ e 2π 2π ⎞ ⑤解: ⎛ + i sin ⎟ ⎜ cos 9 9 ⎠ ⎝
5、Imz>1,且|z|<2. 解:表示圆盘内的一弓形域。
iϕ (2) 记 w = ρ e ,则
0<θ <
π ,0 < r < 2 4 映成了 w 平面 π . 2
习题二 1 z 下圆周 | z |= 2 的像.
上扇形域,即
0 < ρ < 4, 0 < ϕ <
−7i
⎤ = x ( x − y ) − 2 xy + ⎡ ⎣ y ( x − y ) + 2x y ⎦ i
2 2 2 2 2 2
= x3 − 3 xy2 + ( 3 x2 y − y3 ) i
∴
Re ( z
3
)=x
3
− 3 xy
2
,
Im ( z 3 ) = 3 x 2 y − y 3 .
⎛ 1 + i ⎞ (1 + i ) 1 − i ⎜ 2 ⎟= 2 = 2 ⎝ ⎠
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
π ⎛ 2 i 2 ⎞ 4 解: 3 + 3i= 6 ⋅ ⎜ + i = 6 ⋅ e ⎟ ⎜ 2 ⎟ 2 ⎠ ⎝
(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3) 13i +解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7) 11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值 (1) a ib +解:1ar 2ar 2222421ar 22421ar 2242 b b i ctg k i ctg k a a bi ctg abi ctg a a ib a b ea b ea b ea b e ππ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭+=+=+⎧+⎪=⎨⎪-+⎩(2)3i解:62263634632323322322i k i i i i k i e i i eee e iπππππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)ii解:()1/2222ii k k i i e eππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i e e ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=(1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=(1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换(修订版-复旦大学)第六章课后的习题答案-(1)

习题六1. 求映射1w z=下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:222211i=+i i x y w u v z x y x y x y ===-+++ 221x x u x y ax a===+, 所以1w z =将22x y ax +=映成直线1u a=. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y ==-++ 故1w z=将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么?(1)Im()0,(1i)z w z >=+;解: (1i)(i )()i(+)w x y x y x y =+⋅+=-+所以Im()Re()w w >.故(1i)w z =+⋅将Im()0,z >映成Im()Re()w w >.(2) Re(z )>0. 0<Im(z )<1, i w z=. 解:设z =x +i y , x >0, 0<y <1.Re(w )>0. Im(w )>0. 若w =u +i v , 则因为0<y <1,则22221101,()22u u v u v <<-+>+ 故i w z=将Re(z )>0, 0<Im(z )<1.映为 Re(w )>0,Im(w )>0, 1212w > (以(12,0)为圆心、12为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.解:因为w '=2z ,所以w '(i)=2i , |w '|=2, 旋转角arg w '=π2. 于是, 经过点i 且平行实轴正向的向量映成w 平面上过点-1,且方向垂直向上的向量.如图所示.→4. 一个解析函数,所构成的映射在什么条件下具有伸缩率和旋转角的不变性?映射w =z 2在z 平面上每一点都具有这个性质吗?答:一个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w =z 2在z =0处导数为零,所以在z =0处不具备这个性质.5. 求将区域0<x <1变为本身的整体线性质变换w z αβ=⋅+的一般形式.6. 试求所有使点1±不动的分式线性变换. 解:设所求分式线性变换为az bw cz d +=+(ad -bc ≠0)由11-→-.得 因为(1)a z c dw cz d ++-=+, 即(1)(1)1a z c z w cz d ++++=+,由11→代入上式,得22a ca d c d +=⇒=+. 因此11(1)(1)dcd cd c w z z cz d z +++=+=+⋅++ 令dq c =,得其中a 为复数.反之也成立,故所求分式线性映射为1111w z a w z ++=⋅--, a 为复数.7. 若分式线性映射,az bw cz d +=+将圆周|z |=1映射成直线则其余数应满足什么条件? 解:若az bw cz d +=+将圆周|z |=1映成直线,则dz c =-映成w =∞. 而dz c =-落在单位圆周|z |=1,所以1dc -=,|c |=|d |.故系数应满足ad -bc ≠0,且|c |=|d |.8. 试确定映射,11z w z -=+作用下,下列集合的像.(1) Re()0z =; (2) |z |=2; (3) Im(z )>0.解:(1) Re(z )=0是虚轴,即z =i y 代入得. 写成参数方程为2211y u y -+=+, 221y v y =+, y -∞<<+∞.消去y 得,像曲线方程为单位圆,即u 2+v 2=1.(2) |z |=2.是一圆围,令i 2e ,02πz θθ=≤≤.代入得i i 2e 12e 1w θθ-=+化为参数方程.消去θ得,像曲线方程为一阿波罗斯圆.即(3) 当Im(z )>0时,即11Im()011w w z w w ++=-⇒<--, 令w =u +i v 得221(1)i 2Im()Im()01(1)i (1)w u v v w u v u v +++-==<--+-+. 即v >0,故Im(z )>0的像为Im(w )>0.9. 求出一个将右半平面Re(z )>0映射成单位圆|w |<1的分式线性变换.解:设映射将右半平面z 0映射成w =0,则z 0关于轴对称点0z 的像为w =∞, 所以所求分式线性变换形式为00z z w k z z -=⋅-其中k 为常数. 又因为00z z w k z z -=⋅-,而虚轴上的点z 对应|w |=1,不妨设z =0,则 故000e (Re()0)i z z w z z z θ-=⋅>-.10. 映射e 1i z w zϕαα-=⋅-⋅将||1z <映射成||1w <,实数ϕ的几何意义显什么? 解:因为 从而2i i 2221||1()e e (1||)1||w ϕϕαααα-'=⋅=⋅-- 所以i 2arg ()arge arg (1||)w ϕααϕ'=-⋅-=故ϕ表示i e 1z w zθαα-=⋅-在单位圆内α处的旋转角arg ()w α'. 11. 求将上半平面Im(z )>0,映射成|w |<1单位圆的分式线性变换w =f (z ),并满足条件(1) f (i)=0, arg (i)f '=0; (2) f (1)=1, f. 解:将上半平面Im(z )>0, 映为单位圆|w |<1的一般分式线性映射为w =k z z αα-⋅-(Im(α)>0). (1) 由f (i)=0得α=i ,又由arg (i)0f '=,即i 22i ()e (i)f z z θ'=⋅+, πi()21(i)e 02f θ-'==,得π2θ=,所以 i i iz w z -=⋅+. (2) 由f (1)=1,得k =11αα--;由f,得kα联立解得w =12. 求将|z |<1映射成|w |<1的分式线性变换w =f (z),并满足条件:(1) f (12)=0, f (-1)=1.(2) f (12)=0, 12πarg ()2f '=, (3) f (a )=a , arg ()f a ϕ'=.解:将单位圆|z |<1映成单位圆|w |<1的分式线性映射,为 i e 1z w zθαα-=-⋅ , |α|<1. (1) 由f (12)=0,知12α=.又由f (-1)=1,知 1i i i 2121e e (1)1e 1π1θθθθ--⋅=-=⇒=-⇒=+. 故12221112z z z w z --=-⋅=--. (2) 由f (12)=0,知12α=,又i 254e (2)z w z θ-'=⋅- i 11224π()e arg ()32f f θθ''=⇒==, 于是 π21i 2221e ()i 12z z z w z --==⋅--. (3) 先求=()z ξϕ,使z =a 0ξ→=,arg ()a ϕθ'=,且|z |<1映成|ξ|<1.则可知 i =()=e 1z a z a zθξϕ-⋅-⋅ 再求w =g (ξ),使ξ=0→w =a , arg (0)0g '=,且|ξ|<1映成|w |<1.先求其反函数=()w ξψ,它使|w|<1映为|ξ|<1,w =a 映为ξ=0,且arg ()arg(1/(0))0w g ψ''==,则 =()=1w a w a wξψ--⋅. 因此,所求w 由等式给出.i =e 11w a z a a w a zθ--⋅-⋅-⋅. 13. 求将顶点在0,1,i 的三角形式的内部映射为顶点依次为0,2,1+i 的三角形的内部的分式线性映射. 解:直接用交比不变性公式即可求得02w w --∶1i 01i 2+-+-=02z z --∶i 0i 1-- 2w w -.1i 21i +-+=1z z -.i 1i-4z (i 1)(1i)w z -=--+. 14. 求出将圆环域2<|z |<5映射为圆环域4<|w |<10且使f (5)=-4的分式线性映射.解:因为z=5,-5,-2,2映为w=-4,4,10,-10,由交比不变性,有2525-+∶2525---+=104104-+--∶104104+- 故w =f (z )应为55z z -+∶2525---+=44w w +-∶104105+- 即 44w w +-=55z z --+20w z⇒=-. 讨论求得映射是否合乎要求,由于w =f (z )将|z |=2映为|w |=10,且将z =5映为w =-4.所以|z |>2映为|w |<10.又w =f (z )将|z |=5映为|w |=4,将z =2映为w =-10,所以将|z |<5映为|w |>4,由此确认,此函数合乎要求.15.映射2w z =将z 平面上的曲线221124x y ⎛⎫-+= ⎪⎝⎭映射到w 平面上的什么曲线? 解:略.16. 映射w =e z 将下列区域映为什么图形.(1) 直线网Re(z )=C 1,Im(z )=C 2;(2) 带形区域Im(),02πz αβαβ<<≤<≤;(3) 半带形区域 Re()0,0Im(),02πz z αα><<≤≤.解:(1) 令z =x +i y , Re(z )=C 1,z =C 1+i y 1i =e e C y w ⇒⋅, Im(z )=C 2,则z =x +i C 22i =e e C x w ⇒⋅故=e z w 将直线Re(z )映成圆周1e C ρ=;直线Im(z )=C 2映为射线2C ϕ=.(2) 令z =x +i y ,y αβ<<,则i i =e e e e ,z x y x y w y αβ+==⋅<<故=e z w 将带形区域Im()z αβ<<映为arg()w αβ<<的张角为βα-的角形区域.(3) 令z =x +i y ,x >0,0<y < α, 02πα≤≤.则故=e zw 将半带形区域Re(z )>0,0<Im(z )<α, 02πα≤≤映为 |w |>1, 0arg w α<<(02πα≤≤).17. 求将单位圆的外部|z |>1保形映射为全平面除去线段-1<Re(w )<1,Im(w )=0的映射. 解:先用映射11w z=将|z |>1映为|w 1|<1,再用分式线性映射. 1211i 1w w w +=-⋅-将|w 1|<1映为上半平面Im(w 2)>0, 然后用幂函数232w w =映为有割痕为正实轴的全平面,最后用分式线性映射3311w w w -=+将区域映为有割痕[-1,1]的全平面. 故221121132222132111111i 1111111()11211i 1111z z z z w w w w w z w w z w w ⎛⎫⎛⎫++--⋅- ⎪ ⎪----⎝⎭⎝⎭=====+++⎛⎫⎛⎫++-⋅++ ⎪ ⎪--⎝⎭⎝⎭. 18. 求出将割去负实轴Re()0z -∞<≤,Im(z )=0的带形区域ππI m ()22z -<<映射为半带形区域πIm()πw -<<,Re(w )>0的映射.解:用1e z w =将区域映为有割痕(0,1)的右半平面Re(w 1)>0;再用1211ln 1w w w +=-将半平面映为有割痕(-∞,-1]的单位圆外域;又用3w =将区域映为去上半单位圆内部的上半平面;再用43ln w w =将区域映为半带形0<Im(w 4)<π,Re(w 4)>0;最后用42i πw w =-映为所求区域,故e 1ln e 1z z w +=-. 19. 求将Im(z )<1去掉单位圆|z |<1保形映射为上半平面Im(w )>0的映射.解:略.20. 映射cos w z =将半带形区域0<Re(z )<π,Im(z )>0保形映射为∞平面上的什么区域.解:因为 1cos ()2iz iz w z e e -==+ 可以分解为 w 1=i z ,12e ww =,32211()2w w w =+ 由于cos w z =在所给区域单叶解析,所以(1) w 1=i z 将半带域旋转π2,映为0<Im(w 1)<π,Re(w 1)<0. (2) 12e w w =将区域映为单位圆的上半圆内部|w 2|<1,Im(w 2)>0.(3) 2211()2w w w =+将区域映为下半平面Im(w )<0.。
复变函数与积分变换习题答案U6

习题答案6.1.1解:半导体存储器(semi-conductor memory)是一种以半导体电路作为存储媒体的存储器。
随机存储器、只读存储器。
6.2.1解:字在存储器中定义为一组位或字节。
字长:一个字中所含有的数据位置。
6.2.2解:地址单元256K=28×210=218,即地址码为18位。
6.2.3解:EPROM和EEPROM具有多次擦除重写功能。
PROM6.2.4解:(1)存储单元=64K×1=64K;地址单元64K=26×210=216,地址线为16根;数据线为1根。
(2)存储单元=256K×4=256×1024×4=1M;地址单元256K=28×210=218,地址线为18根;数据线为4根。
(3)存储单元=1M×1=1M;地址单元1M =220,地址线为20根;数据线为1根。
(4)存储单元=128K×8=1M;地址单元128K =217,地址线为17根;数据线为8根。
6.2.5解:存储系统的最高地址=字数+起始地址-1(1)最高地址=2K-1=7FFH (2)16K-1=3FFFH (3)256K-1=3FFFFH6.2.6解:(1)两个3位二进制数相乘,有6位输入,故地址线为6根;2个3位二进制数相乘的最大数是111×111=110001,故数据线为6根;ROM容量=26×6位。
(2)8位二进制数的最大值为11111111,转换为十进制数为255,用BCD码表示为1001010101,即输入8位,输出10位,ROM容量=28×10位。
6.3.1解:DRAM是靠MOS电路中的栅极电容来存储信息的。
由于电容上的电荷会逐渐泄漏,其存储的数据将会丢失。
为避免存储的信息消失,必须定时给电容补充漏掉的电荷,即对DRAM中存储的数据进行周期性的刷新。
SRAM是利用触发器存储数据,没有动态RAM固有的电容放电造成的刷新问题,只要不断电,数据就可以长时间的保留。
复变函数习题解答(第6章)

p269第六章习题(一) [ 7, 8, 9, 10, 11, 12, 13, 14 ]7. 从⎰C e i z /√z dz 出发,其中C 是如图所示之周线(√z 沿正实轴取正值),证明:⎰(0, +∞) cos x /√x dx = ⎰(0, +∞) sin x /√x dx = √(π/2).【解】| ⎰C (R ) e i z /√z dz | ≤ ⎰C (R ) | e i z |/R 1/2 ds= ⎰[0, π/2] | e i ρ (cos θ + i sin θ )|/R 1/2 · R d θ = ⎰[0, π/2] | e - R sin θ | R 1/2 d θ≤ R 1/2 ⎰[0, π/2] e - R sin θ d θ.由sin θ ≥ 2θ/π (θ∈[0, π/2] ),故R 1/2⎰[0, π/2] e - R sin θ d θ≤ R 1/2 ⎰[0, π/2] e - (2R / π)θ d θ = (π/(2R 1/2))(1 – e - R ) ≤ π/(2R 1/2).所以,| ⎰C (R ) e i z /√z dz | → 0 (as R →+∞).而由| ⎰C (r ) e i z /√z dz | ≤ (π/(2r 1/2))(1 – e - r )知| ⎰C (r ) e i z /√z dz | → 0 (as r → 0+ ).当r → 0+,R →+∞时,⎰[r , R ] e i z /√z dz = ⎰[r , R ] e i x /√x dx = ⎰[r , R ] (cos x + i sin x )/√x dx→ ⎰(0, +∞) cos x /√x dx + i ⎰(0, +∞) sin x /√x dx .⎰[r i , R i ] e i z /√z dz = ⎰[r , R ] e i (i y )/√(i y ) i dy = ⎰[r , R ] e - y e i π/4/√y dy .= (1 + i )/√2 · ⎰[r , R ] e - y /√y dy = 2(1 + i )/√2 · ⎰[√r , √R ] e - u ^2 du→ (1 + i )√2 · ⎰(0, +∞) e - u ^2 du = (1 + i )√2 · √π/2 = (1 + i )√(π/2).由Cauchy 积分定理,⎰C e i z /√z dz = 0,故其极限也为0,所以,⎰(0, +∞) cos x /√x dx + i ⎰(0, +∞) sin x /√x dx = (1 + i )√(π/2),即⎰(0, +∞) cos x /√x dx = ⎰(0, +∞) sin x /√x dx = √(π/2).8. 从⎰C √z ln z /(1 + z )2 dz 出发,其中C 是如图所示之周线,证明:⎰(0, +∞) √x ln x /(1 + x )2 dx = π,⎰(0, +∞) √x /(1 + x )2 dx = π/2.【解】在割去原点及正实轴的z 平面上,√z ,ln z 都能分出单值解析分支,√z 取在正实轴的上岸取正值的那个分支,ln z 取在正实轴的上岸取实数值的那个分支.记f (z ) = √z ln z /(1 + z )2 dz .f (z )的有限奇点只有- 1,且- 1是f (z )的2阶极点.Res[√z ln z /(1 + z )2; - 1] = lim z → - 1 ((1 + z )2 · f (z ))’= lim z → - 1 (√z ln z )’ = lim z → - 1 (((1/2) ln z + 1 )√z /z )= ((1/2) ln (- 1) + 1 )√(- 1)/(- 1)= - ((1/2) πi + 1 )i = (1/2) π - i .当r < 1 < R 时,⎰C √z ln z /(1 + z )2 dz= ⎰C (r ) + ⎰C (R ) + ⎰L (1) + ⎰L (2) = 2πi Res[√z ln z /(1 + z )2; -1] = 2π + π2 i .⎰L (1) √z ln z /(1 + z )2 dz = ⎰(r , R ) √x ln x /(1 + x )2 dx→ ⎰(0, +∞) √x ln x /(1 + x )2 dx (当r → 0+,R →+∞时)⎰L (2) √z ln z /(1 + z )2 dz = ⎰(R , r ) (-√x )(ln x + 2πi )/(1 + x )2 dx= ⎰(r , R ) (√x ln x )/(1 + x )2 dx + 2πi ⎰(r , R )√x /(1 + x )2 dx→ ⎰(0, +∞) √x ln x /(1 + x )2 dx + 2πi ⎰(0, +∞) √x /(1 + x )2 dx (当r → 0+,R →+∞时). 因为z · √z ln z /(1 + z )2 → 0 (当| z |→ +∞时),故⎰C(R) √z ln z/(1 + z)2dz→ 0 (当R → +∞时).因为z ·√z ln z/(1 + z)2 → 0 (当| z |→ 0时),故⎰C(r) √z ln z/(1 + z)2dz→ 0 (当r → 0时).所以,⎰L(1)+ ⎰L(2)→π/2 -i (当r→ 0+,R→+∞时).故2⎰(0, +∞)√x ln x/(1 + x)2dx + 2πi⎰(0, +∞) √x /(1 + x)2dx = 2π + π2i.所以,⎰(0, +∞)√x ln x/(1 + x)2dx = π,⎰(0, +∞)√x /(1 + x)2dx = π/2.9. 证明:I = ⎰(0, 1) 1/((1 + x2)(1 -x2)1/2) dx = π/23/2.在割线的上岸(1 -z2)1/2取正值的那一支.因i和-i都是f(z)的一阶极点,故Res[ f(z); i] = 1/(2z (1 -z2)1/2)|z = i= -i/23/2.Res[ f(z); i] = 1/(2z (1 -z2)1/2)|z = –i= -i/23/2.若x在上岸,则f(x) = 1/((1 + x2)(1 -x2)1/2);若x在下岸,则f(x) = e-i π/((1 + x2)(1 -x2)1/2);⎰L(1) f(z) dz = ⎰[– 1 + r, 1 –r] f(x) dx.⎰L(2) f(z) dz = ⎰[– 1 + r, 1 –r] f(x) dx.因为lim z→–1 (1 + z) f(z) = 0,lim z→ 1 (1 -z) f(z) = 0,故⎰S(r) f(z) dz→ 0,⎰T(r) f(z) dz→ 0 (as r → 0).因为lim z→∞z f(z) = 0,故⎰C(R) f(z) dz→ 0 (as R → +∞).故⎰L(1) f(z) dz + ⎰L(2) f(z) dz→ (2πi)(Res[ f(z); i] + Res[ f(z); -i]) (as r→ 0+,R→+∞).所以2⎰(– 1, 1) f(x) dx = (2πi)(Res[ f(z); i] + Res[ f(z); -i]) = (2πi)(-i/23/2) = 2π/23/2.故⎰(– 1, 1) f(x) dx = π/23/2.10. 证明方程e z-λ= z ( λ> 1 )在单位圆| z | < 1内恰有一个根,且为实根.【解】在单位圆周C : | z | = 1上,设z = x + i y,则z-λ= (x -λ) + i y,故| e z-λ| = | e (x -λ) + i y | = | e x -λ| < 1 = | z |,由Rouché定理,N(z - e z-λ, C) = N(z, C) = 1.故z - e z-λ = 0在单位圆内恰有一个根.设f(x) = x - e x-λ,x∈ .因f(- 1) = (- 1)- e-1 -λ < 0,f(1) = 1- e 1 -λ > 0,故x - e x-λ = 0在区间(- 1, 1)内有根.所以方程e z-λ= z ( λ> 1 )在单位圆| z | < 1内的唯一根为实根.[原题是错题.例如c = 1/2,λ= 2,则∀z∈ ,当| z | < 1时,| c z-λ| = | exp((z-λ) Ln c)| = | exp(( z– 2)(ln| 1/2| + 2kπi)) | = e (2 –z)ln2 > 1 > | z |.]11. 证明方程e z- eλz n= 0 ( λ> 1 )在单位圆| z | < 1内有n个根.【解】在单位圆周C : | z | = 1上,| e z| = e Re(z)≤ e | z |≤ e < eλ= | eλz n |,由Rouché定理,N(eλz n- e z, C) = N(eλz n, C) = N(z n, C) = n.12. 若f(z)在周线C内部除有一个一阶极点外解析,且连续到C,在C上| f(z) | = 1,证明f(z) = a ( | a | > 1 )在C内部恰好有一个根.【解】考虑圆K = { z∈ | | z–a | < | a |}.因为| (a-f(z)) -a | = | f(z) | = 1 < | a |,故a-f(z)∈K.因ln(a-f(z))的每个分支,以及他们的导数(ln(a-f(z))’都在K内解析;故i ∆C arg (a-f(z) ) = ⎰C(ln(a-f(z))’dz = 0.由辐角原理,N(a -f(z), C) -P(a -f(z), C) = (2π)–1∆C arg (a-f(z) ) = 0.而a -f(z)在周线C内部除有一个一阶极点外解析,故P(a -f(z), C) = 1.因此N(a -f(z), C) = 1,故f(z) = a ( | a | > 1 )在C内部恰好有一个根.13. 若f(z)在周线C的内部亚纯且连续到C,试证:(1) 若z∈C时,| f(z) | < 1,则方程f(z) = 1在C的内部的根的个数,等于f(z)在C 的内部的极点个数.(2) 若z∈C时,| f(z) | > 1,则方程f(z) = 1在C的内部的根的个数,等于f(z)在C 的内部的零点个数.【解】(1) 类似第12题,设K = { z∈ | | z– 1 | < 1}.因| (1 -f(z)) – 1 | = | f(z) | < 1,故(1 -f(z))∈K.因i ∆C arg (a-f(z) ) = ⎰C(ln(1 -f(z))’dz = 0.故由辐角原理,N(1-f(z), C) -P(1-f(z), C) = (2π)–1∆C arg (a-f(z) ) = 0.而P(1-f(z), C) = P( f(z), C),所以,N(1-f(z), C) = P( f(z), C).(2) 因z∈C时,| f(z) | > 1,故在C上,恒有f(z) ≠ 0,即f(z)在C上无零点.设g(z) = 1/f(z) ( 若z是f(z)极点则规定g(z) = 0,若z是f(z)的零点不定义g(z)).那么,g(z)在C的内部亚纯且连续到C,并且当z∈C时,| g(z) | < 1.由(1)的结论,在C的内部,方程g(z) = 1的根的个数等于g(z)的极点的个数.再注意到方程g(z) = 1和方程f(z) = 1在C的内部的根的个数相同,并且,因为在C的内部,z是f(z)的零点⇔z是g(z)的极点,故g(z)的极点个数等于f(z)的零点个数;所以,方程f(z) = 1在C的内部的根的个数,等于f(z)在C的内部的零点个数.14. 设ϕ(z)在C : | z | = 1内部解析,且连续到C.在C上,| ϕ(z) | < 1.试证:在C的内部只有一个点z0,使ϕ(z0) = z0.【解】设f(z) = z,则f(z)在C内部解析且连续到C,在C上,| f(z) | = 1 > | ϕ(z) |.由Rouché定理,N( f(z) -ϕ(z), C) = N( f(z), C) = 1.即方程ϕ(z) = z在C的内部只有一个根.p273第六章习题(二) [ 2, 3, 4, 5 ]2. 计算积分(1/(2πi))⎰C 1/(ζ(ζ- z)) dζ,其中C为单位圆周| ζ| = 1,z∉C.【解】设f(ζ) = 1/(ζ(ζ- z)).当| z | > 1时,f(ζ)在C内部的唯一奇点0是1阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] = - 1/z.当0 < | z | < 1时,f(ζ)在C内部的两个奇点0, z都是1阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] + Res[f(ζ), z] = (- 1/z) + (1/z) = 0.当| z | = 0时,f(ζ)在C内部的唯一奇点0是2阶极点,故(1/(2πi))⎰C f(ζ) dζ = Res[f(ζ), 0] = 0.3. 设f(z)在| z | < 1内解析,在| z | ≤ 1上连续,试证:(1 - | z |2) f(z) = (1/(2πi))⎰C : | ζ| = 1f(ζ) ((1-z*ζ)/(ζ- z)) dζ,其中z属于C的内部.【解】设g(ζ) = f(ζ) ((1-z*ζ)/(ζ- z)).若f(z) = 0,则z是g(ζ)的解析点,因此g(ζ)在| ζ | < 1内解析,在| ζ | ≤ 1上连续,故⎰C : | ζ| = 1g(ζ) dζ = 0,因此等式成立.若f(z) ≠ 0,则z是g(ζ)的一阶极点,故(1/(2πi))⎰C : | ζ| = 1f(ζ) ((1-z*ζ)/(ζ- z)) dζ = Res[f(ζ) ((1-z*ζ)/(ζ- z)), z]= f(z) (1-z*z ) = (1 - | z |2) f(z).4. 试证:(z n/n! )2 = (1/(2πi))⎰C : | ζ| = 1 (z n e zζ)/(n! ζ n + 1 ) dζ,这里C是围绕原点的一条周线.【解】只需要证明,当z≠ 0时,z n/n! = (1/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ.由高阶导数公式,(n!/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ = (e zζ)(n)|ζ= 0= (z n e zζ)|ζ= 0= z n.或(1/(2πi))⎰C : | ζ| = 1 e zζ/ζ n + 1dζ = Res[e zζ/ζ n + 1, 0] = ((e zζ)(n)|ζ= 0)/n!= z n/n!.5. 试证(含∞的区域的留数定理):设D是 ∞内含有∞的区域,其边界C是由有限条互不包含且互不相交的周线C1, C2, ..., C m组成,又设函数f(z)在D内除去有限个孤立奇点z1, z2, ..., z n及∞外解析,且连续到边界C,则⎰-C f(z) dz = 2πi ( ∑1≤k≤n Res[f(z), z k] + Res[f(z), ∞] ).【解】∀j : 1 ≤j ≤m,因∞不在C j上,故C j ⊆ 中,因此C j是有界集.故可取充分大的R > 0,使得周线C1, C2, ..., C m及在 中的孤立奇点z1, z2, ..., z n 都在圆K = { z∈ | | z | < R }内.由留数定理,⎰∂K f(z) dz + ⎰-C f(z) dz = 2πi∑1≤k≤n Res[f(z), z k];而Res[f(z), ∞] = - (1/(2πi))⎰∂K f(z) dz,所以,⎰-C f(z) dz = 2πi ( ∑1≤k≤n Res[f(z), z k] + Res[f(z), ∞] ).∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞•︒ℵℜ℘∇∏∑⎰⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,★z∈ ∞α1, α2, ...αn lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】z⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。
复变函数与积分变换(练习题) (答案)

复变函数与积分变换第一章 练习题1. 计算(1)(2)i i i --;解:(1)103)31)(31()31(3123)2)(1(2i i i i i ii i i i i i i +-=+-+=-=+-=--;(2)10310)2)(1()2)(2(1)1)(1()2)(1()2)(1(i i i i i i i i i i i i i +-=---=----------=--。
2. 解方程组12122(1)43z z i i z iz i -=⎧⎨++=-⎩;解:消元法,)2()1(+⨯i 得:i z i 33)31(1-=+,解得:563)31)(31()31)(33(31331i i i i i ii z --=-+--=+-=,代入)1(得:517656322ii i z --=---⨯=。
3.求1i --、13i -+的模与辐角的主值;解:]arg arctan arctan,arctan arg ππππ,(,,三,二一,四-∈⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=z x y x y xy z , ⎥⎦⎤⎢⎣⎡-+-=--)43s i n ()43c o s (21ππi i ;[])3a r c t a n s i n ()3a r c t a n c o s (1031-+-=+-ππi i 。
4.用复数的三角表示计算312⎛⎫- ⎪ ⎪⎝⎭、; 解:1)sin()cos()3cos()3cos(23133-=-+-=⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫⎝⎛-ππππi i i ; 3,2,1,0,4243s i n 4243c o s 2)43s i n43(c o s 228341=⎪⎪⎪⎪⎭⎫⎝⎛+++=⎥⎦⎤⎢⎣⎡+k k i k i ππππππ,⎪⎭⎫ ⎝⎛+=163sin 163cos 2830ππi z ,⎪⎭⎫ ⎝⎛+=1611sin 1611cos 2831ππi z ,⎪⎭⎫ ⎝⎛+=1619sin 1619cos 2832ππi z ,⎪⎭⎫ ⎝⎛+=1627sin 1627cos 2833ππi z 。
复变函数与积分变换 修订版 复旦大学 习题答案

2π 9
i sin
2π 9
3
i 2 π.3
1e 9
2πi
e3
8.计算:(1)i 的三次根;(2)-1 的三次根;(3) 3 3i
的平方根. ⑴i 的三次根. 解:
3
i
cos
π 2
i sin
π 2
1
3
cos
2kπ 3
π 2
i sin
2kπ 3
π 2
k 0,1, 2
∴
z1
cos
π 6
∴zz. 命题成立. 5、设 z,w∈,证明: z w ≤ z w
证明∵ z w 2 z w z w z w z w
zz zw wz ww
z 2 zw z w w 2 z 2 w 2 2 Re z w
≤ z2 w2 2 z w z2 w2 2 z w
i 1i
2 22
2.求下列各复数的实部和虚部(z=x+iy)
z a (a za
);
z3;
1
i
233 ; Nhomakorabea1
i
2
3
3
;
i
n
.
① :∵设 z=x+iy 则
z z
a a
x x
iy iy
a a
x x
a a
iy iy
x
a iy x x a2
a
y2
iy
∴
Re
z z
a a
2xy
x a2
y2
.
②解: 设 z=x+iy ∵
z3 x iy3 x iy2 x iy x2 y2 2xyi x iy x x2 y2 2xy2 y x2 y2 2x2 y i x3 3xy2 3x2 y y3 i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题六1. 求映射1w z=下,下列曲线的像.(1) 22x y ax += (0a ≠,为实数) 解:222211i=+i i x y w u vz x y x y x y===-+++221x x u x yaxa===+,所以1w z=将22x y ax +=映成直线1u a=.(2) .y kx =(k 为实数) 解: 22221ix y w zx yx y==-++222222xy kx u v x yx yx y==-=-+++v ku=-故1w z=将y kx =映成直线v ku =-.2. 下列区域在指定的映射下映成什么? (1)Im()0,(1i)z w z>=+;解: (1i)(i )()i(+)w x y x y x y =+⋅+=-+,.20.u x y v x y u v y =-=+-=-<所以Im()Re()w w >.故(1i)w z =+⋅将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 0<Im(z )<1, i w z=.解:设z =x +i y , x >0, 0<y <1.222222i i i(i )ix y y x w z x iyx yx yx y-====+++++Re(w )>0. Im(w )>0. 若w =u +i v , 则2222,u v y x u vu v==++因为0<y <1,则22221101,()22u u v u v<<-+>+故i w z=将Re(z )>0, 0<Im(z )<1.映为Re(w )>0,Im(w )>0, 1212w >(以(12,0)为圆心、12为半径的圆)3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.解:因为w '=2z ,所以w '(i)=2i , |w '|=2, 旋转角arg w '=π2.于是, 经过点i 且平行实轴正向的向量映成w 平面上过点-1,且方向垂直向上的向量.如图所示.→4. 一个解析函数,所构成的映射在什么条件下具有伸缩率和旋转角的不变性?映射w =z 2在z 平面上每一点都具有这个性质吗?答:一个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w =z 2在z =0处导数为零,所以在z =0处不具备这个性质.5. 求将区域0<x <1变为本身的整体线性质变换w z αβ=⋅+的一般形式.6. 试求所有使点1±不动的分式线性变换. 解:设所求分式线性变换为az b w cz d+=+(ad -bc ≠0)由11-→-.得1a b b a c dc d-+-=⇒=+--+因为(1)a z c dw cz d ++-=+, 即(1)(1)1a z c z w cz d++++=+,由11→代入上式,得22a c a dc d+=⇒=+.因此11(1)(1)d c d cd c w z z cz dz +++=+=+⋅++令d qc=,得1(1)(1)/()(1)(1)11(1)(1)/()2(1)(1)1w z q z q z q z a w z q z q z q z +++++++===⋅-+++----其中a 为复数.反之也成立,故所求分式线性映射为1111w z a w z ++=⋅--, a 为复数.7. 若分式线性映射,az b w cz d+=+将圆周|z |=1映射成直线则其余数应满足什么条件?解:若az b w cz d+=+将圆周|z |=1映成直线,则d z c=-映成w =∞.而d z c=-落在单位圆周|z |=1,所以1d c-=,|c |=|d |.故系数应满足ad -bc ≠0,且|c |=|d |. 8. 试确定映射,11z w z -=+作用下,下列集合的像.(1) Re()0z =; (2) |z |=2; (3) Im(z )>0. 解:(1) Re(z )=0是虚轴,即z =i y 代入得.22222i 1(1i )12i i 1111y y y y w y y yy----+===+⋅++++写成参数方程为2211y u y-+=+, 221y v y=+, y -∞<<+∞.消去y 得,像曲线方程为单位圆,即u 2+v 2=1.(2) |z |=2.是一圆围,令i 2e ,02πz θθ=≤≤.代入得i i 2e 12e1w θθ-=+化为参数方程.354cos u θ=+ 4sin 54cos u θθ=+ 02πθ≤≤消去θ得,像曲线方程为一阿波罗斯圆.即22254()()33u v -+=(3) 当Im(z )>0时,即11Im()011w w z w w ++=-⇒<--,令w =u +i v 得221(1)i 2Im ()Im ()01(1)i (1)w u v v w u vu v+++-==<--+-+.即v >0,故Im(z )>0的像为Im(w )>0.9. 求出一个将右半平面Re(z )>0映射成单位圆|w |<1的分式线性变换. 解:设映射将右半平面z 0映射成w =0,则z 0关于轴对称点0z 的像为w =∞, 所以所求分式线性变换形式为00z z w k z z -=⋅-其中k 为常数.又因为00z z w k z z -=⋅-,而虚轴上的点z 对应|w |=1,不妨设z =0,则i 00||1e()z z w k k k z z θθ-=⋅==⇒=∈-R故000e (R e()0)i z z w z z z θ-=⋅>-.10. 映射e 1i z w zϕαα-=⋅-⋅将||1z <映射成||1w <,实数ϕ的几何意义显什么?解:因为2i i 22(1)()()1||()ee(1)(1)z z w z z z ϕϕαααααα-----'=⋅=⋅-⋅-从而2i i 2221||1()e e(1||)1||w ϕϕαααα-'=⋅=⋅--所以i 2arg ()arg e arg (1||)w ϕααϕ'=-⋅-= 故ϕ表示i e 1z w zθαα-=⋅-在单位圆内α处的旋转角arg ()w α'.11. 求将上半平面Im(z )>0,映射成|w |<1单位圆的分式线性变换w =f (z ),并满足条件 (1) f (i)=0, arg (i)f '=0; (2) f (1)=1, f.解:将上半平面Im(z )>0, 映为单位圆|w |<1的一般分式线性映射为w =k z z αα-⋅-(Im(α)>0).(1) 由f (i)=0得α=i ,又由arg (i)0f '=,即i 22i ()e (i)f z z θ'=⋅+,πi ()21(i)e02f θ-'==,得π2θ=,所以i i iz w z -=⋅+.(2) 由f (1)=1,得k =11αα--;由f,得kw =12. 求将|z |<1映射成|w |<1的分式线性变换w =f (z),并满足条件: (1) f (12)=0, f (-1)=1. (2) f (12)=0, 12πarg ()2f '=,(3) f (a )=a , arg ()f a ϕ'=.解:将单位圆|z |<1映成单位圆|w |<1的分式线性映射,为 i e1z w zθαα-=-⋅ , |α|<1.(1) 由f (12)=0,知12α=.又由f (-1)=1,知1i i i 2121ee (1)1e1π1θθθθ--⋅=-=⇒=-⇒=+.故12221112z z z w z --=-⋅=--.(2) 由f (12)=0,知12α=,又i 254e (2)z w z θ-'=⋅-i 11224π()e arg ()32f f θθ''=⇒==,于是 π21i 2221e ()i 12z z z w z--==⋅--.(3) 先求=()z ξϕ,使z =a 0ξ→=,arg ()a ϕθ'=,且|z |<1映成|ξ|<1.则可知 i =()=e 1z a z a zθξϕ-⋅-⋅再求w =g (ξ),使ξ=0→w =a , arg (0)0g '=,且|ξ|<1映成|w |<1. 先求其反函数=()w ξψ,它使|w|<1映为|ξ|<1,w =a 映为ξ=0,且arg ()arg(1/(0))0w g ψ''==,则=()=1w a w a wξψ--⋅.因此,所求w 由等式给出.i =e 11w a z a a wa zθ--⋅-⋅-⋅.13. 求将顶点在0,1,i 的三角形式的内部映射为顶点依次为0,2,1+i 的三角形的内部的分式线性映射.解:直接用交比不变性公式即可求得02w w --∶1i 01i 2+-+-=02z z --∶i 0i 1--2w w -.1i 21i+-+=1zz -.i 1i-4z (i 1)(1i)w z -=--+.14. 求出将圆环域2<|z |<5映射为圆环域4<|w |<10且使f (5)=-4的分式线性映射. 解:因为z=5,-5,-2,2映为w=-4,4,10,-10,由交比不变性,有2525-+∶2525---+=104104-+--∶104104+-故w =f (z )应为55z z -+∶2525---+=44w w +-∶104105+-即44w w +-=55z z --+20w z⇒=-.讨论求得映射是否合乎要求,由于w =f (z )将|z |=2映为|w |=10,且将z =5映为w =-4.所以|z |>2映为|w |<10.又w =f (z )将|z |=5映为|w |=4,将z =2映为w =-10,所以将|z |<5映为|w |>4,由此确认,此函数合乎要求.15.映射2w z =将z 平面上的曲线221124x y ⎛⎫-+= ⎪⎝⎭映射到w 平面上的什么曲线?解:略.16. 映射w =e z 将下列区域映为什么图形. (1) 直线网Re(z )=C 1,Im(z )=C 2;(2) 带形区域Im(),02πz αβαβ<<≤<≤; (3) 半带形区域Re()0,0Im(),02πz z αα><<≤≤.解:(1) 令z =x +i y , Re(z )=C 1,z =C 1+i y 1i =e e C y w ⇒⋅, Im(z )=C 2,则z =x +i C 22i =e e C x w ⇒⋅故=e z w 将直线Re(z )映成圆周1e Cρ=;直线Im(z )=C 2映为射线2C ϕ=.(2) 令z =x +i y ,y αβ<<,则i i =e e e e ,z x y x y w y αβ+==⋅<<故=e z w 将带形区域Im()z αβ<<映为arg()w αβ<<的张角为βα-的角形区域. (3) 令z =x +i y ,x >0,0<y < α, 02πα≤≤.则 i =e e e(0,0)e 1,0arg zxyxw x y w αα=⋅><<⇒><<故=e zw 将半带形区域Re(z )>0,0<Im(z )<α, 02πα≤≤映为|w |>1, 0arg w α<<(02πα≤≤).17. 求将单位圆的外部|z |>1保形映射为全平面除去线段-1<Re(w )<1,Im(w )=0的映射. 解:先用映射11w z=将|z |>1映为|w 1|<1,再用分式线性映射.1211i 1w w w +=-⋅-将|w 1|<1映为上半平面Im(w 2)>0, 然后用幂函数232w w =映为有割痕为正实轴的全平面,最后用分式线性映射3311w w w -=+将区域映为有割痕[-1,1]的全平面.故221121132222132111111i 1111111()11211i 1111zz z z w w w w w z w w zw w ⎛⎫⎛⎫++--⋅- ⎪ ⎪----⎝⎭⎝⎭=====+++⎛⎫⎛⎫++-⋅++ ⎪ ⎪--⎝⎭⎝⎭. 18. 求出将割去负实轴Re()0z -∞<≤,Im(z )=0的带形区域ππIm ()22z -<<映射为半带形区域πIm()πw -<<,Re(w )>0的映射.解:用1e z w =将区域映为有割痕(0,1)的右半平面Re(w 1)>0;再用1211ln1w w w +=-将半平面映为有割痕(-∞,-1]的单位圆外域;又用3w =将区域映为去上半单位圆内部的上半平面;再用43ln w w =将区域映为半带形0<Im(w 4)<π,Re(w 4)>0;最后用42i πw w =-映为所求区域,故e 1lne 1zz w +=-.19. 求将Im(z )<1去掉单位圆|z |<1保形映射为上半平面Im(w )>0的映射.解:略.20. 映射cos w z =将半带形区域0<Re(z )<π,Im(z )>0保形映射为∞平面上的什么区域. 解:因为 1cos ()2izizw z e e-==+可以分解为w 1=i z ,12ew w =,32211()2w w w =+由于cos w z =在所给区域单叶解析,所以 (1) w 1=i z 将半带域旋转π2,映为0<Im(w 1)<π,Re(w 1)<0.(2) 12e w w =将区域映为单位圆的上半圆内部|w 2|<1,Im(w 2)>0. (3) 2211()2w w w =+将区域映为下半平面Im(w )<0.。