必修二数学练习 2

合集下载

人教版高中数学必修二第二章单元测试(二)- Word版含答案

人教版高中数学必修二第二章单元测试(二)- Word版含答案

2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。

高中数学必修2知识点加例题加课后习题

高中数学必修2知识点加例题加课后习题

高中数学必修二第一章 空间几何体1.1空间几何体的结构 1、棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2、棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3、棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如四棱台ABCD—A'B'C'D'几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点4、圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5、圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6、圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

人教A版高中数学必修二-章节练习题

人教A版高中数学必修二-章节练习题

第二章单元测试1.下列命题正确的是………………………………………………( ) A .三点确定一个平面 B .经过一条直线和一个点确定一个平面 C .四边形确定一个平面 D .两条相交直线确定一个平面2.若直线a 不平行于平面α,且α⊄a ,则下列结论成立的是( ) A .α内的所有直线与a 异面 B .α内不存在与a 平行的直线 C .α内存在唯一的直线与a 平行 D .α内的直线与a 都相交 3.平行于同一平面的两条直线的位置关系………………………( ) A .平行 B .相交 C .异面 D .平行、相交或异面 4.平面α与平面β平行的条件可以是…………………………( ) A .α内有无穷多条直线都与β平行B .直线βα//,//a a 且直线a 不在α内,也不在β内C .直线α⊂a ,直线β⊂b 且β//a ,α//bD .α内的任何直线都与β平行5.下列命题中,错误的是…………………………………………( ) A .平行于同一条直线的两个平面平行 B .平行于同一个平面的两个平面平行 C .一个平面与两个平行平面相交,交线平行D .一条直线与两个平行平面中的一个相交,则必与另一个相交 6.已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内的已知直线必垂直于另一个平面的无数条直线 ③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确的个数是…………………………………………( ) A .3 B .2 C .1 D .07.下列命题中错误的是……………………………………( ) A .如果平面βα⊥,那么平面α内所有直线都垂直于平面βB .如果平面βα⊥,那么平面α一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面τα⊥,τβ⊥,l =⋂βα,那么τ⊥l 8.如图是正方体的平面展开图,则在这个正方体中 ①BM 与ED 平行 ②CN 与BE 异面 ③CN 与BM 成 60 ④DM 与BN 垂直 以上四个命题中,正确命题的序号是( ) A .①②③ B .②④ C .③④ D .②③④9.不共面的四点可以确定平面的个数为 ( ) A . 2个 B . 3个 C . 4个 D .无法确定 10.已知直线a 、b 与平面α、β、γ,下列条件中能推出α∥β的是 ( ) A .a ⊥α且a ⊥β B .α⊥γ且β⊥γ C .a ⊂α,b ⊂β,a ∥b D .a ⊂α,b ⊂α,a ∥β,b ∥β 11.下列四个说法 ①a //α,b ⊂α,则a // b ②a ∩α=P ,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 12.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组13.(12分)已知正方方体111'D C B A ABCD -,求:(1)异面直线11CC BA 和的夹角是多少? (2)B A 1和平面11B CDA 所成的角?(3)平面11B CDA 和平面ABCD 所成二面角的大小?AB CDEFMN C A 1B 11P A BCDCABPMN14.(12分)如图,在三棱锥P —ABC 中,PA 垂直于平面ABC ,AC ⊥BC . 求证:BC ⊥平面PAC .15.(10分)如图:AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于B A ,的任意一点,求证: PAC BC 平面⊥16.(12分)如图,在四棱锥P —ABCD 中,M ,N 分别是AB ,PC 的中点,若ABCD 是平行四边形.求证:MN ∥平面PAD .,M N 分别是17. 如图:S 是平行四边形ABCD 平面外一点,,SA BD 上的点,且SM AM =NDBN, 求证://MN 平面SCDA BCP O17.(14分)如图正方形ABCD 中,O 为中心,P O ⊥面ABCD ,E 是PC 中点, 求证:(1)PA ||平面BDE ; (2)面PAC ⊥面BDE.18.(14分)如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面 C 1DF ?并证明你的结论.19.在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.必修2第三章《直线与方程》单元测试题一、选择题(本大题共10小题,每小题5分,共50分)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是( ) A 30° B 45° C 60° D 90°2. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=A 、 -3B 、-6C 、23- D 、323.点P (-1,2)到直线8x-6y+15=0的距离为( )(A )2 (B )21 (C )1 (D )274. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( ) A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =55.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=06.过点M(2,1)的直线与X轴,Y轴分别交于P,Q两点,且|MP|=|MQ|, 则L的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 7. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)8. 直线0202=++=++n y x m y x 和的位置关系是(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 9. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有 A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 110.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0二、填空题(本大题共4小题,每小题5分,共20分)11.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为 . 12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.原点O在直线L上的射影为点H(-2,1),则直线L的方程为 . 三、解答题(本大题共3小题,每小题10分,共30分)15. ①求平行于直线3x+4y-12=0,且与它的 16.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0距离是7的直线的方程; 没有公共点,求实数m 的值. ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.*17.已知直线l 被两平行直线063=-+y x 033=++y x 和所截得的线段长为3,且直线过点(1,0),求直线l 的方程.参考答案:1.A ;2.B ;3.B ;4.D ;5.B ;6.D ;7.A ;8.C ;9.A ;10.A. 11.x+4y-7=0或x=-1;12.x+y-3=0或2x-y=0;13.261;14.2x-y+5=0; 15. (1)3x+4y+23=0或3x+4y-47=0;(2)3x-y+9=0或3x-y-3=0. 16.m=0或m=-1;17.x=1或3x-4y-3=0.必修2第四章《圆与方程》单元测试题一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)23.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )(A)5 (B) 3 (C)10 (D) 55.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为A 、1,-1B 、2,-2C 、1D 、-17.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是A 、x y 3=B 、x y 3-=C 、x y 33=D 、x y 33-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是A 、6π B 、4π C 、3π D 、2π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )A 、相切B 、相交C 、相离D 、相切或相交二、填空题(本大题共4小题,每小题5分,共20分)11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程为 . 2+y 2-8x=0的弦OA 。

【红对勾】高中数学(人教A版)必修二练习:2-1-1平面(含答案解析)

【红对勾】高中数学(人教A版)必修二练习:2-1-1平面(含答案解析)

1.下列四个选项中的图形表示两个相交平面,其中画法正确的是()解析:画两个相交平面时,被遮住的部分用虚线表示.答案:D2.若点Q在直线b上,b在平面β内,则Q,b,β之间的关系可记作()A.Q∈b∈β B.Q∈bβC.Q bβ D.Q b∈β解析:∵点Q(元素)在直线b(集合)上,∴Q∈b.又∵直线b(集合)在平面β(集合)内,∴b β,∴Q∈bβ.答案:B3.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.答案:C4.(1)空间任意4点,没有任何3点共线,它们最多可以确定________个平面.(2)空间5点,其中有4点共面,它们没有任何3点共线,这5个点最多可以确定________个平面.解析:(1)可以想象三棱锥的4个顶点,它们总共确定4个平面.(2)可以想象四棱锥的5个顶点,它们总共确定7个平面.答案:(1)4(2)75.如下图,已知D,E分别是△ABC的边AC,BC上的点,平面α经过D,E两点.(1)作直线AB与平面α的交点P;(2)求证:D,E,P三点共线.解:(1)延长AB交平面α于点P,如下图所示.题图答图(2)证明:∵平面ABC∩平面α=DE,P∈AB,AB平面ABC,∴P∈平面ABC.又∵P∈α,∴P在平面α与平面ABC的交线DE上,即P∈DE,∴D,E,P三点共线.课堂小结——本课须掌握的两大问题1.解决立体几何问题首先应过好三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的实虚.2.在处理点线共面、三点共线及三线共点问题时要体会三个公理的作用,体会先部分再整体的思想.。

数学必修二第二章单元测试题-几何

数学必修二第二章单元测试题-几何

数学必修二第二章单元测试题-几何(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--几何检测题一、选择题1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是( )A.①②B.②④ C.①③ D.②③2 .垂直于同一条直线的两条直线一定 ( )A、平行B、相交C、异面D、以上都有可能3.若三个平面两两相交,有三条交线,则下列命题中正确的是( )A.三条交线为异面直线 B.三条交线两两平行C.三条交线交于一点 D.三条交线两两平行或交于一点4. 在空间四边形ABCD各边AB BC CD DA、、、上分别取E F G H、、、四点,如果与EF GH、能相交于点P,那么()A、点P必在直线AC上B、点P必在直线BD上C、点P必在平面BCD内D、点P必在平面ABC外5.若平面α⊥平面β,α∩β=l,且点P∈α,P∉l,则下列命题中的假命题是( )A.过点P且垂直于α的直线平行于βB.过点P且垂直于l的直线在α内C.过点P且垂直于β的直线在α内 D.过点P且垂直于l的平面垂直于β6.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( ) A.若a,b与α所成的角相等,则a∥b B.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b 7.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有( )A.①②B.②③C.②④D.①④8.如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是( )A.5 B.8C.10 D.69.如右图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM( )A.与AC、MN均垂直相交B.与AC垂直,与MN不垂直C.与MN垂直,与AC不垂直D.与AC、MN均不垂直10、如图:直三棱柱ABC—A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B—APQC的体积为( )A、2VB、3VC、4VD、5V11.(2009·海南、宁夏高考)如图,正方体ABCD—A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=12,则下列结论错误的是( )A.AC⊥BEB.EF∥平面ABCDC.三棱锥A—BEF的体积为定值D.△AEF的面积与△BEF的面积相等12.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的个数是()QPC'B'A'CBA2A. 1B. 2C. 3D. 4二、填空题13、已知PA垂直平行四边形ABCD所在平面,若PC BD,平行则四边形ABCD一定是 .14.已知三棱锥D-ABC 的三个侧面与底面全等,且AB=AC=3,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的平面角大小为 .15.如下图所示,以等腰直角三角形ABC斜边BC上的高AD为折痕.使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________.(2)∠BAC=________.16.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形.②四边形BFD′E有可能是正方形.③四边形BFD′E在底面ABCD内的投影一定是正方形.④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)三、解答题17、如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.18.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.20.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;3(3)求几何体ADEBC的体积V.1.一个圆柱的底面半径是3厘米,高是2厘米,这个圆柱的表面积是多少平方厘米体积是多少立方厘米2.将一张长厘米,宽厘米的长方形纸卷成一个圆柱体,圆柱体的体积是多少立方厘米?3.把一根长是2米,底面直径是4分米的圆柱形木料锯成4段后,表面积增加了多少平方分米?.4.一个圆锥体的底面半径是6厘米,高是1分米,体积是多少立方厘米?5.一个圆柱的侧面展开得到一个长方形,长方形的长是厘米,宽是3厘米,如果将它削成一个最大的圆锥体,应削去多少立方厘米?6.一个圆柱体和一个圆锥体的底面积和体积都相等,圆柱的高8厘米,圆锥的高是多少厘米?7.一个长方体,棱长总和是200厘米,相交于一点的三条棱的长度和是多少厘米48.一个长方体,长是10厘米,宽和高都是2厘米,这个长方体的表面积和体积是多少?9.一个正方体棱长总和是96厘米,表面积是多少体积是多少2.一个圆柱的体积是立方厘米,底面周长是厘米,它的高是多少厘米?3.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少立方分米,那么圆锥的体积是多少立方分米圆柱的体积是多少立方分米4.用一个底面积为平方厘米,高为30厘米的圆锥形容器盛满水,然后把水倒入底面积为平方厘米的圆柱形容器内,水的高为多少厘米?简单几何体的侧面积和体积1、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于( ).A. C.2、一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如图所示,左视图是一个矩形,则这个矩形的面积是( )5B. D.3、如图是某几何体的三视图,则该几何体的体积为( ).A. B. C.D.1题图 2题图 3题图4、母线长为1的圆锥的侧面展开图的圆心角等于43π,则该圆锥的体积为 ( ) ππ π π5、下图为一个几何体的三视图,则该几何体的表面积为(不考虑接触点) ( )+3+π +3+4π+23+π+π6、若球O1、O2表面积之比S1S2=4,则它们的半径之比R1R2=___7、在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.8、一个高为2的圆柱,底面周长为,该圆柱的表面积为 .9、若某几何体的三视图(单位:)如图所示,则此几何体的体积是.10、一个空间几何体的三视图如图所示,则该几何体的表面积为 .11.已知:一个圆锥的底面半径为,高为,在其中有一个高为的内接圆柱.(1)求圆柱的侧面积;(2)为何值时,圆柱的侧面积最大.9题图10题图 11题图12、直三棱柱高为6 cm,底面三角形的边长分别为3 cm,4 cm,5 cm,将棱柱削成圆柱,求削去部分体积的最小值.13、设球的表面积为,体积为,它的内接正方体的表面积为,体积为,求,.14、如图所示,一个直三棱柱形容器中盛有水,且侧棱AA1=8.若侧面AA1B1B水平放置时,液面恰好过AC、BC、A1C1、B1C1的中点,当底面ABC水平放置时,液面高为多少?67数学立体几何练习题一、选择题:本大题共15小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的.1、设有直线m 、n 和平面α、β.下列四个命题中,正确的是( ) A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α2、已知直线,l m 与平面αβγ,,满足//l l m βγαα=⊂,,和m γ⊥,则有 A .αγ⊥且l m ⊥ B .αγ⊥且//m β C .//m β且l m ⊥ D .//αβ且αγ⊥3.若()0,1,1a =-,()1,1,0b =,且()a b a λ+⊥,则实数λ的值是( )A .-1 D.-24、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥mC. AB ∥βD. AC ⊥β5一个几何体的三视图及长度数据如图,则几何体的表面积与体积分别为()3,27+A ()328,+B()2327,+C ()23,28+D6、已知长方体的表面积是224cm ,过同一顶点的三条棱长之和是6cm ,则它的对角线长是( )A. 14cmB. 4cmC. 32cmD. 23cm7.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上 的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定8.将正方形ABCD 沿对角线BD 折起,使平面ABD⊥平面CBD ,E 是CD 中点,则AED ∠的大小为( ) A.45 B.30C.60D.909.PA ,PB ,PC 是从P 引出的三条射线,每两条的夹角都是60º,则直线PC 与平面PAB 所成的角的余弦值为( )A .12B 。

高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

高中数学必修二2.2-直线、平面平行的判定及其性质课堂练习及答案

2.2.直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定●知识梳理1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a∥αa∥b●知能训练一.选择题1.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n2.若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交3.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题①过M点有且只有一条直线与直线AB、B1C1都相交;②过M点有且只有一条直线与直线AB、B1C1都垂直;③过M点有且只有一个平面与直线AB、B1C1都相交;④过M点有且只有一个平面与直线AB、B1C1都平行.其中真命题是()A.②③④B.①③④C.①②④D.①②③4.正方体ABCD-A1B1C1D1中M,N,Q分别是棱D1C1,A1D1,BC的中点.P在对角线BD1上,且BP=BD1,给出下面四个命题:(1)MN∥面APC;(2)C1Q∥面APC;(3)A,P,M三点共线;(4)面MNQ∥面APC.正确的序号为()A.(1)(2)B.(1)(4)C.(2)(3)D.(3)(4)5.在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,任取两点连成直线,所连的直线中与A1BC1平行的直线共有()A.12条B.18条C.21条D.24条6.直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内7.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交8.如图在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()A.DD1B.A1D1C.C1D1D.A1D9.如图,在三棱柱ABC-A1B1C1中,点D为AC的中点,点D1是A1C1上的一点,若BC1∥平面AB1D1,则等于()A.1/2B.1 C.2 D.310.下面四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④11.如图,正方体的棱长为1,线段B′D′上有两个动点E,F,EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值二.填空题12.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H,M分别是棱AD,DD1,D1A1,A1A,AB的中点,点N在四边形EFGH的四边及其内部运动,则当N只需满足条件时,就有MN⊥A1C1;当N只需满足条件时,就有MN∥平面B1D1C.13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.(1)求证:AB 1∥平面BC1D;(2)若BC=3,求三棱锥D-BC1C的体积.2.2.2 平面与平面平行的判定●知识梳理1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

数学必修二第二章练习题

数学必修二第二章练习题

数学必修二第二章练习题数学必修二第二章通常涵盖了几何学的一些基础内容,包括平面几何、立体几何等。

以下是一些练习题,旨在帮助学生巩固第二章的学习内容。

练习题一:平面几何1. 已知三角形ABC中,角A为60度,边AB=5cm,边AC=7cm,求边BC 的长度。

2. 在矩形PQRS中,若PQ=4cm,PR=6cm,求对角线PS的长度。

3. 给定一个圆的半径为r,求圆的周长和面积。

解答提示:- 对于第一题,可以使用余弦定理来求解。

- 第二题可以通过勾股定理来求解对角线的长度。

- 第三题可以直接应用圆的周长公式C=2πr和面积公式A=πr²。

练习题二:立体几何1. 一个正方体的棱长为a,求其表面积和体积。

2. 已知一个圆柱的底面半径为r,高为h,求其侧面积和体积。

3. 如果一个圆锥的底面半径为r,高为h,求其体积。

解答提示:- 正方体的表面积公式为S=6a²,体积公式为V=a³。

- 圆柱的侧面积公式为A=2πrh,体积公式为V=πr²h。

- 圆锥的体积公式为V=1/3πr²h。

练习题三:空间几何1. 在空间直角坐标系中,已知点A(1,2,3),B(4,-1,2),求向量AB的模。

2. 给定两个平面的方程,求它们之间的夹角。

3. 已知一个点到两个平行平面的距离相等,求这两个平面之间的距离。

解答提示:- 第一题可以通过计算向量的坐标差来求得向量,然后使用向量的模长公式。

- 第二题和第三题可能需要使用向量法或平面法线之间的夹角来求解。

练习题四:几何证明1. 证明:在一个三角形中,大边对大角。

2. 证明:在一个直角三角形中,斜边的中线等于斜边的一半。

3. 证明:如果两个三角形的两边和夹角相等,则这两个三角形全等。

解答提示:- 第一题可以通过比较三角形两边的长度和对应的角来证明。

- 第二题可以通过构造直角三角形的中线,然后使用勾股定理来证明。

- 第三题是三角形全等的一个特例,可以通过SAS(边-角-边)全等条件来证明。

高中数学人教A版必修二 章末综合测评2 Word版含答案

高中数学人教A版必修二 章末综合测评2 Word版含答案

点、直线、平面之间的位置关系一、选择题1.设a、b为两条直线α、β为两个平面则正确的命题是()【09960089】A.若a、b与α所成的角相等则a∥bB.若a∥αb∥βα∥β则a∥bC.若a⊂αb⊂βa∥b则α∥βD.若a⊥αb⊥βα⊥β则a⊥b【解析】A中a、b可以平行、相交或异面;B中a、b可以平行或异面;C中α、β可以平行或相交.【答案】 D2.(2016·山西山大附中高二检测)如图1在正方体ABCD-A1B1C1D1中E、F、G、H分别为AA1、AB、BB1、B1C1的中点则异面直线EF与GH所成的角等于()图1A.45°B.60°C.90°D.120°【解析】如图连接A1B、BC1、A1C1则A1B=BC1=A1C1且EF∥A1B、GH∥BC1所以异面直线EF与GH所成的角等于60°【答案】 B3.设l为直线αβ是两个不同的平面.下列命题中正确的是() A.若l∥αl∥β则α∥βB.若l⊥αl⊥β则α∥βC.若l⊥αl∥β则α∥βD.若α⊥βl∥α则l⊥β【解析】选项A平行于同一条直线的两个平面也可能相交故选项A错误;选项B垂直于同一直线的两个平面互相平行选项B正确;选项C由条件应得α⊥β故选项C错误;选项D l与β的位置不确定故选项D错误.故选B【答案】 B7.(2015·洛阳高一检测)如图2△ADB和△ADC都是以D为直角顶点的等腰直角三角形且∠BAC=60°下列说法中错误的是()图2A.AD⊥平面BDCB.BD⊥平面ADCC.DC⊥平面ABDD.BC⊥平面ABD【解析】由题可知AD⊥BDAD⊥DC所以AD⊥平面BDC又△ABD与△ADC均为以D为直角顶点的等腰直角三角形所以AB=ACBD=DC=22AB又∠BAC=60°所以△ABC为等边三角形故BC=AB=2BD所以∠BDC=90°即BD⊥DC所以BD⊥平面ADC同理DC⊥平面ABD所以A、B、C项均正确.选D【答案】 D8.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12底面对角线的长为26则侧面与底面所成的二面角为() A.30°B.45°C.60°D.90°【解析】由棱锥体积公式可得底面边长为23高为3在底面正方形的任一边上取其中点连接棱锥的顶点及其在底面的射影根据二面角定义即可判定其平面角在直角三角形中因为tan θ=3(设θ为所求平面角)所以二面角为60°选C【答案】 C9.将正方形ABCD沿BD折成直二面角M为CD的中点则∠AMD 的大小是()A.45°B.30°C.60°D.90°【解析】 如图设正方形边长为a 作AO ⊥BD 则AM =AO 2+OM 2=⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫12a 2=32a又AD =aDM =a2∴AD 2=DM 2+AM 2∴∠AMD =90° 【答案】 D10.在矩形ABCD 中若AB =3BC =4P A ⊥平面AC 且P A =1则点P 到对角线BD 的距离为( )A 292B 135C 175D 1195【解析】 如图过点A 作AE ⊥BD 于点E 连接PE∵P A ⊥平面ABCDBD ⊂平面ABCD ∴P A ⊥BD ∴BD ⊥平面P AE ∴BD ⊥PE∵AE =AB ·AD BD =125P A =1 ∴PE =1+⎝ ⎛⎭⎪⎫1252=135 【答案】 B11.(2016·大连高一检测)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直体积为94底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心则P A 与平面ABC 所成角的大小为( )【09960090】A.75°B.60°C.45°D.30°【解析】如图所示P为正三角形A1B1C1的中心设O为△ABC的中心由题意知:PO⊥平面ABC连接OA则∠P AO即为P A与平面ABC 所成的角.在正三角形ABC中AB=BC=AC= 3则S=34×(3)2=334VABC-A1B1C1=S×PO=94∴PO= 3又AO=33×3=1∴tan ∠P AO=POAO=3∴∠P AO=60°【答案】 B12.正方体ABCD-A1B1C1D1中过点A作平面A1BD的垂线垂足为点H以下结论中错误的是()A.点H是△A1BD的垂心B.AH⊥平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成的角为45°【解析】因为AH⊥平面A1BDBD⊂平面A1BD所以BD⊥AH又BD⊥AA1且AH∩AA1=A所以BD⊥平面AA1H又A1H⊂平面AA1H所以A1H⊥BD同理可证BH⊥A1D所以点H是△A1BD的垂心A正确.因为平面A1BD∥平面CB1D1所以AH⊥平面CB1D1B正确.易证AC1⊥平面A1BD因为过一点有且只有一条直线与已知平面垂直所以AC1和AH重合.故C正确.因为AA1∥BB1所以∠A1AH为直线AH和BB1所成的角.因为∠AA1H≠45°所以∠A1AH≠45°故D错误.【答案】 D二、填空题(本大题共4小题每小题5分共20分将答案填在题中的横线上)13.设平面α∥平面βA、C∈αB、D∈β直线AB与CD交于点S 且点S位于平面αβ之间AS=8BS=6CS=12则SD=________【解析】由面面平行的性质得AC∥BD ASBS=CSSD解得SD=9【答案】914.如图3四棱锥S-ABCD中底面ABCD为平行四边形E是SA上一点当点E满足条件:________时SC∥平面EBD图3【解析】当E是SA的中点时连接EBEDAC设AC与BD的交点为O连接EO∵四边形ABCD是平行四边形∴点O是AC的中点.又E是SA的中点∴OE是△SAC的中位线.∴OE∥SC∵SC⊄平面EBDOE⊂平面EBD∴SC∥平面EBD【答案】E是SA的中点15.如图4所示在正方体ABCD-A1B1C1D1中MN分别是棱AA1和AB上的点若∠B1MN是直角则∠C1MN等于________.图4【解析】∵B1C1⊥平面A1ABB1MN⊂平面A1ABB1∴B1C1⊥MN又∠B1MN为直角∴B1M⊥MN而B1M∩B1C1=B1∴MN ⊥平面MB 1C 1又MC 1⊂平面MB 1C 1 ∴MN ⊥MC 1∴∠C 1MN =90° 【答案】 90°16.已知四棱锥P -ABCD 的底面ABCD 是矩形P A ⊥底面ABCD 点E 、F 分别是棱PC 、PD 的中点则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△P AB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号) 【解析】 由条件可得AB ⊥平面P AD ∴AB ⊥PD 故①正确;若平面PBC ⊥平面ABCD 由PB ⊥BC得PB ⊥平面ABCD 从而P A ∥PB 这是不可能的故②错;S △PCD =12CD ·PDS △P AB =12AB ·P A由AB =CDPD >P A 知③正确; 由E 、F 分别是棱PC 、PD 的中点 可得EF ∥CD 又AB ∥CD∴EF ∥AB 故AE 与BF 共面④错. 【答案】 ①③三、解答题(本大题共6小题共70分.解答应写出文字说明证明过程或演算步骤)17.(本小题满分10分)如图5所示已知△ABC 中∠ACB =90°SA ⊥平面ABCAD ⊥SC 求证:AD ⊥平面SBC图5【证明】∵∠ACB=90°∴BC⊥AC又∵SA⊥平面ABC∴SA⊥BC∵SA∩AC=A∴BC⊥平面SAC∴BC⊥AD又∵SC⊥ADSC∩BC=C∴AD⊥平面SBC18.(本小题满分12分)如图6三棱柱ABC-A1B1C1的侧棱与底面垂直AC=9BC=12AB=15AA1=12点D是AB的中点.图6(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1【证明】(1)∵C1C⊥平面ABC∴C1C⊥AC∵AC=9BC=12AB=15∴AC2+BC2=AB2∴AC⊥BC又BC∩C1C=C∴AC⊥平面BCC1B1而B1C⊂平面BCC1B1∴AC⊥B1C(2)连接BC1交B1C于O点连接OD如图∵OD分别为BC1AB的中点∴OD∥AC1又OD⊂平面CDB1AC1⊄平面CDB1∴AC1∥平面CDB1 19.(本小题满分12分)(2016·德州高一检测)某几何体的三视图如图7所示P是正方形ABCD对角线的交点G是PB的中点.(1)根据三视图画出该几何体的直观图;(2)在直观图中①证明:PD∥面AGC;②证明:面PBD⊥面AGC图7【解】(1)该几何体的直观图如图所示:(2)证明:①连接ACBD交于点O连接OG因为G为PB的中点O为BD 的中点所以OG ∥PD②连接PO 由三视图知PO ⊥平面ABCD 所以AO ⊥PO又AO ⊥BO 所以AO ⊥平面PBD因为AO ⊂平面AGC所以平面PBD ⊥平面AGC20.(本小题满分12分)(2016·济宁高一检测)如图8正方形ABCD 和四边形ACEF 所在的平面互相垂直EF ∥ACAB =2CE =EF =1图8(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE【09960091】【证明】 (1)如图设AC 与BD 交于点G因为EF ∥AG 且EF =1AG =12AC =1所以四边形AGEF 为平行四边形.所以AF ∥EG因为EG⊂平面BDEAF⊄平面BDE所以AF∥平面BDE(2)连接FG∵EF∥CGEF=CG=1∴四边形CEFG为平行四边形又∵CE=EF=1∴▱CEFG为菱形∴EG⊥CF在正方形ABCD中AC⊥BD∵正方形ABCD和四边形ACEF所在的平面互相垂直∴BD⊥平面CEFG∴BD⊥CF又∵EG∩BD=G∴CF⊥平面BDE21.(本小题满分12分)(2015·山东高考)如图9三棱台DEF-ABC 中AB=2DEGH分别为ACBC的中点.图9(1)求证:BD∥平面FGH;(2)若CF⊥BCAB⊥BC求证:平面BCD⊥平面EGH【解】(1)证法一:连接DGCD设CD∩GF=M连接MH在三棱台DEF-ABC中AB=2DEG为AC的中点可得DF∥GCDF=GC所以四边形DFCG为平行四边形则M为CD的中点.又H为BC的中点所以MH∥BD又MH⊂平面FGHBD⊄平面FGH所以BD∥平面FGH 证法二:在三棱台DEF-ABC中由BC=2EFH为BC的中点可得BH∥EFBH=EF所以四边形BHFE为平行四边形可得BE∥HF在△ABC中G为AC的中点H为BC的中点所以GH∥AB又GH∩HF=H所以平面FGH∥平面ABED因为BD⊂平面ABED所以BD∥平面FGH(2)连接HE因为GH分别为ACBC的中点所以GH∥AB由AB⊥BC得GH⊥BC又H为BC的中点所以EF∥HCEF=HC因此四边形EFCH是平行四边形.所以CF∥HE又CF⊥BC所以HE⊥BC又HEGH⊂平面EGHHE∩GH=H所以BC⊥平面EGH又BC⊂平面BCD所以平面BCD⊥平面EGH22.(本小题满分12分)(2016·重庆高一检测)如图10所示ABCD是正方形O是正方形的中心PO⊥底面ABCD底面边长为aE是PC的中点.图10(1)求证:P A∥平面BDE;平面P AC⊥平面BDE;(2)若二面角E-BD-C为30°求四棱锥P-ABCD的体积.【解】(1)证明:连接OE如图所示.∵O、E分别为AC、PC的中点∴OE∥P A∵OE⊂平面BDEP A⊄平面BDE∴P A∥平面BDE∵PO⊥平面ABCD∴PO⊥BD在正方形ABCD中BD⊥AC又∵PO∩AC=O∴BD⊥平面P AC又∵BD⊂平面BDE∴平面P AC⊥平面BDE(2)取OC中点F连接EF∵E为PC中点∴EF为△POC的中位线∴EF∥PO又∵PO⊥平面ABCD∴EF⊥平面ABCD∵OF ⊥BD ∴OE ⊥BD∴∠EOF 为二面角E -BD -C 的平面角 ∴∠EOF =30°在Rt △OEF 中OF =12OC =14AC =24a∴EF =OF ·tan 30°=612a ∴OP =2EF =66a∴V P -ABCD =13×a 2×66a =618a 3。

高中数学 必修二 第二章 2.1 2.1.1课后练习题

高中数学  必修二   第二章 2.1 2.1.1课后练习题

第二章 2.1 2.1.1基础巩固一、选择题1.空间中,可以确定一个平面的条件是()A.两条直线B.一点和一条直线C.一个三角形D.三个点[答案] C2.如图所示,下列符号表示错误的是()A.l∈αB.P∉lC.l⊂αD.P∈α[答案] A[解析]观察图知:P∉l,P∈α,l⊂α,则l∈α是错误的.3.下面四个说法(其中A,B表示点,a表示直线,α表示平面):①∵A⊂α,B⊂α,∴AB⊂α;②∵A∈α,B∉α,∴AB∉α;③∵A∉a,a⊂α,∴A∉α;④∵A∈a,a⊂α,∴A∈α.其中表述方式和推理都正确的命题的序号是()A.①④B.②③C.④D.③[答案] C[解析]①错,应写为A∈α,B∈α;②错,应写为AB⊄α;③错,推理错误,有可能A∈α;④推理与表述都正确.4.如图所示,平面α∩β=l,A,B∈α,C∈β且C∉l,AB∩l=R,设过A,B,C三点的平面为γ,则β∩γ等于()A.直线AC B.直线BCC.直线CR D.以上都不对[答案] C[解析]由C,R是平面β和γ的两个公共点,可知β∩γ=CR.5.若一直线a在平面α内,则正确的图形是()[答案] A6.下图中正确表示两个相交平面的是()[答案] D[解析]A中无交线;B中不可见线没有画成虚线;C中虚、实线没按画图规则画,也不正确.D的画法正确.画两平面相交时,一定要画出交线,还要注意画图规则,不可见线一般应画成虚线,有时也可以不画.二、填空题7.已知如图,试用适当的符号表示下列点、直线和平面的关系:(1)点C与平面β:________.(2)点A与平面α:________.(3)直线AB与平面α:________.(4)直线CD与平面α:________.(5)平面α与平面β:________.[答案](1)C∉β(2)A∉α(3)AB∩α=B(4)CD⊂α(5)α∩β=BD8.在正方体ABCD-A1B1C1D1中,下列说法正确的是________(填序号).(1)直线AC1在平面CC1B1B内.(2)设正方体ABCD与A1B1C1D1的中心分别为O,O1,则平面AA1C1C与平面BB1D1D 的交线为OO1.(3)由A,C1,B1确定的平面是ADC1B1.(4)由A,C1,B1确定的平面与由A,C1,D确定的平面是同一个平面.[答案](2)(3)(4)[解析](1)错误.如图所示,点A∉平面CC1B1B,所以直线AC1⊄平面CC1B1B.(2)正确.如图所示.因为O∈直线AC⊂平面AA1C1C,O∈直线BD⊂平面BB1D1D,O1∈直线A1C1⊂平面AA1C1C,O1∈直线B1D1⊂平面BB1D1D,所以平面AA1C1C与平面BB1D1D的交线为OO1.(3)(4)都正确,因为AD∥B1C1且AD=B1C1,所以四边形AB1C1D是平行四边形,所以A,B1,C1,D共面.三、解答题9.求证:两两相交且不过同一点的三条直线必在同一个平面内.[分析][解析]已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.证明:方法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C ∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.方法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α.又A∈α,同理AC⊂α,故直线AB,BC,AC共面.方法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.规律总结:1.利用公理2及三个推论,可以确定平面及平面的个数,公理中要求“不共线的三点”,推论1要求“平面外一点”,推论2要求“两条相交直线”,推论3要求“两条平行线”,因此对公理、推论的条件和结论必须理解清楚.2.对于证明几个点(或几条直线)共面的问题,在由其中几个点(或几条直线)确定一个平面后,只要再证明其他点(或直线)也在该平面内即可.10.如图所示,AB∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D三点共线.[解析]∵AB∥CD,∴AB,CD共面,设为平面β,∴AC在平面β内,即E在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E为平面α与平面β的公共点,根据公理3可得,B,D,E三点共线.能力提升一、选择题1.(2015·天津武清月考)下列说法正确的是()A.两两相交的三条直线确定一个平面B.四边形确定一个平面C.梯形可以确定一个平面D.圆心和圆上两点确定一个平面[答案] C[解析]因为梯形的两腰是相交直线,所以根据确定平面的条件,梯形应确定一个平面.2.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面[答案] D[解析]如果两个平面重合,则排除A、B;两个平面相交,则有一条交线,交线上任取3个点都是两个平面的公共点,故排除C;而D中的三点不论共线还是不共线,则一定能找到一个平面过这3个点.3.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④[答案] D[解析]当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确,选D.4.如图,α∩β=l,A∈α,C∈β,C∉l,直线AD∩l=D,过A,B,C三点确定的平面为γ,则平面γ、β的交线必过()A.点A B.点BC.点C,但不过点D D.点C和点D[答案] D[解析]A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.二、填空题5.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定的平面的个数是________.[答案] 6[解析]如图.6.如图所示,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.(1)如果EH∩FG=P,那么点P在直线________上.(2)如果EF∩GH=Q,那么点Q在直线________上.[答案](1)BD(2)AC[解析](1)若EH∩FG=P,那么点P∈平面ABD,P∈平面BCD,而平面ABD∩平面BCD =BD,所以P∈BD.(2)若EF∩GH=Q,则点Q∈平面ABC,Q∈平面ACD,而平面ABC∩平面ACD=AC,所以Q∈AC.三、解答题7.在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:(1)E 、C 、D 1、F 、四点共面; (2)CE 、D 1F 、DA 三线共点. [证明] (1)分别连结EF 、A1B 、D 1C , ∵E 、F 分别是AB 和AA 1的中点, ∴EF ∥A 1B 且EF =12A 1B .又∵A 1D 1綊B 1C 1綊BC , ∴四边形A 1D 1CB 是平行四边形, ∴A 1B ∥CD 1,从而EF ∥CD 1. EF 与CD 1确定一个平面. ∴E 、F 、D 1、C 四点共面. (2)∵EF 綊12CD 1,∴直线D 1F 和CE 必相交.设D 1F ∩CE =P , ∵D 1F ⊂平面AA 1D 1D ,P ∈D 1F ,∴P ∈平面AA 1D 1D . 又CE ⊂平面ABCD ,P ∈EC ,∴P ∈平面ABCD , 即P 是平面ABCD 与平面AA 1D 1D 的公共点. 而平面ABCD ∩平面AA 1D 1D =直线AD ,∴P ∈直线AD (公理3),∴直线CE 、D 1F 、DA 三线共点.8.(2015·江苏淮安模拟)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .(1)画出直线l 的位置;(2)设l ∩A 1B 1=P ,求线段PB 1的长.[解析] (1)延长DM 交D 1A 1的延长线于E ,连接NE ,则NE 即为直线l 的位置.(2)∵M 为AA 1的中点,AD ∥ED 1, ∴AD =A 1E =A 1D 1=a . ∵A 1P ∥D 1N ,且D 1N =12a ,∴A 1P =12D 1N =14a ,于是PB 1=A 1B 1-A 1P =a -14a =34a .。

人教版高中数学必修二教材课后习题答案及解析【精品】

人教版高中数学必修二教材课后习题答案及解析【精品】

人教版高中数学必修二教材课后习题答案及解析【精品】 7
人教版高中数学必修二教材课后习题答案及解析【精品】 8
人教版高中数学必修二教材课后习题答案及解析【精品】 9
人教版高中数学必修二教材课后习题答案及解析【精品】 10
人教版高中数学必修二教材课后习题答案及解析【精品】 11
人教版高中数学必修二教材课后习题答案及解析【精品】 12
人教版高中数学必修二教材课后习题答案及解析【精品】 55
人教版高中数学必修二教材课后习题答案及解析【精品】 56
人教版高中数学必修二教材课后习题答案及解析【精品】 57
人教版高中数学必修二教材课后习题答案及解析【精品】 58
人教版高中数学必修二教材课后习题答案及解析【精品】 59
人教版高中数学必修二教材课后习题答案及解析【精品】 60
人教版高中数学必修二教材课后习题答案及解析【精品】 37
人教版高中数学必修二教材课后习题答案及解析【精品】 38
ห้องสมุดไป่ตู้
人教版高中数学必修二教材课后习题答案及解析【精品】 39
人教版高中数学必修二教材课后习题答案及解析【精品】 40
人教版高中数学必修二教材课后习题答案及解析【精品】 41
人教版高中数学必修二教材课后习题答案及解析【精品】 42
人教版高中数学必修二教材课后习题答案及解析【精品】 13
人教版高中数学必修二教材课后习题答案及解析【精品】 14
人教版高中数学必修二教材课后习题答案及解析【精品】 15
人教版高中数学必修二教材课后习题答案及解析【精品】 16
人教版高中数学必修二教材课后习题答案及解析【精品】 17
人教版高中数学必修二教材课后习题答案及解析【精品】 18

高中数学必修二 8 6 3 平面与平面垂直(第2课时)平面与平面垂直的性质 练习(含答案)

高中数学必修二  8 6 3 平面与平面垂直(第2课时)平面与平面垂直的性质 练习(含答案)

8.6.3 平面与平面垂直第2课时 平面与平面垂直的性质一、选择题1.设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( ) A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A【解析】试题分析:由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得l β⊥,l α⊂ 可得αβ⊥2.如图所示,在平行四边形ABCD 中,AB BD ⊥,沿BD 将ABD △折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为( )A .1B .2C .3D .4【答案】C【解析】 ∵面ABD ⊥面BCD ,AB ⊥BD ,∴AB ⊥面BCD ,又AB ⊂面ABC ,∴面ABC ⊥面BCD ,同理,面ACD ⊥面ABD.故四面体ABCD 中互相垂直的平面有3对.3.如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A .一条线段B .一条直线C .一个圆D .一个圆,但要去掉两个点【答案】D【解析】 因为平面PAC ⊥平面PBC ,AC ⊥PC ,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC ⊥平面PBC.又因为BC ⊂平面PBC ,所以AC ⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.4.已知平面α⊥平面β,n αβ=,点A α∈,A n ∉,直线AB n ,直线AC n ⊥,直线m α,m β,则下列四种位置关系中,不一定成立的是( )A .AB m ∥B .AC m ⊥ C .AB β∥D .AC β⊥【答案】D【解析】如图所示:由于//m α,//m β,n αβ=,所以//m n ,又因为//AB n ,所以//AB m ,故A 正确, 由于AC n ⊥,//m n ,所以AC m ⊥,故B 正确,由于//AB n ,n β⊂,AB 在β外,所以//AB β,故C 正确;对于D ,虽然AC n ⊥,当AC 不一定在平面α内,故它可以与平面β相交、平行,不一定垂直,所以D 不正确;故答案选D5.(多选题)给定下列四个命题:A.若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;B.若一个平面经过另一个平面的垂线,则这两个平面相互垂直;C.垂直于同一直线的两条直线相互平行;D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④【答案】BD【解析】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故A 错误;由平面与平面垂直的判定可知B 正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故C 错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故D 正确.综上,真命题是BD. 故选:BD6.(多选题)如图所示,在直角梯形BCEF 中,90CBF BCE ︒∠=∠=,,A D 分别是,BF CE 上的点,AD BC ∥,且22AB DE BC AF ===(①).将四边形ADEF 沿AD 折起,连接,,BE BF CE (②).在折起的过程中,下列说法中正确的是( )A .AC 平面BEFB .,,,BC E F 四点不可能共面C .若EF CF ⊥,则平面ADEF ⊥平面ABCDD .平面BCE 与平面BEF 可能垂直【答案】ABC【解析】选项A 中,连接AC ,取AC 的中点O ,BE 的中点M ,连接,MO MF ,MO DE 且12MO DE =, 而AF DE ∥且12AF DE =,所以AF MO 且AF MO =所以四边形AOMF 是平行四边形,所以AC FM ∥,而AC ⊄平面BEF ,FM⊂平面BEF ,所以AC 平面BEF , 所以A 正确;选项B 中,设,,,B C E F 四点共面,因为BC AD ∥,BC ⊄平面ADEF ,AD ⊂平面ADEF ,所以BC ∥平面ADEF ,而BC ⊂平面BCEF ,平面BCEF平面ADEF EF =, 所以BC EF ∥,所以AD EF ,这与已知相矛盾,故B C E F ,,,四点不可能共面,所以B 正确;选项C 中,连接,CF DF ,在梯形ADEF 中,易得EF FD ⊥,又EF CF ⊥,,FD CF ⊂平面CDF ,FDCF F =,所以EF ⊥平面CDF而CD ⊂平面CDF ,所以CD EF ⊥,而CD AD ⊥,,EF AD ⊂平面ADEF ,且EF 与AD 必有交点,所以CD ⊥平面ADEF ,因为CD ⊂平面ABCD ,所以平面ADEF ⊥平面ABCD ,所以C 正确;选项D 中,延长AF 至G ,使得AF FG =,连接,BG EG , AD AF ⊥,AD AB ⊥,,AF AB ⊂平面ABF ,AF AB A ⋂=,所以AD ⊥平面ABF ,而BC AD ∥,所以BC ⊥平面ABF ,因为BC ⊂平面BCE ,所以平面BCE ⊥平面ABF ,过F 作FN BG ⊥于N ,FN ⊂平面ABF ,平面BCE 平面ABF BG =,若平面BCE ⊥平面BEF ,则过F 作直线与平面BCE 垂直,其垂足在BE 上,故前后矛盾,所以D 错误.故选:ABC.二、填空题7.如图,四面体P ABC -中,13PA PB ,平面PAB ⊥平面ABC ,90ACB ∠=︒,86AC BC ,,则PC _______.【答案】13【解析】取AB 的中点E ,连接,PE EC .因为90,8ACB AC ,6BC =,所以10AB =,所以5CE =. 因为13PA PB ,E 是AB 的中点,所以,12PEAB PE . 因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PE ⊂平面PAB ,因为CE ⊂平面ABC ,所以PE CE ⊥.在Rt PEC ∆中,2213PC PE CE .8.如图所示,A B C D ,,,为空间四点,在ABC 中,2AB AC BC ===,ADB 以AB 为轴运动,当平面ADB ⊥平面ABC 时,CD =________.【答案】2.【解析】取AB 的中点E ,连接DE CE ,.因为ADB △是等边三角形,所以DE AB ⊥.当平面ADB ⊥平面ABC 时,因为平面ADB ⋂平面ABC AB =,且DE AB ⊥,所以DE ⊥平面ABC ,故DE CE ⊥.由已知可得1DE EC ==,在Rt DEC △中,2CD ==.9.平面α⊥平面β,l αβ=,n β⊂,n l ⊥,直线m α⊥(m ,n 是两条不同的直线),则直线m 与n 的位置关系是______.【答案】//m n【解析】解:因为平面α⊥平面β,l αβ=,n β⊂,n l ⊥,由面面垂直的性质可得n α⊥,又m α⊥,所以//m n .故答案为://m n10.已知PA ⊥正方形ABCD 所在的平面,垂足为A ,连接PB ,PC ,PD ,则平面PAB ,平面PAD ,平面PCD ,平面PBC ,平面ABCD 中,互相垂直的平面有 对.【答案】5【解析】,,PA ABCD PAB ABCD PAD ABCD ⊥∴⊥⊥平面平面平面平面,又,,,CD AD PADABCD AD CD PAD ⊥=∴⊥平面平面平面PCD PAD ∴⊥平面平面,同理,平面PAB ⊥平面PAD ,平面PBC ⊥平面PAB ,所以互相垂直的平面共有5对.三、解答题11.已知P 是ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC AC ⊥.【答案】证明见解析【解析】如图,在平面PAC 内作AD PC ⊥于点D ,∵平面PAC ⊥平面PBC ,平面PAC 平面PBC PC =,AD ⊂平面PAC ,且AD PC ⊥,AD ∴⊥平面PBC ,又BC ⊂平面PBC ,AD BC ∴⊥.PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,AD PA A =,,AD PA ⊂平面PAC ,BC ∴⊥平面PAC ,又AC ⊂平面PAC ,BC AC ∴⊥.12.如图,三棱锥P ABC -中,已知ABC 是等腰直角三角形,90ABC ︒∠=,PAC 是直角三角形,90PAC ︒∠=,平面PAC ⊥平面ABC .求证:平面PAB ⊥平面PBC .【答案】证明见解析【解析】证明 ∵平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,又PAC 是直角三角形,所以PA AC ⊥, PA ∴⊥平面ABC .又BC ⊂平面ABC ,PA BC ∴⊥.AB BC ⊥,AB PA A ⋂=,AB 平面PAB ,PA ⊂平面PAB , BC ∴⊥平面PAB .又BC ⊂平面PBC ,故平面PAB ⊥平面PBC .。

高中数学必修二练习题(人教版-附答案)

高中数学必修二练习题(人教版-附答案)

高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。

一、选择题1. 已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C. 2D. 不存在2.过点且平行于直线的直线方程为()A. B.C.D.3. 下列说法不正确的....是()A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是()A. B. C. D.5. 研究下在同一直角坐标系中,表示直线与的关系6. 已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能相交7. 设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是( )(A)①和②(B)②和③(C)③和④(D)①和④8. 圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2 C.3 D.010. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( )A.点P必在直线AC上 B.点P必在直线BD上C.点P必在平面DBC内 D.点P必在平面ABC外11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C )A.MN∥βB.MN与β相交或MNβC. MN∥β或MNβD. MN∥β或MN与β相交或MNβ12. 已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(A )A.垂直B.平行C.相交D.位置关系不确定二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为;14.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;16.圆心在直线上的圆C与轴交于两点,,则圆C的方程为.三解答题17(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0 求AC边上的高所在的直线方程.18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE 的中点,求证:(1) FD∥平面ABC;(2) AF⊥平面EDB.19(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,(1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG.20(12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上. 求圆C的方程.设所求的圆C与y轴相切,又与直线交于AB,2分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3) 当直线l的倾斜角为45度时,求弦AB的长.一、选择题(5’×12=60’)(参考答案)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B A D B C C A A C A C A二、填空题:(4’×4=16’) (参考答案)13. (0,0,3) 14. 15 y=2x或x+y-3=0 16. (x-2)2+(y+3)2=5三解答题17(12分) 解:由解得交点B(-4,0),. ∴AC边上的高线BD的方程为.18(12分) 解:(1)取AB的中点M,连FM,MC,∵F、M分别是BE、BA的中点∴ FM∥EA, FM=EA∵ EA、CD都垂直于平面ABC ∴ CD∥EA∴ CD∥FM又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形∴FD∥MCFD∥平面ABC(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又 CM⊥AE,所以CM⊥面EAB, CM⊥AF, FD⊥AF,因F是BE的中点, EA=AB所以AF⊥EB.19解:略20解:∵圆心C在直线上,∴圆心C(3a,a),又圆与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离在Rt△CBD中,.∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为或.21解解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇.则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0).由|OP|2+|OQ|2=|PQ|2知,………………3分(3vx0)2+(vx0+vy0)2=(3vy0)2,即.……①………………6分将①代入……………8分又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置.设直线相切,则有……………………11分答:A、B相遇点在离村中心正北千米处………………12分22解:(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为y=2(x-1),即 2x-y-20.(2)当弦AB被点P平分时,l⊥PC, 直线l的方程为, 即 x+2y-6=0(3)当直线l的倾斜角为45度时,斜率为1,直线l的方程为y-2=x-2 ,即 x-y=0圆心C到直线l的距离为,圆的半径为3,弦AB的长为.。

【课堂新坐标】高中数学北师大版必修二练习:2.1.1直线的倾斜角和斜率(含答案解析)

【课堂新坐标】高中数学北师大版必修二练习:2.1.1直线的倾斜角和斜率(含答案解析)

学业分层测评(十三)(建议用时:45分钟)[学业达标]一、选择题一、选择题1.已知直线l 1的倾斜角为45°,直线l 2的倾斜角为θ,若l 1与l 2关于y 轴对称,则θ的值为( )A .45°B .90°C .135°D .180° 【解析】【解析】 由对称性知θ=180°-45°=135°135°.. 【答案】【答案】 C2.直线l 经过原点和点(-1,-1),则它的倾斜角是( ) A .45° B .135° C .135°或225°D .0°【解析】【解析】 由k =-1-0-1-0=1,知tan α=1,α=45°45°. . 【答案】【答案】 A3.过点M (-2,a ),N (a,4)的直线的斜率为-12,则a 等于( ) A .-8 B .10 C .2 D .4 【解析】【解析】 ∵k =4-a a +2=-12,∴a =10.【答案】【答案】 B4.已知三点A (2,-3),B (4,3)及C èæøö5,k 2在同一条直线上,则k 的值是( )A .7B .9C .11D .12 【解析】【解析】 若A 、B 、C 三点在同一条直线上,则k AB =k AC ,即3+34-2=k2+35-2,解得k =12. 【答案】【答案】 D5.直线l 过点A (1,2)且不过第四象限,那么l 的斜率的取值范围是( ) A .[0,2] B .[0,1] C.ëéûù0,12D.ëéøö0,12 【解析】【解析】 如图,当k =0时,不过第四象限,当直线过原点时也不过第四象限,时,不过第四象限,当直线过原点时也不过第四象限,∴由k OA =2-01-0=2,知k ∈[0,2]. 【答案】【答案】 A 二、填空题二、填空题6.若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,那么实数a 的取值范围是________.【解析】【解析】 k =2a -+a 3--a=a -12+a ,因为倾斜角为钝角,,因为倾斜角为钝角, 所以k <0,即a -12+a <0,解得-2<a <1.【答案】【答案】 (-2,1)7.已知点M 的坐标为(3,4),在坐标轴上有一点N ,若k MN =2,则N 点的坐标为________. 【导学号:10690041】【解析】【解析】 设N (x,0)或(0,y ),k MN =43-x 或4-y 3,∴43-x =2或4-y 3=2,∴x =1或y =-2,∴N 点的坐标为(1,0)或(0,-2).【答案】【答案】 (1,0)或(0,-2)8.已知直线l 的倾斜角为60°,将直线l 绕它与x 轴的交点顺时针旋转80°到l ′,则l ′的倾斜角为________.【解析】【解析】 如图,如图,顺时针旋转顺时针旋转80°,等价于逆时针旋转100°,故l ′的倾斜角为60°+100°=160°160°..【答案】【答案】 160° 三、解答题三、解答题9.已知A (1,1),B (3,5),C (a,7),D (-1,b )四点在同一条直线上,求直线的斜率k 及a 、b 的值.的值.【解】【解】 由题意可知k AB =5-13-1=2, k AC =7-1a -1=6a -1, k AD =b -1-1-1=b -1-2, 所以k =2=6a -1=b -1-2,解得a =4,b =-3,所以直线的斜率k =2,a =4,b =-3.10.已知P (3,-1),M (5,1),N (1,1),直线l 过P 点且与线段MN 相交,求:相交,求: (1)直线l 的倾斜角α的取值范围;的取值范围; (2)直线l 的斜率k 的取值范围.的取值范围. 【解】【解】k PM =1+15-3=1,∴直线PM 的倾斜角为45°45°.. 又k PN =1+11-3=-1,∴直线PN 的倾斜角为135°135°.. (1)由图可知,直线l 过P 点且与线段MN 相交,则直线l 的倾斜角α的取值范围是45°≤α≤135°.(2)当l 垂直于x 轴时,直线l 的斜率不存在,∴直线l 的斜率k 的取值范围是k ∈(-∞,-1]∪[1,+∞).[能力提升]1.若图2-2-1-1-1-44中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )图2-2-1-1-1-4 4 A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1D .k 1<k 3<k 2【解析】 由图可知,l 1的倾斜角α1>90°,所以k 1<0,l 2,l 3的倾斜角满足0°0°<<α3<α2<90°,所以k 3<k 2,于是可得k 1<k 3<k 2,故选D.【答案】【答案】 D2.将直线l 向右平移4个单位,再向下平移5个单位后仍回到原来的位置,则此直线的斜率为( )A.54B.45 C .-54 D .-45【解析】【解析】 设点P (a ,b )是直线l 上的任意一点,当直线l 按题中要求平移后,点P 也做同样的平移,平移后的坐标为(a +4,b -5),由题意知,这两点都在直线l 上,∴直线l 的斜率为k =b -5-b a +4-a=-54.【答案】【答案】 C3.直线l 经过A (2,1),B (1,m 2)(m ∈R)两点,则直线l 的倾斜角的取值范围为________. 【解析】【解析】 直线l 的斜率k =m 2-11-2=1-m 2≤1. 若l 的倾斜角为α,则tan α≤1.又∵α∈[0°,180°180°)), 当0≤tan α≤1时,0°≤α≤45°;当tan α<0时,90°90°<<α<180°,∴α∈[0°,45°45°]]∪(90°,180°180°)). 【答案】【答案】 [0°,45°45°]]∪(90°,180°180°) ) 4.已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.的最大值和最小值.【解】【解】 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于yx 的几何意义是直线OP 的斜率,的斜率, 且k OA =2,k OB =23,所以可求得y x 的最大值为2,最小值为23.。

高中数学必修二A版作业2

高中数学必修二A版作业2

课时作业(二)1.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( )A.BC →B.DB →C.BD →D.CB →答案 A解析 BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.故选A. 2.【多选题】下列结论中正确的是( ) A.AB →+BA →=0B .若a +b =0,b +c =0,则a =cC.AB →=CD →的等价条件是点A 与点C 重合,点B 与点D 重合 D .若a +b =0且b =0,则a =0 答案 BD解析 AB →+BA →=0,故A 错误;∵a +b =0,∴a ,b 的长度相等且方向相反.又b +c =0,∴b ,c 的长度相等且方向相反,∴a ,c 的长度相等且方向相同,故a =c ,故B 正确;当AB →=CD →时,应有|AB →|=|CD →|,且由点A 到点B 与由点C 到点D 的方向相同,但不一定有点A 与点C 重合,点B 与点D 重合,故C 错误;若a +b =0,且b =0,则a =0,故D 正确. 3.【多选题】下列各式中,结果为0的是( ) A.AB →+BC →+CA → B .(AB →+MB →)+BO →+OM → C.OA →+OC →+BO →+CO → D.AB →+CA →+BD →+DC → 答案 AD解析 由向量加法的运算法则知A 、D 的结果为0. 4.a ,b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同B .a ,b 是共线向量且方向相反C .a =bD .a ,b 无论什么关系均可 答案 A5.在矩形ABCD 中,|AB →|=4,|BC →|=2,则向量AB →+AD →+AC →的长度为( ) A .2 5 B .4 5 C .12 D .6答案 B解析 因为AB →+AD →=AC →,所以AB →+AD →+AC →的长度为AC →的模的2倍.又|AC →|=42+22=25,所以向量AB →+AD →+AC →的长度为4 5.6.如图,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+CD →+BC →=________.答案 OD →解析 OA →+AB →+CD →+BC →=OB →+BC →+CD → =OC →+CD → =OD →.7.若a 等于“向东走8 km ”,b 等于“向北走8 km ”,则|a +b |=________km ,a +b 的方向是________.答案 82 北偏东45°解析 如图,设AB →=a ,BC →=b ,则AC →=a +b ,且△ABC 为等腰直角三角形,则|AC →|=82,∠BAC =45°.8.小船以10 3 km/h 的静水速度沿垂直于对岸的方向行驶,同时河水的流速为10 km/h ,则小船实际航行速度的大小为________km/h.答案 20解析 如图,设船在静水中的速度为|v 1|=10 3 km/h ,河水的流速为|v 2|=10 km/h ,小船实际航行速度为v 0,则由|v 1|2+|v 2|2=|v 0|2,得(103)2+102=|v 0|2,所以|v 0|=20 km/h ,即小船航行速度的大小为20 km/h.9.是否存在a ,b ,使|a +b |=|a |=|b |?请画出图形说明.解析 存在,如图,作OA →=a ,OB →=b ,以OA ,OB 为邻边作平行四边形OACB ,连接OC .由题意知OA =OB =OC =AC ,则∠AOC =∠COB =60°.10.如图,四边形ABDC 为等腰梯形,AB ∥CD ,AC =BD ,CD =2AB ,E 为CD 的中点.试求:(1)AB →+AE →; (2)AB →+AC →+EC →; (3)CD →+AC →+DB →+EC →.解析 由已知得四边形ACEB ,四边形ABDE 均为平行四边形. (1)AB →+AE →=AD →.(2)AB →+AC →+EC →=AE →+EC →=AC →.(3)CD →+AC →+DB →+EC →=CE →+ED →+AC →+DB →+EC →=(CE →+EC →)+(ED →+DB →)+AC →=EB →+AC →=CA →+AC →=0.11.若在△ABC 中,AB =AC =1,|AB →+AC →|=2,则△ABC 的形状是( )A .正三角形B .锐角三角形C .斜三角形D .等腰直角三角形答案 D解析 以AB ,AC 为邻边作平行四边形ABDC ,∵AB =AC =1,AD =2,∴∠ABD 为直角,该四边形为正方形,∴∠BAC =90°,△ABC 为等腰直角三角形,故选D. 12.如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( )A .0 B.BE → C.AD → D.CF →答案 D解析 BA →+CD →+EF →=DE →+CD →+EF →=CE →+EF →=CF →.13.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中: ①a ∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |;⑤|a +b |=|a |+|b |. 所有正确结论的序号是( ) A .①⑤ B .②④⑤ C .③⑤ D .①③⑤ 答案 D解析 ∵a =(AB →+BC →)+(CD →+DA →)=AC →+CA →=0, 又b 为任一非零向量,∴①③⑤均正确.14.如图,P ,Q 是△ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明 因为AB →=AP →+PB →, AC →=AQ →+QC →, 而由题知BP →=QC →,所以PB →+QC →=0, 所以AB →+AC →=AP →+AQ →+(PB →+QC →)=AP →+AQ →.15.对于不等式|a|-|b|≤|a+b|≤|a|+|b|,给出下列四个结论:①不等式左端的不等号“≤”只能在a=b=0时取“=”;②不等式左端的不等号“≤”只能在a与b均为非零向量且不共线时取“<”;③不等式右端的不等号“≤”只能在a与b均为非零向量且同向共线时取“=”;④不等式右端的不等号“≤”只能在a与b均为非零向量且不共线时取“<”.其中正确的结论有()A.0个B.1个C.2个D.4个答案 A解析当a=-b≠0时,|a|-|b|=|a+b|也成立,故①不正确;当b≠0,a=0时,|a|-|b|<|a+b|也成立,故②不正确;当a,b有一个为0时,|a+b|=|a|+|b|也成立,故③不正确;当a与b反向共线时,|a+b|<|a|+|b|也成立,故④不正确.所以正确的结论有0个.16.在某地抗震救灾中,一架飞机从A地按北偏东35°的方向飞行800 km到达B地接到受伤人员,然后又从B地按南偏东55°的方向飞行800 km送往C地医院,求这架飞机飞行的路程及两次位移的和.→,BC→分别表示飞机从A地按北偏东35°的方向飞行800 km,从B地解析如图所示,设AB按南偏东55°的方向飞行800 km,则飞机飞行的路程指的是|AB→|+|BC→|,两次飞行的位移的和指的是AB→+BC→=AC→.依题意,有|AB→|+|BC→|=800+800=1 600(km).又α=35°,β=55°,则∠ABC=35°+55°=90°.所以|AC→|=|AB→|2+|BC→|2=8002+8002=8002(km),且∠BAC=45°,所以方向为北偏东35°+45°=80°.从而飞机飞行的路程是1 600 km,两次飞行的位移和的大小为800 2 km,方向为北偏东80°.1.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →答案 C解析 设a =OP →+OQ →,利用平行四边形法则作出向量OP →+OQ →,再平移即发现a =FO →. 2.若P 为△ABC 的外心,且P A →+PB →=PC →,则∠ACB =________. 答案 120°解析 如图,因为P A →+PB →=PC →,则四边形APBC 是平行四边形.又P 为△ABC 的外心, 所以|P A →|=|PB →|=|PC →|. 因此,∠ACB =120°.3.如图所示,已知等腰梯形ABCD ,试分别用三角形法则和平行四边形法则作出向量BA →+DC →.解析 三角形法则:过A 作AE ∥DC ,交BC 于点E ,则四边形ADCE 是平行四边形,于是BA →+DC →=BA →+AE →=BE →(如图所示).平行四边形法则:作DF →=BA →,以DC ,DF 为邻边作▱DCGF ,连接DG ,于是BA →+DC →=DF →+DC →=DG →(如图所示).。

北师大版数学必修二课件:习题课2

北师大版数学必修二课件:习题课2
(2)待定系数法:先设出圆的方程,再由条件构建系数满足的方程
(组)求得各系数,进而求出圆的方程.
探究一
探究二
探究三
探究四
探究五
一题多解
变式训练1 已知圆C与y轴相切,圆心C在直线l1:x-3y=0上,且圆C在
直线l2:x-y=0上截得的弦长为 2 7, 求圆C的方程.
解:因为圆心C在直线l1:x-3y=0上,
(8)圆的常用几何性质.
①圆心在圆的任一条弦的垂直平分线上.
②圆上异于直径端点的点与直径的两端点连线垂直.
③过切点且垂直于该切线的直线必过圆心.
做一做1 已知x2+y2-2x+y+k=0是圆的方程,则实数k的取值范围是
(
)
A.(-∞,5)
C. -∞,
3
2
B. -∞,
D.
3
2
5
4
,+∞
解析:令D2+E2-4F=(-2)2+12-4k>0,得k <5.
即 x2+y2+2(1+λ)x+(λ-4)y+1+4λ=0.
∵此圆过原点,
1
∴1+4λ=0,λ=-4.
3
17
∴所求的圆的方程为 x2+y2+2x- 4 y=0.

(2)依题意可知当圆心在直线 2x+y+4=0 上时,所求的圆的面积
最小.
由(1)易得圆心坐标为 -(1 + ),-4
将其代入直线方程得-2(1+λ)-
x2+y2+Dx+Ey+F+λ(Ax+By+C)=0表示过直线l与圆C的两个交点的

高中必修二数学练习题及讲解答案

高中必修二数学练习题及讲解答案

高中必修二数学练习题及讲解答案### 高中必修二数学练习题及讲解答案#### 练习题一:函数的性质题目:已知函数 \( f(x) = 2x^2 - 3x + 1 \) ,求该函数的单调区间。

解答:首先,我们需要找到函数的导数来确定其单调性。

对 \( f(x) \) 求导得到 \( f'(x) = 4x - 3 \)。

令 \( f'(x) = 0 \) 求得极值点:\[ 4x - 3 = 0 \]\[ x = \frac{3}{4} \]接下来,我们分析 \( f'(x) \) 的正负来确定单调性:- 当 \( x < \frac{3}{4} \) 时,\( f'(x) < 0 \),所以 \( f(x) \) 在 \( (-\infty, \frac{3}{4}) \) 上单调递减。

- 当 \( x > \frac{3}{4} \) 时,\( f'(x) > 0 \),所以 \( f(x) \) 在 \( (\frac{3}{4}, +\infty) \) 上单调递增。

因此,函数 \( f(x) \) 的单调递减区间为 \( (-\infty,\frac{3}{4}) \),单调递增区间为 \( (\frac{3}{4}, +\infty) \)。

#### 练习题二:三角函数的图像与性质题目:已知 \( \sin(\alpha) = \frac{3}{5} \),且 \( \alpha \) 位于第一象限,求 \( \cos(\alpha) \) 的值。

解答:根据正弦和余弦的关系,我们知道:\[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \]已知 \( \sin(\alpha) = \frac{3}{5} \),代入上式得:\[ \left(\frac{3}{5}\right)^2 + \cos^2(\alpha) = 1 \]\[ \frac{9}{25} + \cos^2(\alpha) = 1 \]\[ \cos^2(\alpha) = 1 - \frac{9}{25} \]\[ \cos^2(\alpha) = \frac{16}{25} \]因为 \( \alpha \) 在第一象限,余弦值为正,所以:\[ \cos(\alpha) = \frac{4}{5} \]#### 练习题三:不等式的解法题目:解不等式 \( |x - 2| + |x + 3| > 8 \)。

高中数学必修二 期末测试卷02-新教材-2021学年下学期期末考试全真模拟卷(人教A2019)

高中数学必修二  期末测试卷02-新教材-2021学年下学期期末考试全真模拟卷(人教A2019)

2020-2021学年高一数学下学期期末考试全真模拟卷(二)测试时间:120分钟 测试范围:人教A2019必修第一册+第二册满分:150分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若集合{}21A x x =-≤≤,{}2log 1B x x =≤,则A B =( )A .12x xB .{}01x x <≤C .{}22x x -≤≤D .{2x x <-或}2x >【答案】C 【详解】由{}2log 1B x x =≤,得{}02B x x =<≤. 又{}21A x x =-≤≤, 所以{}22AB x x =-≤≤.故选:C . 2、复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【详解】 因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.3、某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A 【详解】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确; 新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%28%58%50%+=>,所以超过了经济收入的一半,所以D 正确;4、已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.5、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+ D .512+ 【答案】C 【详解】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得154b a +=(负值舍去). 故选:C.6、已知π2tan tan()74θθ-+=,则tan θ=( )A .–2B .–1C .1D .2【答案】D 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.7、如图是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中3sin 5BAC ∠=,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图的数学风车,若在该数学风车内随机取一点,则该点恰好取自“赵爽弦图”外面(图中阴影部分)的概率为( )A .2543B .1843C .2549D .2449【答案】D 【详解】在Rt ABC ∆中,3sin 5BAC ∠=不妨设3BC =,则5AB =,4AC =则阴影部分的面积为1434242⨯⨯⨯=;数学风车的面积为224549+=∴所求概率2449P =本题正确选项:D 8、已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 平面ABC 的距离为( )A .3B .32C .1D .32【答案】C 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ==.故选:C.二、多项选择题(本题共4小题,每小题5分,共16分,在每小题给出的四个选项中,不止有一项是符合题目要求的)9、下列说法正确的是( ) A .随着试验次数的增加,频率一般会越来越接近概率B .连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C .某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水 【答案】AB 【详解】对于A ,试验次数越多,频率就会稳定在概率的附近,故A 正确对于B ,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B 正确. 对于C ,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故C 错误.对于D ,“明天本市降水概率为70%”指下雨的可能性为0.7,故D 错. 故选:AB .10、有以下四种说法,其中正确的有( ) A .“2x >且3y >”是“5x y +>”的充要条件B .直线l ,m ,平面α,若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件C .“3x =”是“2230x x --=”的必要不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab =”的既不充分也不必要条件【答案】BD 【详解】对于A ,由“2x >且3y >”,根据不等式的性质可得5x y +>,充分性满足;反之,5x y +>推不出“2x >且3y >”,必要性不满足,故A 不正确; 对于B ,根据线面垂直的定义:“l α⊥”可推出“l m ⊥”,反之,由线面垂直的判定定理可知:仅“l m ⊥”,不一定得出“l α⊥”,故B 正确; 对于C ,“3x =”可得“2230x x --=”,充分性满足;反之,“2230x x --=”可得“3x =”或“1x =-”,必要性不满足, 所以“3x =”是“2230x x --=”的充分不必要条件,故C 不正确; 对于D ,若“0a ≠且0b =”可推出“0ab =”; 反之,若“0ab =”,可得“0a =”或“0b =”,所以“0a ≠”是“0ab =”的既不充分也不必要条件,故D 正确; 故选:BD11、已知函数()sin()f x x ωϕ=-(0,||2πωϕ><)的部分图象如图所示,则下列选项正确的是( )A .函数()f x 的最小正周期为3πB .5(,0)4π为函数()f x 的一个对称中心 C .1(0)2f =-D .函数()f x 向右平移2π个单位后所得函数为偶函数【答案】ACD 【分析】根据图象,先由144T ππ=-得,求ω,判断A 正确,再利用五点法定位确定ϕ得到解析式,结合利用正弦函数性质逐一判断BCD 的正误即可. 【详解】根据函数()sin(),0,||2f x x πωϕωϕ⎛⎫=-><⎪⎝⎭的部分图象,由144T ππ=-,所以3T π=,故A 正确; 由23ππω=,可得23ω=, 由点,04π⎛⎫⎪⎝⎭在函数图像上,可得2sin 034πϕ⎛⎫⨯-= ⎪⎝⎭,可得2,34k k πϕπ⨯-=∈Z ,解得,6k k πϕπ=-∈Z , 因为||2ϕπ<,可得6π=ϕ,可得2()sin 36f x x π⎛⎫=- ⎪⎝⎭,因为52523sin sin 0434632f ππππ⎛⎫⎛⎫=⨯-==≠⎪ ⎪⎝⎭⎝⎭,故B 错误; 由于1(0)sin 62f π⎛⎫=-=- ⎪⎝⎭,故C 正确; 将函数()f x 向右平移2π个单位后所得函数为2f x π⎛⎫- ⎪⎝⎭22sin cos 3263x x ππ⎡⎤⎛⎫=--=- ⎪⎢⎥⎝⎭⎣⎦为偶函数,故D正确. 故选:ACD.12、如图,棱长为1的正方体1111ABCD A B C D -中,点E 为11A B 的中点,则下列说法正确的是( )A .DE 与1CC 为异面直线B .DE 与平面11BCC B 所成角的正切值为24C .过,,D CE 三点的平面截正方体所得两部分的体积相等D .线段DE 在底面ABCD 的射影长为2【答案】ABC 【详解】由图可知:DE 与CC1为异面直线,∴A 正确;因为平面11//BCC B 平面11ADD A ,所以DE 与平面11BCC B 所成角即DE 与平面11ADD A 所成角,连接A1D ,显然,1A DE ∠是DE 与平面11ADD A 所成角.在直角三角形EA1D 中:111122tan 42A E A DE A D ∠===,∴B 正确;过D 、C 、E 三点的平面截正方体所得两部分的体积关系即为平面A1B1CD 截正方体所得两部分的体积关系,由正方体的对称性可知截得两部分几何体的体积相等,∴C 正确; 取AB 中点F ,连接EF 、DF ,∵EF //B1B 且B1B ⊥底面ABCD ,∴EF ⊥底面ABCD ,∴DF 的长为线段DE 在底面ABCD 的射影长,在直角三角形DFE 中:EF=1,DE=32,∴DF=2235122⎛⎫-= ⎪⎝⎭,∴D 错. 故选:ABC.三、填空题(本题共4小题,每小题5分,共20分)13、已知不等式220ax bx ++>的解集为{|12}x x -<<,则不等式220x bx a ++<的解集为__________________. 【答案】1{|1}?2x x -<< 【分析】 【详解】不等式220ax bx ++>的解集为{|12}x x -<<,220ax bx ∴++=的两根为1-,2,且0a <,即12b a-+=-,()212a -⨯=,解得1a =-,1b =,则不等式可化为2210x x +-<,解得112x -<<,则不等式220x bx a ++<的解集为1{|1}2x x -<<.14、在ABC ∆中,2cos ,4,33C AC BC ===,则tan B =____________.【答案】45【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴= 22221145cos sin 1()tan 452999a cb B B B ac +-==∴=-=∴=15、在四边形ABCD 中,AD BC ∥,23AB =,5AD =,30A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-. 【详解】建立如图所示的直角坐标系,则(23,0)B ,535(,)22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒, 所以直线BE 的斜率为33,其方程为3(23)3y x =-,直线AE 的斜率为33-,其方程为33y x =-. 由3(23),333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =,1y =-, 所以(3,1)E -.所以35(,)(3,1)122BD AE =-=-. 16、设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是____________. 【答案】1(,1)3【详解】试题分析:()()21ln 11f x x x =+-+,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得()()21f x f x >-成立,∴,∴,∴的范围为1,13⎛⎫⎪⎝⎭故答案为A.四、解答题(17题10分,其余每题12分,共70分,解答应写出文字说明、证明过程或演算步骤,考生根据要求作答)17、成年人收缩压的正常范围是(90,140)(单位:mmHg ),未在此范围的献血志愿者不适合献血,某血站对志愿者的收缩压进行统计,随机抽取男志愿者100名、女志愿者100名,根据统计数据分别得到如下直方图:(1)根据直方图计算这200名志愿者中不适合献血的总人数; (2)估计男志愿者收缩压的中位数;(3)估计女志愿者收缩压的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)20人;(2)115mmHg ;(3)125mmHg . 【详解】解:(1)由(0.0100.01520.0200.030)101m +++⨯+⨯=得0.005m =, 故这些男志愿者中有5人不适合献血;由(0.0050.01020.0200.035)101n ++++⨯=得0.015n =, 故这些女志愿者中有15人不适合献血. 综上所述,这些志愿者中共有20人不适合献血.(2)设男志愿者收缩压的中位数为(mmHg)x ,则110120x <<.由0.015100.02010(110)0.0300.5x ⨯+⨯+-⨯=得115x =, 因此,可以估计男志愿者收缩压的中位数为115(mmHg).(3)950.051050.101150.151250.351350.201450.15125⨯+⨯+⨯+⨯+⨯+⨯=, 因此,可以估计女志愿者收缩压的平均值为125(mmHg).18、在ABC ∆中,角,,A B C 所对的边分别为,,a b c.已知5,a b c === (Ⅰ)求角C 的大小; (Ⅰ)求sin A 的值; (Ⅰ)求πsin(2)4A +的值. 【答案】(Ⅰ)4C π;(Ⅰ)sin A =(Ⅰ)sin 2426A π⎛⎫+=⎪⎝⎭. 【详解】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4Cπ;(Ⅰ)在ABC 中,由4Cπ,a c ==可得sin sin a CA c===13; (Ⅰ)由a c <知角A为锐角,由sin A =,可得cos A ==进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26.19、如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内20、已知()22sin ,cos ,(3cos ,2),()a x x b x f x a b ===⋅. (1)求()f x 的最小正周期及单调递减区间; (2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)T π=,单调递减区间为2,,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)见解析【详解】(1)2()23sin cos 2cos f x a b x x x =⋅=+2cos 212sin 216x x x π⎛⎫=++=++ ⎪⎝⎭,∴()f x 的最小正周期22T ππ==. 由3222,262k x k k Z πππππ+++∈,得2,63k x k k Z ππππ++∈, ∴()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 当7266x ππ+=,即2x π=时,函数()f x 取得最小值,为72sin106π+=; 当262x ππ+=,即6x π=时,函数()f x 取得最大值,为2sin 132π+=.故函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为3,最小值为0.21、在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos cos cos A B C ++的取值范围. 【答案】(I )3B π=;(II)3]2【详解】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin B A A B =∴= △ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.22、有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm (即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm ),数据统计如下:0.07 0.24 0.39 0.54 0.61 0.66 0.73 0.82 0.82 0.820.87 0.91 0.95 0.98 0.98 1.02 1.02 1.08 1.14 1.201.20 1.26 1.29 1.31 1.37 1.40 1.44 1.58 1.62 1.68(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的80%分位数;(2)有A ,B 两个水池,两水池之间有10个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼.(Ⅰ)将其中汞的含量最低的2条鱼分别放入A 水池和B 水池中,若这2条鱼的游动相互独立,均有13的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;(Ⅰ)将其中汞的含量最低的2条鱼都先放入A 水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A 水池进入B 水池且不再游回A 水池,求这两条鱼由不同小孔进入B 水池的概率.【答案】(1)中位数为1;众数为0.82;极差为1.61;估计这批鱼该项数据的80百分位数约为1.34;(2)(Ⅰ)49;(Ⅰ)910. 【详解】解:(1)由题意知,数据的中位数为0.98 1.0212+=数据的众数为0.82数据的极差为1.680.07 1.61-=估计这批鱼该项数据的80百分位数约为1.31 1.371.342+= (2)(Ⅰ)记“两鱼最终均在A 水池”为事件A ,则212()339P A =⨯=记“两鱼最终均在B 水池”为事件B ,则212()339P B =⨯=∵事件A 与事件B 互斥,∴两条鱼最终在同一水池的概率为224()()()999P AB P A P B =+=+= (Ⅰ)记“两鱼同时从第一个小孔通过”为事件1C ,“两鱼同时从第二个小孔通过”为 事件2C ,依次类推;而两鱼的游动独立∴12111()()1010100P C P C ===⨯=记“两条鱼由不同小孔进入B 水池”为事件C ,则C 与1210...C C C 对立,又由事件1C ,事件2C ,10C 互斥∴121011()(...)1010010P C P C C C ==⨯=即12109()1(...)10P C P C C C =-=。

高中数学必修二 必刷卷02下学期期中仿真必刷模拟卷(含答案)

高中数学必修二  必刷卷02下学期期中仿真必刷模拟卷(含答案)

2020-2021学年高一下学期数学期中仿真必刷模拟卷【人教A版2019】期中检测卷02姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1B.﹣3C.1D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B =2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C 与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a=a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x轴、y轴、z 轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C(2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角。

高中数学必修二练习册答案

高中数学必修二练习册答案
当截距不为 时,设 或 过点 ,
则得 ,或 ,即 ,或
这样的直线有 条: , ,或 。
4.解:设直线为 交 轴于点 ,交 轴于点 ,
得 ,或
解得 或
,或 为所求。
第三章 直线和方程[综合训练B组]
一、选择题
1.B线段 的中点为 垂直平分线的 ,
2.A
3.B令 则
4.C由 得 对于任何 都成立,则
5.B
3.D垂直于同一条直线的两条直线有三种位置关系
4.B连接 ,则 垂直于平面 ,即 ,而 ,
5.D八卦图可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交
6.C当三棱锥 体积最大时,平面 ,取 的中点 ,
则△ 是等要直角三角形,即
二、填空题
1.异面或相交就是不可能平行
2. 直线 与平面 所成的 的角为 与 所成角的最小值,当 在 内适当旋转就可以得到 ,即 与 所成角的的最大值为
⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内
2. D对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形
3.解:令 则 可看作圆 上的动点到点 的连线的斜率
而相切时的斜率为 , 。
4.解:(1) ①; ②;
② ①得: 为公共弦所在直线的方程;
(2)弦长的一半为 ,公共弦长为 。
第四章 圆和方程[提高训练C组]
一、选择题
1.C由平面几何知识知 的垂直平分线就是连心线
2.B对 分类讨论得两种情况3.C

人教版高中数学必修二教材课后习题答案及解析【精品】

人教版高中数学必修二教材课后习题答案及解析【精品】

•教材习题解答练习0M1.⑴(6“21 略,瓷⑴四梭柱(闍略打(引匮锥与半除俎成的向单组命怵(圏略X (3)13棱柱与珠组成的简单组台体(图略门(4>«个麗台组合而成的筒单姐台■体(图略】.x(i)Ea^(~視图略儿(幼四十黑柱组成的简单爼合怵(三视国略几4三楼耗.•敦材习也孵答⑴如图1-2 - 3 -门/13听小'yA.「门如1痢11 门2 3H t圈1 i所示’14图I 2 3 19点评木懸舟省工州图卅的二P见却询制法.2. <1)三懂拄H刀isfn〔希四fttt*⑴)四磧柱与恫柱组合血磴的简羊组合林.証略*札卷5用B组1:略:签咯*乳此題菩徐不唯一冷一种省秦擡樹15个4、止方体齟會閔施的他单址合怩+如RJ1 - 2 - 3 2L♦教材习题擀答练习(『)1,解:设圆锥的底面半径为严母线畏沟h別由JS意得乂岡讹的削山111科图为T-J.-1-K J. (1 S 皿即I A捋◎代入①式得Q=3JI F.畀。

如|划t 2 220F3 1 2 3 21SirJu哉園隼的底面(8直卷为彩鬲二点评柠畫俯面堰幵国右側锥的不变关泵辰公式的应用,2 .解*机器零件的表面机pf# fti 是圆柱的«面积加上桂柱的全面积.VHIS 的側商報 Si /-2ftXXX2G- 15O!E=sl71(mm )*棱柱的它而积 > 12X j <ft-2 X 6 X -i- X 12> 12 迖孕切 ms. 2 Him )*二一牛机器的金面S=St-h*-l 579.25(mm >.JN IQ 000个零杵的全而积为15 7t?2 500 nun 15.旳2 5 m\故需锌的重虽为】$, 792 5XO P U^l t 7l kfi,点评 本IB 哮査良余儿何的驶働税求孝和鮮实际问昭及埸算能力. ♦教材习题解答K 卩}1. 刑大到原来的8倍戈2, *¥:il :A 休的钊'fO 检为尽!*球的壯栓R 舟 *点评 以上三1»常直公貳的灵活运用能力+ 习题I 3(1\JA 组1 •解’傭而都星等禮梯形・R 上底为8 cm,下底为18 cm.Wft-fc U erm 可得斜高(由『号)‘ =12, S«=5xi^^X 12=780( cm 2h答:780 cm\点评本題夸曹棱台申的庖制梯形的应用和棱幷的1W 面面祝公式+乙鸠:恤台的M Efii ft! $ ―只“+孙・/•捌台底附积节一乩亠:S,.—煮厂+R X rtl 己知得就"R )/=(r-R g :・t 七圣.恵评木题有直对iifiitt 面积、底而和、表面积概急的理解•要将三者区别幵来* 男蚪考査了解方程的能力.3.解假止方休的楼辰协•刚V 命_T x T /r "T*剩.余儿何休的V-V,.lt V "二川―彳―土才”S=inR £ = 4n/(鬻)'皿 >/.^60 OOOjr^sl04(cw- 3.解八 *= -yrK —所权播惟怖休积与霖F的几何休的林积之比为1 1二点评辰题槽査三杭惟体积的求法和"割补注”求M何住的休枳的方迭.4,当三棱柱形客器的憶面AA.B.B水平枚置时,液面部分是四棱柱形*其商为原三棱柱障寻器的髙*憫陵A-1, 乳设十底面AEC水平放置时・液而高为乩由已卿条件知•四桂柱底面与原三桂柱诧酣啣积2比为工;4•由于两种状态下我体休枳相3X8=4XAM=6-Pljt AfJC*Tftt置时*菠面高为£点评展塵考査休砂变換能力,奥註总在几何徉转换过包"「+水旳休枳妁终干变+ 5•解*由J8意*需贴瓷砖的部分为网梅柱与网複台的啊倆积之和・民心十二1> U),■,»{)- 12St>)ii;rii )*四楼合的斜离"二JltV -(迪「=5再『<m)・吕叶” =I》即打曲吃"-1 55S(cni ),故捕翼■«*的面報數为13 800+1 55»=14酹9仪“」>点评辰矚毒查倚单组合护的傭面积求法和解决致:际问題的能力氐攝示*先求出竽嚴梯形的面祝•再乘以化京到上海的铁路険长0P可•请冋学们自已完城”H W1.解,由三视图逝出它的言观国如l¥l 1 - 3 - 2 16所娠..Fl A | H| —(| f J| —.A B —C D -'- H cut ♦A t D, ■ ('i /J - A r D'™C B' 4 cm*球的苴悴为彳EF= (Hl12 cm J XI) f;「16 rm<EJf 1^(i8 rm*A L A"=B0=「|广=1」|打CTU.伍求出料棱育AHEF而上的料髙和-JP宁亍了之疗cm.再求E四債舍UF(^ Ifll上的卅高h —買”?12;' - 2 ^/7LILI+则久=用幷=% *严TWmV)■几=+卫=亠・2 -芋和冋Sn ttlf-S n KH B=<8-4) X2 X20=^480 mv 卫側” =4 XH X2()=肌0 cm . 也汁—给时”匚亠九—2(匚严p 皿亠2(工^)卞2听亠豹X !fit 12X6 = (11275 ^416)cm?=-1( 12X 8^2OX lfi+/12XSX2OX16) X 2•>=十(更7^+ 1】们rm .•5代奖杯的表而探s+ snia(1-FS H44ifiir !曲-J 12^5 -F 4 16^-1 193( m T杯的体机卩一'j 9 夕_匕|+巧.耐+较“卄=yK+64D + y (32 阿+ 416)*1067 cm\答t豐杯ffl我血枳约为I 193 g •悴积约为 1 067 cm\点评転題考煮吧察国闿想線力,运尊能力據解综合|^ 139 17题的能力.2.证期’如图1 - 3 - 2 - 17所示•因为三棱柱的侧面制是矩形•則傭面积为底乘以高.而髙相等•所以要证任意啊个侧面的面积和去于第三个侧面的tfliffi-H要证明三Stt±.底面匕任意H边的和大f第三边即可<而这是显ffi的.点评本題痔査将空佃问應转化城平丽间趣的能力.3. 为釉的直观即如阳】3 2 1SC1 >所示”三规阳如图】3 2 3S(2)所示.图】3 2 19点评本题考査画直观图和三槻图的能力,2 18(2)以直帝边为轴雌縛而戚的儿何体的直现將如阳】如用1 3 219(2)所示+汕(1〉所示.三觇图(I >iF■枫♦教材习题解答塩习参考JRIJMAffi(幼三橈柱或是三陵育t(3川j丄*{」打』川■”;(5ht・石\玄如1 舲所示,朗I 32点评 号育市三视图还原咸丈抑悶和将实詢圏同成直氐團的能力* 4.略.5”解巾癒蔥得三梭柱的底面三角形外接圆足E1拄的底面三角瑶F 卜接的亶植 是碉柱的底面直栓或母縊,植岡桂的廣面羊栓为尺"则卩=竄曙*2R=2nR' •化疋=彩. 征中股边长为s 则轧・寻—氏即 心冲・5心—%」普R . X 钳—$ 一心* 21i •芈说 0 学/?-翠 € 乩解丸求出一乍接头需要的铁皮玄「热后再计阜恵量且r rs, =n(r t +n)^=it(25+L0) XS5=1 225^(^),Z* S - lOgDQOXSj = 1Z 250 ^>()K12 25OD0()X 3t iTO 1 3】-37 &75 000(cm ) =3 797t 5(m H 7»8<m 答 制作l 万个这惮的接1需屢3缺列的铁皮. 点评 启匮考査■台需面积前求法及单经换1T 7,表面积肉为◎匸怵稅约为176,H 视图略. 8用9*<1)64;(2)S ;(3)2^;(4)24I (5)S T 48 cm cm . 10.它ff J fi'J 董面积分别对36K cm *21 JT w *里巧;B&(P>n)匚(1)三视宙如国I - 33两就.直观圏如图1 -:甘所示. 点评 程题痔查空河担象能JJ 和呦阳能力. 怕)» =8> ^0X 30X^1)60 二! 800#<CTTI 几 V^SX-j-S^n, • A=2XyX30X30X 丿30;■尸=9 0007?(cjn ). 点评 术■■卜题喝資齐面休的衣而积和休稅求沈. 〔:1 略.圏1 - U乙解 V-f '. F J? 4 XX ].[ X2;/ -63 H7h!Df ),■J2水巾球的怵积为匕 V. ■— 13 6115 几 卩“呻=期 X60K55 = 264 OOOlcm^hA V 4 200 000 2fiJ 000 200 000 = 61 ODO>43 fill. 故水槽中水不会镒昭*rm ■ 12n rm + 144J3 r cm图1 34点评示題哮育训搔方法.点评本題哮責休枳公试的求法和解窘球问赳的能力.3, 解它是由闍1恥所賦的国形L绕线f艇转而成的•其屮匸与0不相乞点评布腿韦賈观察图形的能力和魁象能力.4. 如图1 鼬”由題意得*Hd mEFF g且四边形ABCD为正方带.AOF=y(cm)t OF= /EF -OP点评考査四撓惟的休积求法和平面图形•与立体图刑z何的关系.•教材习题解答练习(P-)1.1>解汝育线sf川間两樹交•交点分别ArAJ九匚如圈? 1 1 0・则A*區C三点不在一直践上*A Ae iNF »「匸s同理廿匚i机一仏A由^.A.i二疽线可1ft定一平面. 点评本题考査公理2,2. ⑴不并面的四点町御邃4个平面.(2)共点的三旃肯线可确定1个或吕个平而.点评本地占査公理2的应用,3, (1)X (2)V (3)^/ ( Hv/(DV平面”与平面B相兗』h与君有一条公其直线二•有无数爹个公其鼠(2)在已知亘线上耽不同两点.再加上直燼外一点构成不共线三原*由您理2知确定一平潮.⑶抚两备直线t分SM -点(T同于交点)・朝构虑不其线-点・rtl公理2可知砸定一令平面.H J•三个不共耀的点•可确定一个平面•化两平而範合.1/3II 爭 1 35£ yi()O~~(cm>,* yi 00 X'.图I 361^ 2 1 1 ?21^2 I 1 23♦教材习题解答练习2J因为“与平【帀厘金乎廿吐却则^与口的也逹先糸为相交+即4与住台一节公捷点.所W(A)UD)两选项排除*苦“内存在一餐线仃与4平行.则不妨设应与“ 交J柑点•住Q内‘过O盘作亶线c#緘则由公理4可知口〃一这与口与{交于”点矛盾,所以选答索(BX点评此魁考査直线与平面的位賈关泵•同时为将来判斷直线与平面平和罢宦了基础+♦教材习题解答阁 2 ! - 4 9 点评本壮舟宜空间平而的垃国关条歴空何悴阁能力+习题2-KP.J三个平而两两相交川;么它门的交线冇-荒或三金.如盟2 1 1 9人组匕如惘2】1 10b3•门2 (梯形的h,T底平帕由平厅线定文知共而)⑵X(肖附上两点恰好为直径两端点时冷过这三点不能确定平面)[加W (由平杼公理4可得结论)(!)X 导\胡卜吋*/也无公其点)(5)X (“鼻可能平忏•也可能相交)点评木題考資平面的tt痕+空阖两直线的位罢关盘4. 【1眉£由斥面苣线所成柏定又或等角定理)⑵* (由界面直錢所虜角取垂面内蛹纽垂直的郷定)<3)2 f由公理2可得结论)〔门平行戒在平面内【5)平行或护交(仍ftl交或痒潮点评車魁考查空间购直线的位掘关乘+5. 典而点评本圍考査參理2的应用.6. 证明’ *:AA f//bK W AA'= ”用・/.四边能盘且F削为平行四边形.7J f+ 同理Ii('£ Ii\'f.AZAfJ('=Z.VB'C\二△AM 宜△ATfL”点评本趙哮査公理4蜃其应用.m直线悶购平打且不共面,一共前建三个平面•妁果三条直域交于一点剧最参确定三卜平面.8.正方休餐而所在平面分空何成27部分.点评松考査孕生的空何怨象能力TB组1.(l)C ⑵D ⑶1:点评加题考背空间想喩能力•异面育线所成角的求法.2.证明t fcM 平面ABC.所以PE甲喲Ati(\pe^.所以卩在平面ABC:与晋面«的灾红上.同理可证,Q 和R均在这条直线I:.所以畀三点共线.点评先确定一輦宜期•再证羽具他点也在这条直域上.无址明:如图2 1 I 13,11接ACEF』;几TEF井别为AB .BC点*.Jj<;DU1“r= * e『--—=■-DC DA3:A\GJL丄一1「*图2 1」】3 ▼ 3AEF# HG H EF 护HG人四边磁EWH沟梯形.二梯闿関腰£H*Ff;相空.设处点为K,VFJ/C吓閒ABJ儿AK€ 平面ABD,FGU平ffi CBDt代K€平面CBD・血平而AIH)门平而CfU)-BPtr・K13UXEH.FQ.BD交于一点K,点评木起哮艸公理2和公刊:匚♦教材丁题解答练习|P“1, ⑴平面WrVD*平面A'MLry和却平面R卍「「*平面tV”门心、平面ECC®;平面 A % £01点评頁査肓线与平面平行的判定定理.2. ££^ B/J)//平面AEf'+证闍主如图2 2 1 id■连接H打交如m连接0艮在△ dBm中・OE为三用腦耳I位线,/.()E// BO,. Z V BD, C平而AEL\()?;c 平面AEGU#晋而AEC.♦教材习题解答练习(%)UI ■错谍.反长方怦为樸型+如劇222F 分别为ATT’Uir 的中点加7TU 平面A7J7?* D\EFC T 而A f lV('t I)\A t I),/f 平而 BCCE\ EF#平面BCC.但平面 EC与平面A%" LD 中交.(2」止确.点评本題考査平面与平面平存的定文和判定定理的务fF. Z 提示,餐昜证明-VIX /f EF. \A //EH.进而可证平面AMN..「平面EFDK3」A)不止确”白怏方肚为模型*如觀22 2p14则在平面A BCD 内与BC TJ T 的所有直拔都4 * <z2与平商JXL/T 平fr + (U 于面AHCD 与甲面 /Tl1;e ___________皿:足相交的./馆〕不疋蹴以长方体为模取.如陌222st14 • ATT# 平面 A BCD〃平圏 2 2211® ABCD 与面放:「少期空.f 「[不疋确*以长方怵为摸型*如圏2 • 2亠2 • 1鉄"0'〃平面BCrB^HC// 平面A^C'D K但平面BCXTB 1与"7H :P‘相交.(b 〉平面与平面平疔的定义.A(D).点评 星题迪过对两平面平行判定的分析J 音拒学生周密分析问题的能力./J"£li f7 ’一z1序Z \Z[圈 2 22 13♦教材习题解答(1) X 同时过疋』两自线的平面不符合蚤件.(2) X "与皿内直觀有平厅和异面的曲种位置癸JK. unX胡与h可能出现w种悅胃.黄系;平厅、相交,界耐(*26”‘过“作平齒P 交* 于一虎评事馳曹查线itii的平行真系的判定礙性喷.习题2.2(l\t) .X组h(A)以怅方休为模星*如阁2 2 4 —则平面AHCD与-F ^ABB 线 D平杼・S1 网f而和交-点许廉題曹靑两平而平h■的判定.(力(D)直甥口不与世平怡则心或4与a ffi*. 点评肚题E霆也线与平而前位邀关乐.(恥(「)*:0 $PGm翼由P和H线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(本大题共12小题,每小题3分,共36分。

每小题只有一个答案) 1. 下列命题正确的是( )
A.经过三点确定一个平面 B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面 D.两两相交且不共点的三条直线确定一个平面 2.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( ).
A .三棱台、三棱柱、圆锥、圆台
B .三棱台、三棱锥、圆锥、圆台
C .三棱柱、四棱锥、圆锥、圆台
D .三棱柱、三棱台、圆锥、圆台
3.已知点A (x,1,2)和点B (2,3,4),且|AB |=26,则实数x 的值是( )
A .-3或4
B .6或2
C .3或-4
D .6或-2
4.若直线(1)3ax a y +-=与(1)(23)2a x a y -++=互相垂直,则a 等于( ) A. 3 B. 1 C. 0或3
2
-
D. 1或-3 5.已知正方体外接球的体积是323π,那么正方体的棱长等于( )
A .22
B .2)3
C .2)3
D .3)3
6.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( )
A .若m ∥α,n ∥α,则m ∥n
B .若α⊥γ,β⊥γ,则α∥β
C .若m ∥α,m ∥β,则α∥β
D .若m ⊥α,n ⊥α,则m ∥n
7.已知圆922=+y x 的弦过点)2,1(P ,当弦长最短时,该弦所在直线方程为( ) A .02=-y B . 052=-+y x C .02=-y x D .01=-x 8.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积和体积分别是( )
A .45, 8
B .45, 83
C .4(5+1), 83
D .8, 8
9. 若直线y =kx +1与圆x 2
+y 2
=1相交于P ,Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为( )
A .-3或3
B .3
C .-2或2
D .2
2
1(4)
(3)
(1)
(2)
10.如图,在长方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱BB 1,B 1C 1的中点,若∠CMN =90°,则异面直线AD 1和DM 所成角为( )
A .30°
B .45°
C .60°
D .90°
11.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是( )
A .90°
B .60°
C .45°
D .30°
12.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2
=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )
A .52-4
B .17-1
C .6-22
D .17
二、填空题(本大题共4小题,每小题3分,共12分)
13.已知过原点直线l 与圆C :0562
2
=+-+x y x 相切,则该直线方程为: 14. 空间四边形中,,,,分别是,,,的中点,若
,且与所成的角为,则四边形的面积
是 .
15.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E,F,G,H 分别是棱C C 1,C 1D 1,DD 1,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则当点M 满足 时,有MN ∥平面B 1BDD 1.
16.若圆B : x 2+y 2 - b =0与圆
C
: x 2+y 2-6x +8y +16=0没有公共点,则b 的取值范围是:_______________. 三、解答题(本大题5小题,共52分)
17.(本题9分)已知方程的曲线是圆C
(1)求的取值范围;(2)当时,求圆C 截直线所得弦长;
ABCD E F G H AB BC CD DA AC BD a ==AC BD 90EFGH 2
2
2450x y mx y m +--+=m 2m =-:l 210x y -+=
18.(本题10分)如图四边形ABCD 为梯形,//AD BC ,90ABC ∠=︒,求图中阴影部分绕AB 旋转一周所形成的几何体的表面积和体积。

19. (本题10分)如图,三棱柱中,侧棱,且侧棱和底面边长均为2,是的中点. (1)求证:;
(2)求证:;
20. (本题10分)已知圆心为C 的圆经过点(1,1)A 和(2,2)B -,
111C B A ABC -ABC
AA 底面⊥1D BC 11CC BB AD 平面⊥11ADC B A 平面
∥ A
B
C
A
C
B
D
且圆心C 在直线:10l x y -+=上。

(1)求圆心为C 的圆的标准方程;
(2)线段PQ 的端点P 的坐标是(5,0),端点Q 在圆C 上运动,求线段PQ 中点M 的轨迹方程.
21.(本题13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为
2
6
. (1)求侧面PAD 与底面ABCD 所成的二面角的大小;
(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;
(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,
说明理由.
(第21题)
B
P。

相关文档
最新文档