MUC-9802-95802-05-09

合集下载

ACCUSPIN系统-Histopaque 1077产品说明书

ACCUSPIN系统-Histopaque 1077产品说明书

Technical BulletinACCUSPIN™ System – Histopaque ® 1077Catalog Numbers A6929, A7054, and A0561Product DescriptionACCUSPIN System-Histopaque -1077products are intended for use in the isolation of lymphocytes and other mononuclear cells. The separation medium, Histopaque-1077, is a sterile-filtered, endotoxin tested solution of polysucrose and sodium diatrizoate, adjusted to a density of 1.077 g/mL. The ACCUSPIN tube is specially designed with two chambers separated by a porous high density polyethylene barrier (frit).Separation of lymphocytes and other mononuclear cells from whole blood and bone marrow using density gradientseparation media is based on a published method.1 Histopaque-1077 is suitable for human lymphocyte antigen (HLA) typing 2 and as the initial isolation step prior toenumeration of T, B, and ‘null’ lymphocytes.3 It may also be employed in the preparation of pure lymphocyte suspensions for cell culture and cytotoxicity assays.4ACCUSPIN System-Histopaque-1077 products consist of radiation sterilized polypropylene tubes fitted with a highdensity polyethylene frit and aseptically filled with Histopaque-1077.Histopaque-1077 is a sterile-filtered solution of polysucrose, 57 g/L, and sodium diatrizoate, 90 g/L.Density: 1.076–1.078 g/mL Endotoxin: 0.3 EU/mL pH: 8.8–9.0ACCUSPIN System-Histopaque-1077Catalog No. A692940 × 3 mLEach tube contains 3 mL ofHistopaque 1077-1 and will separate 3-6 mL of anticoagulated blood Catalog No. A7054 12 × 15 mLCatalog No. A0561100 × 15 mLEach tube contains 15 mL ofHistopaque 1077-1 and will separate 15-30 mL of anticoagulated bloodReagents and Equipment Required but Not ProvidedCentrifuge (swinging bucket rotor)capable of generating 100 to 1,000 g Centrifuge tubes for washing mononuclear cellsIsotonic phosphate buffered saline solution or appropriate cell culture mediumPrecautions and DisclaimerFor R&D use only. Not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.Preparation InstructionsSpecimen Collection - Collect blood in preservative-free anticoagulant (EDTA or heparin) or use defibrinated blood. For best results, blood should be processed within 2 hours.On occasion, it may be necessary to dilute the blood sample 3 to 5-fold, depending on absolute cell numbers. A similar volume of prediluted blood may be used or the blood sample may be diluted directly in upper chamber of the ACCUSPIN tube (seeProcedure, step 3). This is appropriate for specimens with hematocrits above normal.Storage/StabilityStore the products at 2–8 C.Histopaque-1077 has an expiration period of 3 years. Reagent label bears expiration date.ProcedureAnticoagulated blood can be added to the top chamber of the tube without risk of mixing with the Histopaque-1077 in the lowerchamber under the frit. On centrifugation the whole blood migrates through the frit to contact with the Histopaque-1077. The elements of greater density displace a volume of Histopaque-1077 above the frit giving a clear separation of the bloodcomponents. The erythrocytes aggregate and the granulocytes become slightly hypertonic, increasing their sedimentation rate, resulting in pelleting at the bottom of the ACCUSPIN Tube. Lymphocytes and other mononuclear cells, e.g., monocytes, remain at the plasma/Histopaque-1077 interface. This dense band of mononuclear cells may be collected by pouring off the contents of the upper chamber or by means of a pipette. Erythrocyte contamination is avoided due to the barrier between the chambers.Most extraneous platelets are removed by low speed centrifugation during the washing steps.1. Bring desired number of tubes to roomtemperature. If Histopaque-1077 isabove the frit prior to use, centrifuge at 1,000 g for 30 seconds at room temperature.Note: Failure to bring ACCUSPIN System-Histopaque-1077 to room temperature may cause limited recovery of mononuclear cells. 2. Label tube(s).3. Freely pour the blood sample into theupper chamber of each ACCUSPIN System-Histopaque-1077 tube.a. Use 3–6 mL of whole blood withACCUSPIN System-Histopaque-1077 tubes, Catalog No. A6929. b. Use 15–30 mL of whole blood withACCUSPIN System-Histopaque-1077 tubes, Catalog Nos. A7054 or A0561. Note: Use of volumes of prediluted or whole blood other than those recommended may result in decreased recovery.4. Centrifuge at 1,000 g for 10 minutes atroom temperature or centrifuge at 800 g for 15 minutes at roomtemperature. Centrifugation at lower temperatures, such as 4 C, may result in cell clumping and poor recovery.Note: If platelet contamination is a concern, add the mononuclear cells to a 4-20% sucrose gradient that has been layered over Histopaque-1077.Centrifuge at 1,000 × g for 10 minutes at room temperature. The platelets will pellet at the bottom, while themononuclear cells will migrate to the Histopaque-1077 layer.5. After centrifugation, carefully aspiratethe plasma layer with a Pasteur pipette to within 0.5 cm of the opaque interface containing mononuclear cells. Properly dispose of the plasma layer.Note: Failure to remove the excesssupernatant may result in contamination of the mononuclear band with plasma proteins.6. Carefully transfer the opaque interfacewith a Pasteur pipette into a clean conical centrifuge tube.Note: Removal of Histopaque-1077 with the mononuclear band increasesgranulocyte contamination from residual granulocytes, which may remain at the mononuclear interface.7. Wash the cells by adding 10 mL ofisotonic phosphate buffered saline solution or appropriate cell culture medium and mix by gently drawing in and out of a Pasteur pipette. 8. Centrifuge at 250 g for 10 minutes. 9. Aspirate the supernatant and discard. 10. Resuspend cell pellet with 5 mL ofisotonic phosphate buffered saline solution or appropriate cell culture medium and mix by gently drawing in and out of a Pasteur pipette.11. Centrifuge at 250 g for 10 minutes. 12. Repeat steps 9, 10, and 11, discardsupernatant and resuspend cell pellet in 0.5 mL of isotonic phosphate buffered saline solution or appropriate cell culture medium. Erythrocytes and granulocytes should pellet to the bottom of the ACCUSPIN tube. Mononuclear cells should band at the interface between the Histopaque-1077 and the plasma. If observed results vary from expected results, please contact Sigma-Aldrich Technical Service for assistance.References1. Boyum, A., Separation of leukocytesfrom blood and bone marrow. Scand. J. Clin. Lab. Invest ., 21 (Suppl 97), 77 (1968).2. Amos, D.B., and Pool, P., “HLA typing” inManual of Clinical Immunology, Rose, N.R., and Friedman, H., eds., American Society for Microbiology, (Washington, DC: 1976) pp. 797-804.3. Winchester, R.J., and Ross, G., “Methodsfor enumerating lymphocyte populations” in Manual of Clinical Immunology, Rose, N.R., and Friedman, H. eds., American Society for Microbiology, (Washington, DC: 1976) pp. 64-76.4. Thorsby, E., and Bratlie, A., “A rapidmethod for preparation of pure lymphocyte suspensions.”Histocompatibility Testing, Terasaki, P.I., ed., 665-666 (1970).The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.Merck, Sigma-Aldrich, ACCUSPIN, and Histopaque are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.© 2022 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.NoticeWe provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.Contact InformationFor the location of the office nearest you, go to /offices .Technical ServiceVisit the tech service page on our web site at /techservice .Standard WarrantyThe applicable warranty for the products listed in this publication may be found at /terms .A0561 Technical Bulletin Rev 06/2022。

Covaris E220 DNA Shearing Quick Guide

Covaris E220 DNA Shearing Quick Guide

Quick Guide:This Quick Guide provides DNA Shearing protocols when using microTUBE-130, microTUBE-50, microTUBE-15, microTUBE-500, or miniTUBE and a Covaris E220 Focused-ultrasonicator.Revision History010308 K 1/17 Format Changes; Addition of microTUBE-500 AFA Fiber Screw-Capprotocols; update ‘Additional Accessories’; update Appendix B 010308 L 2/17 Changes to 8 microTUBE-50 Strip V2 protocols; addition of 8 microTUBE-15AFA Beads H Slit Strip V2 and 8 microTUBE-50 AFA Fiber H Slit Strip V2010308 M 5/17 Addition of 96 microTUBE-50 AFA Fiber Plate Thin Foil (PN 520232) and 130ul 96 microTUBE AFA Fiber Plate Thin Foil (PN 520230)010308 N 7/17 Add the names of the well plates definition for 520230 & 520232. Changedyear for Rev M Date.Values mentioned in this Quick Guide are nominal values. The tolerances are as follows: -Temperature +/-2°C-Sample volumeo microTUBE-15: from 15 to 20 µl, +/- 1 µlo microTUBE-50: 55 µl, +/- 2.5 µlo microTUBE Plate, Strip, Snap and Crimp Cap: 130 µl, +/- 5 µlo microTUBE-500: 500 µl, +/- 10 µl or 320 µl, +/- 10 µlo miniTUBE: 200 µl, +/- 10 µl-Water Level +/- 1Sample guidelines-DNA input: up to 5 µg purified DNA (1 µg for the microTUBE-15; minimum 320 ng for the microTUBE-500) -Buffer: Tris-EDTA, pH 8.0-DNA quality: Genomic DNA (> 10 kb). For lower quality DNA, Covaris recommends setting up a time dose response experiment for determining appropriate treatment times.-DO NOT use the microTUBE or miniTUBE for storage. Samples should be transferred after processing. Instrument setup-Refer to the instrument manual for complete setup.-microTUBE and miniTUBE have specific holders or racks associated with them.-E220 and E220 evolution may require the Intensifier (PN 500141). Refer to Appendix C for instructions.-E220 and E220 evolution may require Y-dithering. Refer to Appendix A for instructions.Instrument settings-Recommended settings are subject to change without notice.-Mean DNA fragment size distributions are based on electropherograms generated from the Agilent Bioanalyzer with the DNA 12000 Kit (cat# 5067-1509), with the exception of the 320 µl microTUBE-500 protocol (HighSensitivity DNA Kit, cat# 5067-4626). DNA fragment representation will vary with analytical systems, please carry out a time course experiment based on settings provided in this document to reach desired fragment sizedistribution.See /wp-content/uploads/pn_010308.pdf for updates to this document.130 µl sample volume - from 150 to 1,500 bpVessel microTUBEAFA FiberSnap-Cap(PN 520045)microTUBEAFA FiberCrimp-Cap(PN 520052)8 microTUBEStrip(PN 520053)96 microTUBEPlate(PN 520078)96 microTUBEAFA Fiber PlateThin Foil(PN 520230)Sample Volume 130 µlE220RacksRack 24 PlacemicroTUBESnap-Cap (PN500111)Rack 96 PlacemicroTUBECrimp-Cap(PN 500282)Rack 12 Place 8microTUBE Strip(PN 500191)No Rack needed Plate Definitions“500111 24microTUBEsnap +4mmoffset”“E220_500282Rack 96 PlacemicroTUBE-6mm offset”“E220_500191 8microTUBE stripPlate -6mmoffset”“E220_52007896 microTUBEPlate -6mmoffset”“E220_52023096 microTUBEPlate Thin Foil -6mm offset”Water Level 6Intensifier (PN 500141) YesY-dithering NoE220 evolutionRacks Rack E220e 8 Place microTUBECrimp and Snap Cap (PN 500433)Rack E220e 8microTUBE Strip(PN 500430)Non Compatible Plate Definitions“500433 E220e 8 microTUBECrimp and Snap Cap -3.7mmoffset”“500430 E220e 8microTUBE Strip-6mm offset”N/A Water Level 6Intensifier (PN 500141) YesY-dithering NoAllTemperature (°C) 7Target BP (Peak) 150 200 300 400 500 800 1,000 1,500 Peak Incident Power (W) 175 175 140 140 105 105 105 140 Duty Factor 10% 10% 10% 10% 5% 5% 5% 2% Cycles per Burst 200 200 200 200 200 200 200 200 Treatment Time (s) 430 180 80 55 80 50 40 15Vessel microTUBE-50Screw-Cap (PN 520166)8 microTUBE-50 AFA FiberStrip V2 (PN 520174)8 microTUBE-50 AFA Fiber HSlit Strip V2 (PN 520240)96 microTUBE-50AFA Fiber Plate(PN 520168)96 microTUBE-50AFA Fiber Plate ThinFoil (PN 520232) Sample Volume 55 µlE220RacksRack 24 PlacemicroTUBE Screw-Cap (PN 500308)Rack 12 Place 8 microTUBEStrip (PN 500444) No Rack needed Plate Definitions“E220_500308 Rack24 Place microTUBE-50 Screw-Cap+6.5mm offset”“E220_500444 Rack 12 Place 8microTUBE-50 Strip V2-10mm offset”“E220_520168 96microTUBE-50 Plate-10.5mm offset”“E220_520232 96microTUBE-50 PlateThin Foil -10.5mmoffset”E220evolutionRacksRack E220e 4 PlacemicroTUBE ScrewCap (PN 500432)Rack E220e 8 microTUBE StripV2 (PN 500437) Non Compatible Plate Definitions“500432 E220e 4microTUBE-50 ScrewCap -8.32mm offset”“500437 E220e 8 microTUBE-50 Strip V2 -10mm offset” N/AAllTemperature (°C) 7Water Level 6 -2 0 Intensifier (PN 500141) Yes Yes YesY-dithering No No Yes (0.5mm Y-dither at10mm/s) Target BP (Peak) 150 200 250 300 350 400 550Screw-CapPeak Incident Power(W) 100 75 75 75 75 75 30Duty Factor 30% 20% 20% 20% 20% 10% 10%Cycles per Burst 1000 1000 1000 1000 1000 1000 1000Treatment Time (s) 130 95 62 40 30 50 708-StripPeak Incident Power (W) 75 75 75 75 75 75 50Duty Factor 15% 15% 20% 20% 20% 10% 10%Cycles per Burst 500 500 1000 1000 1000 1000 1000Treatment Time (s) 360 155 75 45 35 52 50 PlatePeak Incident Power (W) 100 100 75 75 75 75 75Duty Factor 30% 30% 20% 20% 20% 10% 10%Cycles per Burst 1000 1000 1000 1000 1000 1000 1000Treatment Time (s) 145 90 70 49 34 50 32 The Y-dithering function is required for shearing with 96 microTUBE-50 plate (PN 520168). This function is only available on SonoLab versions 7.3 and up. Please see Appendix A for detailed instructions.Vessel microTUBE-15 AFA BeadsScrew-Cap (PN 520145)8 microTUBE-15 AFA BeadsStrip V2 (PN 520159)8 microTUBE-15 AFA BeadsH Slit Strip V2 (PN 520241)Sample Volume 15 µlE220Racks Rack 24 Place microTUBEScrew-Cap (PN 500308)Rack 12 Place 8 microTUBEStrip V2 (PN 500444) Plate Definitions“E220_500308 Rack 24 PlacemicroTUBE-15 Screw-Cap+15mm offset”“E220_500444 Rack 12 Place 8microTUBE-15 Strip V2 -1.5mmoffset”Water Level 10 6Intensifier (PN 500141) NoY-dithering NoE220evolutionRacks Rack E220e 4 Place microTUBEScrew Cap (PN 500432)Rack E220e 8 microTUBE StripV2 (PN 500437)Plate Definitions ”500432 E220e 4 microTUBE-15Screw Cap 0.18mm offset”“500437 E220e 8 microTUBE-15Strip V2 -1.58mm offset”Water Level 10 6Intensifier (PN 500141) NoY-dithering NoAllTemperature (°C) 20Target BP (Peak) 150 200 250 350 550Peak Incident Power (W) 18 18 18 18 18Duty Factor 20% 20% 20% 20% 20%Cycles per Burst 50 50 50 50 50Treatment Time (s) 300 120 80 45 22To ensure reproducible DNA shearing, it is required to centrifuge samples before processing DNA in amicroTUBE-15. Please see Appendix B for instructions.Please note that microTUBE-15 requires removal of the Intensifier (PN 500141) from the E220 focused-ultrasonicator. Please see Appendix C for instructions.200 µl sample - 2,000; 3,000 and 5,000 bpVesselminiTUBE Clear(PN 520064)Blue(PN 520065)Red(PN 520066) Sample Volume 200 µlE220Racks Rack 24 Place miniTUBE (PN 500205)Plate Definition “500205 24 miniTUBE +15mm offset”Water Level 11Intensifier (PN 500141) NoY-dithering NoE220evolutionRacks Rack E220e 4 Place miniTUBE (PN 500434)Plate definition “500434 E220e 4 miniTUBE 4.9mm offset”Water Level 11Intensifier (PN 500141) NoY-dithering NoAllTemperature (°C) 7 20 20 Target BP (Peak) 2,000 3,000 5,000miniTUBE Clear Blue RedPeak Incident Power (W) 3 3 25Duty Factor 20% 20% 20%Cycles per Burst 1000 1000 1000Treatment Time (s) 900 600 600Please note that miniTUBE requires removal of the Intensifier (PN 500141) from the E220 focused-ultrasonicator. Please see Appendix C for instructions.320 µl and 500 µl sample volume – from 150 to 600 bpVesselmicroTUBE-500 AFA Fiber Screw-Cap(PN 520185)Sample Volume320 µl 500 µlE220Rack Rack, 24 microTUBE-500 Screw-Cap (PN 500452)Plate Definition “E220_500452 Rack 24 Place microTUBE-500 Screw-Cap +6mmoffset” Water Level6 Intensifier (PN 500141)Yes Y-dithering NoE220 evolutionRackRack E220e 4 microTUBE-500 Screw-Cap (PN 500484) Plate Definition “500484 E220e 4 microTUBE-500 Screw-Cap -9.9mm offset”Water Level6 Intensifier (PN 500141)Yes Y-ditheringNo AllTemperature (°C)7Target BP (Peak)500 - 600150200350550Peak Incident Power (W) 75 175 175 175 175 Duty Factor 25% 20% 20% 20% 5% Cycles per Burst 200 200 200 200 200 Treatment Time (s)7540018055110To fragment DNA to sizes larger than 5 kb, Covaris offers the g-TUBE: a single-use device that shears genomic DNA into selected fragments sizes ranging from 6 kb to 20 kb. The only equipment needed is a compatible bench-top centrifuge.Additional AccessoriesPart Number Preparation stationsmicroTUBE Prep Station Snap & Screw Cap 500330 microTUBE-500 Screw-Cap Prep Station 500510 miniTUBE loading and unloading station 500207 8 microTUBE Strip Prep Station500327 Centrifuge and Heat Block microTUBE Screw-Cap Adapter Fits microTUBE Screw-Caps into bench top microcentrifuges500406 Centrifuge 8 microTUBE Strip V2 Adapter Fits the 8 microTUBE Strip into a Thermo Scientific TM mySPIN TM 12 mini centrifuge 500541 g-TUBEg-TUBEs (10) and prep station520079Appendix A – Using Y-dithering with SonoLab 7.3 and upA Y-dithering step is required for DNA shearing with the 96 microTUBE-50 Plate-This feature is only available on SonoLab versions 7.3 and up.-To obtain a copy of the SonoLab 7.3 and the Plate Definition installers, please employ the Registered Users Login on the Covaris website, -For any assistance in this process, please contact your local representative, or Covaris Global Technical Services at ***********************.Use the following steps to include Y-dithering in sample treatment1.Go into the Method Editor2.Select ‘Add Step’ and enter the treatment settings for the desired fragment sizea.Note: The following steps must be done for each individual treatment3.Select the Motion tab4.Enter the following values into the ‘X-Y Dithering Box’a.Y Dither (mm): 0.5b.X-Y Dither Speed (mm/sec): 10.0c.Both X Dither (mm) and X-Y Dwell (sec) should be set to 0Appendix B – microTUBE-15 centrifugation before DNA Shearing1.Sample loading and centrifugationmicroTUBE-15 AFA Beads Screw-CapLoad and centrifuge microTUBE-15 Screw-Cap as described before placing the tubes in the rack.If some of the sample splashes onto the wall of the microTUBE while removing from centrifuge or placing into rack, repeat centrifuge step. All liquid should be at the bottom of the microTUBE-15 before starting the AFA treatment.8 microTUBE-15 AFA Beads Strip V2The 8 microTUBE-15 AFA Beads Strip V2 will fit into the Covaris Centrifuge 8 microTUBE Strip V2 Adapter (PN 500541) for the Thermo Scientific TM mySPIN TM 12 mini centrifuge. Place the strip in the adapter and spin for a minimum of 1 minute.2.Sample processingUse settings provided in page 4.3.Sample recoveryRepeat the centrifuge step before recovering sample from microTUBE-15.Appendix C – Removing or Installing the Intensifier (Covaris PN 500141) from an E System The 500141 Intensifier is a small inverted stainless steel cone centered over the E Series transducer by four stainless wires. The wires are held by in a black plastic ring pressed into the transducer well.If an AFA protocol requires “no intensifier”, please remove the Intensifier, using the following steps:1.Empty the water bath. Start the E System and start the SonoLab software.2.Wait for the homing sequence to complete (the transducer will be lowered with the rack holder at it home position,allowing easy access to the Intensifier).3.Grasp opposite sides of plastic ring and gently pull the entire assembly out of the transducer well. Do not pull on the steelcone or the wires. The ring is a friction fit in the well – no hardware is used to hold it in place.The 500141 Intensifier (left) shown installed in the E System transducer well and (right) removed.Note the “UP” marking at the center of the Intensifier.If a protocol requires the Intensifier to be present, simply reverse this process:1.Align the black plastic ring with the perimeter of the transducer well. Note that the flat side of the center cone (marked UP)should be facing up (away from the transducer).2.Gently press each section of the ring into the well until the ring is seated uniformly in contact with the transducer, withapproximately 2 mm of the ring evenly exposed above the transducer assembly. Do not press on the cone or wires. The rotation of the ring relative to the transducer assembly is not important.3.Refill the tank. Degas and chill the water before proceeding.Technical Assistance•By telephone (+1 781 932 3959) during the hours of 9:00am to 5:00pm, Monday through Friday, United States Eastern Standard Time (EST) or Greenwich Mean Time (GMT) minus 05:00 hours•By e-mail at ***********************。

氮掺杂碳纳米管包覆Fe0.64Ni0.36@Fe3NiN核壳结构用于高稳定锌-空气电池

氮掺杂碳纳米管包覆Fe0.64Ni0.36@Fe3NiN核壳结构用于高稳定锌-空气电池

物 理 化 学 学 报Acta Phys. -Chim. Sin. 2024, 40 (2), 2304021 (1 of 2)Received: April 10, 2023; Revised: May 22, 2023; Accepted: May 23, 2023; Published online: June 8, 2023.*Correspondingauthors.Emails:***********.cn(H.L.);****************.cn(L.X.);Tel.:+86-511-88799500(L.X.).The project was supported by the National Natural Science Foundation of China (22178148, 22278193).国家自然科学基金(22178148, 22278193)资助项目 © Editorial office of Acta Physico-Chimica Sinica[Article] doi: 10.3866/PKU.WHXB202304021 Fe 0.64Ni 0.36@Fe 3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle StabilityChen Pu, Daijie Deng, Henan Li *, Li Xu *Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.Abstract: Rechargeable zinc-air batteries (ZABs) havebeen extensively investigated owing to their high powerdensity and environmental friendliness. However, the slowkinetics of the oxygen reduction reaction (ORR) and oxygenevolution reaction (OER) processes limit their practicalapplication. Currently, IrO 2 and RuO 2 are considered theoptimal OER electrocatalysts, and Pt/C is the most effectiveORR electrocatalyst. However, the practical application of Pt,Ir, and Ru in ZABs is severely limited owing to their low naturalabundance and high cost. Therefore, the fabrication ofinexpensive and high-performance bifunctional catalysts is essential for the development of rechargeable ZABs. Transition-metal alloys have a high electrical conductivity and low energy barrier for the reaction of oxygen, and thus they are considered promising ORR electrocatalysts. Transition-metal nitride-transition-metal alloy core-shell nanostructures can be fabricated to improve the bifunctional electrocatalytic activity. In this study, a bifunctional electrocatalyst with Fe 0.64Ni 0.36@Fe 3NiN core-shell structures encapsulated in N-doped carbon nanotubes (Fe 0.64Ni 0.36@Fe 3NiN/NCNT) was designed for highly efficient rechargeable ZABs. Fe 0.64Ni 0.36@Fe 3NiN/NCNT was synthesized by pyrolyzing the nickel-iron-layered double hydroxide (NiFe-LDH) precursor, followed by ammonia etching of the Fe 0.64Ni 0.36 alloy. The core-shell structure produced more ORR/OER active sites. The Fe 0.64Ni 0.36 core exhibited high electrical conductivity, which facilitates charge transfer. The Fe 3NiN shell enhanced the OER performance and improved the bifunctional performance. Moreover, the NCNT structures not only efficiently enhanced the mass transfer efficiency and intrinsic electrical conductivity, but also provided a large electrochemical active surface area. The high anticorrosion property of the Fe 3NiN shell effectively protected the Fe 0.64Ni 0.36 core, which consequently enhanced electrocatalyst stability during the electrochemical processes. The protective carbon layer and the superior chemical stability of the Fe 3NiN shell resulted in the ultrahigh stability of Fe 0.64Ni 0.36@Fe 3NiN/NCNT. The catalyst exhibited an excellent bifunctional oxygen electrocatalytic performance, with a half-wave potential of 0.88 V for the ORR and low OER overpotential of 380 mV at 10 mA ∙cm −2. Moreover, the catalyst exhibited electrochemical stability (92.8% current retention after 8 h). In addition, the Fe 0.64Ni 0.36@Fe 3NiN/NCNT-based ZAB exhibited a higher peak power density (214 mW ·cm −2) than the ZABs based on Pt/C+IrO 2 (155 mW ·cm −2) and Fe 0.64Ni 0.36/NCNT (89 mW ·cm −2). Moreover, the Fe 0.64Ni 0.36@Fe 3NiN/NCNT-based ZAB delivered a high capacity of 781 mAh ·g −1, while the ZABs based on Fe 0.64Ni 0.36/NCNT and Pt/C+IrO 2 reached capacities of 688 and 739 mAh ·g −1, respectively. Furthermore, the Fe 0.64Ni 0.36@Fe 3NiN/NCNT-based ZAB exhibited ultralong cycling stability (cycle life > 1100 h), which exceeded those of Pt/C (50 h) and Fe 0.64Ni 0.36/NCNT (450 h). We propose that this study will facilitate the design of novel catalysts for highly stable and efficient ZABs.Key Words: Bifunctional electrocatalyst; Fe 3NiN; Core-shellstructure; Zinc-air battery; Ultra-long cycle stability物理化学学报 Acta Phys. -Chim. Sin.2024,40 (2), 2304021 (2 of 2)氮掺杂碳纳米管包覆Fe0.64Ni0.36@Fe3NiN核壳结构用于高稳定锌-空气电池蒲晨,邓代洁,李赫楠*,徐丽*江苏大学能源研究院,化学化工学院,江苏镇江 212013摘要:可逆锌-空气电池因其高功率密度和环境友好性而得到了广泛研究。

LetPub-JCR2012-期刊

LetPub-JCR2012-期刊

0239-7528 1851-2372 1224-2780 2146-3123 1860-5397 1876-2883 1757-6180 1369-703X 1934-8630 0791-7945 1996-3599 0324-1130 0525-1931 0144-8617 0008-6223 1897-5593 1664-3828 1634-0744 1842-4090 2044-4753 0920-5861 1933-6918 2045-3701 1478-811X 2228-5806 2211-1247 0008-8846 1895-1066 1733-7178 2081-9900 1868-4904 0008-8994 0272-8842 0862-5468 0173-9913 1584-8663 0352-9568 1612-1872 1752-153X 1359-7345 0275-7540 0098-6445 1385-8947 0009-2347 0255-2701 0360-7275 0263-8762 0009-2509 0930-7516 0009-2460 0009-3122 1451-9372 0009-3068 0251-0790
B POL ACAD SCI-TECH B SOC ARGENT BOT BALK J GEOM APPL BALK MED J BEILSTEIN J ORG CHEM BENEF MICROBES BIOANALYSIS BIOCHEM ENG J BIOINTERPHASES BIOL ENVIRON BUILD SIMUL-CHINA BULG CHEM COMMUN BUNSEKI KAGAKU CARBOHYD POLYM CARBON CARDIOL J CARDIORENAL MED CARNETS GEOL CARPATH J EARTH ENV CATAL SCI TECHNOL CATAL TODAY CELL ADHES MIGR CELL BIOSCI CELL COMMUN SIGNAL CELL J CELL REP CEMENT CONCRETE RES CENT EUR J CHEM CENT EUR J ENERG MAT CENT EUR J GEOSCI CENT EUR NEUROSURG CENTAURUS CERAM INT CERAM-SILIKATY CFI-CERAM FORUM INT CHALCOGENIDE LETT CHEM BIOCHEM ENG Q CHEM BIODIVERS CHEM CENT J CHEM COMMUN CHEM ECOL CHEM ENG COMMUN CHEM ENG J CHEM ENG NEWS CHEM ENG PROCESS CHEM ENG PROG CHEM ENG RES DES CHEM ENG SCI CHEM ENG TECHNOL CHEM ENG-NEW YORK CHEM HETEROCYCL COM+ CHEM IND CHEM ENG Q CHEM IND-LONDON CHEM J CHINESE U

大孔树脂型号及用途

大孔树脂型号及用途

大孔树脂型号及用途型号用途国内外对应牌号XDA-4 提取分离维生素B12及多种抗生素XAD-4 CAD40XDA-16A XDA-16B 提取分离头孢霉素、阿维菌素、亿维菌素等XAD-16 D316 D311 LSD-318 链霉素精制、提取——LSA-600 链霉素提取过程中替代122树脂进行脱色——LSI-010 LSI-210 链霉素精制除灰分——XDA-9 从土霉素废液中回收土霉素——LSA-700 头孢菌素C的精制脱色(替代氧化铝)——CD180 提取分离丁胺卡那霉素等氨基糖甙类半合成抗生素——D941 糖类等的提取、脱色,抗生素及天然药物的脱色精制——树脂牌号类别主要用途D101 LSA-20XDA-5 LSA-30XDA-6 HP-10 非极性提取绞股兰总皂甙、淫羊藿甙、三七总皂甙、罗汉果甙、人参总皂苷、西洋参总皂苷、葛根总黄酮、毛冬青总皂苷、蒺藜总皂苷、知母皂苷、芍药苷、橙皮苷、栀子苷、丹皮酚、色素、喜树碱等LSA-40 LSA-21LSA-10 LSA-33 中极性提取黄酮、银杏内酯、大豆异黄酮、甜菊糖甙、人参皂甙、三七皂甙、绿原酸、原花青素、花色苷、广枣黄酮等XDA-1 XDA-8LSA-7 极性提取分离甜叶菊、茶多酚、蒽醌类、多酚类、咖啡因等LSA-5B 活性高比表面提取分离淫羊藿甙等甙类、黄酮类、蒽醌、大黄酸、甘草酸类,维生素B12提取LSI-004 LSD001 极性提取分离生物碱、氨基酸等LSA-8 LSA-8B 提取分离大豆异黄酮、克林霉素磷酸酯等多种物质LSD-632 LSA-700LSD-300 LSD-263LSD-280 绞股兰总皂甙、三七总皂甙、罗汉果总皂甙等中草药有效成分脱色;新霉素、庆大霉素、核糖霉素等氨基糖甙类抗生素脱色;制糖工业中脱除水溶性及醇溶性色素及杂质废水处理专用树脂XDA系列大孔吸附树脂主要用于处理染料、农药和医药及其中间体等生产废水。

可用于吸附回收酚类、胺类、有机酸、硝基物、卤代烃等,如难以处理的1-萘胺、1-萘酚、2-萘酚、2,3-酸、1,2,4-酸及氧体、周位酸、氨基J酸等萘系中间体废水,间甲酚、对硝基酚钠、硝基苯、硝基氯苯、苯胺、对氨基二苯胺、邻苯二胺、苯乙酸和氟(氯)代甲苯等有机中间体的废水处理。

MUC1、MUC2及MUC5AC在大肠黏液腺癌组织中的表达及意义

MUC1、MUC2及MUC5AC在大肠黏液腺癌组织中的表达及意义

MUC1、MUC2及MUC5AC在大肠黏液腺癌组织中的表达及意义肖春卫;易永芬【摘要】目的探讨黏蛋白MUC1、MUC2和MUC5AC在大肠黏液腺癌组织中的表达及意义.方法采用免疫组织化学法的SP法,检测40例大肠黏液腺癌组织中黏蛋白MUC1、MUC2和MUC5AC的表达.结果大肠黏液腺癌组织中MUC1、MUC2和MUC5AC的阳性表达率分别为55.0%、82.5%和77.5%.大肠黏液腺癌组织中MUC1、MUC2及MUC5AC的表达与肿瘤大小及分化程度无关(P>0.05),MUC1表达与浸润深度、淋巴结转移、Dukes分期呈负相关,而MUC2、MUC5AC表达与浸润深度、淋巴结转移、Dukes分期呈正相关(P<0.05).结论MUC1、MUC2和MUC5AC的表达可预示大肠黏液腺癌的浸润转移潜能.【期刊名称】《实用癌症杂志》【年(卷),期】2007(022)001【总页数】3页(P47-49)【关键词】大肠黏液腺癌;MUC1蛋白;MUC2蛋白;MUC5AC蛋白;免疫组织化学【作者】肖春卫;易永芬【作者单位】518102,深圳市西乡人民医院;400046,重庆医科大学病理学教研室【正文语种】中文【中图分类】R735.3+4黏蛋白核心肽是一类由上皮细胞分泌的高分子量的糖蛋白,近年研究表明[1],它在上皮更新与分化,维持上皮完整性和癌的发生与转移等方面都起到重要作用,同时上皮细胞的恶变也与其质与量的改变相关。

人黏蛋白基因的分离成功及特异性抗体的产生,为研究正常上皮到癌组织的转化过程中黏蛋白基因表达的精细分析提供了可靠的保证。

在大肠癌中,黏液腺癌预后较差,易发生转移和复发。

我们应用免疫组织化学SP法观察黏蛋白MUC1,MUC2和MUC5AC在40例大肠黏液腺癌组织中的表达,并探讨他们之间的关系及其在大肠黏液腺癌浸润转移中的作用。

1 材料和方法1.1 临床资料收集重庆医科大学病理教研室2002年~2004年手术切除的40例大肠黏液腺癌患者的肿瘤标本。

Simultaneous determination of multi-mycotoxins in

Simultaneous determination of multi-mycotoxins in

This article was downloaded by: [University of Jiangnan]On: 23 December 2014, At: 22:26Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UKClick for updatesFood Additives & Contaminants: Part APublication details, including instructions for authors and subscription information:/loi/tfac20Simultaneous determination of multi-mycotoxins in palm kernel cake (PKC) using liquid chromatography-tandem mass spectrometry (LC-MS/MS)S. Yibadatihan ab, S. Jinap ab& N. A MahyudinaaFood Safety Research Centre (FOSREC), Faculty of Food Science and T echnology , Universiti Putra Malaysia, Serdang, MalaysiabInstitute of Tropical Agriculture, Universiti Putra Malaysia, Serdang, MalaysiaAccepted author version posted online: 14 Nov 2014.Published online: 17 Nov 2014.PLEASE SCROLL DOWN FOR ARTICLESimultaneous determination of multi-mycotoxins in palm kernel cake (PKC)using liquid chromatography-tandem mass spectrometry (LC-MS/MS)S.Yibadatihan a,b ,S.Jinap a,b *and N.A Mahyudin aa Food Safety Research Centre (FOSREC),Faculty of Food Science and Technology,Universiti Putra Malaysia,Serdang,Malaysia;bInstitute of Tropical Agriculture,Universiti Putra Malaysia,Serdang,Malaysia(Received 8July 2014;accepted 13October 2014)Palm kernel cake (PKC)is a useful source of protein and energy for livestock.Recently,it has been used as an ingredient in poultry feed.Mycotoxin contamination of PKC due to inappropriate handling during production and storage has increased public concern about economic losses and health risks for poultry and humans.This concern has accentuated the need for the evaluation of mycotoxins in PKC.Furthermore,a method for quantifying mycotoxins in PKC has so far not been established.The aims of this study were therefore (1)to develop a method for the simultaneous determination of mycotoxins in PKC and (2)to validate and verify the method.A liquid chromatography-tandem mass spectrometry (LC-MS/MS)method using an electrospray ionisation interface (ESI)in both positive-and negative-ion modes was developed for the simultaneous determination of a flatoxins (AFB 1,AFB 2,AFG 1and AFG 2),ochratoxin A (OTA),zearalenone (ZEA),deoxynivalenol (DON),fumonisins (FB 1and FB 2),T-2and HT-2toxin in PKC.An optimum method using a 0.2ml min –1flow rate,0.2%formic acid in aqueous phase,10%organic phase at the beginning and 90%organic phase at the end of the gradient was achieved.The extraction of mycotoxins was performed using a solvent mixture of acetonitrile –water –formic acid (79:20:1,v/v)without further clean-up.The mean recoveries of mycotoxins in spiked PKC samples ranged from 81%to 112%.Limits of detection (LODs)and limits of quanti fication (LOQs)for mycotoxin standards and PKC samples ranged from 0.02to 17.5μg kg −1and from 0.06to 58.0μg kg −1,respectively.Finally,the newly developed method was successfully applied to PKC samples.The results illustrated the fact that the method is ef ficient and accurate for the simultaneous multi-mycotoxin determination in PKC,which can be ideal for routine analysis.Keywords:LC-MS/MS;multi-mycotoxins;palm kernel cake;optimisation;simultaneous determinationIntroductionPalm kernel cake (PKC)is an important oil palm by-product;compared with other feedstuffs its nutritional value and long-term availability make PKC more compe-titive in international feed markets and it has been widely used as a major component of poultry feed ingredients.PKC is produced and stored under unhygienic conditions with uncontrolled temperature and relative humidity,which can promote the formation of mycotoxins.It has been well established that contamination of poultry feeds with mycotoxins may induce sanitary disturbances and mortality among the birds and secondary contamination of the human consumer via eggs,poultry meat and giblets (Shareef 2010).Even the intake of very low levels of mycotoxins can cause overt mycotoxicosis,and also leads to the impairment of the immune system and acquired resistance to infections causing health problems which lead to economic losses in the form of decreased productivity (Krnjaja et al.2008).Mycotoxins are a diverse group of toxic secondary metabolites produced by certain filamentous fungi,mostly of the genera Aspergillus ,Fusarium and Penicillium .Poultry are highly susceptible to mycotoxicoses causedby a flatoxins (AFB 1,AFB 2,AFG 1and AFG 2),ochratoxin A (OTA),zearalenone (ZEA),deoxynivalenol (DON),fumonisins (FB 1and FB 2),and T-2and HT-2toxin (Poornima &Palanisamy 2013).The co-occurrence of different toxic compounds implies a potential risk of addi-tional or even synergistic toxic effects after consumption of contaminated food or feed commodities (Škrbi ćet al.2011).Table 1presents the main health effects and symp-toms of the most predominant mycotoxins.Due to adverse toxicities,evaluation of the mycotoxins in PKC is an essential prerequisite for monitoring and prevention of their potential hazard to poultry and human health and to economic losses.To ensure the safety of the food chain,most countries have set maximum levels of mycotoxins for poultry feed.The European Commission has set limits of 100μg kg −1for total AFs and 20μg kg −1for AFB 1;40μg kg −1for OTA;400μg kg −1for ZEA;200μg kg −1for T-2and HT-2;5000μg kg −1for DON and 20000μg kg −1for fumonisins (FB 1,FB 2)(European Food Safety Authority 2014).To assess the toxicological risks of mycotoxins in humans and animals and to control mycological contamina-tion,analytical methods have been developed to determine*Corresponding author.Emails:jinap@.my ;sjinap@Food Additives &Contaminants:Part A ,2014V ol.31,No.12,2071–2079,/10.1080/19440049.2014.978396©2014Taylor &FrancisD o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 22:26 23 D e c e m b e r 2014the levels of mycotoxins in various commodities,such as cereals (Rahmani et al.2011;Soleimany,Jinap,Faridah,et al.2012),peanuts (Arzandeh et al.2010;Jinap et al.2012;Hong et al.2010),peppers (Jalili &Jinap 2012),liquorice root (Wang et al.2013),nutmeg (Kong et al.2013),agro-food (Li et al.2013),soybean-based food and feed (Piotrowska et al.2013),milk (Sorensen and Elbak 2005;Muscarella et al.2007),and animal feed (Kolosova &Stroka 2012;Ates et al.2013).However,no method has been developed for the determination of mycotoxins in PKC.Most of the existing mycotoxin determination methods have used either LC-MS/MS (Liao et al.2011;Soleimany,Jinap &Abas 2012;De Girolamo et al.2013;Warth et al.2013)or HPLC with various detectors (Curticapean et al.2011;Soleimany et al.2011;Rahmani et al.2013;Wang et al.2013).The former has gained more popularity than the latter due to the advantages of time and the solvent-saving separa-tion without any pre-or post-column derivatisation.Moreover,due to the high sensitivity and improved speci fi-city of LC-MS/MS methods,we can inject crude sample extracts.Thus,simple and ef ficient sample extraction meth-ods can be developed without applying further clean-up steps during sample preparation instead of using the costly and labour-demanding extraction methods.The impetus of this study was to develop an accurate LC-MS/MS simultaneous multi-analyte method using a simple and ef ficient sample extraction to detect a flatoxins(AFB 1,AFB 2,AFG 1and AFG 2),ochratoxin A (OTA),zearalenone (ZEA),deoxynivalenol (DON),fumonisins (FB 1and FB 2),T-2and HT-2toxins in PKC.To the best of our knowledge,this is the first study report on the simultaneous determination of multi-mycotoxins in PKC.Materials and methodsChemicals and reagentsAnalytical standards of all mycotoxins,including a flatoxins (AFB 1,AFB 2,AFG 1and AFG 2),OTA,DON,ZEA,T-2,HT-2and fumonisins (FB 1,FB 2)were purchased from Sigma-Aldrich (St.Louis,MO,USA).Methanol and for-mic acid,which were used for the preparation of the mobile phase,were LC grade and obtained from Merck (Darmstadt,Germany).All eluents were filtered through 0.22-µm membrane filters (Whatman,Maidstone,UK).Deionised distilled water was obtained from a Milli-Q puri fication system (Bedford,MA,USA).Preparation of stock and working standard solutions To make a stock-standard mixture,3ml of mixed a flatoxins standard solution (AFB 1and AFG 1at 1000ng ml −1;AFB 2,AFG 2at 300ng ml −1)was mixed with 404μl of OTA standard solution (9900ng ml −1),367.7μl of ZEA standardTable mon mycotoxins and their toxicity in poultries (Richard 2007;Nagwa et al.2013).Mycotoxin EffectsSigns/symptomsA flatoxinsHepatotoxic effects Jaundice (yellow skin)Teratogenic effects Higher incidence of cancer in exposed animalsCarcinogenic Weight variation of the internal organs:enlargement of the liver,spleen and kidneysMutagenic Decreased feed intake (anorexia),decreased daily weight gain,decreased slaughtering weight,inhomogeneous flocksImmunosuppressionDecreased resistance to environmental and microbial stressors,increased susceptibility to diseasesOchratoxin AImmunosuppression Decreased resistance to environmental and microbial stressors,increased susceptibility to diseasesCarcinogenicKidney and liver toxin,carcinogen;chronic toxicity as accumulates in body.Trichothecenes(DON,T-2,HT-2)Immunosuppression Decreased resistance to environmental and microbial stressors,increased susceptibility to diseasesDecreased performance Reduced feed intake,reduced weight gain,impaired feed conversion ratio (FCR),feed refusal,inhomogeneous flocks Dermal toxicityOral and dermal lesionsHematopoietic effectsHaemorrhages (stomach,heart,intestine,lung,bladder and kidney),blood pattern disorders Digestive disorders Diarrhoea,vomitingZearalenone Estrogenic effects Enhanced secondary sex characteristics,enlargement of uterus and mammary glandsReproductive effects Atrophy of testicles and ovaries,abortion,infertility Fumonisins(FB 1and FB 2)Decreased performance Reduced weight gain,impaired FCRPathological changesIncreased kidney and liver weight,liver necrosis2072S.Yibadatihan et al .D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 22:26 23 D e c e m b e r 2014solution (108810ng ml −1),520μl of DON standard solution (96160ng ml −1),1086.7μl of FB 1standard solution (46000ng ml −1),882μl of FB 2standard solution (56700ng ml −1),97.3μl of T-2toxin standard solution (102640ng ml −1),and 100μl of HT-2toxin standard solution (99900ng ml −1)in a 10-ml volumetric flask and filled to volume with methanol to achieve a mix stock solu-tion of AFB 1,AFB 2,AFG 1,AFG 2,OTA,ZEA,FB 1,FB 2,T-2toxin,HT-2toxin and DON at concentrations of 300,90,300,90,400,4000,5000,5000,1000,1000and 5000ng ml −1,respectively.The working standard solutions were prepared by diluting this stock standard mixture with methanol at different concentration ranges,which are given in Table 3.All stock and working standard solutions were stored in amber vials and kept in a freezer at –20°C.EquipmentThe following apparatuses were used for preparing standard solutions and sample extractions:adjustable pipettes (Gilson Pipetman L,Paris,France);a V ortex-mixer (Harmony,Tokyo,Japan),1204Buhler mill (Buhler S.P.A.,Milan,Italy);a Recipro shaker (Jeio teck,Korea);a centrifuge (KUBOTA 2100,Tokyo,Japan);and a nitrogen evaporator with a heated block (N-EV AP ,Organomation Associates,Inc.,Berlin,MA,USA).LC-MS/MS systemLC analysis was performed using a Finnegan TSQ quan-tum ultra -mass (Thermo Fisher Scienti fic,San Francisco,CA,USA)system consisting of a binary pump,a degasser,a column oven and an autosampler.The MS system was operated with an ESI method in both positive-and nega-tive-ion modes using nitrogen spray gas.The capillary voltage was 3kV;the source and desolation temperatures were set at 120and 350°C,respectively.A 25-μl sample was injected on a reverse-phase symme-try C18column (2.00×150mm,3μm particles)with a column temperature of 30°C.To achieve the optimal chro-matographic separation of all the analytes,different types of mobile phase compositions with different proportions were investigated,such as 5–25%and 70–90%methanol or acet-onitrile at the beginning and end of the gradient,respectively,and different acid types,including 0–0.7%formic acid and acetic acid.Different flow rates (150–350μl min −1)and injection volumes (5–25μl)were also tested.The mobile phase solutions were filtered through a 0.22μm membrane and ultrasonically degassed prior to application.Sample and sample preparationA total of 25PKC samples were collected from different locations of Malaysia between February and June 2013.The samples were kept in a dark,cool room at 4°C untilanalysis.Then,5g of the ground PKC sample were homogenised with 20ml of the organic extraction solvent mixture of acetonitrile –water –formic acid (79:20:1v/v)by shaking for 60min on a Recipro shaker.The supernatant was then centrifuged at 3000rpm for 10min in a Centrifuge2W/E3as described by Soleimany et al.(2011).Next,1ml of the final extract from the one-step extraction was diluted with 3ml water,passed through a 0.45-μm filter and injected into the LC-MS/MS (Spanjer et al.2008;Herebian et al.2009;Zachariasova et al.2010).The purpose of sample dilution during the sample preparation procedure was to reduce the possible matrix effect (Patel 2011).Method validationValidation of the LC-MS/MS method was carried out by investigating the basic performance characteristics included linearity,LODs,LOQs,recovery and precision in accordance with the European Commission regulation for the performance of analytical methods (EC 657/2002).LinearityLinear regression analysis was conducted for the myco-toxin standard mixture of AFB 1,AFB 2,AFG 1,AFG 2,OTA,DON,FB 1,FB 2,ZEA,T-2and HT-2toxins at the optimised LC-MS/MS conditions.Eight-point calibration curves were plotted as the peak area ratio (y )of each mycotoxin against its concentration (y =mx ±c )at the concentration ranges of 0.03–300μg kg −1for AFB 1and AFG 1;0.009–90μg kg −1for AFB 2and AFG 2;0.02–400μg kg −1for OTA;0.5–5000for DON,FB 1and FB 2;0.2–4000for ZEA;and 0.1–1000for T-2and HT-2.The linearity range was set slightly wider to include both high and trace levels due to the natural occurrence of the selected mycotoxins in contaminated PKC samples.Each datum point on the calibration curve was evaluated in triplicate and at the end the linearity was assessed by the correlation coef ficient (R 2).All the working solutions used for linearity test were filtered with a 0.22-µm filter and vortexed for 1min prior to the analysis.Limit of detection (LOD)and limit of quanti fication (LOQ)The LOD for a given analyte is the minimal amount needed to be able to distinguish the analyte signal above the background detector noise.The LOQ of an analyte is the lowest amount of the analyte in a sample that can be accurately measured with reliability.In this study the LODs and LOQs were calculated based on the less sensi-tive mass transition of standard and sample extracts by using the signal-to-noise (S /N )ratio of 3and 10for LOD and LOQ respectively.In order to check the variability of LOD and LOQ between mycotoxin standard and sampleFood Additives &Contaminants:Part A2073D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 22:26 23 D e c e m b e r 2014matrix,the LODs and LOQs were assessed in both myco-toxin standard solution and PKC samples.Recovery and precisionThe recovery and precision of the LC-MS/MS method were assessed by spiking experiments at three different concentra-tion levels (low,median and high level)for each of the short-listed mycotoxins,as shown in Table 4.Prior to the extraction the spiked PKC samples were subsequently left overnight at RT in the dark to allow solvent evaporation and to establish equilibration between the analytes and the matrix.As no CRMs were commercially available,PKC samples that were found to contain only trace levels of mycotoxins were used as blank material for the spiking experiments.The recovery experiments for the whole analytical procedure were carried out in triplicate and the recovery values were obtained by calculation of the percentage of the measured amount of each mycotoxin to its spiked level.The precision was demonstrated as repeatability (intra-and inter-day repeatability).Intra-day repeatability was determined using 10replicate extractions of PKC on the same day.Inter-day repeatability test was performed by repeating the same procedure on three different days.Method veri ficationIn the final phase the newly developed LC-MS/MS method was successfully applied to the simultaneous quanti fication of AFB 1,AFB 2,AFG 1and AFG 2,OTA,ZEA,DON,FB 1and FB 2,T-2and HT-2toxin in 25PKC samples.Results and discussionLC-MS/MS method developmentDue to the mycotoxins ’wide range of polarity strength and relatively different physical and chemical properties,it is essential to determine optimal elution conditions for the simultaneous multi-mycotoxin analysis.In this study,the mobile phase composition with an appropriate gradient time frame,flow rate and injection volume was considered to be the key factor that greatly affected the chromato-graphic responses.Peak area was used for quanti fication.Hence,the same method has been used for the quanti fica-tion of mycotoxins in previous studies (Lattanzio et al.2007;Njobeh et al.2012).The best well-shaped chromatographic peaks of all mycotoxins with the highest peak areas and good sensitiv-ity were obtained with the mobile phase made of methanol (solution A)and 0.2%formic acid in water (solution B).The gradient elution programme began with 10%solution A and 90%solution B (0–8min),then changed to the gradient elution (8–10min)with 90%solution A and 10%solution B,followed by isocratic elution until 17min(10–17min).After the emergence of last peak,in order to clean more organic fraction the methanol percentage has to be deceased to the initial lowest concentration.With the consideration of the lag of time between the pump and the column,3min (17–20min)were allocated to change this isocratic elution to the linear decrease of methanol percen-tage from 90%to 10%.After that this composition was held until the end of the run (20–25min)to re-equilibrate the analytical column and prepare it for the next injection.Moreover,the flow rate of 200µl min −1with an injection volume of 25µl demonstrated better chromatograms of the mycotoxins with less noise than that at the other levels.The addition of formic acid to the mobile phase signi ficantly improved the peak shape and MS signals of FB 1and FB 2.The four carboxylic groups in fumonisins ’molecular struc-tures resulted in the usage of acidic elution conditions (Cavaliere et al.2005).Acetic acid has been used as a mobile phase additive with methanol or acetonitrile by some researchers (Herebian et al.2009;Lattanzio et al.2011;Soleimany et al.2011);formic acid with acetonitrile also has been reported (Zachariasova et al.2010).However,in this study,using acetic acid with methanol or acetonitrile and using formic acid with acetonitrile did not give as good chromatographic results,in terms of signal intensity and peak areas,compared with using methanol with formic acid.This difference may be explained by the higher acidity of formic acid,which can enhance fumonisins ’ionisation more than acetic acid.In addition,other researchers have used 0.1%formic acid with methanol (Tang et al.2012;Kong et al.2013).However,in this work,0.2%formic acid resulted in a better peak shape and higher signal inten-sity for fumonisins than 0.1%formic acid.Eventually,methanol with 0.2%formic acid in water was chosen as the best mobile phase composition.As a result,good separation of all 11mycotoxins was achieved with the lowest noise,indicating that these optimal elution conditions provided sensitive and ef ficient simultaneous determination of multi-mycotoxins in PKC.With regards to the MS/MS parameters,a satisfactory sensitivity for the target compounds was obtained by applying the ESI interface in both negative-ion mode for DON and in positive-ion mode for the other mycotoxins,as described by Soleimany et al.(2011).Consequently,the selected optimal MS parameters of the corresponding compounds in both positive-and negative-ion modes were chosen,and are summarised in Table 2.Figure 1shows the LC-MS/MS chromatogram of these mycotoxins in SRM under optimal elution conditions.Method validationEvaluation of the newly developed LC-MS/MS method performance was conducted for each of the 11target mycotoxins.A good linearity for this method was achieved with correlation coef ficients of a linear range of2074S.Yibadatihan et al .D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 22:26 23 D e c e m b e r 20140.9863(for DON)and 0.9999(for T-2and HT-2),as given in Table 3.The intercepts on the linear equations appeared to be not close to zero.Analysis of the blank standards was performed and some signi ficant signals were found.The fact that this point was not close to zero could be related to the experimental conditions,baseline/back-ground and maybe other unknown reasons.The LODs and LOQs in standard solution and PKC matrices ranged from 0.02to 17.5μg kg −1and from 0.06to 58μg kg −1,respectively (Table 3).The results are acceptable because they are far below the European Union Regulations for reported maximum levels of mycotoxins in poultry feed.The LOD results are lower than those reported by Herebian et al.(2009)(0.5–90μg kg −1)and Ates et al.(2013)(1–150μg kg −1),while they are comparable with those reported by Soleimany,Jinap,Faridah,et al.(2012)(0.01–25μg kg −1)and de Lourdes Mendes de Souza et al.(2013)(0.4–20μg kg −1).Regarding the recoveries,satisfactory results were obtained within the range of 81–112%for all the 11mycotoxins,which are summarised in Table 4.The recov-eries were better than those reported by Ren et al.(2007)(76.2–102.0%)and de Lourdes Mendes de Souza et al.(2013)(51–107%),similar to those reported by Herebian et al.(2009)(71–112%),Zachariasova et al.(2010)(94–106%),Varga et al.(2012)(97–111%),Rodríguez-Carrasco et al.(2012)(60–116%)and Soleimany,Jinap,Faridah,et al.(2012)(83.5–107.3%)for the relevant mycotoxins.The intra-and inter-day precision valueswere in the range of 1.41–14.35%and 1.72–16.97%respectively.All the recovery and precision results were in agreement with performance criteria recommended by European Commission Regulation No.401/2006/EC (EC 401/2006).Method veri ficationThe quanti fication results for the application of the LC-MS/MS method to the 25PKC samples are summarised in Table 5.From the results it is clear that PKC is particularly prone to contamination with ZEA because all the samples were found to be positive for ZEA.The second most prevalent mycotoxin in PKC was AFG 2,which was found in 96%of the samples (24out of 25),followed by AFB 1and AFG 1,which were found in 92%of the samples (23out of 25).In contrast,the least prevalent mycotoxin for PKC was FB 1with the presence of 68%(17out of 25).The results illustrate that a total 60%of the samples (15out of 25)exceeded the maximum limits of 100and 400μg kg −1for total a flatoxins (AFB 1+AFB 2+AFG 1+AFG 2)and ZEA,respectively.Of these samples,one was contaminated with 435.20μg kg −1of ZEA and 14samples were con-taminated with total a flatoxins at levels of 214.48,225.85,114.67,208.72,213.02,106.68,172.06,124.39,101.25,206.44,217.68,116.31,123.11and 139.16μg kg −1.It is important to emphasise that the co-occurrence of mycotoxins in PKC is a common issue,as all the 25PKC samples were contaminated with at least seven of the 11Table 2.Mass spectrometry parameters for under optimised conditions.Analyte Precursor ion (m/z )Product ions (m/z )Collision energy (v)Tube lens Q1PW Q3PW AFB 1313.040[M +H]+24138940.70.7313.040[M +H]+28522940.70.7AFB 2315.060[M +H]+259291140.70.7315.060[M +H]+287261140.70.7AFG 1329.050[M +H]+243271310.70.7329.050[M +H]+28351310.70.7AFG 2331,070[M +H]+245221700.70.7331.070[M +H]+275211700.70.7OTA 404.000[M +H]+221231700.70.7404.000[M +H]+23961700.70.7ZEA 319.000[M +H]+185161700.70.7319.000[M +H]+18761700.70.7DON295.000[M –H]–24725900.70.7295.000[M –H]–26525900.70.7T-2489.000[M +H]+245261700.70.7489.000[M +H]+387221700.70.7HT-2447.000[M +H]+285351700.70.7447.000[M +H]+347191700.70.7FB 1722.050[M +H]+334411320.70.7722.050[M +H]+35235870.70.7FB 2706.040[M +H]+318371910.70.7706.040[M +H]+336351320.70.7Note:PW,peak width.Food Additives &Contaminants:Part A2075D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 22:26 23 D e c e m b e r 2014RT:0.00 - 25.00SM:15GTime (min)50100050100050100050100050100RT:0.00 – 25.02SM:15G 024681012141618202224Time (min)05010005010005010005010005010005010013.6245.3225.5116.6918.5920.3621.3013.260.87 1.479.353.78 5.8410.588.316.8513.5515.2917.5320.3121.6419.385.2722.5824.791.811.1011.362.64 6.188.314.389.1513.3714.8021.6422.3517.4018.9612.692.671.8424.4611.054.547.2010.306.238.4213.2914.804.789.153.7915.277.022.8019.339.9917.252.0510.4024.4322.8219.9312.4210.1115.8114.508.1823.2817.2619.945.8920.9618.284.4818.758.1 3.730.8114.8012.4015.9418.2823.4649.3179.0 2.04 6.5522.763.06 5.698.2910.799.6720.523.94NL: 6.52E6TIC F: + c ESI SRM ms2 313.040 [240.995–241.005, 284.995–285.005] MS vial9-2NL: 1.12E5TIC F: + c ESI SRM ms2 315.060 [258.995–259.005, 286.995–287.005] MS vial9-2NL: 8.74E5TIC F: + c ESI SRM ms2 329.050 [242.995–243.005, 282.995–283.005] MS vial9-2NL: 2.13E4TIC F: + c ESI SRM ms2 331.070 [244.995–245.005, 274.995–275.005] MS vial9-2NL: 2.19E4TIC F: - c ESI SRM ms2 295.000 [246.995–247.005, 264.995–265.005] MS vial9-2NL: 2.55E5TIC F: + c ESI SRM ms2 319.000 [184.995–185.005, 186.995–187.005] MS vial9-2Figure 1.LC-MS/MS chromatogram of 11mycotoxins under optimised conditions at concentrations of 3μg kg −1for AFB 1and AFG 1,0.9μg kg −1for AFB 2and AFG 2,4μg kg −1for OTA,50μg kg −1for DON,T-2,HT-2,FB 1and FB 2,and 40μg kg −1for ZEA.Table 3.Linearity,limits of detection (LODs)and limits of quanti fication (LOQs)of the optimised LC-MS/MS method for simulta-neous determination of mycotoxins.Mycotoxins LOD in standard (μg kg −1)LOQ in standard (μg kg −1)LOD in PKC sample (μg kg −1)LOQ in PKC sample (μg kg −1)Linear range (μg kg −1)R 2Regression equation AFB 10.060.20.54 1.80.54–3000.9998y =353171x –317315AFB 20.020.060.160.50.162–900.9996y =24170x +15373AFG 10.060.20.54 1.80.54–3000.9993y =27886x +17159AFG 20.020.060.160.50.162–900.9977y =13133x +33144OTA 0.020.070.20.060.2–4000.9993y =18770x –23374DON 6.521103310–50000.9843y =4535x +454ZEA 0.310.932–40000.9994y =1032x +43400T-21 3.33103–10000.9999y =46431x –31897HT-22 6.7516.73–10000.9999y =7013x +14090FB 1 5.61817.55818–50000.9936y =135715x –15274FB 25.61817.55818–50000.9943y=129501x –163822076S.Yibadatihan et al .D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 22:26 23 D e c e m b e r 2014mycotoxins.To the authors ’knowledge this is the first study dealing with the simultaneous detection of 11myco-toxins in PKC.This study suggests that more investiga-tions are needed in this commodity to evaluate mycotoxin contamination levels more ef ficiently and to accentuate monitoring mycological contamination of PKC.ConclusionsA feasible and reliable LC-MS/MS multi-mycotoxin method was developed for the simultaneous determination of AFB 1,AFB 2,AFG 1and AFG 2,OTA,ZEA,DON,FB 1and FB 2,T-2and HT-2toxin.This method was successfully employed to quantify the 11mycotoxins in PKC samples.Within almost 16min all the 11analytes were detected withhigh signal intensity and peak area.The method validation and veri fication results showed that the method provides a sensitive and rapid multi-mycotoxins determination analy-sis for PKC.Furthermore,it is important to emphasise that the high sensitivity of this method enables one to apply crude sample extracts that are obtained from a simple,one-step extraction procedure without further clean-up.Due to the advantages of cost,time and labour ef ficiency,this method would be highly desirable for routine analysis.FundingThe authors acknowledge the Ministry of Education Malaysia for financial support through the Long-term Research Grant Scheme (LRGS)[project number 10214].Table 4.Accuracy and precision for mycotoxin determination in optimal LC-MS/MS conditions for spiked PKC samples.Mycotoxins Spiking level (μg kg −1)Recovery (%)Intra-day precision (%)Inter-day precision (%)Mycotoxins Spiking level (μg kg −1)Recovery (%)Intra-day precision (%)Inter-day precision (%)AFB 11089 1.72 3.87ZEA 20092 5.43 1.41201038.911.56400112 4.49 2.4140957.52 5.718001088.45 2.25AFB 2399 4.23 2.02T-210087 2.387.31684 3.11 2.3200101 2.5512.7612106 2.898.9400110 3.45 5.31AFG 110110 5.18 5.57HT-21008016.977.2420108 3.56 3.02200979.1412.374092 1.697.7840010412.1211.62AFG 2310616.379.33FB 125010110.96 2.02610311.74 2.665008811.36 2.5112111 6.19 3.44250095 1.98 2.31OTA 20967.29 1.98FB 225086 3.89 1.6240909.81 6.8500817.85 1.1580109 3.3414.172500907.375.48DON250857.5910.7950082 5.314.352500909.296.37Table 5.Mycotoxin contamination in PKC samples (total of 25samples).Mycotoxins Range of contamination (μg kg −1)Number of positivesamplesPercentage of positive samples (%)Minimum Maximum AFB 1 1.7618.892392AFB 2 5.0159.642288AFG 1 1.3160.722392AFG 219.4778.382496OTA 0.42 5.122184DON 49107.631976ZEA 31.29435.2025100T-27.0760.672288HT-2 6.2733.942184FB 122.03110.521768FB 218.3581.241872Food Additives &Contaminants:Part A2077D o w n l o a d e d b y [U n i v e r s i t y o f J i a n g n a n ] a t 22:26 23 D e c e m b e r 2014。

考虑互相关干扰的GPS信号捕获门限设定方法

考虑互相关干扰的GPS信号捕获门限设定方法

2011年3月第37卷第3期北京航空航天大学学报Journal of Beijing University of Aeronautics and AstronauticsMarch 2011Vol.37 No.3 收稿日期:2010⁃01⁃20 基金项目:国家863高技术研究发展计划基金资助项目(2009AA12Z313) 作者简介:刘 杨(1983-),女,内蒙古集宁人,博士生,mickeybaby2003@.考虑互相关干扰的郧孕杂信号捕获门限设定方法刘 杨 秦红磊 金 天(北京航空航天大学电子信息工程学院,北京100191) 摘 要:传统GPS 卫星信号捕获门限设定方法在互相关干扰情况下存在较大虚警概率,所以无法捕获弱信号.针对该问题进行分析,在此基础上提出一种针对多颗能量不同卫星同时存在情况下的信号检测模型和概率模型.信号检测模型在相关积分非相干累加基础上引入双门限多次检测,由于在考虑噪声的同时也考虑了互相关干扰对弱信号捕获的影响,其概率模型为非中心χ2分布.在原有的恒虚警门限检测方法基础上,提出考虑强信号互相关干扰对微弱信号检测影响情况下的门限计算方法作为新的门限上限,而将原有的门限计算方法作为门限的下限.在此基础上提出强、弱卫星信号共存时的检测思路,即先用门限上限检测强信号并进行互相关干扰消除处理,再用门限下限判断是否有弱信号存在.采用仿真数据和实际数据针对考虑互相关干扰的门限上限进行实验,并和原有门限方法进行比较,证明在强、弱信号共存情况下原有门限无法检测出卫星信号,而新的门限设定方法可以正常工作,并具有较高的检测概率和较低的虚警概率.关 键 词:微弱信号捕获;远近效应;恒虚警准则;门限设定中图分类号:TN 967.1文献标识码:A 文章编号:1001⁃5965(2011)03⁃0268⁃06Threshold setting method for GPS signal acquisitionunder cross⁃correlation effectLiu Yang Qin Honglei Jin Tian(School of Electronics and Information Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100191,China)Abstract :Traditional global positioning system(GPS)signal acquisition threshold method suffers fromlarge false alarm ratio in the condition of cross correlation interference,and thus influences weak signal acqui⁃sition.This problem was analyzed and signal acquisition detector was improved under the situation of more than one satellites existing with different signal power.Double threshold multiple detection algorithm was intro⁃duced based on the coherent correlation and non⁃coherent accumulation.The statistical model is non⁃central chi⁃square distributed due to cross correlation influence.A threshold calculation method was put up in the weak signal detection based on the original fixed false alarm criterion,and this threshold was considered to be the upper threshold.The original threshold was considered to be the lower threshold.An algorithm was put up considering both strong and weak signal coexistence,strong signals were acquired first and then cross correla⁃tion interference was eliminated,weak signals were acquired after that.Simulated and real data have been used to test the upper threshold,results were compared with the original method.It is proved that originalmethod can’t detect satellite signals while new threshold works efficiently with high detection possibility and low false alarm ratio.Key words :weak signal acquisition;near⁃far problem;constant false alarm rate;threshold setting 近年以来,卫星导航定位系统得到越来越广泛的应用.目前在一般环境下卫星导航接收机能够达到满足需求的定位精度.然而,当接收机载体处于丛林、峡谷、都市、室内、浅水以及隧道等环境中时,卫星信号会受到不同程度的衰减,从而使通常的接收机无法完成信号的接收.为了打破这种应用上的瓶颈,要求卫星导航接收机具有强的微弱信号处理能力.高灵敏卫星导航接收机的研制始于本世纪初,其核心思想是通过信号处理实现对微弱卫星导航信号的捕获跟踪,从而实现复杂环境下的导航定位功能,增强接收机的可用性.微弱卫星导航信号的检测是高灵敏卫星导航接收机的关键所在,被认为是相关领域的研究热点,目前已经有一些成果.文献[1]中提出了基于非相干检测器的微弱GPS(Global Positioning System)卫星信号检测方法,讨论了强、弱信号共存情况下微弱GPS信号的检测,但没有给出其检测概率的理论分析和具体检测门限设定方法;文献[2]阐述了直序扩频通信系统中的信号检测门限设定方法,但没有就某个具体应用领域如卫星导航领域给出验证;文献[3-4]在此基础上对非相干检测器从数学模型和概率统计的角度进行详细理论分析,给出了恒虚警门限确定方法,并给出其检测性能评价,但相关研究都是建立在分析单个微弱卫星信号基础上的.考虑到实际接收到的卫星信号中可能存在强、弱卫星信号共存的情况,如何确立门限并将强、弱卫星信号进行区别捕获成为一个不可忽视的问题.本文首先介绍相关理论知识,包括卫星中频信号模型、相关积分非相干累加检测器的数学模型和概率模型以及传统的检测方法;在此基础上,考虑了多颗能量不同卫星同时存在情况下信号检测模型和门限计算方法,并提出一种考虑远近效应的双门限检测流程;最后,基于模拟器产生的数据和实际采集数据进行实验验证,有效证明了新提出的门限设定方法能够很好适应远近效应的情况,从而解决相关情况下的强、弱信号捕获问题. 1 相关理论1.1 相关积分尧非相干累加检测器一个传统的卫星信号捕获由相关器、平方器和后处理累加器组成,其思想是将输入的中频数字卫星信号进行相关积分和非相干累加.对于微弱卫星信号,往往采用增加相关积分时间和非相干累加次数来提高捕获增益.传统的检测方法将计算出的恒虚警门限和非相干累加器的输出信噪比进行比较,从而判断是否存在卫星.其检测框图如图1所示.图1 相关积分、非相干累加检测框图1.2 传统门限设定方法传统卫星导航接收机的门限设置都是假定获得噪声分布的先验知识,并在此基础上设定一个虚警概率,根据已知的噪声概率密度分布求出所对应的门限,这种设定虚警概率不变的门限设定方法又被称为恒虚警准则[5].具体表示如下:设虚警概率为P fa,则P fa=∫∞γp0(x|H0)d x(1)与此相对应的门限γ即为待求的恒虚警门限.根据N⁃P准则设定恒虚警门限后,其检测概率为P d=∫∞γp1(x|H1)d x(2) 这种方法所设定的门限仅与噪声分布和所设定的虚警概率有关,在设定数字中频信号的采样率为f s,多普勒搜索间隔为N d时,码周期为T c,一个码周期的采样点数K=f s T c,则虚警概率需满足P fa<1K·Nd,适用范围为单个卫星信号检测.在相关积分、非相干累加组合的检测器中,噪声的概率密度函数服从中心χ2分布,其自由度和非相干累加次数密切相关.对于M次非相干累加,其自由度为2M,图2说明了虚警概率,非相干累加次数和由此确立的门限之间的关系.卫星信号的检测器的检测对象是输出信噪比,因此相应的门限也是一个比值的概念.在固定虚警概率为10-2时,非相干累加次数M和门限γ的关系见图2.图2 非相干累加次数和恒虚警门限的关系962 第3期 刘 杨等:考虑互相关干扰的GPS信号捕获门限设定方法由此可见,在虚警概率一定的情况下,门限随着非相干累加次数增大而降低;对于累加次数固定的情况下,虚警概率越低,门限越大.2 考虑互相关干扰的门限设定2.1 强弱信号同时存在时的门限设定当接收到的卫星信号中同时存在强、弱信号时,接收机对信号检测需考虑远近效应的影响.一种比较合理的检测方法是将输入信号进行两次检测,先检测到强信号,然后通过远近效应消除算法去掉强信号的互相关影响,再进行第二次检测,对于通过门限的信号认为是可能存在的弱信号,其检测框图见图3,输入信号经过相关积分、非相干累加运算后与预先计算的门限值γL 和γH 进行比较,然后再采用远近效应消除强信号,对处理后的数据进行二次检测,判断是否还存在弱信号.下面将从检测状态设定、门限确定方法和检测概率比较三方面详细阐述这种门限设定方法的思路.图3 考虑远近效应影响的检测器框图2.1.1 检测状态设定第一次检测时,被检测信号中可能同时存在强、弱信号,此时将非相干累加器输出的待检测量按照不同的门限设定分为3个状态,分别是H 0:没有信号,H u :可能存在弱信号,H 1:存在强信号.其状态函数可以表示为H (x )=H 0 x ≤γLH u γL ≤x ≤γHH 1 x ≥γH⎧⎩⎨⎪⎪(3)其中,γL 设为门限的下限,其作用是判别是否存在信号还是噪声;γH 设为门限的上限,其作用是区别存在强信号和由互相关引起的干扰.对已检测出的强信号,对其进行文献[6]所述的远近效应串行干扰消除方法,然后再进行第二次检测.第二次检测时,待观测量按照门限γ0分为两个状态,即H 0:没有信号,H 1:存在弱信号,并且其状态函数满足:H (x )=H 0 x <γ0H 1x ≥γ0{(4)2.1.2 γL 的确定方法这里设定γL =γ为根据噪声概率密度函数计算出的恒虚警门限,其计算方法如1.2节所述.2.1.3 γH 的确定方法γH 为判断是否存在强信号的门限,此时由于考虑了强、弱信号共同存在的情况,故必须考虑互相关对检测的影响,从而在此基础上确定γH .由于弱信号的能量远小于普通信号,即P w ≪P s ,故仅考虑强信号和本地信号的互相关对捕获产生的影响.当输入信号为强信号时,一个码周期的相关结果可以表示如下:s I =K 2P s DR (Δτ)sinc(πΔf d T c )·cos(Δφ)+ξI(5)s Q =K2P s DR (Δτ)sinc(πΔf d T c )·sin(Δφ)+ξQ (6) 经过非相干检测器后的单次检测结果可以表示为z =s 2I +s 2Q =2P s (KDR (Δτ)sinc(πΔf d T c ))2+ψ(7)式中,R (Δτ)可以表示为R (Δτ)=R auto (Δτ) 自相关函数Rcross (Δτ) 互相关函数{(8)R auto (Δτ)为自相关函数;R cross (Δτ)为强信号和本地其它伪随机码的互相关函数.由于K 和D 可以认为是确定的值,下面分析R (Δτ)sinc(πΔf d T c )对z 的影响:当输入信号功率P s 一定的情况下,R (Δτ)=R cross (Δτ)的取值范围为R (Δτ)=R cross (Δτ)≤65/1023;而sinc (πΔf d T c )的值域为[0,1],且当Δf d =0时,sinc(πΔf d T c )=1.易知此时互相关影响的最大干扰组合为R cross (Δτ)=-65/1023且sinc(πΔf d T c )=1,显然此计算结果将大于噪声平均值;当R (Δτ)=R cross (Δτ)和sinc(πΔf d T c )一定时,P s 越大,最后产生的干扰越大.综合上述情况,设可能存在的输入信号功率集合为{P sposs }互相关产生最大干扰的情况为:P s =max {P sposs },并且(R cross (Δτ)=-65/1023;sinc(πΔf d T c )=1).为了避免互相关对信号检测产生干扰,此时所设定的检测门限应当大于由最大干扰影响的计算结果.把上述互相关干扰也看作是一种“噪声”,其必然也满足一定的概率密度分布,此处认为该分布可以近似认为是非中心参量为λa 的非中心χ2分布,λa =2MN ·65ρin ,ρin =max{P sposs }/σ2,一般可以认为ρin =-19dB;N 为相关积分时间,M 为072北京航空航天大学学报 2011年 非相干累加次数.由此确定的门限γH 满足:P fa =∫∞γH12x λa()M -12exp -12(x +λa )[]I M-1(λa x )d x(9)2.1.4 检测概率比较首先,根据1.2节所述传统门限计算方法,当P fa =10-2,M =25时计算出对应的γL 和γH ,分别为γL =2.56和γH =6.56.假定输入信号的信噪比范围为-39~-19dB,即输入信号的能量范围为-180~-160dBW,相应的检测概率曲线如图4所示.图4 输入信噪比与检测概率关系可见门限γH 可以确保能量比较高的信号具有较高的检测概率.2.1.5 γ0的确定方法γ0的选择决定于如何处理强信号对弱信号的影响.对强信号进行串行干扰消除算法后,最强信号的能量值应当下降,此时由互相关产生的最大检测干扰满足非中心参量为λb 的非中心χ2分布,并且λb 满足:λb =2MN ·65s′in ,s′in 为进行远近效应消除后的最强输入信噪比.由此确定的门限γ0满足:P fa =∫∞γ0x λb()M -12exp -12(x +λb )[]I M -1(λb x )d x(10) 易知λb <λa ,对于理想的情况,即通过远近效应消除后强信号的能量为0,此时s′in ,λb =0,所确定的门限γ0即为γL ;实际情况中,由于存在各种误差因素,通常的远近效应消除算法不可能将强信号全部消除,此时s′in ≠0且s′in <s in .可见,γ0的选取和强信号被消除的程度是密切相关的.令虚警概率P fa =10-2,Δs =s in -s′in 为远近效应消除前后强信号的信噪比变化,当Δs 的输入范围设为1~15dB 时,由s′in 计算出对应的λb ,将其代入式(10)可以计算出对应的γ0,得到图5.由图5可见,γ0随着Δs 的增加而减小.图5 经过远近效应消除后信噪比变化和二次检测门限的关系2.2 双门限检测流程综上所述,可以得到强、弱信号共存时的检测流程,即设定一个低门限γL 和一个高门限γH ,当检测到信噪比小于γL 时判定没有信号;当检测到信噪比大于γH 时判定存在强信号,对已捕获到的强信号进行远近效应消除算法,然后再对剩下的数据进行检测,如果此时检测信噪比大于γ0,则判定存在弱信号;如果此时检测信噪比小于γL ,则判定不存在信号.其具体流程见图6.图6 双门限检测算法流程图3 实验论证本实验中采用相关积分时间N =4ms,非相干检测器的累加次数为M =25,根据文献[7],这种情况下的检测灵敏度约为-177dBW .由恒虚警准则确定的虚警概率P fa =10-2,最强的输入信号为-160dBW .这种情况下可计算出γL =2.56,γH =6.56.分别对卫星中频信号模拟器产生的仿真数据和实际数据进行捕获,将采用原来设定的172 第3期 刘 杨等:考虑互相关干扰的GPS 信号捕获门限设定方法门限和考虑远近效应影响后设定的门限所得效果进行对比,具体结果如下.3.1 仿真数据仿真数据采用文献[8]所述中频卫星信号模拟器产生,分别包括两组,针对一颗弱信号卫星和两颗强、弱信号同时存在的卫星情况,具体参数见表1.表1 仿真数据具体参数仿真数据包含卫星编号信噪比/dB码相位多普勒频率/Hz 数据A3-34409.21250数据B 3-34409.21250 7-19613.820003.1.1 单颗微弱卫星检测对于数据A,当γL=2.56时其检测结果如图7.可见,按照设定的门限能检测到一颗卫星,即3号卫星.图7 仿真数据A,γL=2.563.1.2 强弱卫星信号共存,传统门限检测方法对于数据B,当γL=2.56时其检测结果如图8.由图8可见,由于互相关的影响,除了实际存在的3号和7号卫星之外,超过门限被认为能检测到的卫星编号为:4,18,20,25,26,28,29,32,显然这些信号实际上并不存在.图8 仿真数据B,γL=2.563.1.3 强弱卫星信号共存,本文所述检测方法对于数据B,当γH=6.56时其检测结果如图9.可见此时能检测到的卫星仅为强信号7号卫星.上述结果可以用表2表示.图9 仿真数据B,γH=6.56表2 仿真数据实验结果数据类型检测方法采用门限超过门限卫星数据A传统方法γL=2.563数据B传统方法γL=2.563,4,7,18,20,25,26,28,29,32数据B本文方法γH=6.5673.2 实际数据用中频数字信号采集器采集到的实际信号做为输入信号进行实验,在实验前用历书估计当时位置处可能存在的卫星,得到结果如图10.图10 实际数据可见星列表3.2.1 单颗微弱卫星检测对该数据进行1~32号卫星搜索,并进行单门限检测,得到的结果如图11所示.可见当强、弱卫星信号同时存在时,由于强信号互相关作用的影响,所有的信号都能通过设定的门限γL=2.56,换言之,此时的门限并没有起到区别有无信号的作用.3.2.2 本文所述方法对该数据进行1~32号卫星搜索,进行双门限两次检测,超过门限γH=6.56的卫星如图12所示.将可以检测到的卫星送入跟踪环路,对其相应参数进行进一步跟踪.上述的结果可以用表3表示.272北京航空航天大学学报 2011年 图11 实际数据,γL =2.56图12 实际数据,γH =6.56表3 实际数据实验结果检测方法采用门限超过门限卫星传统检测方法γL =2.561~32本文检测方法γH =6.563,7,13,16,19,21,23,25,313.3 虚警概率分析根据传统的非相干检测器噪声概率密度函数和考虑互相关影响后的概率密度函数,可以得到门限与虚警概率的关系曲线,这里设定非相干检测器的累加次数为M =25.可见,当门限为γL =2.56时,由噪声产生的虚警概率值很低,但是由于互相关的影响其虚警概率非常高,接近于1;而当γH =6.56时,由噪声和互相关影响产生的虚警概率都比较低,可见采用本方法设立门限可以有效降低非相干检测器的虚警概率,与上述实验结果相吻合,如图13所示.图13 非相干检测器门限与虚警概率的关系4 结束语本文针对实际卫星信号捕获强、弱卫星可能同时存在这一问题,在传统的恒虚警门限基础上提出了一种考虑强信号互相关影响的捕获门限计算方法,并结合实际卫星信号检测过程中对远近效应的影响的处理,提出了两次检测双门限的捕获方法.采用模拟数据和实际采集到的卫星中频数据对该方法进行实验,证明在强、弱卫星信号同时存在的情况下,原有门限已无法工作,虚警概率几乎为1;而本文提出的门限设定方法则可有效检测出卫星信号,保持很低的虚警概率.参考文献(References )[1]Psiaki M L.Block acquisition of weak GPS signals in a softwarereceiver[C ]//ION GPS 2001Proceedings.Salt Lake City,Utath:ION,2001:2838-2850[2]Iinatti J H J.On the threshold setting principles in code acquisi⁃tion of DS⁃SS signals [J].IEEE Journal on Selected Areas in Communications,2000,18(1):62-72[3]Borio D.A statistical theory for GNSS signal acquisition[D].To⁃rino,Italy:Polytecnico di Torino NavSAS Group,2008[4]Shanmugam S K.New enhanced sensitivity detection techniquesfor GPS L1C /A and modernized signal acquisition[D].Cana⁃da:PLAN Laboratory Calgary University,2008[5]Steven M Kay.Fundamentals of statistical signal processing[M].London:Addison Wesley Longman,2001[6]Glennon E P.A review of GPS cross correlation mitigation[C]//The 2004International Symposium on GNSS /GPS.Sydney Aus⁃tralia:[s.n.],2004[7]Jin Tian,Liu Yang.A novel GNSS weak signal acquisition usingwavelet denoising method [C ]//ION NTM2008Proceedings,ION.San Diego USA:[s.n.],2008:303-309[8]Liu Y,Jin T,Li X B,et al.A novel design of software GNSS sig⁃nal simulator[C]//International Conference Communications inComputing .Las vegas USA:[s.n.],2007:111-118[9]Tui J B.Fundamentals of global positioning systems:a software approach[M].New York:John Wiley &Sons,Inc,2000[10]Ziemer R E.Digital communications and spread spectrum sys⁃tems[M].New York:MacMillan,1985[11]Cao X L,Mu R Z,Yan Y P.A novel threshold setting methodfor FFT⁃based GPS acquisition[C]//11th International Confer⁃ence on Computer Modeling and Simulation.Washington,DC:IEEE Computer Society,2009:497-501[12]Jin T,Qin H L,Zhu J J,et al.Real⁃time GPS software receivercorrelator design [C ]//Second International Conference on Communications and Networking in China.Shanghai:Skanghai Jiaotong University,2007:549-553(编 辑:娄 嘉)372 第3期 刘 杨等:考虑互相关干扰的GPS 信号捕获门限设定方法。

卡特(Cat) PM820、PM822和PM825凝胶机械拉拔机说明文件

卡特(Cat) PM820、PM822和PM825凝胶机械拉拔机说明文件

Cat® C18 ACERT™ EngineGross Power (ISO 14396)563 kW 755 hp Operating WeightPM820 36 130 kg 79,630 lb PM822 36 700 kg 80,887 lb PM825 37 500 kg 82,650 lb Cutting DimensionsWidth - PM820 2010 mm 79 in Width - PM822 2235 mm 88 in Width - PM825 2505 mm 98.8 in Maximum Cutting Depth 330 mm 13 inPM820, PM822 and PM825 Cold Planers2CONTENTSIntroduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3Machine Feature Overview ....................4, 5Powertrain, Undercarriage ....................6, 7Operating Environment ........................8, 9Cutting System .............................10, 11Cat Grade Control Option ....................12, 13Material Collection System ..................14, 15Optional Equipment .........................16, 17Service and Reliability. . . . . . . . . . . . . . . . . . . . . . . 18, 19Cutting Bits ...................................20Cat Diamond Bits ..............................21Specifications ..............................22, 2323THE HIGH POWER HALF-LANE MILLING MACHINES YOU HAVE BEEN WAITING FORCat ® PM820, PM822 and PM825 cold planers are the product of years of study, tinkering, rethinking. Every system andcomponent has been examined, refined, optimized. The result is an advanced, world-class cold planer.The PM800 models are similar in design to their sister PM600 half lane cold planers...but they bring a lot more power, useful for the most demanding applications. The PM800 models deliver the same benefits as well: lowered operating costs and increased productivity, paired with Cat reliability and the legendary dealer support you expect from Caterpillar.The PM820, PM822 and PM825 are well equipped to deliver precision and efficient high production. Many options are available to enhance machine versatility and customize operations to suit the application, from milling highways to urban streets. Whether you are texturing the surface or milling an airport runway, there is a configuration that will meet your requirements and expectations.POWERFUL AND REFINEDPRECISION AND CONTROL WITH VERSATILITY TO SPARE.4938641011121413612457721. Cat C18 ACERT ™ Engine2. Ground Control Console3. Rear Water Fill Nozzle4. Remote Camera (option)5.Hydraulic Side Plates with Position Sensors6. Crawler Tracks with Bolt-on Pads7. Advanced Steering8. Dual Operating Consoles 9. Power Canopy (optional windscreens available, not shown)10. Dust Abatement System (option)11. High Pressure Water Spray Hose (option)12. Water Spray Control and Clean out Manifold13. LCD Touchscreen Display 14. Cat Diamond Bits (option)15. Cat Grade Control (option)515152744667891013142RUGGED POWERTRAIN SIMPLE DESIGN DELIVERS AMPLE POWER TO GROUND.C18 ACERT ENGINE– Meets regional emission standards as required:U.S. EPA Tier 4 Final / EU Stage IV– Provides a gross power of 563 kW (755 hp)– Automatic idle control function and multiple rotor speedsoptimizes output to the demand on the engine, keepingoperation smooth and efficient– High capacity cooling system keeps engine at idealtemperature for optimal fuel efficiency and lower emissions– Proven core engine design ensures reliability and quietoperation– Engine is iso-mounted to reduce noise and vibration6PROPEL SYSTEM– Robust propel system features two propel pumps and two propel circuits, diagonally opposed; each circuit drives the propel motors for two crawler tracks– Cross-flow traction control supplies dedicated hydraulic flowdiagonally across machine to the tracks that grip– Automatic Load Control senses load changes on the rotor system load and adjusts propel speed to prevent stalls and optimizeproduction7STABLE PLATFORM– Four leg posts with position sensors independently adjust and provide powered vertical movement to maintain desired height – Ride-control feature ensures smooth travel– Optional Cat Grade Control is integrated with the machine and works seamlessly to provide maximum cutting precision; system can be enhanced to full 3D milling capabilityWORRY-FREE TRACKS– Four crawler tracks based on proven Cat track design and components– Tracks automatically adjust to provide ideal tension – Track pads are easily replaceable with bolt-on designEXCELLENT MANEUVERABILITY– Four steering modes: front steer, rear steer, crab steer, coordinated steer– Advanced steering function adjusts track alignment to provide precise steering geometry and reduce pad wear – Minimum left cutting radius: 2 m (6.56 ft)– Minimum right cutting radius: PM820- 2 m (6.56 ft) PM822- 1.8 m (5.91 ft)PM825- 1.5 m (4.92 ft)The four post design offers excellent maneuverability and dependable operation to maximize versatility and production.8OPERATING ENVIRONMENT– Height-adjustable dual operating console is intuitive and comfortable– Optional power canopy can deploy or stow during machine operation; optional windscreen panels available– Touchscreen LCD display provides gauge cluster, operating information, remote camera feed, machine control anddiagnostics; optional second and third display available to provide additional gauge or machine operation/control information – Optional suspension seats reposition for optimal visibility and comfort– Lockable storage provides secure area to stow personal items – 12-volt power receptacleERGONOMIC CONTROLS– Controls comfortably positioned for easy use– Large, backlit keypads are visible in all light conditions – Durable design tested to 1 million cycles– Lockable covers provide protection from vandalismEQUIPPED FOR 24/7 OPERATION– Working areas and perimeter well lit with standard halogen lights – Displays and controls easy to see – Additional LED light options – Available balloon lighting optionsCOMFORT AND CONTROLOPERATE WITH CONFIDENCE.REAR910ROBUST ROTOR CHAMBER– Chamber optimizes material flow to promote thorough clean-out – Thicker steel in areas exposed to high abrasion enhances durability– Side plates are hydraulically adjustable with position-sensing cylinders, can be used as an averaging ski– Hydraulically adjustable moldboard applies optimal down-pressure to keep material contained for clean out and minimize required sweepingANTI-SLAB DEVICE– Helps to optimize sizing and gradation – Protects collecting conveyor– Prevents blockage in the discharge openingTHE VERSATILITY YOU NEED– Two available cutting widths; – Cutting depth to 330 mm (13 in)– Enhanced clearance for flush cutting– Three rotor speeds, electronically selectable during operation – High production and fine milling drums available – Optional Cat Grade Control keeps machine on targetCUTTING SYSTEMEFFICIENT AND DEPENDABLE, AS IT SHOULD BE.11ADVANCED AUTOMATED FEATURES– Automatic Load Control senses load changes on the rotor and adjusts propel speed to prevent stalls and optimize production– Automatic plunge-cut feature ensures precise, repeatable starting cuts and reduces wear on machine (requires Cat Grade Control option)– Ramp-in, Ramp-out cutting capability (requires Cat Grade Control option)– Jump hold feature assists to clear obstaclesROTOR DRIVE SYSTEM– Driven by two 6-rib high-tensile belts– Automatic belt tensioning to reduce slippage – Heavy-duty dry clutchHIGH PRODUCTION ROTORS– 2.0 m (79 in), 2.2 m (88 in) or 2.5 (98.6 in) cutting widths– Cutting bits held in exclusive conical quick-release tool holders and arranged in a triple-wrap flight pattern– Large, replaceable carbide-faced loading paddles effectively move milled material onto collecting conveyor– Standard 15 mm (0.6 in) tool tip spacing is optimal for high production and reduced wear– Triple tree tool arrangement on rotor ends reduces wear on rotor when maneuvering in the cut– Cat MasterGrade™ premium carbide bits available – Optional Cat Diamond Bits provide cutting life up to 80 times longer than conventional carbide bits, decreasing overall fuel consumption and reducing machine wear12INTEGRATED DESIGN– System communicates directly with position-sensing hydraulic cylinders, slope sensors and processors to ensure optimalprecisionCONTROL BOXES– LCD color touchscreen display with soft keys is durable andvisible in all light conditions– Intuitive interface is easy to understand and use– Supports multiple languages– Control boxes and sensors can be repositioned withoutreconfiguring settings– Full control over grade and slope can be attained from anycontrol boxCAT GRADE CONTROLEASY TO USE; HIGH PRECISION.BLUE: Averaged readings RED: Discarded readings1REFERENCE VERSATILITY1. Sonic Mounting Point2. Control Box Mounting Point3. Position-sensing Independently Controlled Side Plates4. Optional Position-sensing Hydraulically Controlled Inboard Ski2234SYSTEM VERSATILITY– System can utilize various references including sonics, contact sensors, position sensing hydraulic cylinders, wire rope sensors – Can be enhanced for full 3D operation– Sensors can be positioned in multiple inboard or external locations around the machineSONIC SENSORS– Sensor units feature five ceramic transducers– System discards the highest and lowest readings and averages remaining three for a true average– Each unit equipped with temperature sensor that compensates for fluctuations due to temperature change– Durable construction outlasts foil transducer design1113Each sensor has five transducers; the high and low readings are discarded and the remaining three are averaged for a true average reading.The high-capacity conveyors provide efficient removal of milled material and dust with outstanding discharge control.COLLECTING CONVEYOR– A wide opening and seamless 850 mm (33.5 in) wide belt efficiently clears rotor chamber– Reversible for easy clean out– Optional grease tensioner provides easy adjustment of belt alignment and tension WATER SPRAY SYSTEM– Water spray system provides lubrication and cools bits whilehelping to control dust– Spray system fed by 3400 L (898 gal) onboard tank; tank can be filled from top deck ports, rear fill valve, side fill valve or optional refill pump– Optional additional water spray system provides maximumlubrication, cooling and dust suppression– Onboard winterization system utilizes compressed air to purge water lines1415LOADING CONVEYOR– Aluminum covers and vinyl side panels reduce spillage and help control dust– Seamless 850 mm (33.5 in) wide belt provides heavy duty, high speed discharge– Variable belt speed optimizes speed to material type and production rate– Reversible for easy clean out– “Boost” feature provides a temporary surge in belt speed to help precisely place material– Loading conveyor folds to reduce length for transport– Loading conveyor swings 60 degrees from center position to the left or right60˚60˚OPTIONAL DUST ABATEMENT SYSTEM– Vacuum system ports to collecting conveyor housing and transition between collecting and loading conveyor to remove airborne particles– Augments dust suppression provided by water spray system – Discharges collected dust into the loading conveyor to facilitate removal from working area around machine – Maximizes dust removal capability when used with water spray system and optional additional water spray systemCAT GRADE AND SLOPE CONTROLSystem is integrated with the machine for maximum precision POWER SUN CANOPYDeploys or stows hydraulicallyWINDSCREENS FOR POWER SUN CANOPYCAT DIAMOND BITSLasts up to 80 times longer than conventional carbide bits ADDITIONAL LCD TOUCHSCREEN DISPLAYFor use to monitor machine functionsPRODUCT LINK, ADDITIONAL CONFIGURATIONSKeep track of your machine health, location or fleet use ADDITIONAL WATER SPRAY SYSTEMSecond system augments lubrication, bit cooling and dust suppression capabilities of the standard systemINBOARD AVERAGING SKIHydraulically controlled ski provides inboard reference for grade control systemROTOR TURNING DEVICEAssists with turning rotor during rotor serviceDUST ABATEMENT SYSTEMVacuum system ports to the transition area between the rotor chamber and the collecting conveyor as well as the transition between the collecting conveyor and the loading conveyor; dust is removed and expelled within the loading conveyor, where is it discharged with the milled materialREMOTE CAMERA, LOADING CONVEYORMounts to the discharge end of the loading conveyor; provides enhanced view of discharge loading REMOTE CAMERA, REARMounts to the rear of machine; provides enhanced view of area behind the machineREMOTE CAMERA, MAGNETIC MOUNTMounts magnetically to various locations; up to two magnetic cameras can be usedSUSPENSION SEATAdjustable seats installed on operator’s platformBIT BUCKET TRAYSTrays mount to rear crawlers and provide convenient storage for bit bucketsHIGH PRESSURE WASHDOWN SYSTEMHigh pressure hose and spray wand connect to onboard water tank to deliver high pressure water spray for convenient clean up WATER TANK TRANSFER PUMPWater pump provides additional options to fill onboard water tank FUEL TRANSFER PUMPFuel pump provides additional options to fill fuel tank WARNING BEACON, FIXEDAmber warning beacon mounts to one of two fixed locations on loading conveyor or rear of machineWARNING BEACON, MAGNETIC MOUNTAmber warning beacon can be magnetically mounted in multiple locations on the machineCOMMISSIONING SUPPORTCat technician provides machine introduction and training to key personnelOPTIONAL EQUIPMENT OPTIMIZE VERSATILITY, PRODUCTIVITY, COMFORT.161.Power Sun Canopy2. Inboard Averaging Ski3.Dust Abatement System4. Remote Camera, Loading Conveyor5.Remote Camera, Magnetic Mount6.Bit Bucket Trays7.High Pressure Washdown System8. Water Tank Transfer Pump3861245717EASY SERVICE DESIGNED RIGHT IN.Outstanding access to critical components and systems makes service and maintenance easier and faster. That keeps your machine where you need it: on the job.LARGE ACCESS DOORS AND PANELS– Designed to facilitate efficient service, reducing labor costs and service time– Quick and easy maintenance– Accessible pumps and components– Power hood opens to allow walk-in access– Visual indicators simplify routine service checks18HYDRAULIC SYSTEM– Manual overrides simplify troubleshooting by eliminatingfunctioning systems– Hydraulic hoses are cleanly routed and clamped for long-term reliability– Exposed hoses are wrapped in nylon sleeves for protectionagainst abrasion– Pressure test ports and oil sampling ports simplify hydraulicsystem diagnosisELECTRICAL SYSTEM– 24-volt system with 100 amp alternator– Color-coded and numbered electrical wiring simplifiestroubleshooting– Harnesses are wrapped in abrasion-resistant nylon braid ELECTRONIC CONTROL MODULES (ECM)– Monitors machine systems to ensure proper function andprecision– Provides warning indications via LCD touchscreen display when machine performance is substandard– Provides diagnostic information TELEMATICS: PRODUCT LINK™– Maximize up-time– Automatic machine location– Hour updates– Diagnostic codes– Schedule service at convenient times– Optional configurations availableLONG SERVICE INTERVALS– 500 hour engine oil service interval– 3,000 hour hydraulic oil service interval without oil sampling;6,000 hours with oil samplingACCESSORY DRIVE SYSTEM– Provides full operational control of auxiliary machine functions to enable assisted machine movement during maintenance or service– Facilitates assisted relocation of machine from live construction area to service area during emergency situations19Pallet ConcreteAsphalt or Asphalt off ConcreteAsphaltShallow 25 - 50 mm (1” - 2”)Moderate 75 - 125 mm (3” - 5”)Deep 150 mm (6” o r more)Puller Tool351-267844444292-510344444349-49464444316-23274444350-71994444Ø19.4Ø19.822182117217PROVEN BENEFITSMore efficiency, more productivity, lower fuel consumption and less wear on the machine. It all adds up to more profitability and growth for your company.– Last up to 80x longer than carbide tips, keeping crews more productive, month after month– Assure faster project completions– Provide you with a significant bidding advantage– Virtually eliminate labor costs for pick changes; eliminate unplanned, unproductive interruptions– Deliver proven fuel savings per ton of production– Enable faster milling speeds and increased productivity– Eliminate costly bit inventory, and the handling that goes with it– Require no rotation, crucial because half of carbide failures result when tools fail to turn– Create less vibration, increasing the life of planetaries, drive shafts, stub shafts, bearings and other parts and components– Increase track-pad life because the machine does not work as hard– Deliver a dramatically improved return on your mill investment through increased engagement– Extend life of moldboards through a consistent pattern; protect welded-on base blocks—and ultimately the drum Average life and exact tonnage is impacted by local aggregate and operating technique. Diamond Asphalt Bits last up to 45x the life of standard carbide bits and Diamond Extended Life Bits last up to 80x the life of standard carbide bits.STAY SHARP UP TO 80X CONVENTIONAL CARBIDE.2122SPECIFICATIONSHH23Weights shown are approximate and include:• Operating weights include coolants, lubricants, full fuel tank, full water tank and 75 kg (165 lb) operator.• Transport weights include coolants, lubricants, 50% full fuel tank and empty water tank.WeightPM820Operating weight 36 130 kg 79,630 lb Transport weight 32 230 kg71,035 lbPM822Operating weight 36 700 kg 80,887 lb Transport weight 32 800 kg 72,290 lbPM825Operating weight 37 500 kg 82,650 lb Transport weight33 600 kg 74,054 lbFuel Tank1108 L 288.1 gal Cooling System 104 L 27.5 gal Engine Oil 65 L 16.9 gal Hydraulic Oil 113 L 29.4 gal Water Tank3400 L898 galService Refill CapacitiesCat C18 ACERT Engine Gross power - ISO 14396 563 kW 755 hp Global emissions US EPA Tier 4 Final / EU Stage IVor Tier 3 / Stage IIIA / China Stage III equivalentOperating speed100 m/min 328 ft/min Maximum travel speed 5.9 km/h 3.7 mphPowertrainPM820 Milling Width2010 mm 79.1 in Number of Bits 170PM822 Milling Width 2235 mm 88 in Number of Bits 185PM825 Milling Width 2505 mm 98.6 in Number of Bits203Maximum Cutting Depth 330 mm 13 in Rotor Speeds100 / 109 / 118 rpmCutting SystemPower CanopyWindscreens for Power Canopy Inboard Averaging Ski CE CertificateAdditional Water Spray System Water Tank Transfer Pump Fuel Transfer Pump Dust Abatement System Cat Grade ControlRemote Camera (Front, Rear, or Magnet Mount)Product Link (optional configuration)Air-ride Operator’s Seats Drum Rotating Device Cat Diamond Bits Bit Bucket TraysMachine Commissioning SupportOptional EquipmentSPECIFICATIONSA Overall length, conveyor up14.52 m 47.62 ft B Maximum machine width - PM820, PM822 2.83 m 9.27 ft Maximum machine width - PM825 3.14 m 10.03 ft C Cutting width - PM820 2010 mm 79.1 in Cutting width - PM822 2235 mm 88 in Cutting width - PM8252505 mm 98.6 in D Maximum height, raised conveyor 5.23 m 17.17 ft E Height to optional canopy4.05 m 13.29 ft F Height, no canopy (canopy down) 3.00 m 9.84 ft G Maximum truck clearance 4.86 m 15.95 ft HConveyor swing± 60˚ from centerOperating DimensionsI Transport length12.43 m 40.79 ft J Transport width - PM820 2.50 m 8.2 ft Transport width - PM822 2.70 m 8.83 ft Transport width - PM825 3.01 m 9.88 ft K Length, track to track 6.69 m 21.95 ft L Length of base machine 8.33 m 27.33 ft FTransport height3.00 m 9.84 ftShipping DimensionsPM820, PM822 AND PM825 Cold Planers。

武汉大学细胞保藏中心种类及价格

武汉大学细胞保藏中心种类及价格

武汉大学细胞保藏中心种类及价格CCTCC 编号细胞名称种属来源参考价 GDC034 NCTC 克隆929(L929) 鼠国外 1000 GDC002 鼠胸腺激酶缺陷细胞株(L-M TK)鼠国外 1500 GDC013 鼠胚成纤维细胞系(STO)鼠国外 1000 GDC001 鼠T 淋巴瘤细胞系(YAC-1)鼠国外 1000 GDC025 鼠乳腺癌细胞系(MA-782 鼠国内 500 GDC026 鼠成纤维细胞系(GR)鼠国外 1000 GDC030 鼠成纤维细胞系(NIH/3T3 鼠国外 500 GDC038 鼠黑色素瘤细胞系(B16-Fo)鼠国外 1000 GDC039 鼠黑色素瘤细胞系(B16-F1) 鼠国外 1000 GDC006 鼠肾上腺嗜铬细胞瘤细胞系(PC-12)鼠国外 1500 GDC091 BALB/C 小鼠肝癌细胞系(H22)鼠国内 1000 GDC010 叙利亚仓鼠肾细胞系(BHK-21)鼠国外 1000 GDC018 中国仓鼠卵巢细胞系(CHO-K1)鼠国外 1000 GDC011 鼠骨髓瘤细胞(P3/NS1/1-Ag4-1)鼠国外 1000 GDC014 鼠骨髓瘤细胞(P3X63-Ag8.653)鼠国外 1000 GDC019 鼠骨髓瘤细胞(SP2/0-Ag14) 鼠国外 500 GDC017 杂交瘤细胞(B6YH4)枝原体阳性鼠国外 2000 GDC021 鼠细胞系(B82)鼠国外 1000 GDC056 鼠肉瘤细胞 S-180 鼠国内 1000 GDC060 大鼠腹水癌细胞系Walker256 鼠国内 1000 GDC092 鼠纤维肉瘤细胞系WEHI 164 鼠国外 1000 GDC096 正常鼠肾细胞系NRK 鼠国内 1000 GDC099 鼠肥大细胞肿瘤细胞系P815 鼠国内 1000 GDC104 大鼠肝癌细胞系H4-ⅡE 鼠国外1500 GDC003 人卵巢癌细胞系(CoC1) 人国内 1000 GDC058 CoC1 细胞耐药亚株(CoC1/DDP) 人国内 1500 GDC004 人喉癌细胞系(Hep-2) 人国外 1000 GDC005 人二倍体细胞系(KMB-17) 人国内 500 GDC016 人二倍体细胞系(WI-38) 人国外 1500 GDC032 人二倍体细胞系(MRC-5) 人国外 1500 GDC082 人二倍体细胞系(HL) 人国内 500 GDC009 人宫颈癌细胞系(Hela) 人国外 500 GDC057 Hela 细胞耐药亚株(Hela/DDP) 人国内不售 GDC031 人T 淋巴细胞系(H9) 人国外 1000 GDC037 慢性骨髓性白血病细胞系(K562) 人国内 500 GDC040 人羊膜细胞系(Wish) 人国外 1500 GDC027 早幼粒急性白血病细胞系(HL-60) 人国内 500 GDC028 早幼粒急性白血病细胞系(HL-60) 人国外 1000 GDC083 淋巴母细胞性白血病细胞系(MOLT-4) 人国外 1000 GDC084 表皮癌细胞系(A431) 人国外 500 GDC079 人胎肝细胞系(L-02) 人国内 1000 GDC051 人T 淋巴瘤细胞系(Hut-102) 人国外 1000 GDC055 人乳腺癌细胞系(MCF-7) 人国外 1000 GDC054 人乳腺癌细胞系(ZR-75-30) 人国外 1000 GDC053 人乳腺癌细胞系(MDA-MB-435S) 人国外 1000 GDC023 人脐静脉内皮细胞系(ECV-304)(具有T24 细胞特性) 人国外 500 GDC035 人肝癌细胞系(Bel-7402) 人国内 500 GDC064 人肝癌细胞系(SSMC-7721) 人国内 500 GDC042 人直肠癌细胞系(Colo 320) 人国外 1000 GDC043 人小肠癌细胞系(HIC) 人国内 1000 GDC044 人腺癌细胞系(F56) 人国内 500 GDC045 人乳腺癌细胞系(T47D) 人国外 1000 GDC046 人乳腺癌细胞系(1590) 人国外 1000 GDC047 神经母细胞瘤细胞系(SK-N-SH) 人国外 1500 GDC048 人诞腺腺样囊性癌细胞系(ACC-2) 人国内 1000 GDC068 人舌癌细胞系(Tca 8113) 人国内 1000 GDC049 人卵巢癌细胞系(Anglne) 人国外 1000 GDC050 人肺癌细胞系(SPC-A1) 人国内 500 GDC063 人肺癌细胞系(A549) 人国外 1000 GDC024 人肝癌细胞系(Hep G2) 人国外 1000 GDC076 人胸腺激酶缺陷性细胞系(143TK) 人国内 1500 GDC065 人结肠腺癌细胞系(SW480) 人国外 500 GDC066 人诞腺癌细胞系(Acc-M) 人国内 1000 GDC067 人原胚肾转化细胞系(293 Ad5+) 人国外 1000 GDC069 人胃癌细胞系(HS-746T) 人国外 1500 GDC070 人肝癌细胞系(Hep-3B) 人国外 1000 GDC071 人二倍体细胞系(HEL) 人国内 500 GDC072 人绒毛膜肿瘤细胞系(Bewo) 人国外 1500 GDC073 人髓状甲状腺肿瘤细胞系(TT) 人国外 1500 GDC059 人血管平滑肌(T/G) 人国外不售 GDC080 巨噬细胞淋巴瘤细胞系(U-937)人国外 1000 GDC078 人移行细胞膀胱癌细胞(T-24) 人国内 500 GDC074 人成骨肉瘤细胞系(MG-63) 人国外 1000 GDC075 人生骨肉瘤细胞系(Saos-2) 人国外 1500 GDC093 星形胶质瘤细胞(U251) 人国内 500 GDC094 急性T 细胞白血病细胞系(Jurkat) 人国外 1000 GDC095 前列腺癌细胞系(PC-3) 人国外 1000 GDC097 Burkitts 淋巴瘤细胞系(Daudi) 人国外 1500 GDC098 Burkitts 淋巴瘤细胞系(CA46) 人国外 1500 GDC100 单核细胞系(THP-1) 人国外 1000 GDC102 人肾癌细胞系(ACHN) 人国外 1000 GDC103 人肾癌细胞系(769-P) 人国外 1000 GDC105 人纤维肉瘤细胞系(HT-1080) 人国外 1000 GDC106 人永生化表皮细胞(HaCAT) 人国外 1500 GDC101 兔肾细胞系(RK-13) 兔国外 1000 GDC015 EB 病毒转化细胞系(B95-8) 猴国外 1000 GDC029 猴肾细胞系(VERO) 猴国外1500 GDC033 猴肾细胞系(BSC-1) 猴国外 1500 GDC036 罗猴肾细胞系(FRhK-4) 猴国内 1000 GDC041 罗猴肾细胞系(MA-104) 猴国内 1000 GDC062 VERO 衍生株(SVP) 猴国内 500 GDC061 猪肾细胞系(PK-15) 猪国外 1000 GDC022 猪肾细胞系(IBRS-2) 猪国内 1000 GDC007 猪睾丸细胞系(ST) 猪国内 1000 GDC081 草鱼肾细胞系(GIK) 鱼国内 1000 GDC012 犬肾细胞系(MDCK) 犬国外1000 GDC020 昆虫细胞系(Sf-21) 昆虫国外 1500 GDC008 昆虫细胞系(SF-9) 昆虫国外 1000 GDC085 草鱼肝脏细胞(L8824) 鱼国内 1000 GDC086 草鱼肾脏细胞(CIK) 鱼国内 1000 GDC087 团头鲂尾鳍细胞(WCF) 鱼国内 1000 GDC088 白鲢尾鳍细胞(SCF) 鱼国内 1000 GDC089 散鳞镜鲤尾鳍细胞鱼国内 1000 GDC090 鲤鱼尾鳍细胞鱼国内 1000 GDC110 人宫颈鳞状细胞癌(SiHa)人国外 1500 GDC111 人宫颈上皮细胞癌(Caski)人国外 1500 GDC112 人卵巢腺癌细胞(SW626) 人国外 1500 GDC113 人子宫内腺癌细胞(RL95-2)人国外1500 GDC114 人卵巢腺癌细胞(SK-OV-3)人国外 1500 GDC115 人子宫内膜腺癌细胞(KLE)人国外 1500 GDC116 转化的豚鼠胎体细胞(104C1)豚鼠国外 1500 GDC117 中国仓鼠肾细胞CHO/dhFr - (二氢叶酸还原酶缺陷型) 中国仓鼠国外 1500 GDC118 人乳突状卵巢腺癌细胞(Caov-3)人国外 1500 GDC119 人卵巢腺癌细胞(OVCAR-3)人国外 1500 GDC120 膀胱癌细胞(BI U-87)人国内 500 GDC121 急性骨髓性白血病细胞(KG-1)人国外 1500 GDC122 SV-40 转化肺成纤维细胞(WI-38AV13)人国外 1500 GDC123 小鼠B 细胞杂交瘤细胞(W6/32)小鼠国外 1500 GDC124 大鼠肾小球系膜细胞EC (HBZY-1) 大鼠国内 1000 GDC125 蚊子细胞(C6/36)蚊子国外 1500 GDC126 逆转录病毒包装的NIH3T3 细胞(PA317)小鼠国外 1000 GDC127 人子宫内膜腺癌细胞(AN3 CA)人国外 1500 GDC128 人脑神经胶质瘤细胞(H4)人国外 1500 GDC129 人子宫膜腺癌细胞(HEC-1-B)人国外 1500 GDC130 大鼠乳腺腺癌细胞系(MADB106)大鼠国外 1500 GDC131 鼠肉瘤细胞(S-180-S 2 D 9 )国内 1000 GDC132 鼠肝癌细胞(H 22 -H 8 D 8 )国内 1000 GDC133 鼠腹水瘤(EAC-E 2 G 8 )国内 1000 GDC134 肝细胞系(Huh-7)国外 1500 GDC135 结肠腺癌( Ls-174-T) 国外 500 GDC136 小鼠淋巴瘤(EL-4)国外 500 GDC141 表达HBV 病毒的人肝细胞HepG2.2.15 国内 1500 GDC142 144 国内 500 GDC143 单核细胞RAW264.7 国外 1500 GDC144 人子宫癌细胞C-33A 国外 1500 GDC145 肝癌SK-Hep-1 国外 1500 GDC146 猴肾细胞系(VERO E6) 猴国外 1500GDC147 胰腺细胞AR42J 国外 1500 GDC148 CCBR-SD 国外 1500 GDC149 人结肠腺癌细胞系HT-29 人国外 1000 GDC150 人胃癌SGC7901 人国内 500 GDC151 人胃癌BSG823 人国内 500 GDC152 肾小管上皮细胞株HK-2 人国外1500 GDC153 人结肠腺癌CaCO-2 人国内 1000 GDC154 人口腔癌细胞HB 国内500 GDC155 鼻咽癌细胞CNE2 国内 500 GDC165 鳞癌VX-2(兔模型) 兔国内2000 GDC166 人脐静脉内皮细胞系HUV-EC-C 人国外 3000 GDC167 人小细胞肺癌DMS153 人国外 3000 GDC168 鲑鱼胚胎细胞CHSE 1500 GDC169 鲑鱼胚胎细胞RTG 1500 GDC170 胚胎瘤 NG108-15 500 GDC171 人舌癌细胞系Tca8113-P60 1000 GDC172 人舌癌细胞系Tca8113-P160 1000 GDC173 大黄鱼肾细胞PCK 国内1000 GDC174 鲤鱼上皮细胞EPC 国内 1000 GDC175 鼠成肌细胞C2C12 鼠国外1500 GDC176 鼠腹水单核细胞瘤J774A.1 鼠国外 1500 GDC177 鼠小脑细胞C8-D1A 鼠国内 1000 GDC178 人前列腺上皮细胞RWPE1 人国外 3000 GDC179 人前列腺正常细胞RWPE2 人国外 3000 GDC180 鼠成纤维细胞3T3-L1 鼠国外1500 GDC181 小鼠IL-3 依赖性32D 细胞鼠国内 1500 GDC182 大黄鱼EPC 细胞大黄鱼国内 1000 GDC183 菜青虫卵巢细胞Pr-HNV8 菜青虫国内不售GDC184 人舌鳞癌细胞系TSCCA 人国内 1000 GDC185 上颌牙龈癌颈淋巴结转移癌GNM 人国内 1000 GDC186 人大肠癌细胞LOVO 人国内 1000 GDC187 人胚肾细胞293T 人国内 1000 GDC188 鼠胚成骨细胞3T3-E1 鼠国内 1000 GDC189 逆转录酶病毒包装细胞PT67 鼠国内 1000 GDC190 蝙蝠肺细胞Tb 1 Lu 蝙蝠国外 2000 GDC191 人Burkitt 淋巴瘤细胞Raji 人国内 1000 GDC192 大鼠胰岛素细胞INS-1 1000 GDC193 宫颈癌细胞HeLa-S3 1000 GDC194 牙鲆细胞FG 1000 GDC195 人乳腺细胞HBL-100 500 GDC196 人血液白血病细胞TF-1 500 GDC197 人卵巢癌细胞HO-8910 500 GDC198 人卵巢癌细胞A2780 500 GDC199 人口腔上皮癌细胞KB 500 GDC200 人食管癌细胞CaES-17 500 GDC201 人盲肠腺癌细胞HCT-8 500 GDC202 人胚肺成纤维细胞突变癌细胞Z-HL16C 1000 GDC203 小鼠淋巴白血病细胞L1210 500 GDC204 人肥大细胞白血病细胞CHMAS 500 GDC205 人肝正常细胞HL-7702 500 GDC206 人乳腺癌细胞Bcap-37 500 GDC207 人食道癌细胞Eca-109 500 GDC208 人鼻咽癌细胞CNE 500 GDC209 人肺腺癌细胞LTEP-a-2 500 GDC210 人成神经细胞瘤细胞SH-SY5Y 1500 GDC211 人表皮肺癌细胞H292 1500 GDC212 小鼠淋巴结血管上皮样细胞SVEC4-10 2000 GDC213 小鼠嗜碱性白细胞RBL-2H3 1500 GDC214 人肝细胞FL62891 不售 GDC215 人外周血嗜碱性白细胞KU812 不售 GDC401 犬肾细胞系(MDCK/wild) 犬国外 1000 GDC402 犬肾细胞系(MDCK/IgR) 犬国外 1000 GDC403 男性正常龟头细胞系HS68 人国外 1500 GDC404 猴肾细胞系(VERO/IgR) 猴国外 1000 GDC405 猴肾细胞系(VERO/IgRCD4) 猴国外 1000 GDC406 猴肾细胞系(VERO/IgRCD4-) 猴国外 1000 GDC411 小鼠杂交瘤细胞(D19)小鼠国外询价 GDC412 小鼠杂交瘤细胞(16DC9)小鼠国外询价 GDC413 小鼠杂交瘤细胞(D61-18,IgA)小鼠国外询价 GDC414 小鼠杂交瘤细胞(19GD6)小鼠国外询价 GDC415 小鼠杂交瘤细胞(D10-G/u)小鼠国外询价 GDC416 小鼠杂交瘤细胞(16AC5)小鼠国外询价 GDC417 小鼠杂交瘤细胞(10EF10)小鼠国外询价 GDC418 小鼠杂交瘤细胞(D47-u)小鼠国外询价 GDC419 小鼠杂交瘤细胞(D10-1A/u)小鼠国外询价 GDC420 小鼠杂交瘤细胞(19DF10)小鼠国外询价 GDC421 小鼠杂交瘤细胞(D61-NEW)小鼠国外询价 GDC422 小鼠杂交瘤细胞(I41)小鼠国外询价 GDC423 小鼠杂交瘤细胞(D47-AF,IgA)小鼠国外询价GDC424 小鼠杂交瘤细胞(16DC9-A)小鼠国外询价 GDC425 小鼠杂交瘤细胞(T33-22A)小鼠国外询价 GDC426 小鼠杂交瘤细胞(16CD11-G)小鼠国外询价 GDC427 小鼠杂交瘤细胞(16BB5)小鼠国外询价 GDC428 小鼠杂交瘤细胞(16CF7)小鼠国外询价 GDC429 小鼠杂交瘤细胞(16CD11-A)小鼠国外询价 GDC430 小鼠杂交瘤细胞(I41-AG)小鼠国外询价 GDC431 小鼠杂交瘤细胞(19HC5)小鼠国外询价 GDC432 小鼠杂交瘤细胞(16CF7-A5)小鼠国外询价 GDC433 小鼠杂交瘤细胞HCV GDC434 小鼠杂交瘤细胞小鼠国外询价 GDC435 GDC436 小鼠杂交瘤细胞小鼠国外询价 GDC437。

Seppro

Seppro

Seppro®IgY 14 LC10 ColumnCatalog Number SEP040Storage Temperature 2–8 °CTECHNICAL BULLETINProduct DescriptionThe Seppro®IgY 14 Liquid Chromatography 10 (LC10) Column is based on avian antibody (IgY)-antigen interactions and optimized buffers for sample loading, washing, eluting, and column regeneration. The column is specifically designed to remove fourteen highly abundant proteins from human fluids such as serum or plasma. The following proteins are depleted in a single step:Albumin IgGα1-Antitrypsin IgAIgM TransferrinHaptoglobin α2-Macroglobulin Fibrinogen Complement C3α1-Acid Glycoprotein (Orosomucoid)HDL (Apolipoproteins A-I and A-II)LDL (mainly Apolipoprotein B)The targeted highly abundant proteins are simultaneously removed by the immobilized specific IgYs when crude biological samples are passed through the column.Selective immunodepletion provides an enriched pool of low abundance proteins for downstream proteomic analyses. Specific removal of these fourteen highly abundant proteins depletes ∼95% of the total protein mass from human serum or plasma. The low abundance proteins in the flow-through fractions can then be studied. Removal of highly abundant proteins enables improved resolution and dynamic range for one dimensional electrophoresis (1DGE), two dimensional (2DGE) electrophoresis, and liquid chromatography/ mass spectrometry (LC/MS). The collected flow-through fractions may need to be concentrated dependent upon the downstream application.Characteristics of the IgY 14 LC10 ColumnSize: 12.7 ×79.0 mm(10 ml bed volume)Capacity: 10.0 mg of total protein or ∼143 µl of human plasma based on an average protein concentration of 70 mg protein/ml.Note: If the protein concentration of the sample is unknown and the total serum protein level is potentially elevated, a reduction of the serum load to 100 µl is recommended for initial study to avoid potential abundant protein bleed through.Total protein mass removal: ∼95%Targeted depletion efficiency: 95% (average) Maximum operation pressure: 350 psi (21 bars) Antibody-modified resin only withstands 100 psi Flow rate: 0.5–2.0 ml/minuteOperating temperature: 18–25 °CShipping Buffer: 1×Dilution Buffer with 0.02% sodium azideColumn body materials: Polycarbonate column cylinder, Polyethylene frit, Tefzel®caps, Buna-N-rubberO-rings, Delrin®nut fittings, ETFE ferrules, andPTFE PFA tubing.Usage: Column may be used 100 times.2ComponentsSeppro IgY 14 LC10 Column 1 each (Catalog Number S5074)10×Dilution Buffer 3 ×200 ml Tris-Buffered Saline (TBS) -100 mMTris-HCl with 1.5 M NaCl, pH 7.4(Catalog Number S4199)10×Stripping Buffer 3 ×200 ml1 M Glycine, pH 2.5(Catalog Number S4324)10×Neutralization Buffer 3 ×80 ml1 M Tris-HCl, pH 8.0(Catalog Number S4449)Corning®Spin-X®Centrifuge Tube Filters 1 pack0.45 µm, pack of 100(Catalog Number CLS8163)Precautions and DisclaimerThis product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.Specimen collection needs to utilize universal precautions.Preparation InstructionsPreparation of 1×concentration buffers -Separately dilute the three 10×buffers (Dilution, Stripping, and Neutralization Buffers) 10-fold with water. If precipitation occurs in the 10×buffers, allow the bottle to warm to room temperature and mix untilcompletely dissolved prior to use. Do not dilute all of the 10×Neutralization Buffer, save a volume of the 10×neutralization buffer for neutralization of eluted bound proteins if analysis of bound proteins is desired. Sample Preparation -It is not recommended to load unfiltered serum directly onto the column. Human serum samples should be diluted 5-fold with 1×Dilution Buffer. Samples may contain particulate materials, which can be removed with a 0.45 µm spin filter, centrifuge for 1 minute at 9,000 ×g.Storage/StabilityStore the column at 2–8 °C. After use, equilibrate the column with 1×Dilution Buffer containing 0.02% sodium azide and store the column at 2–8 °C with the end-caps tightly sealed. Do Not Freeze the column.ProcedureNote: Always use the three 1×buffers as the mobile phases for the LC procedure. Adjust the LC procedure appropriately for the instrumentation being used. Do not expose the column to solvents other than the three 1×buffers. Do not expose the column to organic solvents (like alcohols, acetonitrile, etc.), strong oxidizers, acids, or reducing agents and other protein denaturing agents (urea).1.Set up the three 1×buffers as the only mobilephases.2.Purge lines with the three 1×buffers and run the1×Dilution Buffer at 2 ml/minute without a columnto check the system back pressure.Note: The maximum operation pressure includesthe pressure introduced by the column and thesystem backpressure from the instrument. Usually, the pressure introduced by the column is less than50 psi. It is important to first check the systembackpressure of the instrument before using thiscolumn. If the system backpressure is more than300 psi, use tubing with a larger I.D.or change the flow-cell to tubing with a larger I.D. to reduce thesystem backpressure.3.Attach the column to chromatography instrument(see Appendix) and equilibrate it with1×DilutionBuffer for 20 minutes at a flow rate of 2.0 ml/minute to obtain a flat baseline.4.Set up a LC timetable (see Table 1) and run twomethod blanks by injecting 1,250µl of1×DilutionBuffer.Note: Adjust LC timetable based on instrumentation available, if necessary.5.Inject 1,250 µl of the diluted and filtered serum (seeSample Preparation), start with a flow rate of0.5 ml/minute for 30 minutes, wash the column at aflow rate of 2.0 ml/minute for 5 minutes, collectflow-through fraction, and store collected fractionsat –70 °C if not analyzed immediately.Note: Due to high salt concentration in the1×Dilution Buffer, buffer exchange of the flow-through fractions to a volatile buffer (for example,ammonium bicarbonate) is recommended prior tolyophilization.36.Elute bound proteins from the column with1×Stripping Buffer at a flow rate of 2.0 ml/minutefor 15 minutes and neutralize the eluted fractionswith 0.1×fraction volume of 10×Neutralizing Buffer.Note: Do not expose the column to the 1×Stripping Buffer for more than 20 minutes.7.Neutralize the column with 1×Neutralizing Buffer ata flow rate of 2.0 ml/minute for 10minutes.8.Re-equilibrate the column with 1×Dilution Buffer foran additional 10 minutes at a flow rate of2.0 ml/minute. The re-equilibrated column may bestored with 1×Dilution Buffer with 0.02% sodiumazide at 2–8 °C. Do Not Freeze the column.Table 1.Timetable for IgY 14 LC10 columnDetector Model: 166.ResultsFigure 1.Typical Depletion ChromatogramPeaks A & B aredepleted fractions.Peak C is boundfraction.ABC4AppendixTips for fitting column to most chromatography instruments1.Adapting the column (M6 fitting) to most HPLCsystems• Option 1: female M6 to male 10-32 one-piece adapter (Catalog Number 55069) -Most HPLCinstruments use 10-32 fittings with 1/16″tubing,so an adapter (one-piece fitting) can be used toconnect the column to the instrument. Thisinexpensive approach uses an adapter, a one-piece fitting with female M6 threading at oneend, to accept the male M6 fitting on the tubingconnected to the column, and 10-32 malethreading on the other end, to fit into thedetector or injector.Note: Use of this adapter will require removal ofthe fitting on the injector or detector.• Option 2: female M6/male 10-32 fitting tofemale 10-32/female 10-32 fitting two-pieceadapter (Catalog Number55068) –A two-pieceadapter can be used without changing thedetector or injector fittings on the HPLC. Again,the inexpensive approach is a two-pieceadapter. The female M6 end of the female/malefitting accepts the male M6 fitting from thecolumn, the male 10-32 end fits into one end ofthe female/ female 10-32 fitting. The other endof the female/female fitting accepts the 10-32fitting on the HPLC tubing.2.Adapting the column (M6 fitting) to non-metricmedium/low pressure liquid chromatographysystems• Option 1: female 1/4-28 to male 10-32 one-piece adapter (Catalog Number 55071) plus10-32 to female M6 two-piece adapter (CatalogNumber 55068) -Many medium/low pressuresystems use 1/4-28 fittings. An one-pieceadapter along with a two-piece adapter can beused to connect the column with M6 fittings tothese instruments. This method requires havingtubing with 1/4-28 fittings on the injector anddetector. These fittings will thread into thefemale 1/4-28 to male 10-32 fitting (CatalogNumber 55071). The male 10-32 will tread intothe two-piece adapter (Catalog Number 55068)that will then join to the M6 fitting.• Option 2: female 1/4-28 to female M6 one-piece adapter(Catalog Number 59259-U) -Like Option 1, this option requires the tubing onthe injector and detector already have male1/4-28 fittings. The male 1/4-28 fitting willthread into the adapter that will then join it tothe male M6 fitting.Note:Be sure to order two of these parts, onefor each end of the column.Troubleshooting GuideHigh backpressure -Clogged inlet frits may result in high backpressure, distorted peak shape, and diminished column lifetime. To prevent these problems, remove particulates from samples with a spin filter before loading.No bound fraction peak -Bound proteins can only be removed from the column by eluting with 1×Stripping Buffer. Check LC timetable to ensure enough column exposure time to the 1×Stripping Buffer for complete removal of bound proteins.Abnormal peak height -∼95% of serum/plasma proteins will be removed as the bound fraction. The peak height of the bound fraction is expected to be much greater than that of the flow-through fraction. If this order is reversed, two possibilities may be checked:• Column may not have been regenerated properly after previous use,resulting in lost capacity. Tocorrect this, elute bound proteins with 2 additionalcolumn volumes of 1×Stripping Buffer and thenneutralize and re-equilibrate the column with1×Neutralizing Buffer and 1×Dilution Buffer.• Check for signs of biological growth in the buffer reservoirs. Replace with fresh buffers for optimized column performance.Seppro is a registered trademark of Sigma-Aldrich®Biotechnology LP and Sigma-Aldrich Co.Corning and Spin-X are registered trademarks of Corning, Inc.Delrin and Tefzel are registered trademarks of E.I. du Pont de Nemours & Co., Inc.TD,KR,DEC,MAM,MJM 11/14-2©2014 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA-ALDRICH is a trademark of Sigma-Aldrich Co. LLC, registered in the US and other countries. Sigma brand products are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the Sigma-Aldrich website at and/or on the reverse side of the invoice or packing slip.。

新型凝胶颗粒调剖剂的现场应用

新型凝胶颗粒调剖剂的现场应用

新型凝胶颗粒调剖剂的现场应用宋 明 张 勇 焦亚龙 李小奇 张 达 祝明华 张体田(中原油田油气储运中心)摘 要:油田特高含水阶段,调剖是提高采收率的重要工艺措施。

按照SY/T 5590-2004《调剖剂性能评价方法》研制了新型凝胶颗粒,介绍了新型凝胶颗粒的波动驱油调驱机理和主要技术指标,密度0.8~1.5g/cm 3,膨胀倍数3~6倍,耐温90~120℃,不受矿化度影响,弹性和韧性好,具有较好的热稳定性。

制定了选井原则。

从注入设备、段塞的优化组合及压力和排量控制等6个方面总结了现场应用中的经验和认识。

现场施工35口井,水井有效率100%,对应油井件效率65.8%,累计增油12,580t。

关键词:预交联,凝胶颗粒,调剖,耐高温,段塞Field Application of New Gel Particle Profile Control AgentSONG Ming ZHANG Yong JIAO Ya-long LI Xiao-qi ZHANG DaZHU Ming-hua ZHANG Ti-tian(Oil and Gas Storage and Transportation Center of Zhongyuan Oilfield Branch )Abstract: In the period of extra-high water cult of oil field, profile control is an important technological measure to improve recovery. According to SY/T5590-2004, Profile control agent performance evaluation method, a new type of gel particle is developed. This paper introduces the oil displacement and regulation mechanism and the main technical indicators of the new type gel particle, with the density of 0.8~1.5 g/cm3, expansion ratio of 3~6 times, the heat resistance of 90~120 °C, unaffected by salinity, good elasticity and toughness, and good thermal stability. It formulates the principle of selecting the well, and summarizes the experience and understanding in the field application in six aspects such as injection equipment, optimization of the slug combination, and stress and displacement control. During the on-site construction, there were 35 wells with 100% of water well efficiency, 65.8% of corresponding well component efficiency, and an increase of 12,580 tons of oil.Keywords: pre-crosslinking, gel particles, profile, high temperature resistance, slug作者简介:宋明,本科,工程师,主要从事油气田开发及调剖调驱方面的研究工作。

两用物项和技术进出口许可证管理目录

两用物项和技术进出口许可证管理目录

两用物项和技术进出口许可证管理目录说明:一、本目录分为《两用物项和技术进口许可证管理目录》与《两用物项和技术出口许可证管理目录》。

二、本目录所列物项和技术是指《中华人民共和国核出口管制条例》、《中华人民共和国核两用品及相关技术出口管制条例》、《中华人民共和国导弹及相关物项和技术出口管制条例》、《中华人民共和国生物两用品及相关设备和技术出口管制条例》、《中华人民共和国监控化学品管理条例》、《中华人民共和国易制毒化学品管理条例》、《中华人民共和国放射性同位素与射线装置安全和防护条例》和国务院批准的《有关化学品及相关设备和技术出口管制办法》等相关行政法规、规章所附清单和名录以及国家依据相关法律、行政法规和规章予以管制、临时管制或特别管制的物项和技术。

三、进出口本目录的物项和技术,不论该物项和技术是否在本目录中列明海关商品编号,均应依法办理两用物项和技术进出口许可证。

四、本目录所列物项和技术及其商品名称和描述与相关法律、行政法规和规章规定不一致时,以相关法律、行政法规和规章规定为准。

Ⅰ、两用物项和技术进口许可证管理目录一、监控化学品管理条例监控名录所列物项二、易制毒化学品三、放射性同位素Ⅱ、两用物项和技术出口许可证管理目录一、核出口管制清单所列物项和技术(二)核反应堆及为其专门设计的设备和部件(三)核反应堆用非核材料(四)辐照元件后处理厂以及为其专门设计或制造的设备(五)用于制造核反应堆燃料元件的工厂和为其专门设计或制造的设备(六)天然铀、贫化铀或特种可裂变材料同位素分离厂以及为其专门设计或制造的(除分析注释:离心机转动构件所用材料是:(a)极限抗拉强度为1.95×109N/m2或更高的马氏体钢;(b)极限抗拉强度为0.46×109N/m2或更高的铝合金;(c)适合于复合结构用的纤维材料,其比模量应为3.18×106m或更高,比极限抗拉强度应为7.62×104m或更高。

基于介电特性的稻谷干燥含水率检测模型构建与验证

基于介电特性的稻谷干燥含水率检测模型构建与验证

王丹阳,王洁,张本华,等.基于介电特性的稻谷干燥含水率检测模型构建与验证[J].沈阳农业大学学报,2022,53(6):752-758.沈阳农业大学学报,2022,53(6):752-758Journal ofShenyang Agricultural University http ://DOI:10.3969/j.issn.1000-1700.2022.06.015收稿日期:2022-02-10基金项目:国家重点研发计划项目(2018YFD0300307);农业部农产品产后处理重点实验室开放课题项目(KLAPPH2-2017-02)第一作者:王丹阳(1977-),女,博士,副教授,从事农产品加工工程相关研究,E-mail:************.cn 通信作者:张本华(1971-),男,博士,教授,博士生导师,从事农业机械智能化检测与控制技术相关研究,E-mail:************.cn基于介电特性的稻谷干燥含水率检测模型构建与验证王丹阳1,2,王洁1,张本华3,赵名策1,冀东平1,战廷尧1,冯龙龙1,郝吉明4[1.沈阳农业大学工程学院,沈阳110161;2.农业农村部园艺作物农业装备重点实验室,沈阳110161;3.宿迁学院机电工程学院,江苏宿迁223800;4.中粮米业(沈阳)有限公司,沈阳110112]摘要:为建立稻谷通风干燥含水率在线监测系统,利用自制可替换平行极板电容器与阻抗分析仪构建系统测定模型,以辽-盐粳98为试验物料,测定不同极板材料、极板类型、极板绝缘性及通风网板网格尺寸条件下稻谷含水率与电容值间的数值关系。

首先探究极板材料与结构参数对电容值的影响,同时测定1×103~1×106Hz 频率段内稻谷的介电常数ε'与介质损耗因数ε"。

采用基于X-Y 共生距离(SPXY)算法划分样本集,对60个不同含水率稻谷样本按照比例2∶1划分为校正集和预测集,并利用无信息变量消除法(UVE )、UVE-SPA (连续投影法)联合筛选出ε'、ε"以及ε'和ε"结合变量的特征变量数及所选频率点,再以UVE 、SPA 和UVE-SPA 选取方法获得的频率数据作为因变量建立特征变量与含水率间支持向量回归(SVR )模型,最终对该支持向量机回归模型进行验证。

基于修正的G-K公式的组合机构自由度的计算

基于修正的G-K公式的组合机构自由度的计算

2023年第47卷第5期Journal of Mechanical Transmission基于修正的G-K公式的组合机构自由度的计算许兆棠(三江学院机械与电气工程学院,江苏南京210012)摘要用修正的Grübler-Kutzbach的机构自由度计算公式,计算组合机构的自由度,有时会产生错误的结果。

为了正确计算组合机构的自由度,并考虑计算组合机构自由度的方法便于工程技术人员学习和应用,根据修正的Grübler-Kutzbach的机构自由度计算公式,导出组合机构自由度的计算公式,得到机构自由度的一般计算公式;提出计算组合机构自由度的注意事项,给出了组合机构划分为基本机构的方法,并给出了算例。

修正的Grübler-Kutzbach的机构自由度计算公式只能用于1个基本机构的自由度计算及各个基本机构的公共约束相同的机构自由度计算;对于一般的组合机构,要用组合机构自由度的公式计算其自由度。

组合机构自由度等于各个基本机构自由度的和。

关键词组合机构自由度计算基本机构公共约束Calculation of Mobility on Combined Mechanisms Based on theModified G-K's FormulaXu Zhaotang(School of Mechanical and Electrical Engineering, Sanjiang University, Nanjing 210012, China)Abstract Using the modified Grübler-Kutzbach's formula of mechanism mobility, the calculation of the mobility of combined mechanism may produce wrong results. In order to correctly calculate the mobility of com⁃bined mechanism, and to consider that the calculation method of the mobility of combined mechanism is conve⁃nient for engineers for study and application, according to the modified Grübler-Kutzbach's formula of the mech⁃anism mobility, the calculation formula of mobility of combined mechanism is deduced. The general calculation formula of mobility of mechanism is obtained. The attentions of calculating mobility of combined mechanism are proposed. The method of dividing the combined mechanism into basic mechanisms is given. Numerical examples are given. The modified Grübler-Kutzbach's formula of mechanism mobility can only be used to calculate mobil⁃ity of a basic mechanism, and to calculate mobility of combined mechanism in that each basic mechanism has the same common constraint. The mobility of general combined mechanism should be calculated by the calcula⁃tion formula of mobility of combined mechanism. The mobility of combined mechanism is equal to the sum of the mobility of each basic mechanism.Key words Combined mechanism Mobility Calculation Basic mechanism Common constraint0 引言修正的Grübler-Kutzbach的机构自由度计算公式(简称修正的G-K公式)早已编入中外许多教科书中[1]115-116[2]42-48,并已为众多工程师所熟悉和运用。

生物技术工程实验室建设

生物技术工程实验室建设
生物系现有13名专职教师,具有实验室建设和项目实施的经验。为项目的顺利实施提供了技术支持。
(2)必要性
重庆市正在着力发展以生物工程、信息工程、环保工程为代表的高新技术产业,抓住中央直辖、三峡工程建设、西部大开发、城乡统筹发展四大历史性机遇,重庆“十一五”发展规划把生物技术作为未来高技术迎头赶上的重点。
2、学科专业现状
生物系现有副教授1名,博士5人,博士后2名,硕士4名,兼职教授3名,团队具有较强的科研和创新能力,近三年,在三大检索系统中共发表论文10多篇。学校特别为生物系制订了人才引进计划,近两年准备引进在生物技术方面有突出贡献的专家、教授2名,985重点院校毕业的博士或在211院校工作过的副教授5名,有计划安排现有的青年教师进入国内外著名的实验室或研究机构进修或学习,以此为基础,构建学院的核心创新团队,组建1个具有一定研究实力的生物制药研究中心,并以此为载体,大力发展本科教育,培养生物工程(以能源生物技术为主要研究方向)和制药工程(以医药生物技术为主要研究方向)本科专业的学生。
2007-2010年中央与地方共建高等学校共建专项资金项目
生物技术工程实验室建设
可行性论证报告
重庆科技学院
生物系
二○○七年六月二十日
一、总论
1、学科基本情况
原化学与生物工程学院是一个多学科及交叉学科并存的综合性学院,有化学与化学工程、生物技术、环境科学三个一级学科,以及交叉学科覆盖了全院八个专业:化学工程与工艺、应用化学、精细化工、工业分析、商品质量检测、生物制药、制药工程、环境工程,其中已有化学工程与工艺、应用化学两个本科专业。07年3月学校完成了学科专业结构布局调整,进行资源重组,由原来的化学与生物工程学院,新组建成立了化学化工学院和生物系。生物系现有15人,副教授1人,讲师7人,助教4人,全部பைடு நூலகம்有硕士学位,其中博士5人。现有生物制药、制药工程两个专业,2001年以来形成了以能力培养为主线,以基础知识的传授和学习能力的培养、工程观念和创新能力的培养为两个教学重心。全面体现“厚基础、宽口径、重实践、高素质、创造性”整体思路,突出本专业在新药研究与开发方面所形成的特色。

巴索切削油产品型号总汇

巴索切削油产品型号总汇

【巴索切削油】火花机油巴索电火花加工专用油Sorepi LM水溶性切削液Blasocut 2000 Universal Art.870Blasomill CMP 851/Blasomill CMP851Blasocut 2000 Universal SW Art.870-64Blaser Blasocut 2000 Universal-MD Art.870-20Blaser Basocut 2000 Universal Art.870-66lBlaser Blasocut 2000 CF-MD Art.875-20Blaser Blasocut 2000 CF SW Art.875-64Blaser Blasocut 2000 CF Art.875-66Blaser Blasocut 2000 Universal LF Art.870LFBlaser Blasocut 2000 Universal SW Art.870-64Blaser Blasocut 2000 SW Art.870SWBlaser Blasocut 4000 Strong Art.872-66Blaser Blasocut 4000 Strong SW Art.872-64Blaser Blasocut 4000 Strong SW Art.872SWBlaser Blasocut 4000 SW Art.872SWBlaser Blasocut 4000 Strong LF Art.872LFBlaser Blasocut 4000 Strong LF Art.872LFBlaser Blasocut Kombi Art.883-03Blaser Blasocut KombiBlaser Blasocut 2000 CF HDD Art.875-72Blasocut 2000 870-66Blasogrind 10 RZ巴索优质通用型磨削油Blasocut BC 25MDBlasocut 2000 CF-MD巴索通用型无氯切削液Grindex 10 巴索高性能全合成磨削液Vasco 1000巴索高性能切削液Grindex 10 CO 巴索高性能全合成磨削液Blasogrind HC 5巴索优质通用型磨削油Vascomill 42Blasocut BC 37 Mg巴索特殊型切削液Blasocut BC 35 Kombi SW巴索通用型切削液Blasocut BC 40 NF巴索高性能切削液Blasocut Kombi SW巴索水溶性的切削液Blasocut BC 20 SW巴索高性能切削液Blasocut BC 230通用型切削液Vascomill 22巴索高性能切削油Blasomill HD 10 CF巴索高性能矿物油基切削油Blasocut 2000 UniversalBlasogrind 10 RZ巴索优质通用型磨削油Blasogrind HC 10巴索优质通用型磨削油Blasocut 4000 Strong巴索高性能切削液Blasocut 2000 CF HDD巴索无氯切削液Blasocut 2000 Universal-MD巴索通用型切削液Synergy 15巴索高性能全合成切削液B-cool 645巴索半合成切削液Blasogrind HC 5巴索优质通用型磨削油油性切削油Blasomill HD 15 Art. 832Blasomill LCF 26Blasomill 10巴索高性能矿物油基切削油Vascomill 42 巴索高性能切削油Vascomill 22 巴索高性能切削油Vasco 1000巴索高性能切削液Blasomill CSF 10 巴索矿物油基切削油Blasomill VG 15•Blaser Blasogrin EX 300Blasogrin EX 300 XBlasomill LCF 16Blaser Blasomill LF 1Blaser Blasomill LF 2Blasomill CSF 22巴索矿物油基切削油Blasomill SK23Blasomill USK10Blaser Blasomill LCF 06Blasomill SK43Blaser Blasomill LF 2Blasomill SK13Blasomill LT46Blasomill LT32Blasomill LT22Blaser Blasomill LT10Blaser Blasomill LS 22Blaser Blasomill LF 4Blaser Blasomill LF 3Blasomill TLBBlaser Vascogrind SE 植物油基磨削油Blasomill 32巴索高性能矿物油基切削油Blasomill HD 15Blasomill HD 46巴索矿物油基非水溶性的切削液Blasomill CSF 22巴索矿物油基切削油Blasomill HD 10 CF巴索高性能矿物油基切削油Blasomill 10巴索高性能矿物油基切削油Blasomill 46巴索高性能矿物油基切削油乳化型切削液、磨削液Blasocut BC 20 SWBlasocut 2000 Universal SW全合成型切削液、磨削液浓缩剂...Synergy 15巴索(Blaser)切削油Blaser Grindex 10 CO 硬质合金专用磨削液 Art.1...Blasocut 2000 CF HDD 硬盘专用切削液 Art.875-7...Vascogrind SE 植物油基磨削油Blasomill HD CF 矿物油基无氯切削油巴索Blaser切削油产品总汇巴索Blaser切削油产品总汇巴索Blaser切削油产品总汇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MUC-9802-95802-05-09
9
- 13 -
The activities of corporate value-added through restructuring are primarily one-off rather than ongoing
¥ ¥ ¥ ¥ ¥
Identify potential for restructuring Single major intervention in the operations of business units Actively intervene to transform units Restructuring results in an attractive industry structure and/or enhanced competitive position Ultimately sell the unit once restructuring is complete, results are clear and it is shown that no sustainable position can be achieved
Facilitator file
Strategy Seminar
2nd Day
9
-1MUC-9802-95802-05-09
Strategy Seminar Presentation documents: Corporate strategy (Part I) Roland Berger & Partner
9
- 14 -
MUC-9802-95802-05-09
Models of corporate value added: shared proprietary skills
Active portfolio management
Shared proprietary skills Value added by: Ð transfer of unique knowledge Ð transfer of skills Models of corporate value added
Models of corporate value added
Shared activities
Requires no significant interrelationship between business units
Based on interrelationships between business units
Shared proprietary skills
Models of corporate value added
Shared activities
Requires no significant interrelationship between busineБайду номын сангаасs units
0 Based on interrelationships between business units
9
-8-
MUC-9802-95802-05-09
There are two different methods of corporate management for business units
Top-down "I think you do"
¥ How can a shared vision be created? ¥ How do we generate acceptable missions? ¥ What capabilities should be developed?
SBU strategic position
"You think and do, I coordinate" Bottom-up
¥ How do we make strategic investments? ¥ How do we build up competence?
9
-9-
MUC-9802-95802-05-09
MUC-9802-95802-05-09
9
- 11 -
Corporate strategy activities using the active portfolio management model:
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
Acquire attractive companies with good management Organise into autonomous units with compensation based on units« results Inject capital and promote professionalism Provide objective review Categorize businesses based on competitive position Allocate resources accordingly Better access to capital markets Political support
9
-7-
MUC-9802-95802-05-09
The central issue in corporate strategy is how the corporation adds competitive value to its businesses
Premises of corporate strategy: ¥ ¥ ¥ Competition occurs at the business level Shareholders can diversify directly at low cost Being part of a diversified company inevitably involves costs for business units
There are four major models of corporate value-added
Active portfolio management
Shared proprietary skills
Example: VIAG
Example: 3M Corp.
Restructuring
Models of corporate value added
Shared activities
Example: Metallgesellschaft
Example: Walt Disney Company
Requires no significant interrelationship between business units
Based on interrelationships between business units
Roland Berger & Partner GmbH - International Management Consultants
Barcelona - Beijing - Berlin - Brussels - Bucharest - Budapest - Buenos Aires - DŸsseldorf - Frankfurt - Hamburg - Helsinki - Hong Kong - Kiev - Lisbon - London Madrid - Milan - Moscow - Munich - New York - Paris - Prague - Riga - Rome - S‹o Paulo - Shanghai - Stockholm - Stuttgart - Tel Aviv - Tokyo - Vienna
Restructuring
Shared activities
Requires no significant interrelationship between business units
Corporate strategy must produce a clear and offsetting gain in terms of competitive advantage for the business units which exceeds the benefits of alternative management structures
"Competitive" or business strategy ¥ How to compete in individual sectors
"Group" or corporate strategy
¥
Overall strategy of a diversified firm Ð Evaluation of business portfolio Ð Acquisition of new business Ð Merger Ð Restructuring Ð etc.
MUC-9802-95802-05-09
9
- 10 -
Models of corporate value added: active portfolio management
Active portfolio management Value added through: Ð supplying capital Ð planning and budgeting requirements Ð imposing management discipline Restructuring
9
- 12 -
MUC-9802-95802-05-09
Models of corporate value added: Restructuring
Active portfolio management
相关文档
最新文档