Session 6 Parallel and Distributed Environments Web Caching a Memory-based Architecture

合集下载

pyside6防止程序多开的方法 -回复

pyside6防止程序多开的方法 -回复

pyside6防止程序多开的方法-回复如何使用PySide6 防止程序多开引言:在开发应用程序时,有时我们希望确保用户只能同时运行一个实例。

这是为了防止用户无意中打开多个相同的应用程序窗口,或者在多个窗口之间共享资源时产生冲突。

在本文中,我们将探讨如何使用PySide6,一个用于创建跨平台桌面应用程序的Python 框架,来防止程序多开的方法。

步骤1:检测当前是否有程序已经在运行要实现防止程序多开的功能,首先我们需要检测当前是否已经有程序实例在运行。

为此,我们可以使用PySide6 的QSingleApplication 类。

QSingleApplication 类是PySide6 提供的一个用于创建单例应用程序实例的类。

以下是使用QSingleApplication 类检测程序是否已经在运行的示例代码:pythonfrom PySide6.QtWidgets import QApplicationfrom PySide6.QtCore import QSingleApplicationapp = QApplication([])# 使用应用程序的唯一标识符初始化QSingleApplicationsingle_app = QSingleApplication("MyApp")# 检查是否已经有程序实例在运行if single_app.isRunning():print("程序已经在运行!")# 程序已经在运行,可以退出当前实例的运行app.quit()else:# 未检测到其他程序实例,可以继续初始化主窗口等操作print("程序未在运行!")#TODO: 初始化主窗口以及其他操作# 运行应用程序app.exec()在上述示例代码中,我们首先初始化了一个QApplication 对象。

然后,我们使用应用程序的唯一标识符初始化了一个QSingleApplication 对象。

distributeddataparallel参数

distributeddataparallel参数

distributeddataparallel参数分布式数据并行(DistributedDataParallel)是PyTorch中的一种数据并行处理方式,用于训练模型时将数据分发到多个GPU上进行并行计算。

它允许开发人员在多个GPU上同时训练模型,无需编写复杂的并行化代码。

DistributedDataParallel有一些参数可以用来控制其行为和性能:1. device_ids:该参数用于指定参与并行计算的GPU设备ID列表。

默认情况下,DistributedDataParallel将使用所有可用的GPU设备。

可以通过设置device_ids参数来指定只使用部分GPU设备,例如device_ids=[0, 1, 2]表示只使用ID为0、1、2的GPU设备。

2. output_device:该参数用于指定模型输出的设备ID。

默认情况下,输出会返回到每个GPU设备上。

通过设置output_device参数,您可以将输出返回到特定的GPU设备,例如output_device=0表示将输出返回到ID为0的GPU设备上。

3. broadcast_buffers:该参数用于控制是否将模型的缓冲区广播到所有GPU设备。

默认情况下,模型的缓冲区会被广播到所有GPU设备上。

如果您的模型拥有大量的缓冲区,您可以通过将broadcast_buffers参数设置为False来减少通信开销。

4. find_unused_parameters:该参数用于控制是否查找未使用的参数。

默认情况下,DistributedDataParallel会查找并报告未使用的参数,以帮助您确定哪些参数未被使用。

如果您的模型包含大量参数,并且您不需要了解未使用的参数,可以通过将find_unused_parameters参数设置为False来提高性能。

以上是DistributedDataParallel的一些常用参数,您可以根据自己的需求进行设置。

c++中onnxruntime常用函数介绍

c++中onnxruntime常用函数介绍

C++中ONNXRuntime常用函数介绍ONNXRuntime是一个用于执行机器学习推理的开源框架,支持CPU、GPU和边缘设备。

由微软开发,用C++编写。

ONNXRuntime除了提供高效的推理功能,还提供了丰富的API,可以满足不同业务场景下的需求。

本文将介绍C++中ONNXRuntime的常用函数,帮助读者更好地理解和使用这一强大的框架。

1. 创建推理会话在使用ONNXRuntime进行推理之前,首先需要创建一个推理会话。

通过`Ort::Env::CreateAndRegisterAllocator`可以创建一个环境。

在环境创建完成之后,可以使用`Ort::SessionOptions`来配置推理会话的参数,如日志级别、优化级别等。

通过`Ort::Env::CreateAndRegisterAllocator`创建一个推理会话。

2. 加载模型在创建推理会话之后,需要加载预训练的模型。

通过`Ort::Session::Load`函数可以加载一个ONNX模型文件,得到一个Ort::Session对象。

加载模型时,可以指定执行模型推理所需的计算设备,如CPU、GPU等。

3. 准备输入数据在进行推理之前,需要准备输入数据。

可以通过`Ort::Session::GetInputCount`获取模型的输入节点数量,然后通过`Ort::Session::GetInputTypeInfo`获取输入节点的类型信息,包括名称、形状、数据类型等。

接下来,可以通过`Ort::MemoryInfo`和`Ort::Value`构造输入数据,并将其传递给模型。

4. 执行推理输入数据准备完成之后,就可以执行推理了。

通过`Ort::Session::Run`函数可以执行推理过程,得到输出结果。

在执行推理时,可以指定输入和输出节点的名称,还可以指定执行推理的计算设备。

5. 获取输出结果在执行推理之后,可以通过`Ort::Session::GetOutputCount`获取输出节点的数量,然后通过`Ort::Session::GetOutputTypeInfo`获取输出节点的类型信息,包括名称、形状、数据类型等。

培养方案英文版范例

培养方案英文版范例

学科专业简介计算系统结构专业是计算机科学技术学科所属的二级学科,是计算机科学技术最活跃的研究领域之一。

特别是最近几年,随着高性能计算机、高速计算机网络和嵌入式系统的广泛深入地研究,已形成诸多新的研究热点。

本专业从应用需求出发,围绕这些研究热点,通过数年的研究积累已形成稳定的研究方向,并取得一定的学术成果。

高性能计算机系统在许多领域中有着非常重要的应用,这些领域包括科学计算、建模与仿真、图像识别与处理、计算机辅助设计、网络通信、人工智能等。

近年来,并行处理已成为高性能计算机系统的关键技术。

容错技术和实时技术是保证计算机系统执行结果的逻辑正确性和时间正确性的重要技术。

这两种技术的结合将进一步提高计算机系统和基于计算机的应用系统的实时性(如时间可预测性)和可信性(包括可靠性、安全性和可测试性等)。

计算机网络和分布式系统的研究正朝着高速、高服务质量和无线网络方向发展。

在此基础上形成多媒体信息在网络中的传输及处理、网络计算环境的知识捕获和处理、计算机支持的协同工作(CSCW)、电子商务的协议与标准等等研究热点。

嵌入式系统被定义为以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。

嵌入式处理器的应用软件是实现嵌入式系统的关键、软件要求固化存储,软件代码要求高质量、高可靠性、系统软件的高实时性是基本要求。

在制造工业、过程控制、通讯、仪器、仪表、汽车、船舶、航空、军事装备、消费类产品等方面均是嵌入式计算机应用领域。

本方向主要从事家庭网络、e-home、智能卡技术、嵌入式操作系统和开发环境的研究。

本专业近三年来在国内外重要核心学术刊物上发表学术论文近百篇,出版著作和教材数本。

承担国家自然科学基金项目、国家重点基础研究发展计划(973)项目和省部级等科学研究项目数十项。

获得省部级等科技进步奖和优秀教材奖多项。

每年有百万元研究经费。

本专业具有稳定的、分布合理的学术梯队,共有教师20人,其中教授3人,副教授7人。

more information, you can contact the session organizers or the authors of the articles. A

more information, you can contact the session organizers or the authors of the articles. A

IEEE DISTRIBUTED SYSTEMS ONLINE 1541-4922 © 2005 Published by the IEEE Computer SocietyVol. 10, No. 10; October 2005Cluster Computing and Grid 2005 Works in ProgressThis is the second in a two-part series () of works-in-progress articles taken from a special session, which was part of the Cluster Computing and Grid 2005 conference(/ccgrid2005), held in Cardiff, UK. The session was organized by Mark Baker (University of Portsmouth, UK) and Daniel S. Katz (Jet Propulsion Laboratory, US). For more information, you can contact the session organizers or the authors of the articles.A Pluggable Architecture for High-Performance Java MessagingMark Baker, University of PortsmouthAamir Shafi, University of PortsmouthBryan Carpenter, University of SouthamptonEfforts to build Java messaging systems based on the Message Passing Interface (MPI) standard have typically followed either the JNI (Java Native Interface) or the pure Java approach. Experience suggests there's no "one size fits all" approach because applications implemented on top of Java messaging systems can have different requirements. For some, the main concern might be portability, while for others it might be high bandwidth and low latency. Moreover, portability and high performance are often contradictory requirements. You can achieve highperformance by using specialized communication hardware but only at the cost of compromising the portability Java offers. Keeping both in mind, the key issue isn't to debate the JNI versus pure Java approaches, but to provide a flexible mechanism for applications to swap between communication protocols.To address this issue, we have implemented MPJ Express based on the Message Passing in Java (MPJ) API.1 MPJE follows a layered architecture that uses device drivers, which are analogous to Unix device drivers. The ability to swap devices at runtime helps mitigate the applications' contradictory requirements. In addition, we're implementing a runtime system that bootstraps MPJE processes over a collection of machines connected by a network. Though the runtime system isn't part of the MPI specifications, it's essential to spawn and manage MPJE processes across various platforms.MPJE's design is layered to allow incremental development and provide the capability to update and swap layers in or out as needed. Figure 1 shows a layered view of the messaging system. The high and base levels rely on the MPJ device2 and xdev level for actual communications and interaction with the underlying networking hardware. One device provides JNI wrappers to the native MPI implementations, and the other (xdev) provides access to Java sockets, shared memory, or specialized communication libraries. The wrapper implementation doesn't need xdev, because the native MPI is responsible for selecting and switching between different communication protocols. Figure 1 also shows three implementations of xdev: smpdev, the shared memory device; niodev, an implementation of xdev using the Java New I/O package; and gmdev, an implementation of xdev using JNI to interact with the Myrinet communications library.Figure 1. MPJ Express's layered design.MPJE's initial performance evaluation on Fast and Gigabit Ethernet shows comparable performance to mpiJava, which uses JNI wrappers to interact with a native MPI implementation. We released a beta version of MPJE in early September. You can find further details of MPJE on the project's Web site (/projects/mpj or email us.References1. B. Carpenter et. al, MPI for Java Position Document and Draft API Specification,tech. report JGF-TR-03, Java Grande Forum, Nov. 1998.2. S.B. Lim et. al, "A Device Level Communication Library for the HPJava ProgrammingLanguage." Proc. Iasted Int'l Conf. Parallel and Distributed Computing and Systems(PDCS 2003), ACTA Press, 2003.Mark Baker is a Reader in Distributed Systems at the University of Portsmouth, UK. Contact him at mark.baker@.Bryan Carpenter is a senior researcher at the Open Middleware Infrastructure Institute, University of Southampton, UK. Contact him at dbc@.Aamir Shafi is a PhD student in the Distributed Systems Group, University of Portsmouth, UK. Contact him at aamir.shafi@.Toward Intelligent, Adaptive, and Efficient Communication Services for Grid Computing Phillip M. Dickens, University of MaineWhat constitutes an intelligent, adaptive, highly efficient communication service for grid computing? An intelligent service can accurately assess the end-to-end system's state to determine how (and whether) to modify the data transfer's behavior. An intelligent controller could, for example, respond more aggressively to a network-related loss than to a loss caused by events outside the network domain. An adaptive communication service can either change its execution environment or adapt its behavior in response to changes in that environment. An efficient communication service can exploit the underlying network bandwidth when system conditions permit. It can also fairly share network resources in response to observed (or predicted) network contention.A necessary milestone on the path to such next-generation communication services is the development of a classification mechanism that can distinguish between various data-loss causes in cluster or Grid environments. We're developing such a mechanism based on packet-loss signatures, which show the distribution (or pattern) of packets that successfully traversed the end-to-end transmission path versus those that did not. These signatures are essentially largeselective-acknowledgment packets that the data receiver collects and, upon request, delivers to the data sender. We refer to them as packet-loss signatures because a growing set of experimental results shows that different data-loss causes have different signatures.1,2 The question then is how to quantify the differences between packet-loss signatures so that a classification mechanism can identify them.Our approach is to treat packet-loss signatures as time-series data and to apply techniques from symbolic dynamics to learn about the time series' dynamical structure. We quantify the structure in the sequence based on its complexity. We've learned that the complexity measures of packet-loss signatures have different statistical properties when the cause of such loss lies inside rather than outside the network domain. In fact, these statistical properties are different enough to let us construct, using Bayesian statistics, rigorous hypothesis tests regarding the cause of data loss.3 We're currently developing the infrastructure required to perform such hypothesis testing in real time.Next, we plan to develop and evaluate a set of responses tailored to particular data-loss causes. We'll explore, for example, data-receiver migration and user-specified limits on CPU utilization for data loss caused by contention for CPU resources.References1. P. Dickens and J. Larson, "Classifiers for Causes of Data Loss Using Packet-LossSignatures,"Proc. IEEE Symp. Cluster Computing and the Grid (CCGrid 04), IEEE CS Press, 2004.2. P. Dickens, J. Larson, and D. Nicol, "Diagnostics for Causes of Packet Loss in a HighPerformance Data Transfer System," /persagen/DLAbsToc.jsp?Proc. 18th Int'l Parallel and Distributed Processing Symp. (IPDPS 04), IEEE CS Press, 2004.3. P. Dickens and J. Peden, "Towards a Bayesian Statistical Model for the Causes of DataLoss,"Proc. 2005 Int'l Conf. High Performance Computing and Communications, LNCS 3726, Springer, 2005, pp. 755-767.Phillip M. Dickens is an assistant professor in the Department of Computer Science at the University of Maine. Contact him at dickens@.Grimoires: A Grid Registry with a Metadata-Oriented InterfaceSylvia C. Wong, School of Electronics and Computer Science, University of Southampton Victor Tan, School of Electronics and Computer Science, University of Southampton Weijian Fang, School of Electronics and Computer Science, University of Southampton Simon Miles, School of Electronics and Computer Science, University of Southampton Luc Moreau, School of Electronics and Computer Science, University of SouthamptonThe Grid is an open distributed system that brings together heterogeneous resources across administrative domains. Grid registries let service providers advertise their services, so users can use these registries to dynamically find available resources. However, existing service registry technologies, such as Universal Description, Discovery, and Integration (UDDI), provide only a partial solution.First of all, such technologies have limited support for publishing semantic information. In particular, services aren't the only entities that need to be classified for example, we would also want to define classifications for individual operations or their argument types. Second, only service operators can provide information about services, and in a large and disparate environment, it's impossible for operators to foresee all the information that users might use to find resources. Third, UDDI uses authentication techniques for security that aren't particularly suited for the large-scale nature of Grid systems.To address these problems, we're developing a registry called Grimoires() for the myGrid project () and the Open Middleware Infrastructure Institute (OMII, ) Grid software release. Figure 2 shows our registry's architecture, which we've implemented as a Web service. It has two major interfaces UDDI and metadata. The registry is UDDI v2 compliant, and you canaccess the UDDI interface using any UDDI client, such as UDDI4j (). To access the metadata functionalities, you need to use a Grimoires client.Figure 2. The Grimoires architecture. (UDDI is Universal Description, Discovery, and Integration.)Our registry has several unique features:l Registration of semantic descriptions. Our registry can publish and inquire overmetadata attachments. These attachments are extra pieces of data that provideinformation about existing entities in the registry. Currently, the registry supportsannotations to UDDI BusinessEntity, BusinessService, tModel, and BindingTemplate, and to WSDL (Web Services Description Language) operations and message parts.Thus, using Grimoires, users can annotate BusinessService with service ratings andfunctionality profiles and attach semantic types of operation arguments to WSDLmessage parts.l Multiple metadata attachments. Each entity can have an unlimited number ofattachments, and each piece of metadata can be updated without republishing the entity or other metadata attached to the same entity. This efficiently captures ephemeralinformation about services, which changes often.l Third party annotations. Both service operators and third parties can publishmetadata, so users with expert knowledge can enrich service descriptions in ways that the original publishers might not have conceived.l Inquiry with metadata. Grimoires supports multiple search patterns. It ranges from simple searches that return a list of metadata attached to the specified entity to morecomplex searches that return entities that match a certain criteria.l Signature-based authentication. UDDI uses a username and password credentialscheme. However, Grid environments typically use certificate-based authentication.OMII provides an implementation of SOAP message signing and verification thatconforms to Web Services security standards. By deploying Grimoires in the OMIIcontainer, the registry can authenticate users using X509 certificates. This makes iteasier to integrate Grimoires into existing Grid security infrastructures, and it provides an important building block certificate-based authentication for the single sign-on capabilities that many Grid applications require.For more information, please visit .Sylvia C. Wong is a research fellow in the Intelligence, Agents, Multimedia group at the School of Electronics and Computer Science, University of Southampton, UK. Contact her at sw2@.Victor Tan is a research fellow in the Intelligence, Agents, Multimedia group at the School of Electronics and Computer Science, University of Southampton, UK. Contact him atvhkt@.Weijian Fang is a research fellow in the Intelligence, Agents, Multimedia group at the School of Electronics and Computer Science, University of Southampton, UK. Contact him at wf@.Simon Miles is a research fellow in the Intelligence, Agents, Multimedia group at the School of Electronics and Computer Science, University of Southampton, UK. Contact him atsm@.Luc Moreau is a professor in the Intelligence, Agents, Multimedia group at the School of Electronics and Computer Science, University of Southampton, UK. Contact him atl.moreau@.Cite this article:Mark Baker, Bryan Carpenter, and Aamir Shafi, "Cluster Computing and Grid 2005 Works in Progress: A Pluggable Architecture for High-Performance Java Messaging," IEEE DistributedSystems Online, vol. 6, no. 10, 2005.Phillip M. Dickens, "Cluster Computing and Grid 2005 Works in Progress: Toward Intelligent, Adaptive, and Efficient Communication Services for Grid Computing," IEEE Distributed Systems Online, vol. 6, no. 10, 2005.Sylvia C. Wong, Victor Tan, Weijian Fang, Simon Miles, and Luc Moreau, "Cluster Computing and Grid 2005 Works in Progress: Grimoires: A Grid Registry with a Metadata-Oriented Interface," IEEE Distributed Systems Online, vol. 6, no. 10, 2005.。

yolov6 dfl层原理

yolov6 dfl层原理

yolov6 dfl层原理
Yolov6 DFL (Detection Fusion Layer) 是 Yolov6 模型中的一个
关键组件,用于实现多尺度特征融合和对象检测。

下面是Yolov6 DFL 层的原理:
1. 首先,Yolov6 DFL 层接收来自不同尺度的特征图。

这些特
征图通常是由不同层次的特征提取器生成的,例如 Darknet53
网络的不同层输出的特征图,分别对应不同的感受野和物体大小。

2. 接下来,Yolov6 DFL 层使用可学习权重来融合这些多尺度
的特征图。

它通过将特征图按通道逐一相加,并使用权重对不同尺度的特征图进行加权融合。

这样可以考虑到来自不同层次的特征图的重要性和贡献,从而提高检测性能。

3. 在进行特征融合之后,Yolov6 DFL 层通过一个卷积操作将
融合后的特征图转换为检测结果。

这个卷积操作输出的通道数等于目标类别数量及其相关的检测信息,如边界框位置、类别概率等。

4. 最后,Yolov6 DFL 层使用非极大值抑制 (NMS) 的方法对检
测结果进行后处理,剔除重复的边界框,保留置信度较高的边界框作为最终的检测结果。

总结起来,Yolov6 DFL 层实现了多尺度特征融合和对象检测,通过融合来自不同层次的特征图,使模型能够更好地捕捉不同尺度的物体信息,提高检测性能。

replica_parallel_workers 参数

replica_parallel_workers 参数

replica_parallel_workers 参数
replica_parallel_workers 参数是用于设置并行工作进程数量的参数。

它通常用于分布式计算或并行处理环境中,以加速数据读取和处理。

当设置 replica_parallel_workers 参数时,它指定了用于并行读取副本数据的进程数量。

这意味着在读取数据时,可以同时使用多个工作进程来并行读取数据,从而提高数据读取的效率。

这个参数的设置取决于你的计算环境、数据集大小和网络带宽等因素。

通常,你可以通过调整这个参数来优化数据读取的性能。

但是,需要注意的是,增加并行工作进程数量也会增加系统的资源消耗,因此需要根据实际情况进行权衡和调整。

请注意,具体的参数名称和用法可能因不同的编程语言、框架或工具而有所不同。

因此,在使用replica_parallel_workers 参数时,建议查阅相关文档或参考示例代码以了解更详细的信息和用法。

onnxruntime windows推理编译 -回复

onnxruntime windows推理编译 -回复

onnxruntime windows推理编译-回复ONNX Runtime是一个基于开源ONNX(开放神经网络交换)标准的高性能推理引擎,可以在各种硬件平台上运行深度学习模型。

在本文中,我们将详细介绍在Windows操作系统上编译和使用ONNX Runtime进行推理的步骤。

让我们一步一步地开始。

第一步:安装依赖项在开始编译ONNX Runtime之前,我们需要安装一些必要的依赖项。

以下是在Windows操作系统上安装所需的依赖项的步骤:1. 安装Visual Studio首先,我们需要安装Visual Studio(建议使用最新版本)。

您可以从Microsoft的官方网站下载并安装Visual Studio。

确保选择包含C++开发工具的Visual Studio安装。

2. 安装CMakeCMake是一个开源的跨平台构建工具,我们将使用它来生成ONNX Runtime的构建系统。

您可以从CMake的官方网站下载并安装最新版本的CMake。

3. 安装依赖项ONNX Runtime还依赖于其他几个第三方库,包括Protobuf和Ninja。

您可以使用vcpkg(一个C++库管理工具)来快速安装这些依赖项。

请按照vcpkg的官方文档进行安装和配置。

在安装和配置vcpkg之后,打开命令提示符并运行以下命令来安装Protobuf和Ninja:vcpkg install protobuf ninja第二步:获取ONNX Runtime源代码在成功安装所有依赖项后,我们需要获取ONNX Runtime的源代码。

您可以在ONNX Runtime的GitHub存储库上找到源代码。

您可以使用Git 工具克隆存储库,或者直接从GitHub网站下载源代码的zip文件。

第三步:配置和生成在成功获取源代码后,我们需要使用CMake生成ONNX Runtime的构建系统。

请按照以下步骤进行配置和生成:1. 创建一个新文件夹来保存生成的构建系统。

cron experssion must consist of 6 -回复

cron experssion must consist of 6 -回复

cron experssion must consist of 6 -回复Cron Expression Must Consist of 6 Fields: An In-Depth ExplanationWhen it comes to scheduling tasks, the cron expression is an essential component in Linux and Unix-like operating systems. A cron expression consists of 6 fields that work together to define the time and frequency of a recurring task. These fields are minute, hour, day of the month, month, day of the week, and the command to be executed. In this article, we will delve deeper into each field and explain how they come together to form a comprehensive cron expression.The first field of a cron expression is the minute field. It defines the specific time within an hour when the task should be executed. It can range from 0 to 59, allowing for precise minute-level scheduling. For example, a cron expression of "*/5 * * * * command" would execute the command every 5 minutes, starting at the top of the hour.Moving on to the second field, we have the hour field. It determines the hour of the day when the task should be executed. It ranges from 0 to 23, following the 24-hour format. Using thesame example as before, if we modify the cron expression to "0 */3 * * * command," the command would be executed every 3 hours, at the top of the hour.The third field represents the day of the month. It allows you to specify a particular day within a month for the task to run. It can range from 1 to 31, depending on the month and year. To illustrate this, let's consider the cron expression "0 0 1 * * command." In this case, the command would execute at midnight on the first day of every month.The fourth field is for the month. It determines the specific month when the task should be executed. It can be expressed as either a numeric value (1-12) or as three-letter abbreviations (e.g., Jan, Feb, Mar). For example, the cron expression "0 0 1 1,6,12 * command" would run the command on the first day of January, June, and December.Next, we have the fifth field—the day of the week. It allows you to define which day or days in a week the task should be scheduled. It can be represented as a numeric value (0-7, where both 0 and 7 represent Sunday) or with three-letter abbreviations (e.g., Sun, Mon,Tue). For instance, if we modify the cron expression to "0 0 * * 1,5 command," the command would execute at midnight every Monday and Friday.Finally, we have the sixth field—the command to be executed. It represents the actual task or script that will run as per the schedule defined by the previous fields. This can be any valid Linux command or a path to a script or program. The command field is separated from the other fields by a space or tab character.To summarize, a cron expression relies on the minute, hour, day of the month, month, day of the week, and command fields to schedule recurring tasks in Linux and Unix-like operating systems. Each field has a defined range of values and works together to create a precise schedule for task execution.Understanding and effectively using cron expressions can optimize task management, automate repetitive tasks, and streamline operations in a wide range of scenarios. Whether you are a system administrator, developer, or simply a Linux enthusiast, mastering the art of cron expressions can empower you to efficiently manageyour systems and focus on other critical aspects of your work.。

onnxruntime windows推理编译 -回复

onnxruntime windows推理编译 -回复

onnxruntime windows推理编译-回复ONNX Runtime 是由微软开源的一个高性能的开源推理引擎。

它支持跨多个硬件平台的推理,并提供了一种简化模型部署和执行的方式。

对于Windows 平台,以下是一步一步的ONNX Runtime 推理编译过程。

第一步:安装ONNX Runtime在Windows 平台上运行ONNX Runtime 需要先安装相应的软件包。

从官方网站下载ONNX Runtime 的最新版本并按照官方文档提供的指南进行安装。

第二步:准备模型文件准备一个ONNX 模型文件,该文件包含了需要执行的计算图和相应的权重参数。

可以通过使用深度学习框架(如PyTorch, TensorFlow 等)训练好的模型,然后将其转换成ONNX 格式。

也可以从ONNX Model Zoo 获取一些已经训练好的模型来进行测试。

第三步:加载模型使用ONNX Runtime 提供的API 加载模型文件,并初始化一个推理会话。

这个推理会话将用于后续的推理操作。

第四步:配置硬件加速ONNX Runtime 支持多个硬件平台的加速。

可以通过配置运行时环境来选择合适的硬件加速选项。

例如,可以选择使用CUDA 或者OpenCL 来进行GPU 加速,或者选择使用特定的CPU 指令集(如AVX,AVX2 等)来进行CPU 加速。

具体的配置方式可以参考ONNX Runtime 的文档。

第五步:执行推理使用推理会话对象执行模型的推理操作。

可以根据模型的需求提供输入数据,并接收输出数据。

ONNX Runtime 提供了一系列的API 来方便进行输入和输出的设置。

第六步:释放资源在推理完成后,需要释放所有相关的资源,包括推理会话、输入输出张量等。

这样可以确保程序的正常退出,并避免内存泄漏等问题。

总结:ONNX Runtime 在Windows 平台上进行推理编译的过程可以分为:安装ONNX Runtime、准备模型文件、加载模型、配置硬件加速、执行推理以及释放资源。

r语言 多session处理 -回复

r语言 多session处理 -回复

r语言多session处理-回复[R语言多session处理]在R语言中,session是指在一次R会话中打开的所有R对象、函数和数据的集合。

通常情况下,R会话只有一个session,这个session可以通过加载不同的包、导入不同的数据、定义不同的函数等来进行操作。

然而,在某些情况下,我们可能需要同时开启多个session来处理不同的任务,这就需要用到R语言的多session处理技术了。

# 为什么需要多session处理?为什么我们需要同时打开多个R session呢?有以下几种情况:1.处理多个相互独立的任务:比如你需要同时处理两个不同的数据集,或者在不同的工作空间中分别运行两个不同的R脚本。

2.测试不同版本的依赖包:在某些情况下,我们可能需要测试不同版本的依赖包对代码的影响,这时候就需要同时开启多个session,并加载不同的包版本进行测试。

3.提高运算效率:在内存较大的机器上,同时开启多个session可以加快计算的速度,尤其是当与大型数据集和复杂模型有关的时候。

# 如何实现多session处理?接下来,我们将一步一步介绍如何在R语言中实现多session处理。

Step 1: 安装和加载parallel和doParallel包为了实现多session处理,我们需要先安装并加载R中的parallel和doParallel包,这两个包提供了实现多线程和多进程的功能。

可以通过以下命令进行安装:Rinstall.packages("parallel")install.packages("doParallel")然后,通过以下命令加载这两个包:Rlibrary(parallel)library(doParallel)Step 2: 设置并行计算集群在实现多session处理之前,需要先设置并行计算集群。

可以通过以下代码创建一个并行计算对象:Rcl <- makeCluster(num_of_cores)registerDoParallel(cl)其中,`num_of_cores`是你希望使用的处理器核心数目。

pytorch distributeddataparallel 使用方法

pytorch distributeddataparallel 使用方法

pytorch distributeddataparallel 使用方法PyTorch的DistributedDataParallel(DDP)模块是用于分布式训练的工具,它可以在多个GPU上分发和并行处理模型。

下面是使用DDP的一般步骤:1. 导入必要的库```import torchimport torch.nn as nnimport torch.distributed as distimport torch.multiprocessing as mp```2. 定义模型```class Model(nn.Module):def __init__(self):super(Model, self).__init__()# 模型定义...def forward(self, x):# 前向传播逻辑...```3. 定义训练函数```def train(rank, world_size):# 设置分布式训练环境dist.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)# 创建模型实例model = Model()# 将模型放入GPU和DDP中model.to(rank)model = nn.parallel.DistributedDataParallel(model,device_ids=[rank])# 定义优化器等训练参数optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# 训练循环for epoch in range(epochs):# 前向传播output = model(input)loss = criterion(output, target)# 反向传播和梯度更新optimizer.zero_grad()loss.backward()optimizer.step()```4. 启动训练过程```if __name__ == '__main__':# 设置GPU数量和训练进程数量world_size = torch.cuda.device_count()mp.spawn(train, args=(world_size,), nprocs=world_size)```这就是使用PyTorch的DistributedDataParallel进行分布式训练的基本步骤。

distributeddataparallel参数

distributeddataparallel参数

distributeddataparallel参数在深度学习中,大规模的模型训练会占用很大的计算资源和时间。

为了加快训练速度,提高模型的性能,我们可以利用分布式数据并行(Distributed Data Parallel)来实现模型的并行化操作。

本文将详细介绍DistributedDataParallel的参数。

首先,我们需要注意的是,DistributedDataParallel是PyTorch提供的一个用于数据并行训练的工具。

它支持将模型和数据同时分布到多个GPU上,并在GPU之间自动同步参数,使多个GPU同时处理不同的数据,最终将结果进行汇总,达到并行化训练的目的。

在使用DistributedDataParallel时,我们需要设置一些参数来优化训练过程。

以下是常见的DistributedDataParallel参数:1. device_ids:指定要使用的GPU设备的id列表。

默认情况下,DistributedDataParallel会使用所有可用的GPU设备。

如果你只想使用特定的GPU设备,可以通过设置device_ids参数来限制使用特定的GPU 设备。

2. output_device:指定输出设备的id。

默认情况下,output_device参数会使用第一个GPU设备。

如果你希望将输出移动到不同的GPU设备上,可以通过设置output_device参数来实现。

3. find_unused_parameters:一个布尔值,指定是否查找未使用的参数。

默认情况下,DistributedDataParallel会在每次前向传播期间查找并同步未使用的参数。

在一些情况下,查找未使用的参数可能会导致不必要的开销,因此可以通过设置find_unused_parameters参数为False 来禁用此功能。

5. broadcast_buffers:一个布尔值,指定是否广播buffer。

在DistributedDataParallel中,模型的buffer默认只存在于模型的第一个GPU设备上。

hive session概念

hive session概念

Hive是一个基于Hadoop的数据仓库工具,它可以将结构化的数据文件映射为一张数据库表,并提供简单的类SQL查询功能。

Hive中的session是一个重要的概念,它代表了一个与Hive服务器交互的会话。

Hive session是用户与Hive服务器建立连接并执行查询的交互过程。

当用户启动一个Hive session时,会与Hive服务器建立一个连接,然后可以通过这个连接执行SQL查询、加载数据、查看数据等操作。

Hive session的概念类似于其他编程语言中的“程序运行环境”,它提供了执行各种操作所需的基本功能和环境。

在Hive中,每个session都是独立的,它们之间互不干扰。

因此,用户可以在不同的session中执行不同的查询和操作,而不会互相干扰。

同时,Hive还提供了会话级别的配置和状态管理功能,使得用户可以更好地管理和控制自己的会话。

总之,Hive session是用户与Hive服务器交互的基本单位,它提供了执行各种操作所需的环境和功能。

pyside6 手册

pyside6 手册

pyside6 手册Pyside6是基于Qt应用框架的Python绑定库,它允许开发者使用Python语言编写跨平台的图形界面应用程序。

本手册将介绍Pyside6的基本特性、使用方法和示例,帮助读者快速上手并了解如何使用Pyside6开发高质量的GUI应用。

Pyside6是Qt的官方绑定库,它提供了一系列Python模块,包括QtWidgets、QtGui、QtCore和QtQml等,可以方便地实现各种GUI界面元素和功能。

相比其他GUI开发工具,Pyside6具有更强大的灵活性和可移植性,支持多种操作系统,如Windows、Linux和macOS等。

同时,Pyside6还提供了丰富的组件库和工具,能够满足各种复杂的应用需求。

在开始使用Pyside6之前,需要安装Pyside6库和相应的开发环境。

可以通过pip工具来安装Pyside6,具体的安装方式和步骤可以参考Pyside6官方文档。

安装完成后,就可以开始使用Pyside6来开发GUI应用了。

Pyside6的主要特性包括:1.跨平台支持:Pyside6兼容多个操作系统,可以运行于Windows、Linux和macOS等平台,开发者可以使用相同的代码同时在不同平台上运行应用程序。

2.强大的组件库:Pyside6提供了丰富的组件库,包括按钮、文本框、复选框、滑块等,可以灵活地构建用户界面。

3.事件处理机制:Pyside6使用信号和槽机制来处理用户的交互事件,开发者可以方便地实现界面和逻辑的分离,使代码更加清晰和易于维护。

4.图形渲染和绘制:Pyside6提供了强大的图形和绘制功能,支持多种图形效果和动画效果,可以实现各种自定义的界面元素。

5.国际化支持:Pyside6支持国际化和本地化,可以方便地实现应用程序的多语言支持,使应用程序适应不同的语言环境。

6.数据库访问支持:Pyside6提供了数据库访问接口,可以方便地连接和操作各种关系型数据库,如MySQL、SQLite和Oracle等。

parallel distributed data parallel -回复

parallel distributed data parallel -回复

parallel distributed data parallel -回复什么是并行分布式数据并行(Parallel Distributed Data Parallel)?并行分布式数据并行(Parallel Distributed Data Parallel,简称PDDP)是一种用于处理大规模数据集的并行计算模型。

它采用数据并行和模型并行相结合的方式,利用并行计算的优势实现数据处理和模型训练的高效率。

数据并行是指将大规模数据集划分为多个小数据集,每个小数据集分配给不同的计算节点进行处理。

每个节点并行地处理自己的数据,最后汇总结果。

模型并行是指将一个复杂的模型划分为多个部分,每个节点负责处理其中的一部分。

各个节点并行地进行计算,最后将结果整合起来。

在PDDP中,数据并行和模型并行相结合,可以充分发挥并行计算的优势。

数据并行使得每个计算节点可以独立地处理自己的数据,降低了计算的复杂度和时间开销。

同时,模型并行使得可以利用多个计算节点的计算能力,加速模型的训练和推断过程。

两者结合一起,可以有效地解决大规模数据集上的计算问题。

PDDP的计算过程可以分为以下几个步骤:1. 数据集划分:首先将大规模数据集划分为多个小数据集。

划分方法可以根据数据的特点来选择,例如按样本划分或按特征划分。

2. 数据并行:将每个小数据集分配给不同的计算节点。

每个计算节点并行地处理自己的数据,可以采用并行计算框架如Apache Spark或TensorFlow等进行处理。

3. 模型并行:将复杂的模型划分为多个部分,每个节点负责处理其中的一部分。

各个节点并行地进行计算,可以利用并行计算框架进行模型训练或推断。

4. 汇总结果:各个节点计算完成后,将结果进行汇总。

可以通过数据传输或共享内存等方式将结果整合。

PDDP的优势在于可以充分利用大规模并行计算资源,提高数据处理和模型训练的效率。

同时,PDDP具有良好的可伸缩性,可以适应不同规模的数据集和计算资源。

onnxruntime.sessionoptions() 原理

onnxruntime.sessionoptions() 原理

onnxruntime.sessionoptions 原理`onnxruntime.SessionOptions()` 是ONNX Runtime 的一部分,用于配置会话(session)的选项。

ONNX Runtime 是一个用于运行ONNX 模型的库,而ONNX 是一种用于表示深度学习模型的开放格式。

`onnxruntime.SessionOptions()` 允许用户设置各种会话级别的选项,以控制ONNX 模型在运行时的行为。

这些选项可以包括内存使用、执行优化、设备选择等。

以下是`onnxruntime.SessionOptions()` 的一些常用配置选项:1. **ExecutionProvider**: 指定使用的执行提供商。

例如,可以使用"CPUExecutionProvider" 或"CUDAExecutionProvider"。

2. **IntraOpThreadPoolSize**: 设置线程池的大小,用于并行执行张量计算。

3. **GraphOptimizationLevel**: 控制图优化级别,这可以影响模型在运行时的性能和效率。

4. **Use feeds**: 通过feed 提供的输入数据来运行模型。

5. **Use fetches**: 获取模型运行后的输出结果。

6. **Run options**: 可以设置模型运行的特定选项。

了解`onnxruntime.SessionOptions()` 的工作原理需要对其背后的实现细节有一定的了解,包括ONNX Runtime 的内部架构、执行流程以及优化策略等。

这些选项会影响模型在运行时的行为,包括计算性能、内存使用、并行处理等。

根据实际需求,通过调整这些选项可以优化模型在特定硬件上的性能或满足特定的运行时需求。

pyside6 程序架构

pyside6 程序架构

pyside6 程序架构PySide6是一个用于创建跨平台桌面应用程序的Python库。

它提供了一组丰富的工具和组件,使开发人员能够轻松地构建直观、交互式和功能丰富的用户界面。

PySide6的程序架构基于MVC(Model-View-Controller)模式。

这种设计模式将应用程序分为三个主要组件:模型、视图和控制器。

模型负责处理数据和业务逻辑,视图用于呈现用户界面,而控制器则协调模型和视图之间的交互。

在PySide6中,模型是应用程序的核心部分。

它负责处理数据的存储、检索和处理。

模型可以是简单的数据结构,也可以是复杂的数据库。

通过将数据和业务逻辑分离,模型使应用程序更加可维护和可扩展。

视图是用户与应用程序交互的界面。

它负责呈现数据并接收用户输入。

PySide6提供了各种预定义的视图组件,如按钮、文本框和列表,以及自定义视图组件的能力。

开发人员可以使用这些组件来构建用户友好的界面。

控制器是模型和视图之间的桥梁。

它负责处理用户输入、更新模型数据并将结果反映在视图上。

控制器可以通过信号和槽机制来实现模型和视图之间的通信。

通过将交互逻辑集中在控制器中,开发人员可以提高代码的可读性和可维护性。

PySide6的程序架构还可以使用其他模式来扩展和优化。

例如,可以使用观察者模式来实现数据的实时更新,或者使用命令模式来实现撤销和重做功能。

这些模式可以根据应用程序的需求进行选择和组合。

PySide6的程序架构基于MVC模式,通过模型、视图和控制器的组合来实现应用程序的功能。

开发人员可以根据需要使用其他设计模式来优化和扩展架构。

使用PySide6,开发人员可以轻松创建功能强大、易于维护的跨平台桌面应用程序。

joblib parallel 参数

joblib parallel 参数

joblib parallel 参数joblib parallel 参数的作用及使用方法joblib 是一个用于在Python 中进行并行计算的库,它提供了一个方便的方法来并行化处理任务,从而加快计算速度。

其中的parallel 参数是joblib 提供的一个重要参数,它允许用户指定并行计算的方式和设置。

在使用 joblib 进行并行计算时,可以通过 parallel 参数来控制并行计算的方式。

该参数可以接受以下几种取值:1. "loky":使用loky 进程池进行并行计算。

loky 是joblib 提供的一个多进程后端,它使用了有效的进程管理技术,可以在多核CPU 上实现高效并行计算。

2. "threading":使用 threading 模块进行并行计算。

这种方式适合于计算密集型任务,但不适用于涉及 I/O 操作的任务。

3. "multiprocessing":使用multiprocessing 模块进行并行计算。

这种方式适合于大规模的并行计算任务,可以充分利用多核CPU 的计算能力。

除了上述三种常用的并行计算方式,parallel 参数还可以接受其他自定义的并行计算后端。

用户可以根据自己的需求选择合适的并行计算方式。

使用 parallel 参数进行并行计算非常简单。

只需在调用 joblib 相关函数时,将parallel 参数设置为所需的并行计算方式即可。

例如,使用 loky 进行并行计算的示例代码如下:```pythonfrom joblib import Parallel, delayeddef process_data(data):# 处理数据的函数passdata = [...] # 待处理的数据# 使用 loky 进行并行计算result = Parallel(n_jobs=-1, backend="loky")(delayed(process_data)(d) for d in data)```在上述示例中,首先定义了一个process_data 函数,用来处理数据。

pebblesDB并行优化

pebblesDB并行优化

pebblesDB并行优化
PebblesDB是一个基于RocksDB的分布式数据库,用于提供高性能的数据存储服务。

它通过在机器之间平衡工作负载,以及使用多线程和多核技术,来实现并行优化。

PebblesDB的并行优化主要体现在以下几个方面:
工作负载平衡:PebblesDB通过负载均衡器(LoadBalancer)来分配工作负载,保证各个机器的负载均衡。

多线程:PebblesDB使用多线程技术来并行处理请求,提升性能。

多核:PebblesDB支持使用多核CPU,并且可以在多核环境下运行多个线程,从而提升性能。

通过这些技术的协同作用,PebblesDB能够在保证高性能的同时,提供可靠的数据存储服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Web Caching: a Memory-based ArchitectureDavid Manuel Rodrigues SoraDepartamento de Informática – Universidade do Minho4710 - 057 Braga, Portugaldavid@ipb.ptAbstract. Caching also applies to Internet content by distributing it to multiple servers that areperiodically refreshed. Performance gains can be obtained of two orders of magnitude betweenthe original process-based Web servers and todays threaded servers. AFPA (Adaptive Fast PathArchitecture - a software architecture) dramatically increase Web and other network servers’capacity by caching content in RAM, and serving that content as efficiently as possible fromthe kernel.1 IntroductionIn order to keep the Web attractive, the experienced latencies must be maintained under a tolerable limit. One way to reduce the experienced latencies, the server’s load, and the network congestion is to store multiple copies of the same Web documents in geographically dispersed web caches.Caching [1] is a technique generally aimed at bringing parts of an overall data set closer to its processing site. It is applied for example in memory hierarchies where relatively small on-processor caches yield data access times a magnitude lower than memory-chip access times. The same principle, although on another size and latency scale, also applies to the file-system, where frequently used documents are kept in main memory instead of being slowly retrieved from disk. The Internet expands this memory hierarchy one further step outward from the processor.Caching popular objects at locations close to the clients (Web caching) has been recognised as one of the effective solutions to alleviate Web service bottlenecks, reduce traffic over the Internet and improve the web scalability.This communication is organised as follows: Section 2 gives an overview of Web Caching and why it is useful. Section 3 describes the main caching architectures, classifies some performance issues, and to establish a performance baseline, describes the “Adaptive Fast Path Architecture”, a platform for building Kernel-mode network servers. The Intel Itanium Architecture appears in this Section as a improved solution aiming for high-performance with its 64-bit processor’s features. Finally, Section 4 draws conclusions from the performance analysis and makes recommendations for future work.2 Overview of Web CachingCaching on the Web began with the introduction of client-local document stores either implemented as host-local disk backup store or as in-memory caches. The disadvantage of employing this approach alone became obvious as soon as too many different documents appeared on the Web, rendering the formerly known notion of locality set obsolete.2.1 Functions of a Web CacheWhen a Web-user requests specific information, such as a Web site, the cache feature [1] is used to direct the request to the origin server, then return the data back across the Internet. Web caching processes the delivered data and stores that content. When another request is made for that same data, there is no need to send the request all the way through the network; instead the response is sent from the cache memory. This way, duplicated requests are responded to more quickly while also preventing the network from being bogged down by multiple requests for identical information.A Web cache also keeps track of whether a Web object is fresh or not. If a Web object is no longer fresh or past its expiration date, a Web cache would delete it from its storage or replace it with a newer object from the origin Web server.Another important feature for caches is the amount of working cache size or amount of space available for storing cacheable Web objects. In most caches, a combination of disk and RAM are used to store Web objects. A cache can serve Web objects stored on its RAM much faster than if the Web objects are stored in the disk drive.2.2 Web Caching vs. File System CachingMost file system buffers store fixed-size blocks of data, while Web servers always read and cache entire files. The sizes of Web objects range from a few kilobytes (such as HTML and image files) to extremely large ones such as video files. It is of course possible to break up a large Web file into small pieces and cache just some of the pieces, but to our best knowledge, no research so far has indicated that this is practical and beneficial. Variable-sized Web objects complicate the memory management in Web server caches.A file system buffer manager always requires that the requested data block be in the cache in order to fulfil a request. Thus, a cache miss on a requested file block invariably results in a cache operation for bringing the requested file block into the cache, and possibly a series of cache replacement operations if it is full. That is, caching of a requested block is obligatory. This is not the case for Web object caching. Unlike file accesses, access patterns observed by Web servers do not usually exhibit high temporal locality. In general, the same user rarely requests the same Web object twice from a Web server in a short time interval, since the requested object should already be in the Web browser cache, the client OS cache, or the proxy cache. Therefore, traditional LRU (Least Recently Used) replacement algorithms that are so popular in file caches are not suitable for Web document caching. On the other hand, multiple accesses from different clients in a short time interval do indicate high popularity of a document. Frequency-based replacement algorithms, such as Least Frequently Used (LFU) and its variants have been shown to be more suitable for Web caching [2,3,4,5,6].2.3 Why Web Caching?The most obvious beneficiary of Web caching is the user, who avoids some traffic problems when browsing. The network administrator and the remote Web site also benefit.Large caches with lots of clients may field as many as 50% of the hits that would otherwise travel through a network individually to the origin site. A typical cache could easily field about 30% of the intended hits, says the NLANR’s 1996 research [7]. Thus,statistically speaking, a Web cache could eliminate at least 30% of the Web traffic that would normally be going out over a wide area network (WAN).3 Web PerformanceHighly accessed Web sites may need to handle peak request rates of over a million hits per minute. Web serving lends itself well to concurrency because transactions from different clients can be handled in parallel. A single Web server can achieve parallelism by multithreading or multitasking between different requests. Additional parallelism and higher throughputs can be achieved by using multiple servers and load balancing requests among the servers.The Web servers would typically contain replicated content so that a request could be directed to any server in the cluster. For storing static files, one way to share them [8] across multiple servers is to use a distributed file system (DFS). Copies of files may be cached in one or more servers. This approach works fine if the number of Web servers is not too large and data does not change very frequently. For large numbers of servers for which data updates are frequent, distributed file systems can be highly inefficient. Part of the reason for this is the strong consistency model imposed by distributed file systems. Shared file systems require all copies of files to be completely consistent. In order to update a file in one server, all other copies of the file need to be invalidated before the update can take place. These invalidation messages add overhead and latency. At some Web sites, the number of objects updated in temporal proximity to each other can be quite large. During periods of peak updates, the system might fail to perform adequately.3.1 Caching ArchitecturesCaches sharing mutual trust may assist each other to increase the hit rate. A caching architecture should provide the paradigm for proxies to cooperate efficiently with each other. Two common approaches to implement a large-scale cache cooperation scheme are hierarchical and distributed caching.Hierarchical Caching. With hierarchical caching caches are placed at different network levels. At the bottom level of the hierarchy there are client caches. When a client cache does not satisfy a request, the request is redirected to the institutional cache. If the document is not present at the institutional level, the request travels to the regional cache, which in turn forwards unsatisfied requests to the national cache. If the document is not present at any cache level, the national cache contacts directly the origin server. When the document is found, either at a cache or at the origin server, it travels down the hierarchy, leaving a copy at each of the intermediate caches. Further requests for the same document travel up the caching hierarchy until the request finds the document. There are several problems associated with a caching hierarchy: i) every hierarchy introduces additional delays, ii) higher level caches may become bottlenecks and have long queuing delays, and iii) several copies of the same document are stored at different cache levels.Distributed Caching. With distributed caching no intermediate caches are set up and there are only institutional caches at the edge of the network that cooperate to serve each other’s misses. In order to decide from which institutional cache to retrieve a miss document, all institutional caches keep meta-data information about the content of everyother institutional cache. Most of the traffic flows through low network levels, which are less congested and no additional disk space is required at intermediate network levels. In addition, distributed caching allows better load sharing and is more fault tolerant. However, a large-scale deployment of distributed caching may encounter several problems such as high connection times, higher bandwidth usage or administrative issues.3.2 Performance IssuesThe main performance measure is the expected latency to retrieve a Web document. It is debatable that which caching architecture can achieve the optimal performance. A recent research work [9] shows that hierarchical caching has shorter connection times than distributed caching, and hence, placing additional copies at intermediate levels reduces the retrieval latency for small documents.Fig. 1. Expected connection time E[Tc] and expected transmission time E[Tt], forhierarchical and distributed caching. ∆= 24 hours. (Courtesy of [9])It is also shown that distributed caching has shorter transmission times and higher bandwidth usage than hierarchical caching. A “well configured” hybrid scheme can combine the advantages of both hierarchical and distributed caching, reducing both the connection and the transmission time.A great number of incoming requests create large numbers of threads or processes, which must all contend for the same system resources. The resultant reduced throughput and slow response times decrease user satisfaction, potentially causing customers to leave.Commercial and academic Web servers achieved much of the performance gains using new or improved event-notification mechanisms and techniques to eliminate reading and copying data, both of which required new operating system primitives.More recently, experimental and production Web servers began integrating HTTP processing in the TCP/IP stack and providing zero copy access to a kernel-managed cache. These kernel-mode Web servers improved upon newer user-mode Web servers by a factor of two to six. [10]Data Copies and Reads. Data copies can be difficult to avoid in user-mode Web servers where the data to be sent resides in the file system cache. In cases where data is already mapped into the user-mode address space, one or more copies will be performed before delivering the data to the network adapter. Even where data copies are eliminated, the additional overhead in reading the data to compute a checksum remains. Providing amechanism to send response data directly from the file system cache to the network interface solves the data copy problem. The checksum problem is solved either by precomputing and embedding the checksum in a Web cache object or by relying on network interface hardware to offload the checksum computation.Event Notification. Event notification can be defined as the queuing of a client request by a server for response by a server task. To handle multiple clients, the server supports concurrency either by assigning a single task, single process event driven (SPED), from a pool of tasks to each client request, or by using asynchronous system calls to manage many requests with a few tasks, multiple process/thread (MP).In the MP model, a server creates a new task for each new request. Because creating a new task can be time consuming, most MP servers reduce the overhead by pre-allocating a pool of tasks. However, pre-allocating a pool of tasks to avoid task creation still incurs unwanted scheduling overhead. Every request requires a reschedule to the task for that request. Ideally, the unnecessary scheduling inherent to the MP model is avoided in a design where a single task services requests on behalf of multiple clients.In the SPED model, a few processes handle requests from multiple clients concurrently. The SPED model relies on asynchronous notification mechanism for notifying a server task of incoming network requests.Communication Code Path. A third performance issue is the overall communication code path through the socket layer, TCP/IP stack, link layer, and network interface. The socket layer is not necessarily tailored to the needs of Web servers. Reducing the code path between the Web server and TCP/IP stack allows system calls and redundant socket layer code elimination.User-mode. These user-mode Web servers rely heavily on the operating system to provide the refined primitives to reduce data movement, limit event notification overhead, and minimise the communication code path. One approach is to optimise existing interfaces and their implementations.Kernel-mode. Kernel-mode Web servers have been implemented in the context of both production and experimental operating systems. Migration of services considered integral to a server’s operation into the kernel is not a new idea. Delivery of static Web responses amounts to sending files on a network interface and does not require extensive request parsing. A kernel-mode Web server can fetch response data from a file system or kernel-managed Web cache. If the kernel-mode caching Web server determines that it cannot serve the request from its cache, it forwards it to a full-featured user-mode Web server. Kernel-mode Web servers can be characterised according to the degree of their integration with the TCP/IP stack and whether responses are derived in a thread or interrupt context. 3.3 AFPA (Adaptive Fast Path Architecture)AFPA is a Kernel-mode platform for high-performance network servers. The main features are the support for a variety of application protocols; direct integration with the TCP/IP protocol stack (tight integration with the TCP stack enables better event notification and data transfer); and a Kernel-managed, zero copy cache (a zero-copy send interface reduces data transfer by allowing responses to be sent directly from RAM-based cache).AFPA’s central component, an in-Kernel RAM-based cache, is intended to store not only the most frequently requested items, but also the entire set of static content. Serving content from RAM eliminates disk latency and bandwidth constraints.Memory management. To ensure that sufficient pageable storage remains available for normal system operation, AFPA limits the amount of storage it pins to 25% of real memory [10]. But, it does not prevent the file-system cache manager and virtual memory manager from using more or less than 25% of real storage for the file-system cache.Real-memory management performed by the file-system cache manager allows AFPA to influence resource management without assuming complete responsibility. However, operating systems may allocate less memory to the file-system cache than is appropriate for a system whose primary purpose is caching.AFPA explicitly allocates nonpaged RAM for pinned-memory cache objects. The primary questions regarding the implementation of such objects concern allocation and management of pinned storage. No explicit limit is imposed on the amount of pinned memory which AFPA requests. Pinned memory is simply allocated until further allocations are refused. The operating system fails calls for relatively large amounts of pinned memory before the system runs dangerously low. When a call to allocate pinned memory does fail, a file-system cache object is used instead.Table 1: Web Server CharacteristicsTCPDirectArchitecture CachecopyApache MP/user filesystem no noZeus SPED/user filesystem no noIIS SPED/user filesytem yes nokHTTPd SPED/kernel filesytem no noTUX SPED/kernel memory yes noSWC SPED/kernel fs or mem yes yesAFPA Softint/kernel fs or mem Yes yesTable 1 enumerates and describes the Web servers tested on Linux and Windows 2000. The “architecture” column describes servers as MP, SPED, or softint (software interrupt) and kernel-mode or user-mode. The “cache” attribute defines whether the file system, memory, or both back the Web server’s cache. The “0 copy” column indicates whether or not the Web server performs a copy to send a cache object. The “direct TCP” column indicates whether or not the Web server is directly integrated with the TCP/IP stack or uses the socket layer.Fig. 2. SPECweb96 workload. (Courtesy of [10])IBM use the first standard HTTP benchmark for their experiments: SPECweb96 [11]. The SPECweb96 working set comprises files that range in size from 100 bytes to 900 KB.The results presented in Figure 2 show a significant gap in performance between kernel and user-mode Web cache implementations. AFPA on Linux achieves the fastest performance of the tested servers. The result of 10269 represents more than 1.2 GB/s server throughput. For example, on Windows 2000 AFPA is 50% faster on one CPU (9018 SPECweb operations per second) than IIS on four CPUs (6090 SPECweb operations per second).3.4 Intel Itanium ArchitectureWeb server caching handles simultaneous requests from thousands, even millions of demanding customer at the same time. Demand for this kind of performance stimulates new improvements. Intel's new Itanium processors [12] offer another way to meet that demand. The Itanium processor's 64-bit address space, plus the architecture’s advanced features, directly attacks the throughput problem in innovative ways.Table 2: Intel Itanium Processor Benefits for Web Server Caching Technology Caching Technology Predication Speculation Increased No. of Registers Parallelism Web Server Caching x x x xPredication.Web server caches are especially prone to heavy branching, and ordinarily this means a branch has to be evaluated before the process can continue, which slows things down.Some advanced processors use predictive branching, to guess which branch to take and while this works, guessing wrong can stall the processor pipeline badly.Intel uses something called Predication instead, avoiding branching altogether. It processes both branches at the same time, then discards the wrong branch later.Speculation. Speculation speeds things up by anticipating what code fragments or data bits the CPU might need next, and fetching it from main memory in advance. Other advanced processors have this kind of pre-fetching, but only after the last code branch. The Itanium architecture is under no such limit. In addition, the new generation of intelligent compilers for this architecture are actually capable of scheduling in the compiled code what speculative loads to make in advance, producing more finely tuned speculation results. Increased Number of Registers. The system stores the intermediate results or code in CPU registers. If it runs out of registers, the intermediate results have to be stored in main memory, then reloaded when needed.The Itanium architecture offers more registers: 128 integer, 128 floating-point, and 8 branch registers, increasing the overall performance to the end user.Parallelism. The intelligent compilers being released for this architecture are able to find and exploit opportunities for parallelism. This means the predication and speculation capabilities of the architecture can be fully exercised, providing higher degree of efficiency in operations with this processor family.4 ConclusionsWeb caching is applied in today’s Internet to improve the performance of Web accesses by avoiding redundant data transfers. Using new or improved event notification mechanisms and techniques to eliminate reading and copying data, Web servers achieved greater performance gains. IBM and Intel came out with improved solutions for Web caching. The basic difference between the two companies is Intel’s focus on products while IBM’s focus on basic research. The Intel Itanium architecture provides a set of functionality that should enable larger and more powerful cache server software. An overview of Adaptive Fast Path Architecture from IBM shows that AFPA more than doubles capacity for serving static content compared to conventional server architectures.However, the gains achieved consider just the static content. It is important to predict the Network evolution and the future needs. The next step for researchers could be to deliver performance improvements for dynamic content while new line of processors with Web Caching features are developed.References[1] B. D. Davison.: A Web Caching Primer. IEEE Internet Computing, Vol. 5 (2001) 38-45[2] Arlitt M, Williamson C.: Trace-Driven Simulation of Document Caching Strategies forInternet Web Servers. Simulations (1997)[3] Reddy N.: Effectiveness of Caching Policies for a Web Server. Proceedings of the 4th Int.Conf. on High Performance Computing, Cambridge, Massachusetts, USA, (1997)[4] Robinson J, Devarakonda M.: Data Cache Management Using Frequency-Based Replacement.Proceedings of the 1990 ACM SIGMETRICS Conf. on the Measurement and Modelling of Computer Systems, Boulder, Colorado, USA, (1990)[5] Williams S, Abrams M.: Removal Policies in Network Caches for World Wide WebDocuments. Proceedings of ACM SIGCOMM ‘96, Stanford University, CA, USA, (1996) [6]Rizzo L, Vicisano L.: Replacement Policies for a Proxy Cache. UCL-CS Research NoteRN/98/13, Department of Computer Science, University College London, (1998)[7] National Laboratory for Applied Network Research./, (2001)[8] T. T. Kwan, R. E. McGrath, D. A. Reed.: NCSA’s World Wide Web Server: Design andPerformance. IEEE Computer, November (1995)[9] P. Rodriguez, C. Spanner, E. W. Biersack.: Web Caching architectures: hierarchical anddistributed caching. Proceedings of WCW’ 99. (1999)[10] E. C. Hu, P. A. Joubert, R. B. King, J. D. LaVoie, J. M. Tracey.: Adaptive Fast PathArchitecture. IBM J. RES. & DES. Vol. 45 2 March (2001)[11] The Standard Performance Evaluation Corporation. SPECweb96 Benchmark,/whitepapers/openbench1.html , (1999)[12] Intel Corporation.: The Advantages of IA-64 for Cache Server Software. Version 1.0 (2000)。

相关文档
最新文档