最新人教版七年级下册期末复习数学试卷3

合集下载

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案

2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。

2. 已知一个数的平方等于36,则这个数是______或______。

3. 下列各数中,是无理数的是______、______、______。

4. 一个等边三角形的周长为15,则它的边长是______,面积是______。

5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。

三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。

2. (10分)解方程:2x - 5 = 3x + 1。

3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。

最新人教版七年级数学下册期末测试题及答案详解(共五套)

最新人教版七年级数学下册期末测试题及答案详解(共五套)

最新人教版七年级数学下册期末测试题及答案详解(共五套)人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的是()A。

6m>-6.B。

-5m<-5.C。

m+1>0.D。

1-m<22.下列各式中,正确的是()A。

16=±4.B。

±16=4.C。

3-27=-3.D。

(-4)²=163.已知a>b>0,那么下列不等式组中无解的是()A。

{x<a。

x>-a。

x>a。

x>-a}。

B。

{x>-b。

x<-b。

x <-b。

x<b}C。

{x<a。

x>-a。

x>a。

x<-a}。

D。

{x<-b。

x>-b。

x <-b。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°。

B。

先右转50°,后左转40°C。

先右转50°,后左转130°。

D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1.x-y=3.3x+y=5}。

B。

{x-y=1.x-y=-1.x-y=3.3x+y=-5}C。

{x-y=1.x-y=-1.3x-y=5.3x+y=5}。

D。

{x-y=1.x-y=-1.3x-y=5.3x+y=-5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°。

B。

110°。

C。

115°。

D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4.B。

3.C。

2.D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

2022-2023学年人教新版七年级下册数学期末复习试卷3(含答案)

2022-2023学年人教新版七年级下册数学期末复习试卷3(含答案)

2022-2023学年人教新版七年级下册数学期末复习试卷3一.选择题(共10小题,满分40分,每小题4分)1.在实数5、、﹣、、、2.010010001……中,无理数有( )个.A.2B.3C.4D.52.在平面直角坐标系中,下列各点位于第三象限的是( )A.(﹣2,1)B.(﹣1,﹣2)C.(1,2)D.(1,﹣2)3.为了了解一批电动车的寿命,从中抽取10辆电动车进行试验,这个问题的样本是( )A.这批电动车的寿命B.抽取的10辆电动车C.抽取的10辆电动车的寿命D.104.不等式﹣3x≤6的解集是( )A.B.C.D.5.如图,已知AB∥CD,直线EF交AB,CD于点E,F,P是直线AB上一动点,过P作直线EF的垂线交CD于点Q.若∠APQ=∠EQP,∠APQ:∠EFQ=5:4,则∠AEQ=( )A.80°B.90°C.100°D.110°6.下列六个命题①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③平行于同一条直线的两条直线互相平行;④同一平面内,垂直于同一条直线的两条直线互相平行;⑤直线外一点到这条直线的垂线段叫做点到直线的距离;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中假命题的个数是( )A.2个B.3个C.4个D.5个7.如图,将△ABC平移得到△DEF,下列结论中不一定成立的是( )A.BE∥CF B.AD=CFC.BE=EF D.S△ABC=S△DEF8.“学党史,知党恩,跟党走”.某校开展阅读中国共产党党史活动,已知小轩平均每天阅读的页数比小宇平均每天阅读的页数的2倍少10页,且小宇2天里阅读的总页数比小轩3天里阅读的总页数少6页,问小宇、小轩平均每天分别阅读多少页?设小宇、小轩平均每天分别阅读x页、y页,则下列方程组中正确的是( )A.B.C.D.9.已知实数x,y满足方程组则x2+2y2的值为( )A.﹣1B.1C.3D.﹣310.线段CD是由线段AB平移得到的,点A(﹣3,4)的对应点为C(1,7),则点B(﹣2,﹣1)的对应点D的坐标为( )A.(﹣6,﹣4)B.(﹣6,2)C.(2,﹣4)D.(2,2)二.填空题(共6小题,满分24分,每小题4分)11.将方程﹣5x+y=9写成用含x的代数式表示y,则y= .12.如图,已知AB∥CD,∠1=∠2,若∠A=100°,则∠3= .13.下列命题中:①带根号的数都是无理数;②直线外一点与直线上各点的连线段中,垂线段最短;③过一点有且只有一条直线与已知直线平行;④已知三条直线a,b,c,若a∥b,b∥c,则a∥c.真命题有 (填序号).14.经过点A(1,﹣5)且垂直于y轴的直线可以表示为直线 .15.以方程组的解为坐标的点(x,y)在平面直角坐标系中的第 象限.16.已知关于x的不等式组有且仅有3个整数解,则a的取值范围是 .三.解答题(共9小题,满分86分)17.(8分)(1)计算:.(2)解方程组:.18.(8分)解不等式组:并写出该不等式组所有的整数解.19.(8分)如图所示,已知直线AB∥CD,BF、DF分别平分∠ABE和∠CDE,若BE⊥ED,求∠F的度数.20.(8分)某校组织了一次“疫情防控知识”专题网上学习,并进行了一次全校2500名学生都参加的网上测试.阅卷后,教务处随机抽取100份答卷进行分析统计,绘制了频数分布表和频数分布直方图(不完整),请结合图表信息回答下列问题:(Ⅰ)a= ,b= ,n= ,频率分布表的组距是 ;(Ⅱ)补全频数分布直方图;(Ⅲ)全校学生参加网上测试,成绩x在81≤x<101范围内的学生约有多少人?21.(7分)(1)如图1,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为 cm;(2)若一个圆的面积与一个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或”<”或“>“号)(3)如图2,若正方形的面积为400cm2,李明同学想沿这块正方形边的方向裁出一块面积为300cm2的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?22.(10分)已知点A(﹣2,2),B(3a+1,2+a),且AB∥x轴,解答下列各题:(1)点B的坐标为 ;(2)在平面直角坐标系中画出三角形ABO,然后将这个三角形向右平移3个单位长度,再向上平移2个单位长度,得三角形DEF,点D,E,F,分别是平移后点A,B,O的对应点,画出平移后的三角形DEF;(3)三角形DEF的面积为 .23.(11分)2020年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元;(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.24.(12分)请补全证明过程及推理依据.如图,已知∠1+∠2=180°,∠3=∠A.求证:∠B=∠C.证明:∵∠1+∠2=180°,∴AD∥EF( ),∴∠3=∠D( ).又∵∠3=∠A,∴ ,∴AB∥CD( ),∴∠B=∠C.25.(14分)如图,△ABC中,AB=AC,∠BAC=90°,点D在AC上,点E在BA的延长线上,且CD=AE,过点A作AF⊥CE,垂足为F,过点D作BC的平行线,交AB于点G,交FA的延长线于点H.(1)求证∠ACE=∠BAH;(2)在图中找出与CE相等的线段,并证明;(3)若GH=kDH,求的值(用含k的代数式表示).参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:=5,﹣、、2.010010001……,是无理数.故选:B.2.解:A、(﹣2,1)在第二象限,故本选项不符合题意;B、(﹣1,﹣2)在第三象限,故本选项符合题意;C、(1,2)在第一象限,故本选项不符合题意;D、(1,﹣2)在第四象限,故本选项不符合题意.故选:B.3.解:∵了解一批电动车的寿命,从中抽取10辆电动车进行试验,∴这个问题的样本是所抽取的10辆电动车的寿命.故选:C.4.解:﹣3x≤6,解得:x≥﹣2,故选:D.5.解:如图,PQ与EF相交于点O,设∠APQ为5x°,则∠EFQ为4x°,∵AB∥CD,∴∠APQ=∠PQF=5x°,∠AEQ=∠EQF,∵PQ⊥EF,∴∠QOF=90°,∴∠PQF+∠EFQ=90°,∴5x+4x=90,∴x=10,∴∠APQ=∠PQF=50°,∵∠APQ=∠EQP,∴∠EQP=50°,∴∠EQF=∠EQP+∠PQF=100°,∴∠AEQ=100°,故选:C.6.解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;②两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;③平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;④同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;⑤直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C.7.解:由平移的性质可知,BE∥CF,AD=CF,BE=CF=AD,EF=BC,S△ABC=S△DEF,故选项A、B、D结论成立,不符合题意,选项C结论不一定成立,符合题意,故选:C.8.解:设小宇、小轩平均每天分别阅读x页、y页,根据题意可得:,故选:A.9.解:解方程组,得.∴x2+2y2=1+2=3.故选:C.10.解:由点A(﹣3,4)的对应点为C(1,7)知平移方式为向右平移4个单位、向上平移3个单位,∴点B(﹣2,﹣1)的对应点C′的坐标为(2,2),故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:﹣5x+y=9,y=5x+9,故答案为:5x+9.12.解:∵AB∥CD,∴∠A+∠ACD=180°,∠2=∠3,∴∠ACD=180°﹣∠A=180°﹣100°=80°,又∵∠1=∠2,∴∠2=40°,∴∠3=∠2=40°.故答案为:40°.13.解:①带根号的数不一定都是无理数,如,原命题是假命题;②直线外一点与直线上各点的连线段中,垂线段最短,是真命题;③过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;④已知三条直线a,b,c,若a∥b,b∥c,则a∥c,是真命题;故答案为:②④.14.解:由题意得:经过点Q(1,﹣5)且垂直于y轴的直线可以表示为直线为:y=﹣5,故答案为:y=﹣5.15.解:,①+②,得4x=8,解得x=2,将x=2代入①得,y=﹣4,∴方程组的解为,∴点的坐标为(2,﹣4),∴点在第四象限,故答案为:四.16.解:∵解不等式x﹣a≤2得:x≤2+a,解不等式x+3>4得:x>1,∴不等式组的解集为1<x≤2+a,∵关于x的不等式组有且仅有3个整数解,∴4≤2+a<5,∴2≤a<3,故答案为2≤a<3.三.解答题(共9小题,满分86分)17.解:(1)=4﹣3+﹣1=;(2),将①代入②得,x=1,将x=1代入①得,y=2,∴方程组的解为.18.解:,解不等式①得:x<3,解不等式②得:x≥﹣1,所以不等式组的解集为:﹣1≤x<3.∴不等式组的整数解有﹣1,0,1,2.19.解:过点E作EM∥AB,过点F作FN作FN∥AB,则EM∥CD,FN∥CD,如图所示.∵EM∥AB∥CD,∴∠ABE=∠BEM,∠CDE=∠DEM,∴∠ABE+∠CDE=∠BEM+∠DEM=∠BED=90°.∵BF、DF分别平分∠ABE和∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠ABF+∠CDF=∠ABE+∠CDE=∠BED=×90°=45°.∵FN∥AB∥CD,∴∠BFN=∠ABF,∠DFN=∠CDF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=45°.20.解:(Ⅰ)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n=25÷100=0.25,频率分布表的组距是61﹣51=10,故答案为:10,25,0.25,10;(Ⅱ)如图,即为补充完整的频数分布直方图;(Ⅲ)∵2500×(0.35+0.12)=1175(人),∴成绩x在81≤x<101范围内的学生约有1175人.21.解:(1)由题意得,大正方形的面积为2cm2,因此边长为cm,故答案为:;(2)设圆的半径为rcm,则πr2=2π,∴r=,∴圆的周长为2=2π(cm),设正方形的边长为a,则a2=2π,∴a=,∴正方形的周长为4a=4(cm),∵2π==,4==,而π<4,∴<,即2π<4,也就是C圆<C正方形,故答案为:<;(3)能,理由如下:设长方形的长为5xcm,则宽为4xcm,由题意可得,5x•4x=300,∴x=,即长为5cm,宽为4cm,而面积为400cm2的边长为cm,∵5=<∴能裁出一块面积为300cm2的长方形纸片.22.解:(1)∵点A(﹣2,2),B(3a+1,2+a),且AB∥x轴,∴2=2+a,﹣2≠3a+1,解得a=0,∴点B的坐标为(1,2),故答案为:(1,2);(2)如图所示,△ABO,△DEF即为所求;(3)三角形DEF的面积==3,故答案为:3.23.解:(1)设购买一根跳绳a元,购买一个毽子b元,由题意可得:,解得,答:购买一根跳绳6元,购买一个毽子4元;(2)设购买跳绳x根,则购买毽子(54﹣x)个,由题意可得:,解得20<x≤22,∵x为整数,∴x=21或22,∴共有两种购买方案,方案一:购买跳绳21根,购买毽子33个;方案二:购买跳绳22根,购买毽子32个.24.证明:∵∠1+∠2=180°,∴AD∥EF(同旁内角互补,两直线平行),∴∠3=∠D(两直线平行,同位角相等),又∵∠3=∠A,∴∠A=∠D,∴AB∥CD(内错角相等,两直线平行),∴∠B=∠C.故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;∠A=∠D;内错角相等,两直线平行.25.(1)证明:∵AF⊥CE,∴∠FAC+∠ACE=90°,∵∠BAC=90°,∴∠BAH+∠FAC=90°,∴∠ACE=∠BAH;(2)CE=AH,理由如下:如图,在AC上截取AM=AE,连接EM,∵∠BAC=90°,AM=AE,∴∠AME=∠AEM=45°,∴∠CME=135°,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵DG∥BC,∴∠AGD=∠ABC=45°,∠ADG=∠ACB=45°,∴∠AGH=135°,∠AGD=∠ADG,∴∠AGH=∠CME,AG=AD,∵CD=AE=AM,∴CM=AD,∴AG=CM,∵∠BAH=∠ACE,∴△AGH≌△CME(ASA),∴AH=CE;(3)如图,连接BH,∵AH=CE,AB=AC,∠BAH=∠ACE,∴△ABH≌△CAE(SAS),∴BH=AE,∠ABH=∠CAE=BAC=90°,∴BH∥AC,∵HD∥BC,∴四边形BCDH是平行四边形,∴DH=BC,∵∠BAH=∠EAF,∠ABH=∠AFE=90°,∴△ABH∽△AFE,∴=,设AB=AC=a,则BC=a,∴GH=kDH=ka,∴BH=GH•sin45°=AE=ka,∴AH==,∴AF==,∴=.。

2022-2023学年人教新版七年级下册数学期末复习试卷(含解析)

2022-2023学年人教新版七年级下册数学期末复习试卷(含解析)

2022-2023学年人教新版七年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.实数4的算术平方根是()A.2B.﹣2C.4D.﹣42.下列采用的调查方式中,不合适的是()A.了解淡水河的水质,采用抽样调查B.了解一批灯泡的使用寿命,采用全面调查C.了解惠州市中学生睡眠时间,采用抽样调查D.了解某班同学的数学成绩,采用全面调查3.把不等式x﹣4≤3x的解集在数轴上表示出来,则正确的是()A.B.C.D.4.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得a﹣2<b﹣2C.由ab>ac,得b>c D.由>,得b>c5.小王网购了一本《好玩的数学》,同学们想知道书的价格,小王让他们猜.喜欢数学的甲同学说:“至少20元.”对数学感觉一般的乙同学说:“至多15元.”讨厌数学的丙同学说:“至多12元.”小王说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.12<x<15B.12<x<20C.15<x<20D.13<x<19 6.在平面直角坐标系中,将点A(﹣1,2)向左平移2个单位长度,再向下平移3个单位长度得到的点坐标为()A.(1,﹣1)B.(﹣1,5)C.(﹣3,﹣1)D.(﹣3,5)7.如图,直线m∥n,∠1=29°,则∠2等于()A.61°B.71°C.109°D.119°8.美美和小仪到超市购物,且超市正在举办摸彩活动,单次消费金额每满100元可以拿到1张摸彩券.已知美美一次购买5盒饼干拿到3张摸彩券;小仪一次购买5盒饼干与1个蛋糕拿到4张摸彩券.若每盒饼干的售价为x元,每个蛋糕的售价为150元,则x的范围为下列何者?()A.50≤x<60B.60≤x<70C.70≤x<80D.80≤x<90 9.若关于x,y的方程组满足,则x﹣y的值是()A.﹣B.C.﹣2022D.与m有关10.我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中:①;②;③3x+(100﹣x)=100;④(100﹣y)+3y=100正确的是()A.①③B.①④C.②③D.②④二.填空题(共6小题,满分18分,每小题3分)11.与最接近的整数是.12.一次数学测试后,某班40名学生的成绩被分成4组,第1~3组的频数分别为12,10,6,则第4组的频率是.13.如图,在象棋棋盘上建立平面直角坐标系,如果使“帅”的位置为点(0,﹣2),“相”的位置为点(2,﹣2),那么“炮”的位置为点.14.在长方形ABCD中放入六个完全相同的小长方形,所标尺寸如图所示,则小长方形的宽CE为cm.15.方程组中,若未知数x、y满足x﹣y=0,则m的值是.16.符号表示运算ac﹣bd,对于整数a,b,c,d,已知1<<3,则b+d的值是.三.解答题(共8小题,满分72分)17.(8分)解不等式组,并把解集在数轴上表示出来.18.(8分)解下列方程或方程组:(1);(2).19.(8分)已知AE∥BD,如图:(1)若∠A=70°,∠1=60°,求∠EBD的度数.(2)若∠1=∠2,∠3=∠4,求证:ED∥AC.分组频数频率20.(8分)为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量,所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图表如下):根据以上图表,回答下列问题:标记30.05A组145.5≤x<149.590.15B组149.5≤x<153.5150.25C组153.5≤x<157.518aD组157.5≤x<161.590.15E组161.5≤x<165.5F组165.5≤x<b c169.5G组合计M N (1)本次调查的样本容量为,a=;(2)补全频数分布直方图;(3)若九年级全体女生共800人,则该年级女生身高在161.5<x<169.5的人数约有多少人?21.(8分)如图,在正方形网格中,三角形ABC的三个顶点和点D都在格点上(正方形网格的交点称为格点),点A,B,C的坐标分别为(﹣2,4),(﹣4,0),(0,1),平移三角形ABC使点A平移到点D,点E,F分别是B,C的对应点.(1)请画出平移后的三角形DEF,并分别写出点E,F的坐标;(2)三角形DEF内部有一点P(a,a﹣4)和三角形ABC内部的点Q是对应点,请直接写出点Q的坐标.(用含a的式子表示)22.(10分)渝北区某水果种植户购买了“纽荷尔橙子”树苗与“血橙”树苗共1000株.其中“纽荷尔橙子”树苗每株30元,“血橙”树苗每株25元,该水果种植户此次购买两种树苗共计27000元.(1)求该水果种植户此次购买的两种树苗各多少株?(2)经过一段时间后,种植的这两种树苗成活率非常高,该种植户决定再购买一批这两种树苗,两种树苗购买的单价与第一批相同,预计购买“纽荷尔橙子”树苗的数量比第一批“纽荷尔橙子”树苗的数量减少a%.购买“血橙”树苗的数量比第一批“血橙”树苗的数量增加a%.且总费用不高于26400元,求a的最小值.23.(10分)(1)问题呈现如图1,AB∥CD,∠BEP=30°,∠DFP=40°,求∠EPF的度数;(2)问题迁移如图2,AB∥CD,点P在CD的下方,请探究∠PEA,∠PFC,∠EPF之间的数量关系,并说明理由;(3)联想拓展如图3,在(2)的条件下,已知∠CFP=a,∠BEP的平分线和∠EPF的平分线交于点G,请你用含有a的式子表示∠EGP的度数,并说明理由.24.(12分)已知等腰直角△ABC与△ADE有公共顶点A,∠BAC=∠DAE=90°,AB=AC=8,AD=AE=4.现将△ADE绕点A旋转.(1)如图①,当点B,A,D在同一直线上时,点F为DE的中点,求BF的长;(2)如图②,连接BE,DC.点G为DC的中点,连接AG交BE于点P,求证:AG⊥BE;(3)如图③,点F为DE的中点,以BF为直角边构造等腰Rt△FBN,连接CN,在△ADE绕点A旋转过程中,当CN最小时,直接写出△BCN的面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵22=4,∴4的算术平方根是2,故选:A.2.解:A.了解淡水河的水质,适合抽样调查,故本选项不符合题意;B.了解一批灯泡的使用寿命,适合全面调查,故本选项符合题意;C.了解惠州市中学生睡眠时间,适合全面调查,故本选项不符合题意;D.了解某班同学的数学成绩,适合全面调查,故本选项不符合题意.故选:B.3.解:x﹣4≤3x,移项得x﹣3x≤4,合并同类项得﹣2x≤4,把未知数系数化为1得x≥﹣2,表示在数轴上如下:故选:B.4.解:A.a>b,当c<0时,得ac<bc,故A不符合题意;B.因为a<b,所以a﹣2>b﹣2,故B不符合题意;C.ab>ac,当a<0时,得b<c,故C不符合题意;D.由>,得b>c,故D符合题意;故选:D.5.解:依题意得:,∴15<x<20.故选:C.6.解:将点(﹣1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是(﹣1﹣2,2﹣3),即(﹣3,﹣1),故选:C.7.解:如图,∵AC⊥m,∴∠ACB=90°,∵∠1=29°,∴∠3=∠1+∠ACB=29°+90°=119°,∵m∥n,∴∠2=∠3=119°.故选:D.8.解:美美拿到3张彩券说明消费金额达到了300元,但是不足400元,小仪拿到了4张彩券说明消费金额达到了400元,但是不足500元,由此可得,,解得,60≤x<70,故选:B.9.解:两式相减得:2022(x﹣y)+(y﹣x)=﹣2022,∴2022(x﹣y)﹣(x﹣y)=﹣2022,∴2021(x﹣y)=﹣2022,∴x﹣y=﹣,故选:A.10.解:设大和尚有x人,小和尚有y人,依题意,得:,∴y=100﹣x,∴3x+(100﹣x)=100.∴②③正确.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:∵<<,∴4<<5,而4.52=20.25,∴4.5<<5,∴更接近整数5,故答案为:5.12.解:一次数学测试后,某班40名学生的成绩被分成4组,第1~3组的频数分别为12,10,6,则第4组的频率是:1﹣=0.3.故答案为:0.3.13.解:由题意可建立如图所示平面直角坐标系:则“炮”位于点(﹣3,1).故答案是:(﹣3,1).14.解:设小长方形的长为xcm,宽为ycm,则AD=x+3y,AB=x+y=5+2y,即x﹣y=5,根据题意,得:,解得:,即CE=2cm,故答案为:2.15.解:原方程组可化为:,①+②,得x=1,把x=1代入①,得y=1,把x=1,y=1代入x+2y=2+m,得m=1,故答案为:1.16.解:根据题意得:,解得:1<bd<3,∵b、d是整数,∴bd=2,则b、d的值是1和2,或﹣1,﹣2.则b+d=3或﹣3.故答案是:±3.三.解答题(共8小题,满分72分)17.解:原不等式组为,解不等式①,得x<1;解不等式②,得x>﹣3.∴原不等式组的解集为﹣3<x<1,将不等式组的解集表示在数轴上如下:.18.解:(1),将①+②×4得:11x=22,解得:x=2,将x=2代入②解得:y=﹣1,∴原方程组的解为:;(2),①+②得:2x=12,解得:x=6,①+③得:2y=16,解得:y=8,②+③得:2z=6,解得:z=3,∴原方程组的解为:.19.(1)解:∵AE∥BD,∴∠A+∠ABD=∠A+∠1+∠EBD=180°,∵∠A=70°,∠1=60°,∴∠EBD=50°;(2)证明:∵AE∥BD,∴∠3=∠EBD,∵∠1=∠2,∠2=∠EBD+∠BEC,∴∠1=∠BEC+∠3,∵∠3=∠4,∠BED=∠BEC+∠4,∴∠1=∠BED,∴ED∥AC.20.解:(1)3÷0.05=60(人),即样本容量为60,a=18÷60=0.3,故答案为:60,0.3;(2)b=60﹣3﹣9﹣15﹣18﹣9=6,补全频数分布直方图如下:(3)800×=200(人),答:九年级800名女生中,身高在161.5<x<169.5的人数约有200人.21.解:(1)如图,三角形DEF即为所求,点E(2,﹣2),F(6,﹣1);(2)由(1)可知:三角形ABC右移6个单位,下移2个单位得到三角形DEF,因为三角形DEF内部有一点P(a,a﹣4)和三角形ABC内部的点Q是对应点,所以点Q的坐标为(a﹣6,a﹣2).22.解:(1)设该水果种植户此次购买纽荷尔橙子”树苗x株,“血橙”树苗y株,由题意得:,解得:,答:该水果种植户此次购买“纽荷尔橙子”树苗400株,“血橙”树苗600株;(2)由题意得:30×400×(1﹣a%)+25×600×(1+a%)≤26400,解得:a≥10,答:a的最小值为10.23.解:(1)如图1,过点P作PQ∥AB,∵PQ∥AB,AB∥CD,∴CD∥PQ.∴∠FPQ=∠DFP=40°,又∵PQ∥AB,∴∠BEP=∠EPQ=30°,∴∠EPF=∠EPQ+∠FPQ=30°+40°=70°;(2)∠PEA=∠PFC+∠EPF.理由:如图2,过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵PN∥CD,∴∠FPN=∠PFC,∵∠NPE=∠FPN+∠EPF,∴∠PEA=∠PFC+∠EPF;(3)∠EGP=90°+a.理由:如图3,过点P作PN∥AB.,∴PN∥AB∥CD,同(1)得,∠EGP=∠BEP+∠EPN,∵∠BEP的平分线和∠EPF的平分线交于点G,∴同(2)得,∠EGP=90°+∠CFP=90°+a.24.(1)解:如图①中,连接FA并延长交BC于H,∵AD=AE,点F是DE的中点,∴AF⊥DE,∵△ABC与△ADE都是等腰直角三角形,∴∠D=∠ABC=45°,∴DE∥BC,∴FH⊥BC,又∵AB=AC,∴BH=HC,由已知可得,,∴,∴;(2)证明:如图②中,延长DA到Q,使AQ=AD,连接CQ,∵AD=AE,∴AQ=AE,∵∠DAE=90°,∴∠EAQ=90°,又∵∠BAC=90°,∴∠BAC=∠EAQ,∴∠BAC+∠CAE=∠EAQ+∠CAE.即∠BAE=∠CAQ,又∵AB=AC,∴△ABE≌△ACQ(SAS),∴∠AEB=∠Q,∵G,A分别是DC,DQ的中点,∴AG∥CQ,∴∠Q=∠DAP=∠AEP,∵∠DAP+∠PAE=90°,∴∠AEP+∠PAEN=90°,∴∠APE=90°,∴AG⊥BE;(3)解:设点A关于BC的对称点A',连接BA′,CA′,NA′,AF.∵AD=AE=4,∠DAE=90°,∴DE=AD=4,∵DF=EF,∴AF=DE=2,∵∠FBN=∠ABA′=90°,∴∠FBA=∠NBA′,∵BA=BA′,BF=BN,∴△FBA≌△NBA′(SAS),∴NA′=AF=2,∴当直线CN过点A'时,线段CN的最小值为,=•CN•BA′=×(8﹣2)×8=32﹣8.此时S△BCN。

2022-2023学年人教新版七年级下册数学期末复习试卷(含答案)

2022-2023学年人教新版七年级下册数学期末复习试卷(含答案)

2022-2023学年人教新版七年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各数中,无理数的是( )A.B.C.0.121221222D.π2.在平面直角坐标系中,点A(1,4)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列调查中,适宜采用全面调查方式的是( )A.调查电视剧《敢叫日月换新天》的收视率B.调查某批次汽车的抗撞击能力C.调查某市居民平均用水量D.调查你所在班级同学的身高情况4.下列四组数值是二元一次方程2x﹣y=6的解的是( )A.B.C.D.5.已知a>b,则下列不等式不成立的是( )A.a+2>b+2B.a﹣3>b﹣3C.﹣4a>﹣4b D.>6.若m<﹣1<n,且m,n是两个连续整数,则m+n的值是( )A.1B.2C.3D.47.如图,在平面直角坐标系中,被墨水污染部分遮住的点的坐标可能是( )A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)8.如图,已知AB∥CD,∠A=56°,则∠1度数是( )A.56°B.124°C.134°D.146°9.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”用你所学知识可知笼中有( )A.12只鸡,23只兔B.23只鸡,12只兔C.15只鸡,20只兔D.20只鸡,15只兔10.若不等式组无解,则a的取值范围是( )A.a≤1B.a>1C.a≥1D.a<1二.填空题(共6小题,满分18分,每小题3分)11.0.064的立方根是 .12.不等式﹣3x﹣2>﹣1的解集是 .13.在平面直角坐标系中,将点P(﹣3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为 .14.甲、乙二人分别从A、B两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享电车,乙步行,两人在出发2.5h时相遇,相遇后0.5h甲到达B地,若相遇后乙又走了20千米才到达A、B两地的中点,那么乙的速度为 千米/时.15.在平面直角坐标系中,已知点P的坐标是(﹣2,3),则点P到y轴的距离为 .16.如图,在平面直角坐标系中,动点P从原点O出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点P1(﹣1,﹣1);接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点P2;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点P3;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点P4,…,按此作法进行下去,则点P2022的坐标为 .三.解答题(共9小题,满分72分)17.(6分)计算:﹣22+﹣﹣|﹣2|.18.(6分)(1)解方程组:;(2)解不等式组:.19.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度△ABC的三个顶点A,B,C都在格点上(正方形网格的交点称为格点).现将△ABC平移,使点C平移到点D,点E,F分别是A,B的对应点.(1)在图1中请画出平移后的△DEF,此时,△DEF的面积为 .(2)如图2,格点P是AB的中点,此时S△BCP=,请在图2的网格中画出满足S△BCQ=的所有格点三角形(除点P以外).20.(6分)如图:直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,求∠AOC的度数.21.(6分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“安全出行”学习的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,调查的目的是 ;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校1000名学生中“家长和学生都未参与”的人数.22.(8分)某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B每吨1000元.由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存.经市场调查获得以下信息:①将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米;②两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);③公路运输时,每吨每千米还需加收1元的燃油附加费;④运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元.(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务.加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由.23.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=15,BC=20,动点P以每秒5个单位长度的速度从点A出发,沿A→C→B的方向向终点B运动.点P关于点C的对称点为D,过点P作PQ⊥AB于点Q,以PD,PQ为边作▱PDEQ,设点P的运动时间为t(s).(1)当点P在AC上运动时,用含t的代数式表示PQ的长.(2)当▱PDEQ为菱形时,求t的值.(3)设▱PDEQ的面积为s,求S与t之间的函数关系式.(4)作点E关于直线PQ的对称点E′,当点E′落在△ABC内部时,直接写出t的取值范围.24.(12分)在平面直角坐标系中,已知A,B两点的坐标分别为(0,a),(a,b),其中a,b满足关系式(3a﹣2b)2+=0,求A,B两点的坐标.25.(12分)如图1,在等边△ABC中,点D是边AC上的一点,连接BD,以BD为边作等边△BDE,连接CE.(1)求证:△BAD≌△BCE.(2)如图2,过A,D,E三点分别作AF⊥BC于点F,DM⊥BC于点M,EN⊥BC于点N.求证:AF=DM+EN.(3)如图3,AF⊥BC,垂足为点F,若将点D改为线段AF上的一个动点,连接BD,以BD为边作等边△BDE,连接FE.当AB=1时,直接写出FE的最小值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A、是分数,属于有理数,故此选项不符合题意;B、=2,2是有理数,故此选项不符合题意;C、0.121221222是有限小数,属于有理数,故此选项不符合题意;D、π是无理数,故此选项符合题意.故选:D.2.解:∵点A(1,4)的横坐标大于0,纵坐标大于0,所以点A(1,4)在第一象限.故选:A.3.解:A、调查电视剧《敢叫日月换新天》的收视率,适宜采用抽样调查的方式,故A不符合题意;B、调查某批次汽车的抗撞击能力,适宜采用抽样调查的方式,故B不符合题意;C、调查某市居民平均用水量,适宜采用抽样调查的方式,故C不符合题意;D、调查你所在班级同学的身高情况,适宜采用全面调查的方式,故D符合题意;故选:D.4.解:A、把代入方程得:左边=2﹣5=﹣3,右边=6,∵左边≠右边,∴不是方程的解,不符合题意;B、把代入方程得:左边=8﹣2=6,右边=6,∵左边=右边,∴是方程的解,符合题意;C、把代入方程得:左边=4﹣4=0,右边=6,∵左边≠右边,∴不是方程的解,不符合题意;D、把代入方程得:左边=4﹣3=1,右边=6,∵左边≠右边,∴不是方程的解,不符合题意.故选:B.5.解:A.∵a>b,∴a+2>b+2,故本选项不符合题意;B.∵a>b,∴a﹣3>b﹣3,故本选项不符合题意;C.∵a>b,∴﹣4a<﹣4b,故本选项符合题意;D.∵a>b,∴﹣>,故本选项不符合题意;故选:C.6.解:∵2<<3,∴1<﹣1<2,又∵m<﹣1<n,且m,n是两个连续整数,∴m=1,n=2,∴m+n=3,故选:C.7.解:由图可知被墨水污染部分位于坐标系中第四象限,所以被墨水污染部分遮住的点的坐标应位于第四象限,则可以为:(3,﹣2),故选:D.8.解:如图,∵AB∥CD,∴∠2=∠A=56°,∴∠1=180°﹣∠2=180°﹣56°=124°.故选:B.9.解:设笼中鸡有x只,兔有y只,依题意得:,解得:,∴笼中有23只鸡,12只兔.故选:B.10.解:不等式组整理得:,由不等式组无解,得到a+1≥2.∴a≥1,故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:∵0.43=0.064.∴=0.4.故答案为:0.412.解:不等式移项得:﹣3x>﹣1+2,合并得:﹣3x>1,系数化为1得:x<﹣.故答案为:x<﹣.13.解:将点P(﹣3,4)向右平移1个单位长度,再向下平移2个单位长度所得到的点坐标为(﹣3+1,4﹣2),即(﹣2,2),故答案为:(﹣2,2).14.解:∵两人2.5小时相遇,相遇后0.5h甲到达B地,∴乙2.5小时的路程甲用了0.5小时.设乙的速度是x千米/时,则甲的速度是5x千米/时,由题意得:2(2.5x+20)=5x×3,解得x=4.故答案为:4.15.解:点P的坐标是(﹣2,3)到y轴的距离为:|﹣2|=2,故答案为:2.16.解:观察图象可知,奇数点在第三象限,∵P2(1,1),P4(2,2),P6(3,3),•••,P2n(n,n),∴P2022(1011,1011),故答案为:(1011,1011).三.解答题(共9小题,满分72分)17.解:原式=﹣4+6+3﹣(﹣2)=﹣4+6+3﹣+2=7﹣.18.解:(1),①+②×3,得10x=50,解得x=5,将x=5代入②,得:10+y=13,解得y=3,所以方程组的解为;(2)解不等式9x+5>8x+6,得:x>1,解不等式2x﹣1<7,得:x<4,则不等式组的解集为1<x<4.19.解:(1)如图1,△DEF为所作;△DEF的面积=4×4﹣×3×2﹣×4×1﹣×4×2=7;故答案为7;(2)如图2,点Q1、Q2、Q3为所作.20.解:∵OE⊥AB,∴∠EOB=90°,∵∠EOD=38°,∴∠BOD=90°﹣∠EOD=52°,∴∠AOC=∠BOD=52°.21.解:(1)在这次抽样调查中,调查的目的是家长和学生一起参与;(2)调查的总人数有:40÷20%=200(人),B类的人数有:200﹣40﹣30﹣10=120(人),补全统计图如下:C类所对应扇形的圆心角的度数是360°×=54°;(3)1000×=50(人),答:该校1000名学生中“家长和学生都未参与”的人数有50人.22.解:(1)设加工厂购进A种原料x吨,B种原料y吨,由题意得:,解得:,答:加工厂购进A种原料25吨,B种原料15吨;(2)设公路运输的单价为a元/(t•km),铁路运输的单价为b元/(t•km),根据题意,有两种方案,方案一:原料A公路运输,原料B铁路运输;方案二:原料A铁路运输,原料B公路运输;设方案一的运输总花费为m元,方案二的运输总花费为n元,则m=25×120×(a+1)+25×100+15×150×b+15×220=3000a+2250b+8800,n=15×120×(a+1)+15×100+25×150×b+25×220=1800a+3750b+8800,∴m﹣n=3000a+2250b+8800﹣(1800a+3750b+8800)=1200a﹣1500b,当m﹣n<0,即a<b时,方案一运输总花费少,即原料A公路运输,原料B铁路运输,总花费少;当m﹣n=0,即a=b时,两种运输总花费相等;当m﹣n>0,即a>b时,方案二运输总花费少,即原料A铁路运输,原料B公路运输,总花费少;23.解:(1)∵AC=15,动点P以每秒5个单位长度的速度从点A出发,沿A→C→B的方向向终点B运动,∴点P在AC上运动时,0≤t≤3,AP=5t,∵∠ACB=90°,AC=15,BC=20,∴AB===25,∴sin∠A===,∵PQ⊥AB,∴sin∠A==,即:=,解得:PQ=4t;(2)①当点P在边AC上时,如图1所示:由(1)得:PQ=4t,∵PC=AC﹣AP=15﹣5t,∴PD=2PC=30﹣10t,∵▱PDEQ为菱形,∴PQ=PD,即4t=30﹣10t,解得:t=;②当点P在边BC上时,如图2所示:则BP=AC+BC﹣(AC+PC)=15+20﹣5t=35﹣5t,PC=5t﹣AC=5t﹣15,∴PD=2PC=10t﹣30,∵∠BQP=∠BCA=90°,∠B=∠B,∴△BQP∽△BCA,∴=,即:=,解得:PQ=21﹣3t,∵PQ=PD,∴21﹣3t=10t﹣30,解得:t=,综上所述,当▱PDEQ为菱形时,t的值为s或s;(3)①当点P在边AC上时,即0<t<3时,由(1)得:PQ=4t,由(2)得:PD=30﹣10t,∵∠APQ=90°﹣∠A,∠ABC=90°﹣∠A,∴∠APQ=∠ABC,∵sin∠ABC===,∴sin∠APQ=,∴S=PQ•sin∠APQ×PD=4t××(30﹣10t)=﹣24t2+72t;②当点P在边BC上时,即3<t<7时,由(2)得:PQ=21﹣3t,PD=10t﹣30,∵∠QPB+∠B=90°,∠A+∠B=90°,∴∠QPB=∠A,∵sin∠A===,∴sin∠QPB=,∴S=PQ•sin∠QPB×PD=(21﹣3t)××(10t﹣30)=﹣24t2+240t﹣504;综上所述,S=;(4)①当点E关于直线PQ的对称点E′落在线段AC上时,如图3所示:连接EE′、QE′、PE,EE′与PQ交于点O,则EE′⊥PQ,EO=OE′,∵四边形PDEQ是平行四边形,∴EQ=PD,QE∥AD,∴∠QEO=∠PE′O,在△QEO和△PE′O中,,∴△QEO≌△PE′O(ASA),∴QE=PE′,∴四边形PEQE′是平行四边形,∴EQ=PE′=PD,∵EE′⊥PQ,PQ⊥AB,∴EE′∥AB,∵QE∥AD,∴四边形AQEE′是平行四边形,∴AE′=EQ=PE′=PD,∴AP=2PD,∴5t=2(30﹣10t),解得:t=,∴<t<3时,点E′落在△ABC内部;②当点E关于直线PQ的对称点E′落在线段BC上时,如图4所示:连接EE′、QE′、PE,EE′与PQ交于点O,则EE′⊥PQ,EO=OE′,∵四边形PDEQ是平行四边形,∴EQ=PD,QE∥PD,∴∠QEO=∠PE′O,在△QEO和△PE′O中,,∴△QEO≌△PE′O(ASA),∴QE=PE′,∴四边形PEQE′是平行四边形,∴EQ=PE′,∵EE′⊥PQ,PQ⊥AB,∴EE′∥AB,∵QE∥PD,∴四边形BQEE′是平行四边形,∴BE′=EQ=PE′=PD,∴5PC=BC=20,即5(5t﹣15)=20,解得:t=,∴3<t<时,点E′落在△ABC内部;综上所述,当点E′落在△ABC内部时,t的取值范围为<t<3或3<t<.24.解:∵(3a﹣2b)2+=0,∴解得:∴A,B两点的坐标分别为:(0,2),(2,3).25.(1)证明:∵△ABC,△BDE都是等边三角形,∴BA=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS);(2)证明:∵△ABD≌△CBE,∴S△ABD=S△CBE,∵S△ABC=S△ABD+S△DBC=S△BCE+S△BCD,∵AF⊥BC,DM⊥BC,EN⊥BC,∴•BC•AF=•BC•DM+•BC•EN,∴AF=DM+EN;(3)解:连接EC.∵△ABD≌△CBE,∴∠BAD=∠BCE,∵△ABC是等边三角形,AF⊥BC,∴∠BAF=∠CAF=30°,BF=CF=BC=AB=,∴∠BCE=∠BAF=30°,∴点E在射线CE上运动(∠BCE=30°),∴当EF⊥EC时,EF的值最小,此时EF=CF=,即EF的最小值为.。

新人教版七年级数学下册期末考试卷及答案【完整】

新人教版七年级数学下册期末考试卷及答案【完整】

新人教版七年级数学下册期末考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+= 5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4D .﹣26.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.若264a =3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程:3531132x x -+-=2.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2); (2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、B6、C7、A8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、20°.3、2或2 -34、-405、±26、±3三、解答题(本大题共6小题,共72分)1、3x .2、(1)–2x2+6;(2)5.3、(1)略;(2)∠D=75°.4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、(1)40;(2)72;(3)280.6、10个家长,5个学生。

最新人教版初中数学七年级下册期末复习(三)《平面直角坐标系》练习题

最新人教版初中数学七年级下册期末复习(三)《平面直角坐标系》练习题

期末复习(三) 平面直角坐标系考点一确定字母的取值范围【例1】若点P(a,a-2)在第四象限,则a的取值范围是( )A.-2<a<0B.0<a<2C.a>2D.a<0【分析】根据每个象限内的点的坐标特征列不等式(组)求解.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解答】根据第四象限内的点横坐标为正,纵坐标为负,得0,20,aa>-<⎧⎨⎩解得0<a<2.故选B.【方法归纳】解答此类题的关键是根据平面直角坐标系内点的特征,列出一次不等式(组)或者方程(组),解所列出的不等式(组)或者方程(组),得到问题的解.1.如果m是任意实数,那么点P(m-4,m+1)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是__________.考点二用坐标表示地理位置【例2】2008年奥运火炬在我省传递(传递路线:昆明—丽江—香格里拉),某校学生小明在我省地图上设定临沧位置点的坐标为(-1,0),火炬传递起点昆明位置点的坐标为(1,1).如图,请帮助小明确定出火炬传递终点香格里拉位置点的坐标__________.【分析】因为设定临沧位置点的横坐标为-1,昆明位置点的横坐标为1,所以可以得到每个小方格的边长为1,且y轴在这两座城市之间的竖直直线上;同理得到x轴在临沧所在的水平线上,从而得到如右图的平面直角坐标系,利用平面直角坐标系得出香格里拉所在位置点的坐标.【解答】(-1,4)【方法归纳】在平面内如果已知两点的坐标求第三个点的坐标时,通常根据已知两点的横坐标和纵坐标分别确定y轴和x轴的位置,从而建立平面直角坐标系,然后求出第三个点的坐标.3.如图,如果用(0,0)表示梅花的中心O,用(3,1)表示梅花上一点A,请用这种方式表示梅花上点B为( )A.(1,-3)B.(-3,1)C.(3,-1)D.(-1,3)4.如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成( )A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.中国象棋的走棋规则中有“象飞田字”的说法,如图,象在点P处,走一步可到达的点的坐标记作__________.考点三图形的平移与坐标变换【例3】已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是( )A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)【解析】由△ABC在平面直角坐标系中的位置可知点C的坐标为(3,3),将△ABC向下平移5个单位,再向左平移2个单位后,点C的横坐标减2,纵坐标减5,所以平移后C点的坐标是(1,-2).故选B.【方法归纳】在平面直角坐标系中点P(x,y)向右(或左)平移a个单位后的坐标为P(x+a,y)[或P(x-a,y)];点P(x,y)向上(或下)平移b个单位后的坐标为P(x,y+b)[或P(x,y-b)].6.如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度,再向下平移三个单位长度得到△A′B′C′,则点B′的坐标是( )A.(0,-1)B.(1,2)C.(2,-1)D.(1,-1)7.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=__________.考点四直角坐标系内图形的面积【例4】在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为( ) A.15 B.7.5 C.6 D.3【解析】∵点A到x轴的距离为3,而OB=2,∴S△ABO=12×2×3=3.故选D.【方法归纳】求平面直角坐标系中平面图形的面积时,常常利用平行于坐标轴的线段当底,点的横或者纵坐标的绝对值当高.不规则图形的面积常常通过割补法转化为几个规则图形的面积求解.8.已知:点A、点B在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A__________,B__________;(2)求△AOB的面积.考点五规律探索型【例5】如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2 015的坐标为__________.【解析】要求A2 015的坐标,可先从简单的点的坐标开始探究,发现其中的规律.从各点的位置可以发现:A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1);A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2);A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3);….因为A3(-1,1),A7(-2,2),观察坐标系可知:A11(-3,3),A15(-4,4),其横、纵坐标互为相反数.把A3、A7、A11、A15右下角的数字提出来,可整理为:3=3+4×0;A3(-1,1)7=3+4×1;A7(-2,2)11=3+4×2;A11(-3,3)15=3+4×3 A15(-4,4)…………因为2 015=3+4×503,所以A2 015(-504,504).【方法归纳】规律探究题往往是从个例、特殊情况入手,发现其中的规律,从而推广到一般情况,用适当的式子表示出来即可,这是近几年来考试的一个热点.9.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)复习测试一、选择题(每小题3分,共30分)1.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B的坐标是( )A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)2.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位B.向左平移了3个单位C.向上平移了3个单位D.向下平移了3个单位4.在平面直角坐标系中,△ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将△ABC向左平移5个单位后,A点的对应点A′的坐标是( )A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)5.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)6.已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A.3B.4C.5D.67.如图,与①中的三角形相比,②中的三角形发生的变化是( )A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位8.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g[f(2,-3)]=( )A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)9.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n 是自然数)的坐标为( )A.(1,2n)B.(2n,1)C.(n,1)D.(2n-1,1)10.如图,点A1,A2,A3,A4是某市正方形道路网的部分交汇点.某人从点A1出发,规定向右或向下行走,那么到达点A3的走法共有( )A.4种B.6种C.8种D.10种二、填空题(每小题4分,共20分)11.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为__________.12.若点A(x,y)的坐标满足(y-1)2+|x+2|=0,则点A在第__________象限.13.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN 平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为__________.14.如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是__________,破译“正做数学”的真实意思是__________.15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2 015次运动后,动点P的坐标是__________.三、解答题(共50分)16.(8分)如图,是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?17.(8分)如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O 为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?18.(8分)某地为了城市发展,在现有的四个城市A,B,C,D附近新建机场E.试建立适当的直角坐标系,写出点A,B,C,D,E的坐标.19.(12分)如图,三角形ABC三个顶点坐标分别为A(3,-2),B(0,2),C(0,-5),将三角形ABC沿y轴正方向平移2个单位,再沿x轴负方向平移1个单位,得到三角形A1B1C1.(1)画出三角形A1B1C1,并分别写出三个顶点的坐标;(2)求三角形的面积A1B1C1.20.(14分)如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?参考答案变式练习1.D2.(-65,145) 3.B 4.A 5.(0,2),(4,2) 6.D 7.28.(1)(-1,2) (3,-2)(2)S△AOB=12×1×1+12×1×3=2.9.B复习测试1.B2.B3.D4.B5.A6.C7.A8.B9.B 10.B11.答案不唯一,如:(2,2)或(0,0) 12.二13.(2,4) 14.(x+1,y+2) “祝你成功”15.(2 015,2)16.(1)A(2,3)、B(5,2)、C(3,9)、D(7,5)、E(6,11);(2)在原点北偏东45°的点是点F,其坐标为(12,12).17.(1)湖心岛(2.5,5)、光岳楼(4,4)、山陕会馆(7,3).(2)不是,因为根据题目中点的位置确定可知水平数轴上的点对应的数在前,竖直数轴上的点对应的数在后,是有序数对.18.答案不唯一.如以点A作为坐标原点,经过点A的水平线作为x轴,经过点A的竖直线作为y轴,每个小方格的边长作为1单位长,建立平面直角坐标系,图略,A(0,0)、B(8,2)、C(8,7)、D(5,6)、E(1,8).19.(1)图略,△A1B1C1即为所求,三个顶点的坐标A1(2,0),B1(-1,4),C1(-1,-3).(2)由题意可得出:三角形的面积A1B1C1与△ABC面积相等,则三角形A1B1C1的面积为:12×3×7=21 2.20.(1)将四边形分割成长方形、直角三角形,图略,可求出各自的面积:S长方形①=9×6=54,S直角三角形②=12×2×8=8,S直角三角形③=12×2×9=9,S直角三角形④=12×3×6=9.所以四边形的面积为80.(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形就是将原来的四边形向右平移两个单位长度形成的,所以其面积不变,还是80.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。

人教版数学七年级下期末数学试卷3(含答案解析)

人教版数学七年级下期末数学试卷3(含答案解析)

期末数学试卷一、选择题1.9的算术平方根是()A.±3 B.3 C.D.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣14.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>5.在图中,∠1和∠2是对顶角的是()A.B.C.D.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠57.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=89.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=110.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个二、填空题11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.如图所示,由三角形ABC平移得到的三角形有个.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第象限.14.满足不等式的非正整数x共有个.15.如果的平方根是±3,则=.16.已知点A(﹣1,b+2)不在任何象限,则b=.17.不等式的解集是.18.已知x满足(x+3)3=27,则x等于.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=,b=.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.三、解答题21.解方程组:.22.计算:﹣|﹣3|+.23.解不等式组:并把解集在数轴上表示出来.24.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.25.如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.26.如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为;(2)把两幅统计图补充完整.27.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?28.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.29.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?参考答案与试题解析一、选择题(每小题3分,共30分)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)【考点】D1:点的坐标.【分析】根据点在x轴上的坐标特点解答即可.【解答】解:∵在x轴上的点的纵坐标是0,∴结合各选项在x轴上的点是(﹣3,0).故选B.【点评】本题主要考查了点在x轴上的点的坐标特点:纵坐标为0.3.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】92:二元一次方程的解.【专题】11 :计算题;521:一次方程(组)及应用.【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.>【考点】C2:不等式的性质.【分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案.【解答】解:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.在图中,∠1和∠2是对顶角的是()A.B.C.D.【考点】J2:对顶角、邻补角.【分析】根据对顶角的定义对各图形判断即可.【解答】解:A、∠1和∠2不是对顶角;B、∠1和∠2是对顶角;C、∠1和∠2不是对顶角;D、∠1和∠2不是对顶角.故选:B.【点评】本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.6.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】J9:平行线的判定.【专题】121:几何图形问题.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.【点评】解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.7.下列调查中,适宜采用全面调查(普查)方式的是()A.对一批圆珠笔使用寿命的调查B.对全国九年级学生身高现状的调查C.对某品牌烟花爆竹燃放安全的调查D.对一枚用于发射卫星的运载火箭各零部件的检查【考点】V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、对一批圆珠笔使用寿命的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;B、对全国九年级学生身高现状的调查,人数太多,不便于测量,应当采用抽样调查,故本选项错误;C、对某品牌烟花爆竹燃放安全的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;D、对一枚用于发射卫星的运载火箭各零部件的检查,只有做到全面调查才能做到准确无误,故必须全面调查,故此选项正确.故选:D.【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.方程组的解为,则a、b分别为()A.a=8,b=﹣2 B.a=8,b=2 C.a=12,b=2 D.a=18,b=8【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】将x与y的值代入方程组即可求出a与b的值.【解答】解:将x=5,y=b代入方程组得:,解得:a=12,b=2,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.若不等式组的解集为0<x<1,则a、b的值分别为()A.a=2,b=1 B.a=2,b=3 C.a=﹣2,b=3 D.a=﹣2,b=1【考点】CB:解一元一次不等式组.【分析】先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.【解答】解:,由①得,x>2﹣a,由②得,x<,故不等式组的解集为;2﹣a<x<,∵原不等式组的解集为0<x<1,∴2﹣a=0,=1,解得a=2,b=1.故选A.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无理数是开方开不尽的数;④无限小数是无理数;⑤π是无理数,其中正确的有()A.4个 B.3个 C.2个 D.1个【考点】26:无理数.【分析】根据无理数的三种形式求解.【解答】解:①带根号的数不一定是无理数,如;②不含根号的数不一定是有理数,如无限不循环小数;③开方开不尽的数是无理数;④无限不循环小数是无理数;⑤π是无理数,该说法正确.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.二、填空题(每小题3分,共30分)11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】C6:解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.如图所示,由三角形ABC平移得到的三角形有5个.【考点】Q2:平移的性质.【分析】平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,据此判断出由三角形ABC平移得到的三角形有哪些即可.【解答】解:如图1,,由三角形ABC平移得到的三角形有5个:△DBE、△BHI、△EFG、△EIM、△IPN.故答案为:5.【点评】此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.13.已知(a﹣2)2+|b+3|=0,则点P(﹣a,﹣b)在第二象限.【考点】D1:点的坐标;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】根据非负数的性质求出a、b,再根据各象限内点的坐标特征解答.【解答】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,点P(﹣a,﹣b)即(﹣2,3)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.满足不等式的非正整数x共有3个.【考点】2B:估算无理数的大小.【分析】根据﹣3<<﹣2和3<<4求出符合条件的非正整数,即可得出答案.【解答】解:不等式的非正整数有﹣2,﹣1,0,共3个,故答案为:3.【点评】本题考查了估算无理数大小,实数的大小比较的应用,关键是确定﹣和的范围.15.如果的平方根是±3,则=4.【考点】24:立方根;21:平方根;22:算术平方根.【分析】求出a的值,代入求出即可.【解答】解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.【点评】本题考查了平方根、算术平方根,立方根定义的应用,关键是求出a 的值.16.已知点A(﹣1,b+2)不在任何象限,则b=﹣2.【考点】D1:点的坐标.【分析】根据坐标轴上的点的坐标特征方程求解即可.【解答】解:∵点A(﹣1,b+2)不在任何象限,∴b+2=0,解得b=﹣2.故答案为:﹣2.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.17.不等式的解集是x<6.【考点】C6:解一元一次不等式.【分析】利用不等式的基本性质,先去分母,然后把不等号右边的x移到左边,合并同类项即可求得原不等式的解集.【解答】解:去分母得:2x﹣2﹣3x﹣4>﹣12,移项得:﹣x>﹣6,系数化为1得:x<6.故答案为:x<6.【点评】本题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.已知x满足(x+3)3=27,则x等于0.【考点】24:立方根.【分析】首先根据立方根的定义可求出27的立方根,即可求得x的值.【解答】解:∵27的立方根为3,∴x+3=3,∴x=0.故答案为0.【点评】此题主要考查了立方根的定义和性质,注意本题答案不唯一.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.19.已知y=kx+b,当x=1时,y=﹣1;当x=3时,y=﹣5,则k=﹣2,b=1.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】把x与y的两对值代入y=kx+b,列出方程组,求出方程组的解得到k与b的值即可.【解答】解:把x=1,y=﹣1;x=3,y=﹣5代入y=kx+b中,得:,解得:k=﹣2,b=1.故答案为:﹣2;1.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是130°.【考点】JA:平行线的性质.【分析】首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.三、解答题(60分)21.解方程组:.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】解此题时先找出某个未知数系数的最小公倍数,用加减消元法进行解答.【解答】解:原方程组变形为:,(1)﹣(2)得:y=﹣,代入(1)得:x=6.所以原方程组的解为.【点评】此题较简单,只要明白二元一次方程及方程组的解法就可.22.计算:﹣|﹣3|+.【考点】2C:实数的运算.【分析】根据立方根、绝对值,算术平方根进行计算即可.【解答】解:原式=4+﹣3+6=7+.【点评】本题考查了实数的运算,用到的知识点为立方根、绝对值,算术平方根.23.(6分)解不等式组:并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵由①得:x>﹣2.5,由②得x≤4,∴不等式组的解集为﹣2.5<x≤4,在数轴表示为:.【点评】本题考查解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.24.(6分)已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.【考点】21:平方根.【分析】根据一个正数的两个平方根互为相反数,可知2m﹣3=4m﹣5或2m﹣3=﹣(4m﹣5),解得m的值,继而得出答案.【解答】解:当2m﹣3=4m﹣5时,m=1,∴这个正数为(2m﹣3)2=(2×1﹣3)2=1;当2m﹣3=﹣(4m﹣5)时,m=∴这个正数为(2m﹣3)2=[2×﹣3]2=故这个正数是1或.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.25.(6分)如图所示,把三角板的直角顶点放在直尺的一边上,若∠1=30°,求∠2的度数.【考点】JA:平行线的性质.【分析】先根据补角的定义求出∠BAD的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=30°,∠BAC=90°,∴∠BAD=180°﹣90°﹣∠1=180°﹣90°﹣30°=60°,∵EF∥AD,∴∠2=∠BAD=60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.26.(7分)如图是根据某乡2009年第一季度“家电下乡”产品的购买情况绘制成的两幅不完整的统计图,请根据统计图提供的信息解答下列问题:(1)第一季度购买的“家电下乡”产品的总台数为500;(2)把两幅统计图补充完整.【考点】VC:条形统计图;VB:扇形统计图.【专题】27 :图表型.【分析】由统计图可知:(1)根据条形统计图可知电视机是175台,根据扇形图可知电视占总产品的35%,即可求得产品的总数;(2)冰箱的台数为500×10%=50台;电脑的台数为500×5%=25台;则热水器的台数为500﹣50﹣25﹣175﹣150=100台,占的百分比为100÷500=20%;洗衣机占百分比为150÷500=30%.据此即可把两幅统计图补充完整.【解答】解:(1)175÷35%=500(个);(2)图如下面.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(8分)去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果今年(365天)这样的比值要超过70%,那么今年空气质量良好的天数比去年至少要增加多少天?【考点】C9:一元一次不等式的应用.【分析】设今年比去年空气质量良好的天数增加了x天,根据“今年(365天)这样的比值要超过70%,”列出不等式解答即可.【解答】解:设今年比去年空气质量良好的天数增加了x天,依题意,得x+365×60%>365×70%解这个不等式,得x>36.56.由x应为正整数,得x≥37答:今年空气质量良好的天数比去年至少要增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【点评】此题考查一元一次不等式的实际运用,找出题目蕴含的不等关系是解决问题的关键.28.(9分)如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,求∠1、∠2的度数.【考点】PB:翻折变换(折叠问题).【分析】由平行线的性质知∠DEF=∠EFB=55°,由题意知∠GEF=∠DEF=55°,则可求得∠2=∠GED=110°.由邻补角的性质可求得∠1的值.【解答】解:∵AD∥BC∴∠DEF=∠EFB=55°(2分)由对称性知∠GEF=∠DEF∴∠GEF=55°∴∠GED=110°∴∠1=180°﹣110°=70°(4分)∴∠2=∠GED=110°(5分)【点评】本题考查了翻折的性质,对应角相等及平行线的性质、邻补角的性质.29.(12分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【考点】9A:二元一次方程组的应用.【分析】(1)设购买一个足球需要x元,购买一个篮球需要y元,根据购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元,列方程组求解;(2)设购买a个篮球,则购买(96﹣a)个足球,根据总费用不超过5720元,列不等式求出最大整数解.【解答】解:(1)设购买一个足球需要x元,购买一个篮球需要y元,根据题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设购买a个篮球,则购买(96﹣a)个足球,根据题意得:80a+50(96﹣a)≤5720,解得:a≤,∵a是整数,∴a≤30,答:最多可以购买30个篮球.【点评】本题考查了二元一次方程组的应用和一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.。

人教版七年级下册数学期末考试试题含答案

人教版七年级下册数学期末考试试题含答案

人教版七年级下册数学期末考试试卷一、单选题1.下列实数中,无理数是()A .0B .2C .0.5D .-92.已知21x y =⎧⎨=-⎩是方程1x ay +=的解,则a 的值为()A .2B .1-C .1D .2-3.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是()A .B .C .D .4.为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,其中有150人乘车上学,50人步行,剩下的选择其他上学方式,该调查中的样本容量是()A .1500B .300C .150D .505.如图,ABC 沿着BC 方向平移到DEF ,已知6BC =、2EC =,那么平移的距离为()A .2B .4C .6D .86.下列调查中,调查方式选择最合理的是()A .为了解柳州市中学生的课外阅读情况,选择全面调查B .调查七年级某班学生打网络游戏的情况,选择抽样调查C.为确保长征六号遥二火箭成功发射,应对零部件进行全面调查D.调查某种灯泡的使用寿命,选择全面调查7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==8.若x y>,且(3)(3)a x a y-<-,则a的值可能是()A.0B.3C.4D.59<8<;③5112<;④510.52->.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个10.如图,下列推理正确的是()A.因为∠BAD+∠ABC=180°,所以AB∥CDB.因为∠1=∠3,所以AD∥BCC.因为∠2=∠4,所以AD∥BCD.因为∠BAD+∠ADC=180°,所以AD∥BC二、填空题11.计算:=______.12.把方程21x y +=改写成用含x 的式子表示y 的形式,得y =__.13.若某个正数的平方根是3a -和5a +,则这个正数是__.14.某药品说明书上标明药品保存的温度是10±4∘,设该药品合适的保存温度为∘,则的取值范围是______.15.将点(1,1)P -向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P 的坐标是__.16.将一个矩形纸片按如图所示折叠,若140 ∠=,则2∠的度数是______o .三、解答题17.解不等式:2(1)3x +<,并把它的解集在数轴上表示出来.18.解方程组:3223y x x y-=⎧⎨=-⎩19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,已知点2,4,1,1,3,2.(1)将三角形B先沿着轴负方向平移6个单位,再沿轴负方向平移2个单位得到三角形111,在图中画出三角形111;(2)直接写出点1,1,1的坐标.20.某市数学调研小组对老师在讲评试卷中学生参与的深度与广度进行评价调查,其评价项目为“主动质疑”、“独立思考”、“专注听讲”、“讲解题目”四项,该调研小组随机抽取了若干名初中七年级学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了______名学生;(2)请将频数分布直方图补充完整;(3)如果全市有40000名七年级学生,那么在试卷评讲课中,“独立思考”的七年级学生约有多少人?21.如图,已知12180∠+∠= ,AED C ∠=∠,试判断3∠与B Ð的大小关系,并说明理由.22.某中学计划为学校科技活动小组购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用235元,购买4个A 型放大镜和6个B 型放大镜需用170元.(1)求每个A 型放大镜和每个B 型故大镜各多少元?(2)该中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1300元,那么最多可以购买多少个A 型放大镜?23.对于实数a ,b 定义两种新运算“※”和“*”:a ※b a kb =+,*a b ka b =+(其中k 为常数,且0)k ≠,若对于平面直角坐标系xOy 中的点(,)P a b ,有点P '的坐标(a ※b ,*)a b 与之对应,则称点P 的“k 衍生点”为点P '.例如:(1,3)P 的“2衍生点”为(123,213)P '+⨯⨯+,即(7,5)P '.(1)点(1,5)P -的“3衍生点”的坐标为;-,求点P的坐标;(2)若点P的“5衍生点”P的坐标为(9,3)(3)若点P的“k衍生点”为点P',且直线PP'平行于y轴,线段PP'的长度为线段OP长度的3倍,求k的值.参考答案1.B【解析】根据无理数的定义逐一判断即可得.【详解】A、0是有理数;B、2是无理数;C、12是分数,为有理数;D、-9是有理数;故选B.【点睛】本题主要考查无理数的定义,属于简单题.2.C【解析】把x与y的值代入方程计算即可求出a的值.【详解】把21xy=⎧⎨=-⎩代入方程得:21a-=,解得:1a=,故选:C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l 的距离.故选A.4.B【解析】【分析】根据总体、个体、样本容量、样本的定义解答即可.【详解】∵为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,∴该调查中的样本容量是:300.故选B.【点睛】本题考查了总体、个体、样本容量、样本的定义,正确把握相关定义是解题关键.5.B【解析】【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离==-=,进而可得答案.BE624【详解】=-=-=,由题意平移的距离为BE BC EC624故选:B.【点睛】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.6.C【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】A、为了解柳州市中学生的课外阅读情况,选择抽样调查,错误;B、调查七年级某班学生打网络游戏的情况,选择全面调查,错误;C、为确保长征六号遥二火箭成功发射,应对零部件进行全面调查,正确;D、调查某种灯泡的使用寿命,选择抽样调查,错误;故选C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:5 15 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.A【解析】【分析】根据不等式的性质,可得答案.【详解】由不等号的方向改变,得a−3<0,解得a<3,四个选项中满足条件的只有0.故选:A.【点睛】考查不等式的性质3,熟练掌握不等式的性质是解题的关键.9.C【解析】【分析】①两个正数,哪个数的越大,则它的算术平方根就越大,据此判断即可.②首先分别求出8的平方各是多少;然后根据两个正数,哪个数的平方越大,则这个数就越大,8的大小关系即可.③根据1-12所得的差的正负,判断出12、1的大小关系即可.④根据510.52--所得的差的正负,判断出512-、0.5的大小关系即可.【详解】810<,∴<,∴①正确;265=,2864=,6564>,∴8>,∴②不正确; 51533310222----=<=,∴112-<,∴③正确; 5152220.50222----=>=,∴510.52>,∴④正确.综上,可得大小关系正确的式子的个数是3个:①③④.故选:C .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0>>负实数,两个负实数绝对值大的反而小.解答此题的关键还要明确:两个正数,哪个数的平方越大,则这个数就越大.10.B【解析】【分析】根据平行线的判定定理分析即可.【详解】A 、错误.由∠BAD +∠ABC =180°应该推出AD ∥BC .B 、正确.C 、错误.由∠2=∠4,应该推出AB ∥CD .D 、错误.由∠BAD +∠ADC =180°,应该推出AB ∥CD ,故选:B.【点睛】考核知识点:平行线的判定.理解判定是关键.11.【解析】【分析】合并同类二次根式即可得出答案.【详解】(3-=-=故答案为:【点睛】此题考查了二次根式的加减运算,属于基础题,掌握同类二次根式的合并是关键.12.12x-.【解析】【分析】把x当成已知数,解关于y的方程即可.【详解】21x y+=,21y x=-,12xy-=,故答案为:12x-.【点睛】本题考查了解二元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.16.【解析】【分析】利用一个非负数的平方根互为相反数即可得到关于a的方程,解方程即可解决问题.【详解】一个正数的平方根是3a-和5a+,则350a a -++=,解得:1a =-,则34a -=-,所以这个正数是16.故答案为:16.【点睛】此题主要考查了平方的定义,要注意:一个正数有正、负两个平方根,它们互相为相反数.14.6≤≤14【解析】【分析】根据正数和负数的定义即可得出答案.【详解】某药品说明书上标明药品保存的温度时(10±4)℃,说明在10℃的基础上,再上下4℃,∴6℃≤t≤14℃;故答案为:6℃≤t≤14℃.【点睛】此题考查了正负数在实际生活中的应用,解题关键是理解(10±4)℃的意义.15.(0,3).【解析】【分析】根据向右平移横坐标加,向上平移纵坐标加即可得解.【详解】将点(1,1)P -向右平移1个单位长度,再向上平移2个单位长度,则平移后的点P 的坐标是(11,12)-++,即(0,3).故答案为(0,3).【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.16.70【解析】【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【详解】如图,由题意可得:∠1=∠3=∠4=40°,由翻折可知:∠2=∠5=180402︒-︒=70°.故答案为:70.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.17.12x<,不等式的解在数轴上表示见解析.【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【详解】2(1)3x-<,223x∴+<,21x<12x<,不等式的解在数轴上表示为:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18.11x y =⎧⎨=⎩.【解析】【分析】方程组利用加减消元法求出解即可.【详解】3223y x x y -=⎧⎨=-⎩①②,由①得:624y x -=③,由②得:23x y +=④,③+④得,77y =,解得:1y =,代入①解得,1x =,综上知原方程组的解为:11x y =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(1)详见解析;(2)1−4,2,1−5,−1,1−3,0【解析】【分析】(1)分别将点A,B,C向左平移6个单位,再向下平移2个单位,再首尾顺次连接即可得.(2)根据所作图形可得三顶点的坐标.【详解】(1)如图所示,△A1B1C1即为所求.(2)由图知,A1(-4,2),B1(-5,-1),C1(-3,0).【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,并据此得出变换后的对应点.20.(1)560;(2)详见解析;(3)在试卷评讲课中,“独立思考”的七年级学生约有12000人.【解析】【分析】(1)由专注听讲的人数及其所占百分比可得总人数;(2)根据各项目人数之和等于总人数可得讲解题目对应的人数,从而补全图形;(3)利用样本估计总体思想求解可得.【详解】(1)在这次评价中,一共抽查学生为:224÷40%=560人,(2)“讲解题目”的人数是:5608416822484---=(人).作图如下:(3)1684000012000560⨯=(人)故在试卷评讲课中,“独立思考”的七年级学生约有12000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.3B ∠=∠,理由详见解析【解析】【分析】求出∠2=∠4,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出∠3=∠ADE ,根据平行线的判定得出DE ∥BC ,根据平行线的性质得出∠B=∠ADE ,即可得出答案.【详解】3B ∠=∠,理由如下:∵12180∠+∠= ,14180∠+∠=o ,∴24∠∠=,∴EF AB ∥,∴3ADE ∠=∠.∵AED C ∠=∠,∴DE BC ‖,∴ADE B ∠=∠,∴3B ∠=∠.【点睛】本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,解题时注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.(1)每个A 型放大镜和每个B 型放大镜分别为20元,15元;(2)最多可以买35个A 型放大镜.【解析】【分析】(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【详解】(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得852*******x y x y +=⎧⎨+=⎩①②.解得:2015x y =⎧⎨=⎩,答:每个A 型放大镜和每个B 型放大镜分别为20元,15元;(2)设购买A 型放大镜a 个,根据题意可得:2015(75)1300a a +⨯-,解得:35a.答:最多可以买35个A 型放大镜.【点睛】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.23.(1)(14,2);(2)点(1,2)P -;(3)k=±3.【解析】【分析】(1)直接利用新定义进而分析得出答案;(2)直接利用新定义结合二元一次方程组的解法得出答案;(3)先由//PP y '轴得出点P 的坐标为(,0)a ,继而得出点P '的坐标为(,)a ka ,由线段PP '的长度为线段OP 长度的3倍列出方程,解之可得.【详解】(1)点(1,5)P -的“3衍生点”P '的坐标为(135,135)-+⨯-⨯+,即(14,2),故答案为:(14,2);(2)设(,)P x y 依题意,得方程组5953x y x y +=⎧⎨+=-⎩.解得12x y =-⎧⎨=⎩.∴点(1,2)P -;(3)设(,)P a b ,则P '的坐标为(,)a kb ka b ++.PP ' 平行于y 轴a a kb ∴=+,即0kb =,又0k ≠ ,0b ∴=.∴点P 的坐标为(,0)a ,点P '的坐标为(,)a ka ,∴线段PP '的长度为||ka .∴线段OP 的长为||a .根据题意,有3PP OP '=,3ka a ∴=.∴k=±3.【点睛】本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.。

人教版七年级数学下册期末综合复习训练试题(三)及答案

人教版七年级数学下册期末综合复习训练试题(三)及答案

期末综合复习训练试题(三)一.选择题1.在数轴上,点A,B分别表示实数a,b,将点A向左平移1个单位长度得到点C,若点C,B关于原点O对称,则下列结论正确的是()A.a+b=1 B.a+b=﹣1 C.a﹣b=1 D.a﹣b=﹣12.若关于x、y的二元一次方程有公共解3x﹣y=7,2x+3y=1,y=﹣kx﹣9,则k的值是()A.﹣3 B.C.2 D.﹣43.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°4.关于x的一元一次方程x+m﹣2=0的解是负数,则m的取值范围是()A.m>2 B.m<2 C.m>﹣2 D.m<﹣25.已知△ABC内一点P(a,b)经过平移后对应点P′(c,d),顶点A(﹣2,2)在经过此次平移后对应点A′(5,﹣4),则a﹣b﹣c+d的值为()A.13 B.﹣13 C.1 D.﹣16.某校七(二)班班长统计了今年1﹣8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了折线统计图,下列说法错误的是()A.阅读量最多的是8月份B.阅读量最少的是6月份C.3月份和5月份的阅读量相等D.每月阅读量超过40本的有5个月二.填空题7.已知|x+1|++(x+y﹣z)2=0,x+y+z的立方根是.8.若点P(2﹣a,2a+5)到两坐标轴的距离相等,则a的值为.9.体育老师从七年级学生中抽取40名参加全校的健身操比赛.这些学生身高(单位:cm)的最大值为186,最小值为155.若取组距为3,则可以分成组.10.如图,直线AB、CD相交于点O,∠AOE=90°,∠EOD=50°,则∠BOC的度数为.11.若关于x、y的二元一次方程组的解是二元一次方程的2x+3y=18的解,则的平方根.12.不等式组的最小整数解是.13.体育馆的环形跑道长400米,甲、乙分别以一定的速度练习长跑和骑自行车.如果同向而行80秒乙追上甲一次;如果反向而行,他们每隔30秒相遇一次;求甲、乙的速度分别是多少?如果设甲的速度是x米/秒,乙的速度是y米/秒,所列方程组是.14.已知点P的坐标为(2m+1,m﹣4)并且满足点P到两坐标轴的距离相等,则点P的坐标是.三.解答题15.计算:16.解下列方程组:(1)(2)17.解不等式组,并把解集在数轴上表示出来.18.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED =22°,∠I=20°,求∠EKD的度数.四.解答题19.已知坐标平面内的三个点A(1,3)、B(3,1)、O(0,0).(1)求△ABO的面积;(2)平移△ABO至△A1B1O1,当点A1和点B重合时,点O1的坐标是;(3)平移△ABO至△A2B2O2,需要至少向下平移超过单位,并且至少向左平移个单位,才能使△A2B2O2位于第三象限.20.如图,已知∠1+∠2=180°,∠AED=∠C,试判断∠3与∠B的大小关系,并对结论进行说理.(可不写根据)21.已知关于x,y的二元一次方程组的解满足x=y,求m的值.22.元旦期间,前往参观盐城人民公园的人非常多.这期间某一天某一时段,小王随机调查了部分入园游客,统计了进园前等侯检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10mi而小于20min,其他类同.(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;(2)表中a=,b=,并补全频数分布直方图:(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是;时间分段/min频数/人数频率10~20 8 0.20020~30 14 a30~40 10 0.25040~50 b0.12550~60 3 0.075合计40 1.000五.解答题23.已知关于x、y的方程组.(1)当m=2时,请解关于x、y的方程组;(2)若关于x、y的方程组中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.24.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.六.解答题25.解不等式组并写出它的正整数解.26.为支持抗震救灾,我市A、B两地分别有赈灾物资100吨和180吨,需全部运往重灾区C、D两县,根据灾区的情况,这批赈灾物资运往C县的数量比运往D县的数量的2倍少80吨.(1)求这批赈灾物资运往C、D两县的数量各是多少吨?(2)设A地运往C县的赈灾物资数量为x吨(x为整数).若要B地运往C县的赈灾物资数量大于A地运往D县赈灾物资数量的2倍,且要求B地运往D县的赈灾物资数量不超过63吨,则A、B两地的赈灾物资运往C、D两县的方案有几种?参考答案一.选择题1.A.2.D.3.C.4.A.5.B.6.D.二.填空7.28.﹣1或﹣7.9.11.10.140°.11.±2.12.013..14.(﹣9,﹣9)或(3,﹣3).三.解答题15.解:=﹣3+2+1=16.解:(1)将②代入①得:2x+3(4x﹣5)=﹣1解得:x=1③将③代入②得:y=4×1﹣5=﹣1∴方程组的解为:.(2)①×5+②×2得:15x+8x=100+38∴x=6③将③代入①得:3×6+2y=20∴y=1∴原方程组的解为:.17.解:,解第一个不等式得x≥﹣1,解第二个不等式得x<3,则不等式组的解集为﹣1≤x<3,将解集表示在数轴上如下:18.解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.四.解答题19.解:(1)△ABO的面积=×1×3+×(1+3)×2﹣×3×1=4;(2)点A1和点B重合时,需将△ABC向右移2个单位,向下移2个单位,∴点O的对应点O1的坐标是(2,﹣2),故答案为:(2,﹣2);(3)平移△ABO至△A2B2O2,需要至少向下平移超过3单位,并且至少向左平移超过3个单位,才能使△A2B2O2位于第三象限.故答案为:3,3.20.解:∠3=∠B.理由如下:∵∠1+∠2=180°,∠1+∠4=180°∴∠2=∠4,∴EF∥AB,∠3=∠ADE,又∵∠AED=∠C,∴DE∥BC,∴∠B=∠ADE,∴∠3=∠B.21.解:∵关于x,y的二元一次方程组的解满足x=y,∴,故=2m,解得:m=10.22.解:(1)这里采用的调查方式是抽样调查;样本容量是:8÷0.200=40;故答案为:抽样调查,40;(2)a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=40×0.125=5;补图如下:故答案为:0.350,5;(3)“40~50”的圆心角的度数是0.125×360°=45°.故答案为:45°.五.解答23.解:(1)把m=2代入方程组中得:,①+②得:2x=10,x=5,①﹣②得:﹣2y=8,y=﹣4,∴方程组的解为:;(2)①,①+②得:2x=18﹣4m,x=9﹣2m,①﹣②得:﹣2y=4+2m,y=﹣2﹣m,∵x为非负数、y为负数,∴,解得:﹣2<m≤;②3mx+2x>3m+2,(3m+2)x>3m+2,∵不等式3mx+2x>3m+2的解为x<1,∴3m+2<0,∴m<﹣,由①得:﹣2<m≤,∴﹣2<m<﹣,∵m整数,∴m=﹣1;即当m=﹣1时,不等式3mx+2x>3m+2的解为x<1.24.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P到两坐标轴的距离相等,∴|8﹣2m|=|m﹣1|,∴8﹣2m=m﹣1或8﹣2m=1﹣m,解得:m=3或m=7,∴P(2,2)或(﹣6,6).六.解答题25.解:∵解不等式①得:x≥﹣1,解不等式②得:x<3,∴不等式组的解集是:﹣1≤x<3,即不等式组的正整数解是1,2.26.解:(1)设运往C县的物资是a吨,D县的物资是b吨,根据题意得,,解得,答:这批赈灾物资运往C、D两县的数量各是160吨,120吨;(2)设A地运往C县的赈灾物资数量为x吨,则B地运往C县的物资是(160﹣x)吨,A地运往D县的物资是(100﹣x)吨,B地运往D县的物资是120﹣(100﹣x)=(20+x)吨,根据题意得,,解不等式①得,x>40,解不等式②得,x≤43,所以,不等式组的解集是40<x≤43,∵x是整数,∴x取41、42、43,∴方案共有3种,分别为:方案一:A地运往C县的赈灾物资数量为41吨,则B地运往C县的物资是119吨,A地运往D县的物资是59吨,B地运往D县的物资是61吨;方案二:A地运往C县的赈灾物资数量为42吨,则B地运往C县的物资是118吨,A地运往D县的物资是58吨,B地运往D县的物资是62吨;方案三:A地运往C县的赈灾物资数量为43吨,则B地运往C县的物资是117吨,A地运往D县的物资是57吨,B地运往D县的物资是63吨.。

新人教版七年级数学下册期末考试卷及答案【完美版】

新人教版七年级数学下册期末考试卷及答案【完美版】

新人教版七年级数学下册期末考试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B. C. D.10.下列等式变形正确的是()A.若﹣3x=5,则x=3 5B.若1132x x-+=,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=1二、填空题(本大题共6小题,每小题3分,共18分)181________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解不等式组:331213(1)8x x x x-⎧+≥+⎪⎨⎪--<-⎩并在数轴上把解集表示出来.2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.4.如图,在△ABC 中,AB=AC,点D 、E 分别在AB 、AC 上,BD=CE ,BE 、CD 相交于点0;求证:(1)DBC ECB ∆≅∆(2)OB OC =5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、D5、C6、C7、C8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、20°.3、3 44、2m≤-5、AC=DF(答案不唯一)6、②.三、解答题(本大题共6小题,共72分)1、−2<x≤1,数轴见解析2、x=3或-3是原方程的增根;m=6或12.3、4.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.。

人教版七年级数学下册期末考试试题及答案

人教版七年级数学下册期末考试试题及答案

人教版七年级数学下册期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在平面直角坐标系中,点(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列调查适合作抽样调查的是()A.了解中央电视台“新闻联播”栏目的收视率B.了解某甲型H1N1确诊别人同机乘客的健康情况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查3.(3分)下列方程组中,属于二元一次方程组的是()A.B.C.D.4.(3分)如图,将三角形纸板ABC沿直线AB向右平行移动,使∠A到达∠B的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A.50°B.40°C.30°D.100°5.(3分)实数,0,﹣π,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.1个B.2个C.3个D.4个6.(3分)已知样本容量为30,在以下样本频数分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第2组的频数为()A.12B.10C.9D.67.(3分)有加减法解方程时,最简捷的方法是()B.①×4+②×3,消去xC.②×2+①,消去y D.②×2﹣①,消去y A.①×4﹣②×3,消去x8.(3分)如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.9.(3分)(2007•临沂)若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个10.(3分)已知a,b为非零有理数,下面四个不等式组中,解集有可能为﹣2<x<2的不等式组是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)36的平方根是.12.(3分)若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=.13.(3分)线段CD是由线段AB平移得到的.点A(﹣2,5)的对应点为C(3,7),则点B(﹣3,0)的对应点D的坐标为().14.(3分)如图1是长方形纸袋,将纸袋沿EF折叠成图2,再沿BF折叠成图3,若∠DEF=α,用α表示图3中∠CFE的大小为.15.(3分)如图所示,一个大长方形被两条线段AB、CD分成四个小长方形,其中长方形Ⅰ、Ⅱ、Ⅲ的面积分别是8、6、5,那么阴影部分的面积是:.16.(3分)已知关于x的不等式组的解集恰含有2个整数解,则实数a的取值范围是.三、解答题(本大题共7小题,共52分)17.(6分)(Ⅰ)解方程组:;(Ⅱ)解不等式组:.18.(6分)甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?19.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=∠3()又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥DG()∴∠BAC+∠AGD=180°()∵∠BAC=70°(已知)∴∠AGD=110°.20.(8分)如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.(Ⅰ)建立以点B为原点,AB边所在直线为x轴的直角坐标系.写出点A、B、C、D的坐标;(Ⅱ)求出四边形ABCD的面积;(Ⅲ)请画出将四边形ABCD向上平移5格,再向左平移2格后所得的四边形A′B′C′D′.21.(8分)解应用题:两位搬运工人要将若干箱同样的货物用电梯运到楼上.已知一箱货物的质量是65千克,两位工人的体重之和是150千克,电梯的载重量是1800千克,问两位工人一次最多能运多少箱货物?22.(8分)某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为126度;(2)共抽查了80名学生;(3)在图2中,将“体育”部分的图形补充完整;(4)爱好“书画”的人数占被调查人数的百分比10%;(5)估计现有学生中,有287人爱好“书画”.23.(8分)(2012•从化市一模)为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台)a b处理污水量(吨/月)240200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在平面直角坐标系中,点(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标..分析:根据各象限内点的坐标特征解答.解答:解:点(1,﹣3)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列调查适合作抽样调查的是()A.了解中央电视台“新闻联播”栏目的收视率B.了解某甲型H1N1确诊别人同机乘客的健康情况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查考点:全面调查与抽样调查..分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、了解中央电视台“新闻联播”栏目的收视率因为普查工作量大,适合抽样调查,故此选项正确;B、了解某甲型H1N1确诊别人同机乘客的健康情况是精确度要求高的调查,适于全面调查,故本选项错误;C、解某班每个学生家庭电脑的数量,适于全面调查,故本选项错误;D、“神七”载人飞船发射前对重要零部件的检查是精确度要求高的调查,适于全面调查,故选本项错误.故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)下列方程组中,属于二元一次方程组的是()A.B.C.D.考点:二元一次方程组的定义..分析:根据二元一次方程组的定义,共含有两个未知数,且未知数的次数为1的整式方程组成的方程组是二元一次方程组,直接解析判断即可.解答:解:A、有三个未知数,所以A选项不正确;B、第一个方程不是整式方程,故不是二元一次方程组;C、未知项xy的次数为2,故不是二元一次方程组;D、符合二元一次方程组的定义,是二元一次方程组.故选D.点评:本题考查了二元一次方程组的定义,是二元一次方程组,必须满足:(1)共含有两个未知数;(2)未知项的最高次数为1;(3)整式方程.4.(3分)如图,将三角形纸板ABC沿直线AB向右平行移动,使∠A到达∠B的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A.50°B.40°C.30°D.100°考点:平移的性质..分析:根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠CBE的度数.解答:解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠CBE的度数为:180°﹣50°﹣100°=30°.故选C.点评:此题主要考查了平移的性质以及三角形内角和定理,得出∠CAB=∠EBD=50°是解决问题的关键.5.(3分)实数,0,﹣π,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.1个B.2个C.3个D.4个考点:无理数..分析:根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.解答:解:=3,=4,则无理数有:﹣π,0.1010010001…,共2个.故选B.点评:本题考查了无理数,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.(3分)已知样本容量为30,在以下样本频数分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第2组的频数为()A.12B.10C.9D.6考点:频数(率)分布直方图..分析:从图中得到各小长方形的频数之比,再由频数、频率、总数的关系求解即可.解答:解:读图可知:各小长方形的高之比AE:BF:CG:DH=2:4:3:1,即各组频数之比2:4:3:1,则第2组的频数为×30=12,故选A.点评:本题考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.7.(3分)(2013•荆州模拟)有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去B.①×4+②×3,消去C.②×2+①,消去y D.②×2﹣①,消去yx x考点:解二元一次方程组..专题:计算题.分析:将②中y的系数化为与①中y的系数相同,相减即可.解答:解:由于②×2可得与①相同的y的系数,且所乘数字较小,之后﹣①即可消去y,最简单.故选D.点评:本题考查了解二元一次方程组,构造系数相等的量是解题的关键.8.(3分)(2013•日照)如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组;点的坐标..专题:计算题.分析:根据P为第四象限点,得到横坐标大于0,纵坐标小于0,列出关于x的不等式组,求出不等式组的解集,表示在数轴上即可得到结果.解答:解:根据题意得:,由①得:x>﹣3;由②得:x<4,则不等式组的解集为﹣3<x<4,表示在数轴上,如图所示:.故选C.点评:此题考查了在数轴上表示不等式组的解集,解一元一次不等式组,以及点的坐标,列出不等式组是本题的突破点.9.(3分)(2007•临沂)若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个考点:不等式的性质..分析:根据不等式的基本性质判断.解答:解:∵a<b∴a+1<b+1<b+2因而①一定成立;a<b<0即a,b同号.并且|a|>|b|因而②>1一定成立;④<一定不成立;∵a<b<0即a,b都是负数.∴ab>0a+b<0∴③a+b<ab一定成立.正确的有①②③共有3个式子成立.故选C.点评:本题比较简单的作法是用特殊值法,如令a=﹣3b=﹣2代入各式看是否成立.10.(3分)已知a,b为非零有理数,下面四个不等式组中,解集有可能为﹣2<x<2的不等式组是()A.B.C.D.考点:不等式的解集..分析:根据不等式的解集﹣2<x<2,推出﹣x<1和x<1.然后从选项中找出有可能的不等式组.解答:解:∵﹣2<x<2∴x>﹣2和x<2从而得出只有B的形式和的形式一样.∴只有B解集有可能为﹣2<x<2.故选:B.点评:本题考查了不等式的解集,解题的关键是利用解集推出﹣x<1和x<1.二、填空题(每小题3分,共18分)11.(3分)36的平方根是±6.考点:平方根..分析:根据平方根的定义求解即可.解答:解:36的平方根是±6,故答案为:±6.点评:本题考查了平方根的定义,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.12.(3分)若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=1.考点:二元一次方程的定义..分析:根据二元一次方程满足的条件,即只含有2个未知数,未知数的项的次数是1的整式方程,即可求得m的值.解答:解:根据题意,得|m﹣2|=1且m﹣3≠0,解得m=1.点评:二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数的项的最高次数为一次;(3)方程是整式方程.13.(3分)线段CD是由线段AB平移得到的.点A(﹣2,5)的对应点为C(3,7),则点B(﹣3,0)的对应点D的坐标为(2,2).考点:坐标与图形变化-平移..分析:由于线段CD是由线段AB平移得到的,而点A(﹣2,5)的对应点为C(3,7),比较它们的坐标发现横坐标增加5,纵坐标增加2,利用此规律即可求出点B(﹣3,0)的对应点D的坐标.解答:解:∵线段CD是由线段AB平移得到的,而点A(﹣2,5)的对应点为C(3,7),∴由A平移到C点的横坐标增加5,纵坐标增加2,则点B(﹣3,0)的对应点D的坐标为(2,2).故答案为:(2,2).点评:本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.14.(3分)如图1是长方形纸袋,将纸袋沿EF折叠成图2,再沿BF折叠成图3,若∠DEF=α,用α表示图3中∠CFE的大小为180°﹣3α.考点:翻折变换(折叠问题)..专题:计算题.分析:先根据进行的性质得AD∥BC,则∠BFE=∠DEF=α,根据折叠的性质,把如图1中的方形纸袋沿EF折叠成图2,则∠MEF=α,把图2沿BF折叠成图3,则∠MFH=∠CFM,根据平行线的性质由FH∥MG得到∠MFH=180°﹣∠FMG,再利用三角形外角性质得∠FMG=∠MFE+∠MEF=2α,则∠MFH=180°﹣2α,所以∠CFM=180°﹣2α,然后利用∠CFE=∠CFM﹣∠EFM求解.解答:解:在图1中,∵四边形ABCD为矩形,∴AD∥BC,∴∠BFE=∠DEF=α,∵如图1中的方形纸袋沿EF折叠成图2,∴∠MEF=α,∵图2再沿BF折叠成图3,∴在图3中,∠MFH=∠CFM,∵FH∥MG,∴∠MFH=180°﹣∠FMG,∵∠FMG=∠MFE+∠MEF=α+α=2α,∴∠MFH=180°﹣2α,∴∠CFM=180°﹣2α,∴∠CFE=∠CFM﹣∠EFM=180°﹣2α﹣α=180°﹣3α.故答案为180°﹣3α.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质.15.(3分)如图所示,一个大长方形被两条线段AB、CD分成四个小长方形,其中长方形Ⅰ、Ⅱ、Ⅲ的面积分别是8、6、5,那么阴影部分的面积是:.考点:面积及等积变换..分析:设大长方形的长为a,宽为b,Ⅰ的长为x,宽为y,则Ⅱ的长为a﹣x,宽为y,Ⅲ的长为a﹣x,宽为b﹣y,阴影部分的长为x,宽为b﹣y,设有阴影的矩形面积为z,再根据等高不同底利用面积的比求解即可.解答:解:∵图形Ⅰ、Ⅱ、Ⅲ的面积分别为8、6、5,∴===,∴===,∴=,z=∴S阴影=z=×=.故答案为:.点评:此题考查的是长方形及三角形的面积公式,解答此题的关键是熟知等高不同底的多边形底边的比等于其面积的比.16.(3分)已知关于x的不等式组的解集恰含有2个整数解,则实数a的取值范围是﹣6≤a<﹣4.考点:一元一次不等式组的整数解..分析:首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.解答:解:解得不等式组的解集为:a<x<,∵不等式组只有2个整数解,2<﹣a≤3,解得:﹣6≤a<﹣4.故答案为:﹣6≤a<﹣4.点评:本题考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定a的范围,是解决本题的关键,难度一般.三、解答题(本大题共7小题,共52分)17.(6分)(Ⅰ)解方程组:;(Ⅱ)解不等式组:.考点:解二元一次方程组;解一元一次不等式组..专题:计算题.分析:(Ⅰ)方程组整理后,利用加减消元法求出解即可;(Ⅱ)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(Ⅰ)方程组整理得:,由②得:x=3y+18,代入①得:8(3y+18)=12,解得:y=﹣4,将y=﹣4代入得:x=﹣12+18=6,则方程组的解为;(Ⅱ)不等式整理得:,由①得:x≤1;由②得:x<4,则不等式组的解集为x≤1.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(6分)甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?考点:二元一次方程组的应用..专题:计算题.分析:设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解.解答:解:设甲,乙速度分别为x,y千米/时,依题意得:,解得:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时.点评:本题考查理解题意的能力,关键是设出甲乙的速度,以路程做为等量关系列方程求解.19.(8分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知)∴∠2=∠3()又∵∠1=∠2(已知)∴∠1=∠3()∴AB∥DG()∴∠BAC+∠AGD=180°()∵∠BAC=70°(已知)∴∠AGD=110°.考点:平行线的判定与性质..专题:推理填空题.分析:由EF与AD平行,利用两直线平行,同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AB与DG平行,利用两直线平行同旁内角互补得到两个角互补,即可求出所求角的度数.解答:解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°(已知),∴∠AGD=110°.故答案为:∠3;两直线平行,同位角相等;等量代换;DG,内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°.点评:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.20.(8分)如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.(Ⅰ)建立以点B为原点,AB边所在直线为x轴的直角坐标系.写出点A、B、C、D的坐标;(Ⅱ)求出四边形ABCD的面积;(Ⅲ)请画出将四边形ABCD向上平移5格,再向左平移2格后所得的四边形A′B′C′D′.考点:作图-平移变换..分析:(1)根据题意首先建立平面直角坐标系,进而得出各点坐标;(2)利用S四边形ABCD=S△ABD+S△CBD进而求出即可;(3)利用平移的性质得出平移后对应点坐标,即可得出答案.解答:解:(1)如图所示:A(﹣4,0)、B(0,0)、C2,2)、D(0,3);(2)∵S△DCB=×3×2=3,S△ABD=×3×4=6,∴S四边形ABCD=S△ABD+S△CBD=9;(3)如图所示:四边形A′B′C′D′即为所求.点评:此题主要考查了图形的平移以及四边形面积求法等知识,得出对应点坐标是解题关键.21.(8分)解应用题:两位搬运工人要将若干箱同样的货物用电梯运到楼上.已知一箱货物的质量是65千克,两位工人的体重之和是150千克,电梯的载重量是1800千克,问两位工人一次最多能运多少箱货物?考点:一元一次不等式的应用..专题:应用题.分析:设一次能运x箱货物,根据电梯的载重量不能超过1800千克,可得出不等式,解出即可得出答案.解答:解:设一次能运x箱货物,根据题意得:65x+150≤1800,解得:x≤25,∵x为正整数,∴x的最大整数值为25,答:两位工人一次最多能运25箱货物.点评:本题考查了一元一次不等式的应用,解答本题需要我们仔细审题,找到不等关系,利用不等式求解,难度一般.22.(8分)某中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为126度;(2)共抽查了80名学生;(3)在图2中,将“体育”部分的图形补充完整;(4)爱好“书画”的人数占被调查人数的百分比10%;(5)估计现有学生中,有287人爱好“书画”.考点:条形统计图;用样本估计总体;扇形统计图..专题:计算题.分析:(1)由“电脑”部分的百分比乘以360即可得到结果;(2)由“电脑”部分的人数除以占的百分比即可求出调查的学生总数;(3)由总学生数减去其他的人数求出“体育”部分的人数,补全统计图即可;(4)由“书画”部分的学生数除以总人数即可得到结果;(5)由求出“书画”部分的百分比乘以2870即可得到结果.解答:解:(1)根据题意得:360°×35%=126°;(2)根据题意得:28÷35%=80(人);(3)“体育“部分的是80﹣(28+24+8)=20人,补全统计图,如图所示:(4)根据题意得:8÷80=10%;(5)根据题意得:2870×10%=287(人).故答案为:(1)126;(2)80;(4)10%;(5)287.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.(8分)(2012•从化市一模)为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台)a b处理污水量(吨/月)240200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.考点:一元一次不等式的应用;二元一次方程组的应用..专题:应用题.分析:(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10﹣x)台,则有12x+10(10﹣x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10﹣x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.解答:解:(1)根据题意得:,∴;(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,则:12x+10(10﹣x)≤105,∴x≤2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10﹣x)≥2040,∴x≥1,又∵x≤2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.点评:本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.。

人教版七年级下册期末复习数学试卷3

人教版七年级下册期末复习数学试卷3

人教版七年级下册期末复习数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分) 文档设计者: 设计时间 : 文档类型:文库精品文档,欢迎下载使用。

Word 精品文档,可以编辑修改,放心下载1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示, 小军的位置用(2,1)表示,那么你的位置可以表示成( )C 1A 1ABB 1CD火车站李庄A.(5,4) B.(4,5) C.(3,4) D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

新人教版七年级数学下册期末考试卷及完整答案

新人教版七年级数学下册期末考试卷及完整答案

新人教版七年级数学下册期末考试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( )A.3 B.1 C.0 D.﹣3 二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.因式分解:2218x-=______.4.若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是________.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)326{2317x yx y-=+=(2)414{3314312x yx y+=---=2.如果方程34217123x x-+-=-的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.3.如图是一块长方形的空地,长为x米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x的代数式表示)(2)若设丙地的面积为S平方米,求出S与x的关系式;(3)当200x=时,求S的值.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.在一次实验中,小明把一根弹簧的上端固定、在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.所挂物体质量0 1 2 3 4 5x/kg弹簧长度18 20 22 24 26 28y/cm①上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?②当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?③若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、C5、C6、C7、B8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、20°.3、2(x +3)(x ﹣3).4、2m ≤-5、40°6、160°三、解答题(本大题共6小题,共72分)1、(1)43x y =⎧⎨=⎩ ;(2)3114x y =⎧⎪⎨=⎪⎩. 2、x=10;a=-4;11.3、(1)(0)12x -米 (2)(120)(240)S x x =-- (3)32004、36平方米5、(1)50;72;(2)详见解析;(3)330.6、①上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;②当所挂物体重量为3千克时,弹簧长24厘米;当不挂重物时,弹簧长18厘米;③32厘米.。

人教版七年级下册数学期末考试试卷含答案

人教版七年级下册数学期末考试试卷含答案

人教版七年级下册数学期末考试试题一、单选题1.在实数:3.14159,1.010010001,4.21 ,π,227中,无理数有()A .1个B .2个C .3个D .4个2.下列运算正确的是()A .3a+2a =5a 2B .2a 2b ﹣a 2b =a 2bC .3a+3b =3abD .a 5﹣a 2=a 33.下列调查中,最适合采用全面调查的是()A .对全国中学生睡眠时间的调查B .了解一批节能灯的使用寿命C .对“中国诗词大会”节目收视率的调查D .对玉免二号月球车零部件的调查4.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A .90°B .110°C .108°D .100°5.不考虑优惠,买1本笔记本和3支水笔共需14元,买3本笔记本和5支水笔共需30元,则购买1本笔记本和1支水笔共需()A .3元B .5元C .8元D .13元6.将点()2,1A -向左平移3个单位长度,在向上平移4个单位长度得到点B ,则点B 的坐标是()A .()5,3B .()5,5-C .()1,5--D .()1,3-7.不等式组2−1<5<的解集是x <3,那么m 的取值范围是()A .m >3B .m ≥3C .m <2D .m ≤28.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >0二、填空题9.16的平方根是.10.如图,直线a,b相交,若∠1与∠2互余,则∠3=_____.11.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_____度.12.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是_____.13.已知关于x的不等式323x ax-≥⎧⎨-≥-⎩的整数解共有3个,则a的取值范围是_____.14.如图,把“QQ”笑脸图标放在直角坐标系中,已知左眼A的坐标是(﹣2,3),右眼B的坐标为(0,3),则嘴唇C点的坐标是____________.15.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有___人.16.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x为正整数,则x可以取的所有值是__.三、解答题17.计算题:(1|1| --(2)解方程组21 239 x yx y-=⎧⎨+=⎩(3)解不等式组:513(1) 131722x xx x->+⎧⎪⎨-≤-⎪⎩①②18.已知5a+2的立方根是3,4b+1的算术平方根是3,ca+b+c的值.19.已知不等式组122561x nx m-<⎧⎨+>-⎩的解集是﹣6<x<3,求2m+n的值.20.如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移4格,再向右平移2格所得的△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点B′的坐标:B(,),B′(,).21.如图,∠ADE=∠B,CD∥FG,证明:∠1=∠2.22.我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.23.某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?24.如图,已知l1∥l2,线段MA分别与直线l1,l2交于点A,B,线段MC分别与直线l1,l2交于点C,D,点P在线段AM上运动(P点与A,B,M三点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.(1)若点P在A,B两点之间运动时,若a=25°,β=40°,那么γ=.(2)若点P在A,B两点之间运动时,探究α,β,γ之间的数量关系,请说明理由;(3)若点P在B,M两点之间运动时,α,β,γ之间有何数量关系?(只需直接写出结论)25.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A,B作x轴.y 轴的垂线交于点C,如图所示.点P从原点出发,以每秒1个单位长度的速度沿着O→B→C→A的路线移动,运动时间为t秒.(1)写出A,B,C三点的坐标:A,B,C;(2)当t=14秒时,求△OAP的面积.(3)点P在运动过程中,当△OAP的面积为6时,求t的值及点P的坐标.参考答案1.A【解析】【分析】根据无理数的的定义解答即可.【详解】3.14159364=4,1.010010001,4.21 ,227是有理数;π是无理数.故选A.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3π的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.B【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断即可.【详解】A 、325a a a +=,故本选项错误;B 、222 2a b a b a b ﹣=,故本选项正确;C 、3a 与3b 不是同类项,不能合并,故本选项错误;D 、a 5与a 2不是同类项,不能合并,故本选项错误.故选B .【点睛】本题考查了合并同类项,正确理解同类项的意义是解题的关键.3.D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A 、对全国中学生睡眠时间的调查,应采用抽样调查,故此选项不合题意;B 、了解一批节能灯的使用寿命,应采用抽样调查,故此选项不合题意;C 、对“中国诗词大会”节目收视率的调查,应采用抽样调查,故此选项不合题意;D 、对玉免二号月球车零部件的调查,意义重大,应采用普查,故此选项符合题意;故选:D.【点睛】考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.4.D【解析】【分析】依据l1∥l2,即可得到∠1=∠3=50°,再根据∠4=30°,即可得出从∠2=180°-∠3-∠4=100°.【详解】如图,∵l1∥l2,∴∠1=∠3=50°,又∵∠4=30°,∴∠2=180°-∠3-∠4=180°-50°-30°=100°,故选:D.【点睛】考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.5.C【解析】【分析】设每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可【详解】设购买1本笔记本需要x元,购买1支水笔需要y元,根据题意,得+314 3530x yx y=⎧⎨+=⎩.解得53xy=⎧⎨=⎩.所以x +y =5+3=8(元)故选C .【点睛】此题主要考查二元一次方程组的应用,难度不大,关键在于列出方程组6.D【解析】【分析】根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.【详解】将点A (2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B (−1,3),故选:D .【点睛】本题考查坐标平移,记住坐标平移的规律是解决问题的关键.7.B【解析】【分析】由已知不等式组的解集确定出m 的范围即可.【详解】不等式组整理得:<3<,由解集为x <3,得到m 的范围为m≥3,故选:B .【点睛】考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.8.D【解析】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选D.9.±4.【解析】【详解】由(±4)2=16,可得16的平方根是±4.10.135°.【解析】【分析】由∠1与∠2互余,且∠1=∠2,可求出∠1=∠2=45°,进而根据补角的性质可求出∠3的度数.【详解】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为135°.【点睛】本题考查了余角、对顶角及邻补角的定义,熟练掌握定义是解答本题的关键.11.120【解析】分析:先过点B 作BF ∥CD ,由CD ∥AE ,可得CD ∥BF ∥AE ,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A ,∠BCD=150°,求得答案.详解:如图,过点B 作BF ∥CD ,∵CD ∥AE ,∴CD ∥BF ∥AE ,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.点睛:此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.12.250.【解析】【分析】设这件夹克衫的成本是x 元,根据售价=原价×(1+20%)×0.9,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设这件夹克衫的成本是x 元,依题意,得:(1+20%)×0.9x=270,解得:x=250.故答案是:250.【点睛】考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.0<a ≤1.【解析】【分析】不等式组整理后,由整数解共有3个,确定出a 的范围即可.【详解】不等式组整理得:3x a x ≥⎧⎨≤⎩,即a≤x≤3,由不等式组的整数解共有3个,即1,2,3,则a 的取值范围是0<a≤1,故答案是:0<a≤1.【点睛】考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.14.(-1,1)【解析】【分析】根据左眼,右眼坐标,得到嘴唇C的坐标【详解】解:∵左眼A的坐标是(-2,3),右眼B的坐标为(0,3),∴嘴唇C的坐标是(-1,1),故答案为:(-1,1)【点睛】本题考查了坐标确定位置:直角坐标系内的点与有序实数对一一对应.记住平面内特殊位置的点的坐标特征:(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.15.340.【解析】【分析】用600乘以第3组和第4组的频率和可估计该校一分钟仰卧起坐的次数不少于25次的人数.【详解】600×125 310125++++=340,所以估计该校一分钟仰卧起坐的次数不少于25次的有340人.故答案是:340.【点睛】考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.16.2或3.【解析】【分析】根据题意得出经过1次运算结果不大于7及经过2次运算结果大于7,得出关于x的一元一次不等式组,解之即可得出结论.【详解】根据题意得:若运算进行了2次才停止,则有()21217217x x ⎧+⨯+⎨+≤⎩>,解得:1<x≤3.则x 可以取的所有值是2或3,故答案是:2或3.【点睛】考查了一元一次不等式组的应用,根据运算程序找出关于x 的一元一次不等式组是解题的关键.17.(1(2)31x y =⎧⎨=⎩;(3)24x <≤.【解析】【分析】(1)根据实数的混合运算顺序和运算法则计算可得;(2)利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)原式;(2)21239x y x y -⎧⎨+⎩=①=②,①×2-②得:y=1,代入①得:x=3,所以方程组的解为:31x y ⎧⎨⎩==;(3)解①得:x >2,解②得:x≤4,综合得:2<x≤4.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.10.【解析】【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,相加可得结论.【详解】由已知得:5a+2=27,4b+1=9,c=3,解得:a=5,b=2,c=3,所以:a+b+c=10.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.19.-1.【解析】【分析】分别求出每一个不等式的解集,根据口诀确定不等式组的解集,再结合-6<x<3得出关于m、n的方程组,解之可得.【详解】解x-1<2n得:x<2n+1,解2x+5>6m-1得:x>3m-3,所以,不等式组的解集为:3m-3<x<2n+1,由已知得:3m-3=-6,2n+1=3,解得m=-1,n=1所以:2m+n=-1.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)见解析;(2)(1,2),(3,6).【解析】【分析】(1)根据平移方式作图即可;(2)首先以点A为坐标原点建立平面直角坐标系,然后写出点的坐标即可.【详解】解:(1)如图,△A′B′C′即为所求;(2)如图,以点A为坐标原点建立平面直角坐标系,则B(1,2),B′(3,6).【点睛】本题考查了平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,左右平移改变点的横坐标.21.见解析.【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】∵∠ADE=∠B(已知),∴DE∥BC(同位角相等,两直线平行),∴∠1=∠3(两直线平行,内错角相等);∵CD∥FG(已知),∴∠1=∠2(同位角相等,两直线平行),∴∠2=∠3.(等量代换).【点睛】考查平行线的性质和判定,解题的关键是熟练掌握基本知识.22.(1)样本容量是50;(2)m=16,n=30;(3)补全条形统计图见解析.【解析】【分析】(1)用答对6题的人数除以它所占的百分比得到调查的总人数,即本次抽查的样本容量;(2)用答对7题的人数除以总人数得到A所占的百分比,根据各组所占百分比的和等于单位1得到D所占的百分比,进而求出m、n;(3)用总人数乘以D所占的百分比,得到答对9题的人数,用总人数乘以E所占的百分比,得到答对10题的人数,据此补充条形统计图.【详解】(1)样本容量是:510%=50;(2)850=16%,所以,m=16,1-0.1-0.16-0.24-0.2=0.3=30%,所以,n=30(3)答对9题人数:30%×50=15,答对10题人数:20%×50=10,如图,【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)足球的单价是70元,篮球的单价是100元;(2)有2种不同的购买方案.【解析】(1)设足球的单价为x 元/个,篮球的单价为y 元/个,根据“购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 个足球,则购买篮球(24-m )个,根据总价=单价×数量结合购买篮球的个数大于足球个数的2倍且购买球的总费用不超过2220元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数即可得出各购买方案.【详解】(1)设购买一个足球需要x 元,一个篮球需y 元,则有x +2y =2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。

人教版七年级第二学期期末数学试卷及答案三

人教版七年级第二学期期末数学试卷及答案三

人教版七年级第二学期期末数学试卷及答案一、选择题(共10小题).1.下列各数中,大于1的数是()A.﹣2B.﹣1C.0D.2.不等式x﹣2>0的解集可以在数轴上表示为()A.B.C.D.3.下列方程组中,不是二元一次方程组的是()A.B.C.D.4.下列调查中,适宜全面调查方式的是()A.了解广州市空气质量B.调查某批次的灯泡的使用寿命C.了解珠江中生物的种类D.了解某班学生对“中国梦”内涵的知晓率5.如图,将△ABC向右平移得到△DEF,已知A,D两点的距离为1,CE=2,则BF的长为()A.5B.4C.3D.26.在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣17.下列说法正确的是()A.0的平方根是0B.1的平方根是﹣1C.1的平方根是1D.﹣1的平方根是﹣18.把方程2x﹣7y=5改写成用含x的式子表示y的形式为()A.y=B.y=C.y=﹣D.y=9.如图,若AB∥CD∥EF,则∠BAC+∠ACE+∠CEF的度数为()A.360°B.270°C.180°D.无法确定10.把一根长为7m的钢管截成2m长和1m长两种规格的钢管(损耗忽略不计),不造成浪费的截法共有()A.0种B.1种C.2种D.3种二、填空题(共6小题).11.计算:+3=.12.如图,已知直线a,b相交,∠α+∠β=80°,那么∠α=.13.在平面直角坐标系中,将点A(3,2)向下平移4个单位长度,可以得到对应点A′的坐标是.14.不等式3x﹣7≥2的最小整数解是.15.在某次学校捐款活动中,把七年级捐款情况的统计结果绘制成如图所示的不完整的统计图,其中七年级捐10元的人数占该年级捐款总人数的25%,则七年级捐20元的人数为人.16.一种运算:x*y=ax+by(a,b为常数),若3*4=2,5*(﹣1)=11,则2*6=.三、解答题(共7小题,满分72分)17.计算:()18.完成下面的证明.如图,AC⊥BC,DG⊥AC,垂足分别为点C,G,∠1=∠2.求证:CD∥EF.证明:∵AC⊥BC,DG⊥AC,(已知)∴∠DGA=∠BCA=90°,(垂直的定义)∴∥()∴∠2=∠BCD,()又∵∠l=∠2,(已知)∴∠1=∠,(等量代换)∴CD∥EF.(同位角相等,两直线平行)19.解不等式组:.20.某中学开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,调查结果统计如表:等级非常了解比较了解基本了解不太了解人数50110364百分比25%m18%2%(1)本次问卷调查抽取的样本容量为,表中m=%;(2)求“非常了解”对应扇形的圆心角度数,并补全如图的扇形统计图.21.如图,学校对应点A的坐标为(2,1),图书馆对应点B的坐标为(﹣1,﹣2)(图中小正方形的边长代表1个单位长度),解答以下问题:(1)请补全原有的平面直角坐标系;(2)若体育馆对应点C的坐标为(3,﹣2),请在图中标出点C;(3)在(2)中,画出△ABC,求△ABC的面积.22.某商场销售A,B两种型号的红外测温仪,进价分别为160元/台和120元/台.近两周的销售情况如下表:销售时段销售数量销售总额A种型号B种型号第一周3台4台1200元第二周5台6台1900元(1)求A,B两种型号的红外测温仪的销售单价分别为多少元/台;(2)若进价不变,商场准备用至多7500元再采购这两种型号的红外测温仪50台,求A种型号的红外测温仪最多能采购多少台?23.如图,在△ABC中,点D,E,F分别在AB,BC,CA上,DE交BF于点G,∠1与∠2互补.(1)试判断AC,DE的位置关系,并说明理由;(2)如图,EF⊥BC,垂足为点E,过点G作GH⊥EF,垂足为点H,点N是线段BE上一点,∠NBH=∠NHB,HM平分∠NHF.①求证:HB平分∠GHN;②问∠BHM的大小是否改变?若不变,请求出∠BHM的度数;若改变,请求出∠BHM的度数的取值范围.参考答案一、选择题(共10小题).1.下列各数中,大于1的数是()A.﹣2B.﹣1C.0D.【分析】根据各个数的大小进行比较得出答案.解:∵<<,∴1<<2,因此有﹣2<﹣1<0<1<,所以大于1的数是,故选:D.2.不等式x﹣2>0的解集可以在数轴上表示为()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.解:x﹣2>0,x>2,在数轴上表示为.故选:B.3.下列方程组中,不是二元一次方程组的是()A.B.C.D.【分析】二元一次方程的定义:含有两个未知数,并且未知数的项的最高次数是1的方程叫二元一次方程;二元一次方程组的定义:由两个二元一次方程组成的方程组叫二元一次方程组.依此即可求解.解:由二元一次方程组的定义可知,方程组中不是二元一次方程组的是,因为方程xy=0中未知数的次数是2次,故选:B.4.下列调查中,适宜全面调查方式的是()A.了解广州市空气质量B.调查某批次的灯泡的使用寿命C.了解珠江中生物的种类D.了解某班学生对“中国梦”内涵的知晓率【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、了解广州市空气质量,飞机起飞前,应采用抽样调查,故此选项不合题意;B、调查某批次的灯泡的使用寿命,破坏性较强,应采用抽样调查,故此选项不合题意;C、了解珠江中生物的种类,应采用抽样调查,故此选项不合题意;D、解某班学生对“中国梦”内涵的知晓率,适宜用全面调查,故此选项符合题意.故选:D.5.如图,将△ABC向右平移得到△DEF,已知A,D两点的距离为1,CE=2,则BF的长为()A.5B.4C.3D.2【分析】根据平移的性质解决问题即可.解:∵将△ABC向右平移得到△DEF,∴AD=BE=CF=1,∵EC=2,∴BF=BE+EF+CF=1+2+1=4,故选:B.6.在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣1【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.7.下列说法正确的是()A.0的平方根是0B.1的平方根是﹣1C.1的平方根是1D.﹣1的平方根是﹣1【分析】利用平方根的定义解答即可.解:A.0的平方根是0,此选项正确;B.1的平方根是±1,此选项错误;C.1的平方根是±1,此选项错误;D.﹣1没有平方根,此选项错误,故选:A.8.把方程2x﹣7y=5改写成用含x的式子表示y的形式为()A.y=B.y=C.y=﹣D.y=【分析】把x看做已知数表示出y即可.解:方程2x﹣7y=5,移项得:﹣7y=5﹣2x,解得:y=,即y=.故选:D.9.如图,若AB∥CD∥EF,则∠BAC+∠ACE+∠CEF的度数为()A.360°B.270°C.180°D.无法确定【分析】根据平行线的性质,可以得到∠BAC+∠ACD和∠DCE+∠CEF的度数,从而可以得到∠BAC+∠ACE+∠CEF的度数,本题得以解决.解:∵AB∥CD∥EF,∴∠BAC+∠ACD=180°,∠DCE+∠CEF=180°,∴∠BAC+∠ACD+∠DCE+∠CEF=360°,即∠BAC+∠ACE+∠CEF=360°,故选:A.10.把一根长为7m的钢管截成2m长和1m长两种规格的钢管(损耗忽略不计),不造成浪费的截法共有()A.0种B.1种C.2种D.3种【分析】截下来的符合条件的钢管长度之和刚好等于总长7米时,不造成浪费,设截成2米长的钢管x根,1米长的y根,由题意得到关于x与y的方程,求出方程的正整数解即可得到结果.【解答】解;截下来的符合条件的钢管长度之和刚好等于总长7米时,不造成浪费,设截成2米长的钢管x根,1米长的y根,由题意得,2x+y=7,因为x,y都是正整数,所以符合条件的解为:,,,则有3种不同的截法.故选:D.二、填空题(本大题共6小题,每小题3分,满分18分.)11.计算:+3=.【分析】直接合并同类二次根式即可.解:+3=(1+3)=.故答案为:.12.如图,已知直线a,b相交,∠α+∠β=80°,那么∠α=40°.【分析】根据对顶角相等可得∠α=∠β,然后求解即可.解:∵∠α=∠β(对顶角相等),∴∠α+∠β=∠α+∠α=80°,解得∠α=40°.故答案为:40°.13.在平面直角坐标系中,将点A(3,2)向下平移4个单位长度,可以得到对应点A′的坐标是(3,﹣2).【分析】根据平移规律解决问题即可.解:由题中平移规律可知:A′的横坐标为3;纵坐标为2﹣4=﹣2;∴A′的坐标为(3,﹣2).故答案填:(3,﹣2).14.不等式3x﹣7≥2的最小整数解是3.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的整数即可.解:解不等式3x﹣7≥2,得x≥3,所以不等式3x﹣7≥2的最小整数解是3.故答案为:3.15.在某次学校捐款活动中,把七年级捐款情况的统计结果绘制成如图所示的不完整的统计图,其中七年级捐10元的人数占该年级捐款总人数的25%,则七年级捐20元的人数为35人.【分析】根据七年级捐10元的人数占该年级捐款总人数的25%,可以求得七年级捐款的总人数,然后根据条形统计图中的数据,即可得到捐款20元的学生人数.解:七年级捐款的人数为:20÷25%=80(人),捐款20元的有:80﹣20﹣10﹣15=35(人),故答案为:35.16.一种运算:x*y=ax+by(a,b为常数),若3*4=2,5*(﹣1)=11,则2*6=﹣2.【分析】根据已知得出关于a、b的方程组,求出a、b的值,再求出答案即可.解:∵3*4=2,5*(﹣1)=11,,解得:a=2,b=﹣1,∴2*6=2×2+6×(﹣1)=﹣2,故答案为:﹣2.三、解答题(本大题共7小题,满分72分,解答应写出文字说明、证明过程或演算步骤.)17.计算:()【分析】直接利用二次根式的混合运算法则求出即可.解:()=2+2.18.完成下面的证明.如图,AC⊥BC,DG⊥AC,垂足分别为点C,G,∠1=∠2.求证:CD∥EF.证明:∵AC⊥BC,DG⊥AC,(已知)∴∠DGA=∠BCA=90°,(垂直的定义)∴DG∥BC(同位角相等,两直线平行)∴∠2=∠BCD,(两直线平行,内错角相等)又∵∠l=∠2,(已知)∴∠1=∠BCD,(等量代换)∴CD∥EF.(同位角相等,两直线平行)【分析】根据垂直的定义求出∠DGA=∠BCA=90°,根据平行线的判定得出DG∥BC,根据平行线的性质得出∠2=∠BCD,求出∠1=∠BCD,根据平行线的判定得出即可.【解答】证明:∵AC⊥BC,DG⊥AC(已知),∴∠DGA=∠BCA=90°,(垂直的定义),∴DG∥BC(同位角相等,两直线平行),∴∠2=∠BCD(两直线平行,内错角相等),又∵∠l=∠2,(已知)∴∠1=∠BCD(等量代换),∴CD∥EF(同位角相等,两直线平行),故答案为:DG,BC,同位角相等,两直线平行,两直线平行,内错角相等,BCD.19.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式x+3≤5,得:x≤2,解不等式3x﹣1>﹣7,得:x>﹣2,则不等式组的解集为﹣2<x≤2.20.某中学开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,调查结果统计如表:等级非常了解比较了解基本了解不太了解人数50110364百分比25%m18%2%(1)本次问卷调查抽取的样本容量为200,表中m=55%;(2)求“非常了解”对应扇形的圆心角度数,并补全如图的扇形统计图.【分析】(1)由“非常了解”的人数及其所占百分比可得样本容量,利用百分比的概念可得m的值;(2)用360°乘以“非常了解”的人数对应的百分比可得其圆心角度数,结合m的值可补全图形.解:(1)本次问卷调查抽取的样本容量为50÷25%=200,m=110÷200×100%=55%,故答案为:200,55;(2)“非常了解”对应扇形的圆心角度数为360°×25%=90°,补全图形如下:21.如图,学校对应点A的坐标为(2,1),图书馆对应点B的坐标为(﹣1,﹣2)(图中小正方形的边长代表1个单位长度),解答以下问题:(1)请补全原有的平面直角坐标系;(2)若体育馆对应点C的坐标为(3,﹣2),请在图中标出点C;(3)在(2)中,画出△ABC,求△ABC的面积.【分析】(1)以点A向下1个单位,向左2个单位为坐标原点建立平面直角坐标系;(2)根据点C的坐标为(3,﹣2),先确定在第四象限,并确定位置;(3)根据图形,利用三角形面积公式即可解答.解:(1)(2)如图所示:(3)△ABC的面积==6.22.某商场销售A,B两种型号的红外测温仪,进价分别为160元/台和120元/台.近两周的销售情况如下表:销售时段销售数量销售总额A种型号B种型号第一周3台4台1200元第二周5台6台1900元(1)求A,B两种型号的红外测温仪的销售单价分别为多少元/台;(2)若进价不变,商场准备用至多7500元再采购这两种型号的红外测温仪50台,求A种型号的红外测温仪最多能采购多少台?【分析】(1)设A种型号的红外测温仪的销售单价为x元,B种型号的红外测温仪的销售单价为y元,根据近两周的销售情况数据表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号的红外测温仪采购了m台,则B种型号的红外测温仪采购了(50﹣m)台,根据总价=单价×数量结合总价不超过7500元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.解:(1)设A种型号的红外测温仪的销售单价为x元,B种型号的红外测温仪的销售单价为y元,依题意,得:,解得:.答:A种型号的红外测温仪的销售单价为200元,B种型号的红外测温仪的销售单价为150元.(2)设A种型号的红外测温仪采购了m台,则B种型号的红外测温仪采购了(50﹣m)台,依题意,得:160m+120(50﹣m)≤7500,解得:m≤.∵m为正整数,∴m可取得最大值为37.答:A种型号的红外测温仪最多能采购37台.23.如图,在△ABC中,点D,E,F分别在AB,BC,CA上,DE交BF于点G,∠1与∠2互补.(1)试判断AC,DE的位置关系,并说明理由;(2)如图,EF⊥BC,垂足为点E,过点G作GH⊥EF,垂足为点H,点N是线段BE上一点,∠NBH=∠NHB,HM平分∠NHF.①求证:HB平分∠GHN;②问∠BHM的大小是否改变?若不变,请求出∠BHM的度数;若改变,请求出∠BHM的度数的取值范围.【分析】(1)根据∠1与∠2互补,∠2=∠DGF,可得∠1+∠DGF=180°,进而可以判断AC∥DE;(2)①根据垂直于同一条直线的两条直线平行,及角平分线定义即可证明;②根据HM平分∠NHF.结合①可得2∠GHM+2∠BHG=90°,得∠GHM+∠BHG=45°,即可求出∠BHM的度数.解:(1)AC∥DE,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,∵∠2=∠DGF,∴∠1+∠DGF=180°,∴AC∥DE;(2)①∵EF⊥BC,GH⊥EF,∴∠BEF=∠GHF=90°,∴BE∥GH,∴∠NBH=∠BHG,∵∠NBH=∠NHB,∴∠BHG=∠NHB,∴HB平分∠GHN;②∠BHM的大小不发生改变,∠BHM=45°.理由如下:∵HM平分∠NHF.∴∠FHM=∠NHM,即∠FHM=∠GHM+∠BHG+∠NHB,∵∠FHM+∠GHM=90°,∴∠GHM+∠BHG+∠NHB+∠GHM=90°,∵∠BHG=∠NHB,∴2∠GHM+2∠BHG=90°,∴∠GHM+∠BHG=45°.即∠BHM=45°.答:∠BHM的大小不发生改变,∠BHM=45°.。

部编数学七年级下册数学(人教版七年级下册全部)(考试版)A3含答案

部编数学七年级下册数学(人教版七年级下册全部)(考试版)A3含答案

2022-2023学年下学期期末考前必刷卷七年级数学(考试时间:100分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版七下全部。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列每组图形中,左边的图形平移后可以得到右边图形的是()A.B.C.D.2.0,2π,37,,,2.1212212221中,是有理数的个数是( )A.2B.3C.4D.53.如图,明明和乐乐下棋,明明执圆形棋子,乐乐执方形棋子,若棋盘中心的圆形棋子位置用(-1,1)表示,乐乐将第4枚方形棋子放入棋盘后,所有棋子构成轴对称图形,则乐乐放方形棋子的位置可能是( )A.(−1,−1)B.(−1,3)C.(0,2)D.(−1,2)4.如图,AB//CD,EG平分∠BEF交CD于点G.若∠EFC=82°,则∠EGF的度数为( )A.36°B.41°C.46°D.51°5.用加减法解方程组时,若要求消去y,则应( )A.①×3+②×2 B.①×3﹣②×2C.①×5+②×3D.①×5﹣②×36.不等式2x<﹣4的解集在数轴上表示为A.B.C.D.7.A.7~8之间B.8.0~8.5之间C.8.5~9.0之间D.9~10之间.8.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A与玩偶B组合成一批盲盒,一个盲盒搭配1个玩偶A和2个玩偶B,已知每米布料可做1个玩偶A或3个玩偶B,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用x米布料做玩偶A,用y米布料做玩偶B,使得恰好配套,则下列方程组正确的是( )A.x+y=136x=3y B.x+y=136x=2×3yC.x+y=1363x=y D.x+y=1362x=3y9.如图,AB∥CD,AD平分∠BAC,且∠D=72°,则∠C的度数为( )A.36°B.72°C.108°D.144°10.如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变为了舒适,需调整∠D的大小,使∠EFD=130°,则∠D应调整为( )A.30°B.25°C.20°D.10°第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11. ; ;③(2x)2⋅x3÷x4 .12.比较大小:0.01 -100,−56( )−6713.写出一个二元一次方程,使它的解为x=2y=−3,方程: .14.已知关于x的不等式组x−a≥03−2x>−1的整数解有5个,则a的取值范围是 .15.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A= .三.解答题(共3小题,满分24分)16.|17.解不等式组:3x−2<x+28−x≤1−3(x−1).18.补全下面的解答过程.如图,AB CD,点E,F在直线CD下方,连接BE,DE,BF,DF.BF 与CD交于点G.已知BE平分∠ABF,DE平分∠CDF,∠F=∠BGD,探究∠E与∠CDF的数量关系.解:∵AB CD,∴∠ABF=∠().∵BE平分∠ABF,∴,( ).∵,∴∠EBF=∠().∴BE DF().∴∠=∠EDF().∵DE平分∠CDF,∴∠CDF=2∠EDF().∴.四、解答题(共3小题,满分27分)19.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)用含 、 的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21平方米,且地面总面积是卫生间面积的15倍.若铺1平方米地砖的平均费用为100元,那么铺地砖的总费用为多少元?20.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x 分频数(人数)第1组50≤x <606第2组60≤x <708第3组70≤x <8014第4组80≤x <90a 第5组90≤x <10010请结合图表完成下列各题:(1)①求表中a 的值;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.21.如图,组成的正方形网格的每个小方格的边长都为单位1,每一个小方格的顶点叫做格点.已知点A 、、、都在格点上.请按下述要求画图并回答问题:(1)建立适当的平面直角坐标系,使点的坐标为;(2)在(1)的条件下,完成下列问题:①过点作,,并写出点的坐标;②在网格中轴的下方找出所有的格点,使,并写出格点的坐标;③线段交轴于点,求点的坐标.五、解答题(共2小题,满分24分)22.某校为了丰富同学们的课外活动,决定给全校每班配备同款羽毛球拍和羽毛球;2副羽毛球拍和20个羽毛球共需300元;3副羽毛球拍和25个羽毛球共需425元.(1)求每副羽毛球拍和每个羽毛球各是多少元?(2)现有甲、乙两家商店以同样的价格销售该款羽毛球拍和羽毛球,为了促销,两家商店各自推出不同的优惠方案:在甲商店购买一副羽毛球拍送5个羽毛球;在乙商店所有商品均打八五折.若该校共10个班,每班配6副羽毛球拍和 个羽毛球,且只在一家商店购买,学校到哪家商店购买更划算?23.已知:AB ∥CD .(1)探究∠B 、∠BED 、∠D 之间的数量关系,并说明理由;(2)利用上述中的结论,①如图2,已知AB ∥CD,试探究∠E、∠G 、∠B 、∠F、∠D之间的数量关系,并说明理由;②如图3,已知AB ∥CD ,请直接写出∠B 、∠D 、∠E 1、∠E 2……∠En 、∠F 1、∠F 2…∠F n +1之间的数量关系.。

2022-2023学年人教版数学七年级下册期末考试卷三

2022-2023学年人教版数学七年级下册期末考试卷三

2022-2023学年度七年级期末考试卷三七年级数学考试范围:xxx ;考试时间:100分钟;命题人:一、单选题(每小题4分,共40分)1.式子:①2>0;②4x +y≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( ) A .1个 B .2个 C .3个 D .4个 2.在-2,4,2,3.14,327-,5π,这6个数中,无理数共有( )A .4个B .3个C .2个D .1个 3.如图,由AD∥BC 可以得到的是( ) A .∠1=∠2 B .∠3+∠4=90° C .∠DAB+∠ABC =180°D .∠ABC+∠BCD =180°4.某市2017年中考考生约为4万人,从中抽取2 000名考生的数学成绩进行分析,在这个问题中样本是指( )A .2 000B .2 000名考生的数学成绩C .4万名考生的数学成绩D .2 000名考生 5.已知23(m+4)x |m|–3+6>0是关于x 的一元一次不等式,则m 的值为( ) A .4 B .±4 C .3 D .±36.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( ) A .±2 B .2 C .2 D .47.关于x 的一元一次不等式23m x-≤﹣2的解集为x≥4,则m 的值为( )A .14B .7C .﹣2D .28.如果一元一次不等式(m+2)x >m+2的解集为x <1,则m 满足的条件是( ) A .m <﹣2 B .m≤﹣2 C .m >﹣2 D .m≥﹣2 9.若关于x 的方程2(x+k)=x+6的解是非负数,则k 的取值范围是( ) A .k≤3 B .k >3 C .k≥3 D .k <310.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩二、填空题(每小题3分,共30分)11. 3-5的相反数为______,|1-2|=_______,25的算术平方根是____,64的立方根是______,364的平方根是_______.12.已知点A 在x 轴上方,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是__. 13.已知方程5x +4y -3=0,改写成用含x 的式子表示y 的形式___________ 14.已知点A (4,3),AB∥x 轴,且AB =3,则B 点的坐标为_________.15.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解满足x+y=0 ,则k 的值是_________16.适合不等式组 的全部整数解的和是17.若一个正数的平方根分别是2a-1和-a+2,则a=______,这个正数是_______. 18.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是_____.19.将直角梯形ABCD 平移得梯形EFGH ,若10,2,4HG MC MG ===,则图中阴影部分的面积为_________平方单位.20.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b .如:5x -1>3x -432-x ≥31-1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.1 2345678910三、解答题:(80分) 21.(16分)计算及求值:(1)253521---+- (2)———(—1)²(3)22(31)(5)x -=-(4)解方程组:3()4()4126x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩22、(8分)解不等式组:并把解集在数轴上表示出来.(1) 253(2)21032x x x +≤+⎧⎪⎨-+>⎪⎩①② (2)23.(10分)△ A B C 与'A B C ∆''在平面直角坐标系中的位置如图. (1)分别写出下列各点的坐标:A ' ______ ; B '_______ ;C ' _______ ;(2)说明'A B C ∆''由△ A B C 经过怎样的平移得到? ________________________________.(3)若点P (a ,b )是△ A B C 内部一点,则平移后'A B C ∆''内的对应点P '的坐标为 ________ ; (4)求△ A B C 的面积.. 24.(10分)如图,BD 是ABC ∆的角平分线,BDE EBD ∠=∠,交AB 于点E ,45A ∠=︒,60BDC ∠=︒, (1)求证://DE BC ,(2)求BDA ∠与BED ∠的度数.25.(10分)某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1) 该商场购进A 、B 两种商品各多少件?(2) 商场第二次以原进价购进A 、B 两种商品.购进B 种商品的件数不变,而购进A 种商品的件数是第一次的2倍,A 种商品按原价出售,而B 种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元?26.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(1)班学生即将所穿校服型号情况进行摸底调查,并根据调查结果绘制如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题: (1)该班共有多少名学生?(2)在条形统计图中,请把空缺部分补充完整;在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(3)求该班学生所穿校服型号的众数和中位数.如果该高中学校准备招收2000名高一新生,则估计需要准备多少套180型号的校服? 27、(14分)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A 、B 两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买3台设备少6万元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版数学精品教学资料
人教版七年级下册期末复习数学试卷
一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...
是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )
3.已知a >b >0,那么下列不等式组中无解..
的是( ) A .⎩⎨
⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b
x a
x
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )
(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为1
2x y =⎧⎨
=⎩的方程组是( )
A.135x y x y -=⎧⎨+=⎩
B.135x y x y -=-⎧⎨+=-⎩
C.331x y x y -=⎧⎨-=⎩
D.2335x y x y -=-⎧⎨+=⎩
6.如图,在△ABC 中,∠ABC=500
,∠ACB=800
,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大
小是( )
A .1000
B .1100
C .1150
D .120
P
C
B
A
小刚
小军
小华
(1) (2) (3)
7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的
1
2
,则这个多边形的边数是( ) A .5 B .6 C .7 D .8
9.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20
cm 2
,则四边形A 1DCC 1的面积为( )
A .10 cm 2
B .12 cm 2
C .15 cm 2
D .17 cm
2
10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示, 小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4)
B.(4,5)
C.(3,4)
D.(4,3)
二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.
C 1
A 1
A
B
B 1
C
D
火车站李庄11. 12.不等式5x-9≤3(x+1)的解集是________.
13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.
14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选
一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.
16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.
17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是
_____________.(将所有答案的序号都填上) 18.
三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.
19.解不等式组:⎪⎩⎪
⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.
20.解方程组:2
31342
4()3(2)17
x y x y x y ⎧-=
⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

1
D 2
A
E
C
B
22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.
F
D
C
B
E
A
23.如图, 已知A (-4,-1),B (-5,-4),C (-1,-3),△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点P(x 1,y 1)平移后的对应点为P′(x 1+6,y 1+4)。

(1)请在图中作出△A′B′C′;(2)写出点A′、B′、C′的坐标.
C
B
A
D
24.长沙市某公园的门票价格如下表所示:
购票人数1~50人51~100人100人以上
票价10元/人8元/人5元/人
某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?
25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?请设计出来.
答案:
一、选择题:(共30分)
BCCDD,CBBCD
二、填空题:(共24分)
11.±7,7,-2 12. x≤6
13.三 14.垂线段最短。

15. 40 16. 400
17. ①②③ 18. x=±5,y=3
三、解答题:(共46分)
19. 解:第一个不等式可化为
x-3x+6≥4,其解集为x≤1.
第二个不等式可化为
2(2x-1)<5(x+1),
有 4x-2<5x+5,其解集为x>-7.
∴原不等式组的解集为-7<x≤1.
把解集表示在数轴上为:
20. 解:原方程可化为
896
27170
x y
x y
-=


++=

C'
B'
A'
P'(x1+6,y1+4)
P(x1,y1)-2
x
y
2
35
4
1
-5
-1
-3
-40
-4
-3-2-12
1
4
3
C
B
A
y
-7 1
C 'B '
A 'P '(x 1+6,y 1+4)P(x 1,y 1)-2x
y 23541-5-1-3
-40-4-3-2-1214
3C
B
A ∴ 8960
828680
x y x y --=⎧⎨
++=⎩
两方程相减,可得 37y+74=0, ∴ y=-2.从而 32
x =-
. 因此,原方程组的解为 322
x y ⎧=-⎪
⎨⎪=-⎩
21. ∠B=∠C 。

理由:
∵AD ∥BC
∴∠1=∠B ,∠2=∠C ∵∠1=∠2 ∴∠B=∠C
22. 解:因为∠AFE=90°,
所以∠AEF=90°-∠A=90°-35°=55°.
所以∠CED=•∠AEF=55°, 所以∠ACD=180°-∠CED-∠D
=180°-55°-42=83°.
23. A′(2,3),B′(1,0),C′(5,1).
24. 解:设甲、乙两班分别有x 、y 人.
根据题意得810920
55515
x y x y +=⎧⎨
+=⎩
解得55
48x y =⎧⎨
=⎩
故甲班有55人,乙班有48人.
25. 解:设用A 型货厢x 节,则用B 型货厢(50-x )节,由题意,得 3525(50)1530
1535(50)1150
x x x x +-≥⎧⎨
+-≥⎩
解得28≤x≤30.
因为x为整数,所以x只能取28,29,30.
相应地(5O-x)的值为22,21,20.
所以共有三种调运方案.
第一种调运方案:用 A型货厢 28节,B型货厢22节;
第二种调运方案:用A型货厢29节,B型货厢21节;
第三种调运方案:用A型货厢30节,用B型货厢20节.。

相关文档
最新文档