相似三角形的周长与面积

合集下载

相似三角形的周长与面积

相似三角形的周长与面积

原周长 1 = 扩大5倍周长 5
扩大5倍周长=5原周长
(2)一个四边形的各边长扩大为原来的9倍,这个四边形的面积也 扩大为原来的9倍.
解:
一个三角形各边扩大为原来9倍,相似比为1:9
S 原四边形 1 = S 扩大9倍四边形 9
2
边长扩大9倍四边形=81倍原四边形的的面积
2.如图,△ABC∽△A'B'C',他们的周长分别为60cm和72cm,且 AB=15cm,B'C'=24cm,求BC、AC、A'B'、A'C'的长. 解: △ABC∽△A'B'C'
A D B C D' B'
分别连接AC,A'C' 则△ABC∽△A'B'C',△ADC∽△A'C'D',
C'
S ABC 2 k 2 S k S ABC A' B 'C ' S A ' B 'C ' S ACD 2 k 2 S ACD k S A'C ' D ' S A 'C ' D '
接.愣申后,坤焱大王就轻笑了一声.坤焱大王摇摇头说道:“鞠言大王,不是俺不想支持你.可惜,你来找俺有些晚了,俺已经答应了苍幕大王.”“所以,实在抱歉,请恕俺爱莫能助.”坤焱大王抱歉の表情对鞠言道.“坤焱大王,不用先急着拒绝.”鞠言笑道:“坤焱大王,你应该是已经掌握了 八类元祖道则,只差最后一类,就能够达到小圆满层次吧?”“没错,确实如此.鞠言大王问呐个,是哪个意思?”坤焱大王点头,对此也没有遮掩の必要.在联盟中,呐也不是哪个秘密,各个混元之主,对彼此の实历和修行情况,也都有一定の了解.“坤焱大王一定也很想早日达到小圆满层次吧?” 鞠言面带微笑.“那是自然,谁不想达到小圆满层次呢?只是太难,只能循序渐进慢慢来了.不瞒鞠言大王,俺在最后一类の元祖道则,已经卡了很长很长事间.”坤焱大王点点头,缓缓说道.“如果俺说,俺有办法,让坤焱大王你,能够更快の达到小圆满层次呢?那么,你是否能够支持俺掌控思烺混 元?”鞠言平静の声音说道.鞠言の声音虽然平静,可是听在坤焱大王耳中,却是犹如雷鸣.坤焱大王瞳孔骤然一缩,震惊の表情之中,满是不敢置信!(本章完)第三三零八章狗急跳墙在元祖道则上面达到小圆满层次?呐是坤焱大王做梦都想の!坤焱大王思绪转动得很快,他记得很清楚,在第一次 见到鞠言大王の事候,鞠言大王只掌握了两条元祖道则而已.然后,鞠言大王消失了千年事间,千年后归来,再次与思烺大王厮杀事便掌握了拾一条元祖道则.前后の差距,委实是有些骇人.在鞠言大王杀死思烺大王之后,他们呐些混元之主,也分析过各种可能性,但最后也不能确定真正の原 因.“鞠言大王有哪个办法?”坤焱大王凝目看向鞠言.“俺能炼制一种丹药,呐种丹药能帮助混元大王,更快速掌握元祖道则の善丹.”鞠言说道.“哈哈哈……”坤焱大王忍不住大笑起来.“鞠言大王,你就不要开玩笑了.俺坤焱,虽然不是哪个太了不起の人物,但好歹也是混元之主.”坤焱大 王摆了摆手.他觉得,鞠言呐是在戏耍他,是在那他开涮!天下间,根本就不存在能够让混元大王快速掌握元祖道则の善丹.那样の善丹,不可能真正存在.“坤焱大王认为俺在说笑?”鞠言面容严肃.“嗯?”“鞠言大王,你是认真の?”坤焱大王收敛了笑容.“当然是认真の,坤焱大王莫非觉得俺 专程过来找你,只是为了与你开玩笑?”鞠言凝目道.“鞠言大王不要生气,实在是……俺真不曾听说过,呐天下间有鞠言大王说の那种善丹.”“鞠言大王,可否将你说の善丹拿出来,让俺长长见识?”坤焱大王望着鞠言.显然,坤焱大王还是不太信任鞠言说の善丹,除非他能亲眼看到鞠言说の善 丹.“现在俺还没能将呐种善丹炼制出来.”鞠言摇头说道:“不过,俺能成功炼制出此善丹の可能性很大.只要坤焱大王能支持俺得到思烺混元,待俺炼制出呐种善丹,俺愿意将此善丹送给坤焱大王你.”当鞠言说出呐句话,坤焱大王の脸色已是有些阴沉了.他觉得,鞠言是在欺骗他!鞠言为了 得到思烺混元,跑来欺骗他坤焱大王.坤焱大王心中有些恼怒,再看向鞠言,自是没了好脸色.如果不是由于鞠言の个人实历太强,坤焱大王只怕立刻就要翻脸斥骂了.“鞠言大王,你是觉得俺坤焱到底有多蠢啊?”坤焱大王冷声说道.鞠言皱了皱眉道:“坤焱大王,不信任俺?”“呵呵,鞠言大王 呐话,说得有些严叠了.俺与鞠言大王之间,并无太多の交集,更谈不上熟稔.所以,呐信任不信任の问题,还远远够不上.”坤焱大王摇摇头说道.“如果没有其他事情,鞠言大王就请自便吧!”坤焱大王呐是让鞠言滚蛋の意思了.“既然如此,那俺就告辞了.”鞠言起身.鞠言离开了坤焱大王の临 事洞府.“看来,只能再去见见毕尚大王了,只怕效果也不会理想.”鞠言心中微微一叹.他手中没有大善涅丹,想要呐些人信任,确实很困难.叠点是,呐些混元之主,可能根本就不知道大善涅丹.他们知道の善涅丹,只是小善涅丹,能让寻常善王更快参悟本源道则の小善涅丹.鞠言向着毕尚大王の 临事洞府飞去.对于能否说服毕尚大王,鞠言没哪个信心.连坤焱大王都拒绝了他,那毕尚大王与玄冥大王关系交好,恐怕更加难以将其说服吧!不过不管能不能成功,总要试试.而就在鞠言离开后不久,坤焱大王便离开了自身の临事洞府.坤焱大王,来到了苍幕大王の临事居所,面见苍幕大 王.“苍幕兄.”“坤焱道友.”两人见面,相互简单の打了个招呼,苍幕大王请坤焱大王入座.“苍幕兄,方才鞠言来见俺了.”坤焱大王坐下后,就说起了鞠言去见他の呐件事.“哦?”苍幕大王眼申微微一凝,笑着说道:“他去找你,是想让你支持他争夺思烺混元控制权?”“是啊!”坤焱大王 点点头.“坤焱道友不会答应了他吧?”苍幕大王笑着问道.“当然不会,俺与他鞠言,又没哪个交情,为哪个要帮他?”“不过说起来,呐个鞠言还真是有些天真.他居然,想诓骗俺!”坤焱大王冷笑了一声,语气之中,有些鄙夷之色.“哦?他如何诓骗你?”苍幕大王好奇问道.“他说能让俺更快速 掌握元祖道则.他刚说の事候,俺还真有些信任他の话.毕竟,他自身掌握元祖道则の速度,就非常诡异.可后来,他居然说自身能够炼制一种善丹,呐善丹能让俺在元祖道则上达到小圆满层次.”“呵呵,苍幕兄你说,他是觉得俺有多蠢?”坤焱大王嗤笑了一声.苍幕大王眼申闪了闪,而后也笑出声. 如果鞠言拿善涅丹来收买坤焱大王,那苍幕大王可能还会有点担心.可现在鞠言却只是画一罔大饼,此举确实显得可笑.而鞠言,没有用善涅丹来拉拢坤焱大王,呐说明,鞠言の身上可能没有更多善涅丹了.自从知道鞠言以善涅丹收买了几个混元之主后,苍幕大王和詹乌大王,便一直在想,鞠言是 从哪个地方得到の善涅丹の,得到了多少颗善涅丹.苍幕大王所认为の善涅丹,就是小善涅丹.“呐个鞠言,确实是有些可笑了.”苍幕大王点头说道.“他是狗急跳墙了!苍幕兄,俺觉得他可能已经知道,与你詹乌大王联手争夺思烺混元了.要不然,他应该不会来找俺.”坤焱大王抬眉,申色一正 说道.“嗯,他知道呐个信息也无妨.现在,他根本就没有办法.詹乌大王和俺呐边の票,他没有办法得到.俺们,等着焦源盟主召开会议就是.”苍幕大王轻笑:“俺倒要看看,他还能有哪个手段.”坤焱大王和苍幕大王两人,都发出舒畅の笑声.(本章完)第三三零九章一声冷笑毕尚大王の临事洞 府.“鞠言大王?哎呀,贵客到来,有失远迎,抱歉抱歉!”毕尚大王见到鞠言后,一脸惊喜表情说道.呐位毕尚大王,性格比较圆滑.“毕尚大王客气了,俺不请自来,希望没打扰到毕尚大王你.”鞠言说道.“怎么会?鞠言大王,快请坐.”毕尚大王请鞠言入座.“不知鞠言大王来找俺,是有哪个事 情?”毕尚大王面带微笑询问鞠言.毕尚大王与玄冥大王关系交好,当初第一次见到鞠言の事候,他可没给鞠言哪个好脸色.在鞠言与思烺大王交手の事候,他还嘲笑过鞠言不自量历、自取其辱.而现在の毕尚大王,与当事の毕尚大王,态度上判若两人.当然,鞠言也没有去计较过往の那些.在毕尚 大王询问来意之后,鞠言便将对坤焱大王说の那些话,大致上对其说了一遍.而毕尚大王听完鞠言提到の善丹后,也露出一副惊诧の表情.他双目盯着鞠言,似乎在怀疑自身是否听错了.回过申后,毕尚大王说道:“鞠言大王,不知你说の丹药,叫哪个名字?”“善涅丹!”既然闭上大王询问,鞠言 便直接说了.“善涅丹?”毕尚大王眉头扬了扬:“鞠言大王,俺对善涅丹多少也了解过一点.不瞒你说,俺曾得到过几颗善涅丹.俺麾下有一名混元大王,就是由于俺赐予他の善涅丹,才得以成功踏入大王层次.”“然而,呐个善涅丹,似乎是帮助寻常大王参悟本源道则の.鞠言大王你却说,善涅 丹能够帮俺掌握元祖道则.鞠言大王莫非是口误?”毕尚大王目光闪了闪.他の反应,倒是与坤焱大王不同.坤焱大王,是全部不信任,一副鞠言拿他当傻子の表

相似三角形的周长与面积比例关系

相似三角形的周长与面积比例关系

相似三角形的周长与面积比例关系相似三角形是指具有相同形状但尺寸不同的两个或多个三角形。

在几何学中,相似三角形和比例关系是重要的概念。

本文将探讨相似三角形的周长与面积之间的比例关系。

一、相似三角形的定义和性质相似三角形是指具有相同形状的三角形,其对应的内角相等,而边的比例也相等。

如果两个三角形的对应角相等,且对应边的比例相等,就称这两个三角形是相似的。

相似三角形具有如下性质:1. 相似三角形的对应边比例相等,可以表示为:∠A/∠A'=∠B/∠B'=∠C/∠C'=k(k为常数)。

2. 相似三角形的周长比例等于对应边的比例,表示为:AB/AB'=BC/BC'=AC/AC'=k。

3. 相似三角形的面积比例等于对应边长度的平方比例,表示为:[ABC]/[A'B'C']=(AB/AB')²=(BC/BC')²=(AC/AC')²=k²。

二、相似三角形的周长比例推导假设有两个相似三角形ABC和A'B'C',根据相似三角形的定义,可以得到以下关系式:AB/AB'=BC/BC'=AC/AC'=k(k为常数)。

由此可以推导相似三角形的周长比例。

设ABC的周长为L1, A'B'C'的周长为L2。

根据定义可知:AB/AB'=BC/BC'=AC/AC'=k。

则有L1=k(AB+BC+AC),L2=k(AB'+B'C'+A'C')。

因此,L1/L2=(k(AB+BC+AC))/(k(AB'+B'C'+A'C'))=AB+BC+AC/AB'+B'C'+A'C'。

根据相似三角形的定义,AB/AB'=BC/BC'=AC/AC',可以将k代入上式,得到L1/L2=3k/3k=1。

相似三角形的周长和面积比较

相似三角形的周长和面积比较
摄影学:在拍摄照片时,可以利用相似三角形来调整相机的角度和位置,以获得更好的拍摄效果。
04
相似三角形的周长和面积比较的注意事项
相似三角形的判定条件
定义法:根据相似三角形的定义,通过比较对应角和对应边来判定两个三角形是否相似。
平行法:当两个三角形有一组对应的边平行时,这两个三角形相似。
角-边角法:当两个三角形有两个对应的角相等,并且这两个角所夹的边成比例时,这两个三角形相似。
相似三角形在桥梁建设中的应用:在桥梁建设中,可以利用相似三角形来计算桥墩的高度和位置,以确保桥梁的稳定性和安全性。
相似三角形在航空摄影中的应用:在航空摄影中,可以利用相似三角形的性质来计算建筑物的高度和宽度,以及地面的距离和位置。
相似三角形在建筑设计中的应用
利用相似三角形测量建筑物的高度
利用相似三角形设计建筑物的窗户和门
计算方法:利用相似三角形的性质,将相似三角形的边长比例与周长比例相等,从而计算出周长
应用:在解决实际问题时,可以利用相似三角形的周长比较来推导其他相关量的大小关系
周长的比较
添加标题
添加标题
添加标题
添加标题
相似三角形的周长比等于边长比的绝对值
相似三角形的周长与边长成正比
相似三角形的周长比等于相似比的绝对值
测量工具的精度:确保使用高精度的测量工具,以减小误差。
测量方法的准确性:采用多次测量求平均值的方法,提高测量准确性。
相似三角形的选择:选择相似度高、形状接近的三角形进行比较。
计算过程的准确性:仔细核对计算过程,避免因计算错误导致误差。
实际应用中的注意事项
确保两个三角形相似,否则无法进行周长和面积的比较。
周长比等于任意一边长的比
02

相似三角形的面积和周长的关系

相似三角形的面积和周长的关系

相似三角形的面积和周长的关系相似三角形是指具有相同形状但大小不同的三角形。

在几何学中,相似三角形是一种重要的概念,它们之间存在着特殊的比例关系。

本文将探讨相似三角形的面积和周长之间的关系。

一、相似三角形的定义相似三角形指的是具有相同形状的两个或多个三角形,它们的对应角度相等,而对应边的长度之比保持一致。

设有两个相似三角形ABC和DEF,如果∠A = ∠D,∠B = ∠E,∠C = ∠F,并且AB/DE =BC/EF = AC/DF,那么这两个三角形相似。

二、相似三角形的面积关系根据几何学的知识,我们知道两个相似三角形的面积之比等于它们对应边长的平方之比。

即如果两个三角形ABC和DEF相似,那么它们的面积之比为S(ABC)/S(DEF) = (AB/DE)² = (BC/EF)² = (AC/DF)²。

推论一:如果相似三角形的边长之比为a:b,那么它们的面积之比为a²:b²。

推论二:如果相似三角形的边长之比为a:b,那么它们的高之比也为a:b。

以具体的例子来说明面积关系。

设有两个相似三角形ABC和DEF,已知AB/DE = BC/EF = AC/DF = 2/3。

如果我们已知三角形ABC的面积为S1,那么三角形DEF的面积S2可以根据面积之比计算出来。

根据推论一,S1/S2 = (2/3)² = 4/9,即S2 = (9/4)S1。

这表明,两个相似三角形的面积之间的比例是一个定值,与具体的三角形大小无关。

三、相似三角形的周长关系我们知道,周长是指一个几何图形的边界长度。

对于两个相似三角形,它们的对应边长之比是固定的,而周长即为边长之和。

因此,对于相似三角形ABC和DEF,它们的边长之比为a:b,那么它们的周长之比也为a:b。

即P(ABC)/P(DEF) = AB+BC+AC/DE+EF+DF = a/b,其中P表示三角形的周长。

四、面积和周长的关系现在我们来探讨相似三角形的面积和周长之间的关系。

相似三角形的周长比与面积比

相似三角形的周长比与面积比

相似三角形的周长比与面积比相似三角形是几何学中重要的概念,它指的是具有相同形状但可能不同大小的三角形。

在研究相似三角形时,我们常常关注它们的周长比与面积比。

本文将详细介绍相似三角形的周长比与面积比,并通过示例来说明它们的应用。

一、周长比的定义与性质相似三角形的周长比是指两个相似三角形的周长之比。

设两个相似三角形的三条边长度分别为a、b、c和k×a、k×b、k×c,其中k为比例因子。

那么它们的周长比为k×(a+b+c)∶(k×a+k×b+k×c),化简后得到周长比为k∶1。

周长比的性质如下:1. 两个相似三角形的周长比为k∶1,其中k为比例因子。

2. 若两个相似三角形的周长比为k∶1,则它们的边长比也为k∶1。

二、面积比的定义与性质相似三角形的面积比是指两个相似三角形的面积之比。

设两个相似三角形的底边长度分别为a和k×a,高分别为h和k×h,则它们的面积比为(aa∶k^2×aa),化简后得到面积比为1∶k^2。

面积比的性质如下:1. 两个相似三角形的面积比为1∶k^2,其中k为比例因子。

2. 若两个相似三角形的面积比为1∶k^2,则它们的边长比也为1∶k。

三、应用示例下面通过一个实际的应用示例来说明相似三角形的周长比与面积比的计算方法。

示例:已知两个相似三角形的周长比为3∶2,求它们的面积比。

解:设两个相似三角形的周长分别为3a和2a。

根据周长比的性质,可以得到:3a∶2a = 3∶2若其中一个相似三角形的底边长度为b,则另一个相似三角形的底边长度为(2/3)×b。

设两个相似三角形的高分别为h和(2/3)×h。

根据面积比的定义,可以得到:面积比 = b×h∶((2/3)×b)×((2/3)×h) = 9∶4所以,两个相似三角形的面积比为9∶4。

相似三角形的周长与面积

相似三角形的周长与面积

练习: P54 2,1,3,4
补充练习: 如图,在ΔABC 中,边BC=12cm,高AD=6cm,边长为x 的正方形PQMN的一边在BC 上,其余两个顶点分别在 边AB,AC上,则边长x为( C ) A、3cm B、4cm C、 5 cm D 、6cm
P E A M
B
Q
D N
C
; / 密图那
ath41cwb
的穷孩子忽得个千金 的玩艺儿,未必实用,也觉新鲜。第十二章故纵倾颜成一怒(4)于韩玉笙亲笔画的一堆卷轴中,宝音忽见幅画儿,相当特 别,力气是实在弱,笔触都乱了,画面不怎么美观,好歹画的是什么,倒也清清楚楚:一口井,井里映着一钩冷月,地上疏疏落落一些纹路,似 石纹、又似霜迹,天上几抹云痕,无星,竟连月亮也没有,不知井中月影是从何处映来。画技不论,构图实在带着飞寒鬼气。宝音看这井,极其 眼熟,莫非便是宝音居所到老太太屋里路边经过的那口井?外头所谓宝音“落了水”,便是落到那口井里,编排得倒是很顺!但、但韩玉笙怎会 知道!宝音手攥着画轴,发一会怔,强笑着问洛月道:“我是什么时候画的它?怎么画成这样,大约病得狠了罢!我现在想过去都有些恍恍惚惚 的。”“是上月底画的。” 洛月怯生生道,“姑娘是病着,画了这幅,病越发凶了,笔都持不得,到今日,幸是安好了,且再将养两日?养得再 好些再改罢!”所以它是韩玉笙生前画的最后一幅了,上月底,金钟魁像根本没送来,韩玉笙便画了井,想必是巧合罢!宝音又问了洛月几句, 问不出什么来,乌云已压得低了,一道小小的闪电,似灵蛇,撕破天际。宝音等候的时机来了。为天色不好,嘉颜早早先下山回府准备,补理了 大批雨具命人送上山,又叫各院预备各色祛寒祛潮之物,等主子们回府来用,原来准备的夜宵,也要改了,正极忙的时候,又听说大少爷等得不 耐烦,自己下山,跑了,却又没回府。众人全都叫苦:“这是怎么说的?”又嘀咕:“问问宝音姑娘,或许还猜得出来„„”“可宝音姑娘出府 养病了,这„„”嘉颜眼皮剧跳了一下。宝音已经死了。老太太亲自吩咐,宝音是落井。这孩子心好,想着给老太太汲些温温的井水来洗面,从 前也经常汲的,谁知那夜绳上钩子锈坏了,汲水瓶掉下去。宝音大约是一急,伸手想去捉,失去平衡,这才掉进了井里去。可怜是可怜,但重阳 佳节呢!不方便办丧事。于是说起来,只道宝音失足落井,虽经救起,身体还是不好,暂时出府休养,也算祸事,但总比死人的好。等到明儿后 儿,再宣布:嘉颜姑娘本来好些的,结果水寒入肺,失救了。老太太作主,准给她办个对丫头来说挺体面的丧事。避过重阳正日子,也就不忌讳 了。宝音的尸身,还是嘉颜亲自装成病人,送出府去。唏嘘么?或许有一点。丫头连死都要挑个好时候,否则为主子不喜,物伤其类,怎不悲凉? 但话又说回来了,谁死不该挑个好时候呢?桃花潭水深千尺,各饮各的那一盏,除此之外,都属逾份。自己不照顾好自己,反要别人担待身后事? 再没这个道理的!老太太还算仁德,单叫错过这节日,之后丧仪给她做足,亲眷也多赏些银两,全由老太太体己开支。宝音

相似三角形的面积比与周长比

相似三角形的面积比与周长比

相似三角形的面积比与周长比相似三角形是指两个或多个三角形的对应角相等且对应边成比例的三角形。

在研究相似三角形时,我们经常涉及到面积比和周长比的关系。

本文将探讨相似三角形的面积比与周长比之间的关系。

在开始讨论之前,先来回顾一下面积和周长的定义。

三角形的面积是指该三角形所包围的平面区域的大小,而周长则是指三角形三条边的长度之和。

考虑两个相似三角形,其中一个的边长比为k。

设第一个三角形的边长为a,b,c,而第二个三角形的边长为ka,kb,kc(即第二个三角形的边长是第一个三角形边长的k倍)。

首先,我们来比较两个相似三角形的面积。

根据几何学的知识,两个相似三角形的面积比等于边长比的平方。

也就是说,第一个三角形的面积与第二个三角形的面积之比等于k的平方。

用公式表示如下:(第一个三角形的面积)/(第二个三角形的面积)= k²接下来,我们来讨论相似三角形的周长比。

由于两个相似三角形的边长比为k,那么相应的周长比也是k。

即:(第一个三角形的周长)/(第二个三角形的周长)= k现在,我们将面积比和周长比结合起来。

假设第一个三角形的面积为A,第二个三角形的面积为k²A,第一个三角形的周长为P,第二个三角形的周长为kP。

根据上述推导,我们可以得出以下结论:(第一个三角形的面积)/(第一个三角形的周长)=(第二个三角形的面积)/(第二个三角形的周长)代入具体数值,可以得出:A/P = k²A/kP经过简化,可得:A/P = k通过这个推导,我们可以得出结论:两个相似三角形的面积比与周长比相等。

综上所述,我们可以总结相似三角形的面积比与周长比的关系:两个相似三角形的面积比等于边长比的平方,而周长比等于边长比。

这个结论在几何学和数学的应用中非常重要。

通过理解和应用这个关系,我们可以在解题过程中更好地利用相似三角形的性质,简化问题的求解步骤。

相似三角形的面积比与周长比的关系在数学教学和实际问题中有广泛的应用。

相似三角形的周长与面积

相似三角形的周长与面积
3.对应高,中线角平分线的比等于相似比.
作业。
完成随堂练习。
综合应用。
1、如图在△ABC和△DEF中, AB=2DE,AC=2DF, ∠A= ∠ D △ABC的周长是24,面积是36,求△DEF的周长和面积。

D C
B
解题过程详见课本52页。
E
F
小结
这节课我们学习了什么内容? 相似三角形 1.周长的比等于相似比. 相似多边形
2.面积的比等于相似比的平方.
小试牛刀
三、选择题。 1、已知△ABC∽△DEF,且AB︰DE= 1︰3,则△ABC与△DEF的 周长比为( A )
A 1︰3
B 1︰9
C 3︰1
D 9︰1
2、已知△ABC∽△DEF,且S △ABC︰S △DEF=4 ︰9,则△ABC与 △DEF的周长比为( B ) A 4︰9 B 2︰3 C 4︰3 D 16︰81 3、一个五边形的边长分别为1、2、3、4、5,另一个和它相似的 五边形最大边长为10,则后一个多边形的周长为( C ) A 15 B 25 C 30 D不确定 4、已知△ABC∽△DEF, △ABC的面积为25, △DEF的面积为16。 且AB=10,则DE的长是( B ) A 10 B 8 C 6 D12 5、 已知两个相似多边形的一组对应边分别是15cm和25cm,它们的 周长差40cm,则这两个三角形的周长分别是 ( B ) A75cm, 100cm B60cm, 100cm C80cm, 100cm D60cm, 80cm
)
巩固提高
二、填空。
3∶5 1、如果两个相似三角形对应边的比为3∶5 ,那么它们的相似比为________, 周长的比为 3∶5 ,面积的比为 9∶25 。
1︰2 2、如果两个相似三角形面积的比为1∶4 ,那么它们的相似比为________ , 1︰2 . 周长的比为________ 3、如图,点D、E分别是△ABC边AB、AC上的点,且DE∥BC,BD=2AD, 那么△ADE的周长︰△ABC的周长= 1∶3 .

相似三角形的周长与面积

相似三角形的周长与面积

相似三角形的周长与面积一、知识要点1.相似三角形对应高线的比、对应中线的比、对应角平分线的比都等于相似比。

2.相似三角形周长的比等于相似比;相似多边形周长的比等于相似比。

3.相似三角形面积的比等于相似比的平方;相似多边形面积的比等于相似比的平方。

二、例题解析例1.证明:相似三角形对应高线的比等于相似比。

已知:如图所示,如果ΔABC∽ΔA1B1C1,AD是BC边上的高,A1D1是B1C1边上的高,且,求证:。

分析:在这里要通过三角形相似去证比例式,先要看所证的比例式在哪两个三角形中,在这里是在ΔABD与ΔA1B1D1中,只需要证这两个三角形相似即可。

再想想:要证这两个三角形相似,具备了哪些条件,还差哪些条件?证明:∵ΔABC∽ΔA1B1C1,∴∠B=∠B1又∵AD是BC边上的高,A1D1是B1C1边上的高∴∠ADB=∠A1D1B1=90°∴ΔABD∽ΔA1B1D1∴例2.证明:相似三角形对应角平分线的比等于相似比。

已知:如图所示,如果ΔABC∽ΔA1B1C1,AE是∠BAC 的角平分线,A1E1是∠B1A1C1的角平分线,且,试证:。

证明:∵ΔABC∽ΔA1B1C1,∴∠B=∠B1,∠BAC=∠B1A1C1又∵AE是∠BAC 的角平分线,A1E1是∠B1A1C1的角平分线∴∠BAE=∠BAC,∠B1A1E1=∠B1A1C1∴∠BAE=∠B1A1E1∴ΔABE∽ΔA1B1E1∴例3.有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比。

解:设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2。

∴△ABC∽△A1B1C1∽△A2B2C2且,,∴,∴。

例4.如图所示是步枪在瞄准时的俯视图,OE是从眼睛到准星的距离80cm,AB是步枪上的准星宽度2mm,CD是目标的正面宽度50cm,求眼睛到目标的距离OF.分析:相似三角形对应高线的比等于相似比。

相似三角形的周长与面积

相似三角形的周长与面积

例1、如图在ΔABC 和ΔDEF中,AB=2DE, AC=2DF,∠A=∠D,ΔABC的周长是24, 面积是48,ΔDEF的周长为 ;面积为

A D
B
CE
F
例2、如图,在△ABC中,直线DE分别截AB、 AC于点D、E,DE∥BC。
(1)若AD:BD=3:2,则S △ADE :S △ABC=_9__:__2_5__.
D F B
A E G C
3.在直径为AB的半圆内,划出一个三角形区域,
使三角形的一边为AB,顶点C在半圆周上,现要
建造一个内接于三角形ABC的矩形水池DEFN,其
中DE在AB上,如图设计方案是使AC=8,BC=6,
求(1)三角形AB边上的高线CH;
(2)设DN=x,NF=y,求y关于x的函数解析式;
复习回忆
(1)相似三角形有什么性质? 相似多边形呢?
(2)相似三角形的对应边的比叫什么?
(3)ΔABC与ΔA/B/C/ 的相似比为k, 则ΔA/B/C/与ΔABC的相似比是多少?
如果两个三角形相似,相似比为 k,则它们的周
长之比是多少?两个相似多边形呢?
A/ A
B
C B/
C/
相似三角形周长的比等于相似比。 相似多边形周长的比等于相似比。
三角形中,除了角和边外,还有三类主要线段: 高线,角平分线, 中线
高线
角平分线
中线
相似三角形对应边上高线有什么关系?
已知: ΔABC∽ΔA/B/C/ ,AD BC于 D,
A / D / B / C /于D / , A
求证: AD AB k A'D' A'B'
B
D
C B/

相似三角形的周长与面积比

相似三角形的周长与面积比

相似三角形的周长与面积比相似三角形是指具有相同形状但大小不同的三角形。

在研究相似三角形时,我们常常关注它们的周长和面积比。

本文将探讨相似三角形的周长与面积比,并结合具体例子进行说明。

一、周长比的求解对于两个相似三角形,其周长的比例等于对应边长的比例。

设两个相似三角形的边长分别为a、b、c和k*a、k*b、k*c,则周长比可以表示为:周长比 = (a + b + c) / (k*a + k*b + k*c) = 1 / k这意味着,当两个三角形的相似比例系数为k时,它们的周长比为1/k。

例如,如果一个三角形的边长是另一个三角形边长的2倍,那么它们的周长比为1/2。

二、面积比的求解相似三角形的面积比等于对应边长的平方比例。

即,设两个相似三角形的边长分别为a、b、c和k*a、k*b、k*c,则面积比可以表示为:面积比= (1/2 * a * b * sin(α)) / (1/2 * k*a * k*b * sin(α)) = a^2 / (k^2 * a^2) = 1 / k^2这意味着,当两个三角形的相似比例系数为k时,它们的面积比为1/k^2。

例如,如果一个三角形的边长是另一个三角形边长的3倍,那么它们的面积比为1/9。

三、例子分析为了更好地理解相似三角形的周长与面积比,我们来看一个具体的例子。

假设有两个相似三角形ABC和DEF,它们的相似比例系数为k=2。

已知三角形ABC的周长为12cm,面积为9cm²,我们需要求三角形DEF的周长和面积。

首先,根据周长比的公式,我们可以得到:周长比 = 1 / k = 1 / 2由此可得,三角形DEF的周长为:周长DEF = 周长ABC * 周长比 = 12cm * (1/2) = 6cm接下来,根据面积比的公式,我们可以得到:面积比 = 1 / k^2 = 1 / 2^2 = 1 / 4由此可得,三角形DEF的面积为:面积DEF = 面积ABC * 面积比 = 9cm² * (1/4) = 2.25cm²通过这个例子,我们可以看出,当两个相似三角形的边长比例为2时,它们的周长比为1/2,面积比为1/4。

相似三角形的周长与面积的关系

相似三角形的周长与面积的关系

相似三角形的周长与面积的关系相似三角形是指拥有相同形状但大小不同的三角形。

在数学中,研究相似三角形的性质对于解决各种几何问题非常重要。

其中一个常见的问题是相似三角形的周长和面积之间是否存在某种关系。

本文将探讨相似三角形周长和面积的关系,并对其进行详细阐述。

1. 相似三角形的定义与性质首先,我们需要了解相似三角形的定义与性质。

两个三角形相似的条件是它们对应角相等,并且对应边成比例。

换句话说,如果两个三角形的所有角度相等,那么它们是相似的。

对于相似三角形ABC和DEF,根据相似三角形的性质,我们可以得到以下关系:1) 边长之比:AB/DE = BC/EF = AC/DF2) 高度之比:h₁/h₂ = AB/DE = BC/EF = AC/DF3) 面积之比:S₁/S₂ = (AB/DE)² = (BC/EF)² = (AC/DF)²基于以上性质,我们可以得知相似三角形的边长、高度和面积之间存在比例关系。

接下来我们将具体论述周长和面积的关系。

2. 周长的关系对于相似三角形ABC和DEF,它们的周长分别为P₁和P₂。

根据相似三角形的性质,可以得到以下关系:P₁/DE = AB/DE + BC/EF + AC/DF由于相似三角形的比例关系,可以将上式改写为:P₁/DE = AB/DE + (AB/DE)*(BC/EF) + (AB/DE)*(AC/DF)= AB/DE * (1 + BC/EF + AC/DF)根据边长之比的性质,AB/DE = BC/EF = AC/DF,因此可以进一步简化上式:P₁/DE = AB/DE * (1 + AB/DE + AB/DE)= 3*(AB/DE)根据同样的推理,可以得到:P₂/DE = 3*(DE/DE) = 3由此可见,两个相似三角形的周长之比为一个定值,即P₁/P₂= 3。

3. 面积的关系对于相似三角形ABC和DEF,它们的面积分别为S₁和S₂。

相似三角形的面积比与周长比的应用

相似三角形的面积比与周长比的应用

相似三角形的面积比与周长比的应用在几何学中,相似三角形是指具有相同形状但大小不一的三角形。

而相似三角形的面积比与周长比是一种重要的几何关系,可以应用在各种实际问题中。

本文将探讨相似三角形的面积比与周长比的应用。

一、相似三角形的定义与性质相似三角形是指具有相同形状但大小不一的三角形。

两个三角形相似的条件是它们对应角度相等。

相似三角形的性质包括边长比例相等、角度相等以及面积比例相等等。

二、相似三角形的面积比的应用1. 面积比的计算相似三角形的面积比等于它们边长比的平方。

假设有两个相似三角形,边长比为a:b,则它们的面积比为a²:b²。

2. 面积比的应用举例(1)建筑物的放大和缩小在建筑规划中,经常需要将设计图纸上的建筑物按照比例进行放大或缩小。

如果已知两个相似建筑物的边长比为a:b,则它们的面积比为a²:b²。

通过计算面积比,可以得知放大或缩小后的建筑物的面积变化情况。

(2)地图的绘制地图是一种将地球表面按比例缩小至纸面上的平面图。

在制作地图时,需要将地球上的各个地区按照比例进行缩小,并保持相似性。

相似三角形的面积比可以帮助绘制出比例准确的地图。

三、相似三角形的周长比的应用1. 周长比的计算相似三角形的周长比等于它们边长比的比例。

假设有两个相似三角形,边长比为a:b,则它们的周长比为a:b。

2. 周长比的应用举例(1)相似物体的放大和缩小在工程制图或模型制作中,常常需要将实物或图纸上的物体按照比例进行放大或缩小。

已知两个相似物体的边长比为a:b,则它们的周长比为a:b。

通过计算周长比,可以得知放大或缩小后的物体的周长变化情况。

(2)道路规划在城市规划或交通规划中,需要对不同区域之间的道路进行规划。

如果两个区域的形状相似,可以利用相似三角形的周长比来确定道路的长度比例,从而给出合理的道路规划方案。

四、相关实际问题的解决方法1. 已知两个相似三角形的面积和一个三角形的面积和周长,如何求另一个三角形的周长?解决这类问题可以利用相似三角形的面积比与周长比。

相似三角形的周长与面积

相似三角形的周长与面积

相似三角形的周长与面积相似三角形------周长与面积一:知识回顾1、相似三角形的周长比等于相似比。

2、相似三角形面积比等于相似比的平方。

3、如图一:△ABC 中,若BD :CD=n :m ,则S△ABD :S △ACD =n :m4、如图二:△ABC 和△BCD 同底,则两个三角形面积之比等于两个三角形高之比。

图二二:例题讲解1、(2009年天津市)在ABC△和DEF△中,22AB DE AC DF A D==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( )A .8,3B .8,6C .4,3D .4,6 2、(2009年济宁市)如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( ) A. 2 cm 2 B. 4 cm 2 C. 8 cm 2 D. 16 cm 23、如图,在△ABC 中,已知BC=48,高AD=16,它的内接矩形两邻边EF :MF=5:9,长边MF 在BC 边上,求矩形EFMN 的周长。

4、如图,在△ABC 和△CAD 中,已知D A ∥BC,CD 交AB 于E,且AE :EB=1:2,EF ∥BC 交AC 于F ,S △ADE=1,求S △BCE 和S △AEF5、如图,M 为□ABCD 的AB 边上的中点,CM 交BD 于点E ,求图中△DEM, △BCE 面积的和与□ABCD 的面积之比。

6:如图1,矩形EFGH 内接于△ABC ,AD ⊥BC 于D ,交EH 于P ,若矩形的周长为24,BC=10,AP=16,求BPCS .7、某生活小区的居民筹集资金1600元,计划在一块上、D G F 图1下底分别为10m ,20m 的梯 形空地上种植花木(如图)(1)他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后(图中阴影部分),共花了160元,请计算种满△BMC 地带所需的费用.(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?8、如图,四边形ABCD 中,AB=AD,对角线AC,BD 相交于点M ,且AC ⊥AB,BD ⊥CD,过点A 作AE ⊥BC,垂足为E ,交BD 于点F 。

相似三角形的周长与面积

相似三角形的周长与面积
27.2.3相似三角形的周长与面积
如图,是一块三角形钢板,工人师傅要把它切割成:一块为三角 形,另一块为梯形,且要使切割 出的三角形与梯形的面积之比为 4:9,那么该怎么切割呢?
A
B
C
(1)相似三角形有什么性质?根据是什么?相似多边形呢? 对应角相等,对应边成比例;根据定义;对应角相等,对应边成比例;
练习
1、如图, ΔABC∽ΔA/B/C/ ,且AB=6, A/B/=4,则
ΔABC与ΔA/B/C/的相似比为
,周长比为
,高线AD与A / D / 的比为

A
A/
B
D C B / D /C /
(1)如图ΔABC∽ΔA/B/C/ ,相似比为k1,它们的面积比
是多少?
A
A/
B
D
C B/ D/ C/
(2)如图,四边ABCD相似于四边形A/B/C/ D /,相似比为k2
它们的面积比是多少? A
A/
D
B
C
B/
D/ C/
练习(1)已知ΔABC与ΔA/B/C/ 的相似比为2:3,则周长比为 2:3 ,对应边上中线之比 2:3 ,面积之比为 4:9 。
(2)以知ΔABC∽ΔA/B/C/,且面积之比为9:4,则周长之比为 3:2 ,相似比 3: 2 ,对应边上的高线之比 3:2 。
例、如图在ΔABC 和ΔDEF中,AB=2DE,AC=2DF,
A = D ΔABC的周长是24,面积是48, 求ΔDEF的周长
和面积。 A D
B
CE
F
练习: P54 2,1,3,4
补充练习: 如图,在ΔABC 中,边BC=12cm,高AD=6cm,边长为x 的正方形PQMN的一边在BC 上,其余两个顶点分别在 边AB,AC上,则边长x为( C ) A、3cm B、4cm C、 5 cm D 、6cm A

相似三角形的周长与面积

相似三角形的周长与面积
27.2.3相似三角形的周长与面积
如图,是一块三角形钢板,工人师傅要把它切割成:一块为三角 形,另一块为梯形,且要使切割 出的三角形与梯形的面积之比为 4:9,那么该怎么切割呢?
A
B
C
(1)相似三角形有什么性质?根据是什么?相似多边形呢? 对应角相等,对应边成比例;根据定义;对应角相等,对应边成比例;
练习
1、如图, ΔABC∽ΔA/B/C/ ,且AB=6, A/B/=4,则
ΔABC与ΔA/B/C/的相似比为
,周长比为
,高线AD与A / D / 的比为

A
A/
B
D C B / D /C /
(1)如图ΔABC∽ΔA/B/C/ ,相似比为k1,它们的面积比
是多少?
A
A/
B
D
C B/ D/ C/
(2)如图,四边ABCD相似于四边形A/B/C/ D /,相似比为k2
PEM
B
Q
DN C
; https:///niushi/ 牛市 ;
来,绿意盎然.可以想象,明年将春色满院.可惜,应了“人面不知何处去,桃花依旧笑春风.”这么一句话,听者心生悲凉.他兀立庭园中,凉风撩起头上细碎の棕色发丝.眼眸深邃,依稀仿佛看到一个满心欢喜の小女人站在田边转着圈,正一脸陶醉地舒展双臂沉浸在美丽の大自然里...没过几天,何玲 又带着一个人进村看房子.先前那个说没看中,不要了,问他们什么原因结果对方挂了电筒.不怕,她手上多の是客源.可是,两人进屋不到三分钟,看房子の那个人发疯似の狂奔而出,一路上嘴里嚷嚷那屋里有鬼,把何玲气个半死.隔天又带了几位进村,结果其中两个被抬了出来.连接出事,那些对宅 子有几分兴趣の人顿时全部歇了心思.包括余岚和云大少.虽然大家口上说流言属于迷信,但事实胜于雄辩,接二连三有人中招,哪

相似三角形的周长与面积

相似三角形的周长与面积

27.2.3 相似三角形的周长与面积一.教学目标1、初步掌握相似三角形的周长比、面积比与相似比的关系以及关于它们之间关系的两条定理的证明方法,并会运用定理进行有关简单的计算.2.在动手参与解决身边实际问题的过程中,增强主动探索、发现数学知识的意识,提高观察、归纳能力,应用数学知识解决生活中实际问题的能力. 二.教学重点难点重点:相似三角形的周长比、面积比与相似比的关系的探究与证明. 难点:相似三角形的周长比、面积比与相似比的关系的应用. 三.教学过程(一)创设情境,提出问题由于马路拓宽,有一个面积是100平方米、周长80米的三角形的绿化地被削去了一个角,变成了一块梯形绿地,原绿化地的一边AB 的长由原来的20米缩短成12米(如图所示).这块失去的面积到底有多大?它的周长是多少?你能够将上面生活中的实际问题转化为数学问题吗?(通过对课本例题进行“再创造”,引出数学问题.既尊重课本内容又符合加强数学与现实联系的要求.) (二)自主探究,发现新知 1.分组探究活动附件1:通过上一节课完成的实验报告单,让学生回答实验报告单中的思考作业.(对上一节课实验报告单的再次利用,让学生发现,通过上一节课的动手测量和本节课在网格图中的动手计算得出相似三角形的周长比,面积比与相似比关系的猜想完全一致,再次证明学生猜想的正确性.)猜测得到命题:相似三角形的周长比等于相似比.相似三角形的面积比等于相似比的平方. 2.证明所得命题已知:如图,△ABC ∽△111A B C ,相似比为k ,求证: 111ABC A B C C k C ∆∆=,1112ABCA B CS k S ∆∆=. 证明:△ABC ∽△111A B C 111111111111AB kA B AB AC BC k AC kAC A B AC B C BC kB C=⎧⎪⇒===⇒=⎨⎪=⎩111111111ABC A B C C AB BC CAC A B AC B C ∆∆++=++111111111111111ABC A B C C kA B kAC kB C k C A B AC B C ∆∆++⇒==++.分别过A 、A’作△ABC, △A’B’C’ 的高AD,A’D’△ABC ∽△111A B CAD 、11A D 分别是△ABC 、△111A B C 的高11111111AD kA D BC ADk BC kB C B C A D =⎧⇒==⇒⎨=⎩11111111212ABC A B C BC AD S S B C A D ∆∆•=• 111ABC A B C S S ∆∆⇒=()()1111211111212kB C kA D k B C A D =•.⎫⎪⎪⎪⎬⎪⎪⎪⎭⎫⎪⎪⎪⎬⎪⎪⎪⎭⎫⎪⎪⎪⎬⎪⎪⎪⎭C(三)运用性质,熟悉新知2.实际问题的解决 如图,已知,在△ABC 中,DE ∥BC ,AB =20m,BD=12m, △ABC 的周长为80m ,面积为100m 2,求:△ADE 的周长和面积. (四)小结反思, 自主评价 1. 知识技能部分的小结:相似三角形的周长比、面积比与相似比的关系;两条有关定理的证明思路与证明方法;定理的运用(进行有关简单的计算). 2.自主评价:如:对网格图上的两个格点三角形相似的认识;对运用定理解决问题的注意点的反思性总结;对自己及同伴在课堂上数学学习表现的评价;提出自己的困惑与不解,或进行质疑等.(五)作业必做题: P54 习题27.2 第6题. 1. 选做题:(1)对引例继续探究过点E 作EF//AB ,EF 交BC 于点F,其他条件不变,则EFC 的面积等于多少?平行四边形DBFE 面积为多少?(2)猜想相似多边形的周长比,面积比与相似比有怎样的关系? (六)课后反思:C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:27.2.3 相似三角形的周长与面积
学习目标:
理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方,并能用来解决简单的问题。

重点:理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。

难点:探索相似多边形周长的比等于相似比、面积比等于相似比的平方。

知识回顾
相似三角形有哪些性质?
新知探究
1.如果两个三角形相似,它们的周长之间有什么关系?两个相似多边形呢?
2.
三角形中,除了角和边外,还有三种主要线段?
归纳:相似三角形的对应角平分线之比,中线之比,高线的比都等
于相似比。

3.探究:相似三角形的面积的比。

(独立完成证明,5分钟)
如图ΔABC∽ΔA/B/C/ ,相似比为k,它们的面积比是多少?
结论:1.相似三角形面积的比等于相似比的平方
2.相似多边形面积的比等于相似比的平方.
归纳:相似三角形(多边形)的性质:
1.相似三角形对应的中线、高线、角平分线的比等于相似比.
2.相似三角形、多边形周长的比等于相似比.
3.相似三角形、多边形面积的比等于相似比的平方.
新知运用:基础练习:1.
(1)已知ΔABC与ΔA/B/C/ 的相似比为2:3,则周长比为
,对应边上中线之比,面积之比为。

(2)已知ΔABC∽ΔA/B/C/,且面积之比为9:4,则周长之比
,相似比,对应边上的高线之比。

2.把一个三角形变成和它相似的三角形,
(1)如果面积扩大为原来的100倍,那么边长扩大为原来的____倍。

(2)如图在等边三角形ABC中,点D、E分别在AB、
AC边上,且DE∥BC,如果BC=8cm,AD:AB=1:4,
那么△ADE的周长等于_______cm。

3.两个相似三角形的一对对应边分别是35厘米和
14 厘米,
(1)它们的周长差60厘米,这两个三角形的周长分别是。

(2)它们的面积之和是58平方厘米,这两个三角形的面积分别是
_________。

巩固提高:(见课件)
当堂检测:(见课件)
小结:
相似三角形(多边形)的性质:
1.相似三角形对应的中线、高线、角平分线的比等于相似比.
2.相似三角形、多边形周长的比等于相似比.
3.相似三角形、多边形面积的比等于相似比的平方.
课后拓展:见课件
备课时间:上课时间:课型:新课主备人:牛万英审批人:授课班级:

A /
B C /
D
A
D
A
B C
D E。

相关文档
最新文档