AP1000与EPR简介

合集下载

科普AP1000核技术

科普AP1000核技术

托卡马克装置
磁约束
第三代反应堆开发背景
一代:核电站的开发与建设开始于上世纪50年代。 1954年,前苏联建成电功率为五千千瓦的实验性 核电站;1957年,美国建成电功率为九万千瓦的 希平港原型核电站。这些成就证明了利用核能发 电的技术可行性。国际上把上述实验性和原型核 电机组称为第一代核电机组。
AP1000反应堆设计特点
AP1000 是由美国西屋公司开发的先进的非能动的 压水堆(Advanced Passive PWR)。AP1000在传 统成熟的压水堆核电技术的基础上,采用“非能
动”的安全系统。安全系统非能动化理念的引入,
使核电站安全系统的设计发生了革新的变化:在
设计中采用了非能动的严重事故预防和缓解措施;
(6)施工建设模块化以缩短工期
核电建设工期的长短对其经济性有显著影响。因 此,新的核电机组从设计开始就考虑如何缩短工 期。有效办法之一就是改变传统的把单项设备逐 一运往工地安装方式,向模块化方向发展:以设 计标准化和设备制造模块化的方式尽可能在制造 厂内(条件较工地好)组装好,减少现场施工量 以缩短工期。美国和日本联合建设的ABWR机组已 成功地采用了这种技术。美国AP1000也将采用模 块化设计、建造技术,据称其工期可缩短为48个 月。
“人类于此首次完成自持链 式反应的实验并因而肇始
了可控的核能释放。”
“芝加哥”第 一号
“反应堆之父” 费米
核能和平利用的历程 全世界目前有核电站441多座,占全世界电力供应的 17上1%9,世51纪年(7,截0年美止代国20中利05期用年,一1月进座)入生了产发钚展的核反电应站堆的高余潮热试验发电 1954年,苏联建成世界上第一座核电站 美国、英国和法国相继建成一批核电站

AP1000和EPR仪控系统简介与对比

AP1000和EPR仪控系统简介与对比

第25卷第10期电力科学与工程Vol.25,No.10742009年10月Electric Power Science and EngineeringOct.,2009收稿日期:6作者简介:李臻(-),男,广东省电力设计研究院电控部热控室AP1000和EPR 仪控系统简介与对比李臻(广东省电力设计研究院,广东广州510663)摘要:对核电技术AP1000和EPR 仪控系统在功能分层、安全分级、结构3个方面进行了介绍及简单对比。

关键词:AP1000;EP R ;I&C ;DCS ;功能层次;安全分级;控制系统结构中图分类号:TM613;TP273文献标识码:A0引言AP1000(Advanc ed Passive Plant ,先进非能动型压水堆)是西屋公司设计开发的、满足美国“先进轻水堆用户要求文件(URD )”的一种两环路1000MW 级压水堆。

EPR (European PressurizedReactor ,欧洲压水堆)是AREVA 和SIEMENS 联合设计开发的满足欧洲“欧洲用户对轻水堆核电厂的要求文件(EUR )”的一种四环路1750MW 级压水堆。

A P1000和EPR 是国际上公认的满足第三代核电厂安全性要求的两种技术流派,并且在我国都已经有了项目依托。

AP1000和EPR 都采用了分散控制系统(D CS )作为仪控系统的核心。

本文从仪控系统功能层次、安全分级、仪控系统结构等三个方面对AP1000和EPR 仪控系统做一个简单介绍和对比。

1AP1000和EPR 仪控系统功能层次1.1AP1000仪控系统功能层次AP1000仪控系统功能层次在纵向上可分为4层:(1)过程接口层:仪控系统的最底层,直接与现场的传感器以及执行机构相连。

(2)控制与数据处理层:主要有两个功能,一是接受过程接口层的数据,进行处理后上传至主控室,二是接受主控室操纵员的命令或自动控制系统的命令经过程接口层下达到核电厂的各种执行机构。

AP1000安全系统综述及其与EPR关键措施对比

AP1000安全系统综述及其与EPR关键措施对比

AP1000安全系统综述AP1000安全系统综述AP1000安全系统设计理念如下:•安全系统非能动化•降低维修要求•简化安全系统配置•减少安全支持系统•减少安全级设备及抗震厂房•提高可操作性本文不考虑传统安全系统,只对非能动安全系统作介绍。

一.AP1000非能动安全系统简介AP1000非能动安全系统的优点可概括如下:(1)极大地降低了人因失误发生的可能性非能动安全系统不需要操纵员的行动来缓解设计基准事故,减少了事故发生后,由于人为操作错误而导致事件升级的可能性。

AP1000在事故条件下允许操纵员的不干预时间高达72 h,而对于已经运行的第二代或二代+核电厂,此不干预时间仅为10^30 mina(2)大大地提高了系统运行的可靠性非能动安全系统利用自然力驱动,提高了系统运行的可靠性,而不需要采用泵、风机、柴油机、冷冻水机或其他能动机器,减少了因电源故障或者机械故障而引起的系统运行失效。

由于非能动安全系统只需少量的阀门连接,并能自动触发,同时这些阀门遵循“失效安全”的准则,在失去电源或接收到安全保护启动信号时开启。

(3)取消了安全级的交流应急电源非能动安全系统的启动和运行无需交流(AC)电源,AP1000的设计取消了安全级的应急柴油发电机组。

AP1000非能动安全系统子系统如下:•非能动堆芯冷却系统•非能动安全壳冷却系统•非能动主控制室应急可居留系统•非能动裂变产物去除系统•非能动氢复合子系统•非能动反应堆压力壳防熔穿系统二.非能动堆芯冷却系统AP1000的非能动堆芯冷却系统(PXS)由非能动堆芯余热排出系统和非能动安全注人系统两部分组成。

PXS的主要作用就是在假想的设计基准事件下提供应急堆芯冷却,为此,PXS具有以下功能:·应急堆芯余热排出·RCS应急补水和硼化·安全注入·安全壳内pH值控制PXS安全相关功能的设计基于以下考虑(设计基准):<1> 即使在发生设计基准事件同时伴随不太可能的最大极限单一故障事件时,PXS也有多重的部件来执行其安全相关的功能。

AP1000和EPR两种核电技术的比较

AP1000和EPR两种核电技术的比较

AP1000和EPR两种核电技术的比较1、AP1000和EPR的安全系统采用了两种完全不同的设计理念AP1000安全系统采用“非能动”的设计理念,更好地达到“简化”的设计方针。

安全系统利用物质的自然特性:重力、自然循环、压缩气体的能量等简单的物理原理,不需要泵、交流电源、1E级应急柴油机,以及相应的通风、冷却水等支持系统,大大简化了安全系统(它们只在发生事故时才动作),大大降低了人因错误。

“非能动”安全系统的设计理念是压水堆核电技术中的一次重大革新。

EPR安全系统在传统第二代压水堆核电技术的基础上,采用“加”的设计理念,即用增加冗余度来提高安全性。

安全系统全部由两个系列增加到四个系列,EPR在增加安全水平的同时,增加了安全系统的复杂性。

核电站安全系统的设计基本上属于第二代压水堆核电技术,是一种改良性的变化。

2、AP1000和EPR的安全性的比较由于AP1000和EPR的安全系统采用了两种完全不同的设计理念AP1000 和E PR的安全性有较大的差别。

AP1000在发生事故后的堆芯损坏频率为5.0894×10-7/堆年比EPR的1.18×10-6 /堆年小2.3倍,大量放射性释放概率为5.94×10-8/堆年也比EPR的9.6×10-8/堆年小1.6倍(而且AP1000采用的设备可靠性数据均比较保守);核电站发生事故后,AP1000操作员可不干预时间高达72小时,而EPR为半小时;AP1000 在发生堆芯熔化事故时,能有效地防止反应堆压力容器(第二道屏障)熔穿,将堆芯放射性熔融物保持在反应堆压力容器内,使放射性向环境释放的概率降到最低;而EPR不防止反应堆压力容器熔穿,堆芯放射性熔融物暂时滞留在堆腔内,然后采取措施延缓熔融物和安全壳(第三道屏障)底板的混凝土相互作用,防止安全壳底板熔穿。

AP1000的人因失误占堆熔频率的7.74%,共因失效占堆熔频率的57%,而EP R分别为29%和94%,AP1000 明显优于EPR。

AP1000和EPR简介

AP1000和EPR简介

AP1000和EPR简介2004.7.30目录1 世界核电站可划分为四代1.1 第1代核电站1.2 第2代核电站1.3 第3代核电站1.4 第4代核电站2第3代核电站最高层次的安全设计要求2.1第3代核电站的共同要求:2.2改革型的能动(安全系统)核电站的要求2.3先进型的非能动(安全系统)核电站的要求3 AP1000和EPR的设计理念4 AP10004.1 AP1000开发情况4.2 AP1000技术描述5 EPR5.1 EPR开发情况5.2EPR技术描述6 AP1000和EPR 设计自主化能力的初步分析7 AP1000和EPR设备制造本地化能力的初步分析8 EPR基础设计报告和AP1000设计控制文件的目录比较9 AP1000和EPR的主要技术参数比较表10 AP1000和EPR核电站严重事故预防和缓解对策比较附件:第四代核电站超临界水反应堆(SCWR)简介附表:AP1000设计许可证时间表AP1000和EPR简介1、世界核电站可划分为四代1.1 第1代核电站:自50年至60年代初苏联、美国等建造的第一批单机容量在300MWe的原型核电站,如美国的希平港核电站和英第安角1号核电站,法国的舒兹(Chooz)核电站,德国的奥珀利海母(Obrigheim)核电站,日本的美浜1号核电站等。

1.2 第2代核电站:自60年代末至70年代世界上建造了大批单机容量在600-1400MWe的标准核电站,以美国为代表的Model 212(600MWe,两环路压水堆)、Model 312(1000MWe,3环路压水堆,采用12英尺燃料组件),Model 314 (1040MWe,3环路压水堆,采用14英尺燃料组件),Model 412(1200MWe,4环路压水堆,采用12英尺燃料组件)、Model 414(1300MWe,4环路压水堆,采用14英尺燃料组件)、System80(1050MWe,2环路压水堆)以及一大批沸水堆(BWR)均可划入第2代核电站范畴。

AP1000先进性及主回路介绍

AP1000先进性及主回路介绍
把堆芯正常运行时产生的热量传输给蒸汽 发生器、将蒸汽发生器二次侧的水加热并 转化为驱动汽轮发电机组的饱和蒸汽。
一回路压力边界作为反应堆内产生的放射 性释放的屏障,并用来在整个电厂运行期 间提供高度的整体性。
系统参数
参数 反应堆功率 NSSS功率 电功率 净电功率 运行压力 堆出口温度 堆入口温度 环路流量 总蒸汽流量 蒸汽发生器出口蒸汽压力 蒸汽发生器出口蒸汽温度 主泵电机功率
针对安全壳旁路事故:AP1000通过改进安全壳隔离系统设 计、减少安全壳外LOCA发生等措施来减少事故的发生。
5、 采用成熟的数字化控制技术
AP1000仪控系统采用成熟的数字化技术设计,通过多样 化的安全级、非安全级仪控系统和信息提供、操作避免 发生共模失效。仪表和控制系统采用数字化的分布式控 制系统(DCS)。采用成熟的、先进的技术(如远程I/O 技术、网络通讯技术、智能诊断技术等),满足电厂各 种运行模式及事故工况下的监视和控制要求。
6、 模块化建造提高施工效率和降低建
设周期
AP1000在建造中大量采用模块化建造技术。模块 建造是电站详细设计的一部分,整个电站共分4种 模块类型,其中结构模块122个,管道模块154个, 机械设备模块55个,电气设备模块11个。模块化 建造技术使建造活动处于容易控制的环境中,在 制作车间即可进行检查,经验反馈和吸取教训更 加容易,保证建造质量。平行进行的各个模块建 造大量减少了现场的人员和施工活动。
AP1000一回路示意图
图 反应堆冷却剂系统
反应堆简介
反应堆用于实现可控的链式裂变反应并且将 反应产生的能量通过燃料棒包壳传递给一 回路冷却剂。
反应堆主要包括: 反应堆压力容器; 一体化顶盖; 堆芯; 堆内构件。

三代核电技术AP1000与EPR简介

三代核电技术AP1000与EPR简介

AP1000与EPR简介1.AP1000与EPR简介1.1AP1000西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。

2002年3月,核管会已经完成AP1000设计的预认证审查(Pre-certification Review),AP600有关的试验和分析程序可以用于AP1000设计。

2004年12月获得了美国核管会授予的最终设计批准。

AP1000为单堆布置两环路机组,电功率1250MWe,设计寿命60年,主要安全系统采用非能动设计,布置在安全壳内,安全壳为双层结构,外层为预应力混凝土,内层为钢板结构。

AP1000主要的设计特点包括:(1)主回路系统和设备设计采用成熟电站设计AP1000堆芯采用西屋的加长型堆芯设计,这种堆芯设计已在比利时的Doel4号机组、Tihange3号机组等得到应用;燃料组件采用可靠性高的Performance+;采用增大的蒸汽发生器(D125型),和正在运行的西屋大型蒸汽发生器相似;稳压器容积有所增大;主泵采用成熟的屏蔽式电动泵;主管道简化设计,减少焊缝和支撑;压力容器与西屋标准的三环路压力容器相似,取消了堆芯区的环焊缝,堆芯测量仪表布置在上封头,可在线测量。

(2)简化的非能动设计提高安全性和经济性AP1000主要安全系统,如余热排出系统、安注系统、安全壳冷却系统等,均采用非能动设计,系统简单,不依赖交流电源,无需能动设备即可长期保持核电站安全,非能动式冷却显著提高安全壳的可靠性。

安全裕度大。

针对严重事故的设计可将损坏的堆芯保持在压力容器内,避免放射性释放。

在AP1000设计中,运用PRA分析找出设计中的薄弱环节并加以改进,提高安全水平。

AP1000考虑内部事件的堆芯熔化概率和放射性释放概率分别为5.1×10-7/堆年和5.9×10-8/堆年,远小于第二代的1×10-5/堆年和1×10-6/堆年的水平。

简化非能动设计大幅度减少了安全系统的设备和部件,与正在运行的电站设备相比,阀门、泵、安全级管道、电缆、抗震厂房容积分别减少了约50%,35%,80%,70%和45%。

我国第三代核电技术一览

我国第三代核电技术一览

我国第三代核电技术一览我国的核电技术路线是在上世纪80年代确定走引进、消化、研发、创新的道路的。

经过20余年的努力,通过对引进的二代法国压水堆技术的消化吸收,取得了巨大的技术进步,实现了60万千瓦压水堆机组设计国产化,基本掌握了百万千瓦压水堆核电厂的设计能力。

目前我国有五种第三代核电技术拟投入应用,他们分别是 AP1000、华龙一号、CAP1400、法国核电技术(EPR)以及俄罗斯核电技术(VVER)。

北极星电力网小编整理五种核电技术及特点供核电业界人士参考。

1、AP1000AP1000是美国西屋公司研发的一种先进的“非能动型压水堆核电技术”。

西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。

该技术在理论上被称为国际上最先进的核电技术之一,由国家核电技术公司负责消化和吸收,且多次被核电决策层确认为日后中国主流的核电技术路线。

国家核电技术公司的AP1000和中广核集团与中核集团共推的华龙一号被默认为中国核电发展的两项主要推广技术,两者一主一辅,AP1000技术主要满足国内市场建设和需求,华龙一号则代表中国核电出口国外。

作为国内首个采用AP1000技术的依托项目三门核电一号机组原计划于2013年底并网发电,但由于负责AP1000主泵制造的美国EMD公司多次运抵中国的设备都不合格,致使三门一号核电机组如今已经延期2年。

目前,除在建的两个项目(三门、海阳)外,三门二期、海阳二期、广东陆丰、辽宁徐大堡、以及湖南桃花江等内陆核电项目均拟选用AP1000技术。

AP1000技术主要目标工程包括:海阳核电厂1-2号机组、三门核电厂1-2号机组、红沿河核电厂二期项目5-6号机组、三门核电厂二期项目、海阳核电厂二期项目、徐大堡核电厂一期项目以及陆丰核电厂一期项目等。

其中海阳核电厂1-2号机组和三门核电厂1-2号机组为正在建设的核电项目,其余五个为有望核准的核电项目。

【三门核电站】浙江三门核电站是我国首个采用三代核电技术的核电项目。

AP1000与EPR专设安全系统的差异性比较和分析

AP1000与EPR专设安全系统的差异性比较和分析

AP1000与EPR专设安全系统的差异性比较和分析摘要:以美国西屋公司开发的先进压水堆(AP1000)和法德两国联合开发的欧洲压水堆(EPR)为典型代表的第三代核电技术都在专设安全系统的设计上进行了革新或改进,旨在提高核电站的总体安全水平和可利用率。

本文简要介绍了AP1000和EPR专设安全系统的组成和特点,比较了两者之间的差异,并分析了这些差异对于核电站安全、设备可靠性及成本控制的影响。

关键词:核电站;AP1000;EPR;专设安全系统;差异性自20世纪90年代开始,为了消除广大公众因切尔诺贝利核事故带来的对核能利用的疑虑,提高核电应用的安全性和经济性,世界核电界集中力量对核电站专设安全系统和严重事故的预防与后果缓解进行了研究,美国和欧洲先后提出了符合“用户要求”[1-2]的概念,并在此基础上,开发了安全性、经济性更好的第三代核电技术。

第三代核电技术通过采用非能动安全系统或增加安全系统冗余度、增设缓解严重事故后果的工程措施以及应用数字化仪控系统等先进技术,降低核电站的严重事故风险,实现更高的安全目标,使核电技术向更安全、更经济的方向发展。

第三代核电技术问世以后,受到全球核电用户的普遍关注,包括中国在内的一些国家已经选用或准备选用第三代核电技术进行新的核电机组建设。

第三代核电技术以美国西屋公司开发的先进压水堆(AP1000)和法德两国联合开发的欧洲压水堆(EPR)为典型代表。

AP1000在传统成熟的两环路压水堆核电技术的基础上,引入安全系统非能动化理念。

与传统的压水堆安全系统相比[3],非能动安全系统更加简单,它们不需要现有核电站中那些种类繁多的安全支持系统,使核电站安全系统的设计发生了革新性的变化。

EPR 主要以法国N4核电站和德国Konvoi核电站为考,充分吸收了法国和德国多年核电设计、建造和运行经验,通过渐进式的模式改进安全系统的设计,提高核电站的总体安全水平和可利用率。

1AP1000专设安全系统的组成和特点与传统核电站相比,APl000的非能动安全系统在电厂安全性和投资保护方面有了重大的提高,无需操纵人员行动或交流电支持即可建立并长期维持堆芯冷却和安全壳的完整性。

AP1000与 EPR 仪控系统平台对比分析

AP1000与 EPR 仪控系统平台对比分析

AP1000与 EPR 仪控系统平台对比分析周晓宁【摘要】The three generation nuclear power technology is currently under construction set higher safety tech-nology,instrument control system is one of the most important system in nuclear power plant.Based on the AP1000 and EPR instrument control system platform overallstructure,software and hardware aspects of the analysis and comparing,the different point of the three generation of nuclear instrument control system plat-form was compared,AP1000 instrument control system platform was more safe and reliable.%三代核电技术是目前在建机组安全性较高的技术,而仪控系统是核电站中重要系统之一。

通过对AP1000和 EPR 仪控系统的平台总体结构、软硬件等方面进行分析并做了对比,比较了三代核电仪控系统平台的不同点,得出 AP1000仪控系统平台更加安全、可靠。

【期刊名称】《电力与能源》【年(卷),期】2014(000)006【总页数】5页(P757-760,763)【关键词】AP1000;EPR;仪控系统【作者】周晓宁【作者单位】中电投电力工程有限公司,海阳 265100【正文语种】中文【中图分类】TP311.52随着日本福岛核泄漏事故的发生,我国要求核电一律采用三代核电技术,而AP1000技术是我国引进的第三代核电技术。

核反应堆堆型EPR、AP1000、CPR1000比较

核反应堆堆型EPR、AP1000、CPR1000比较

环保性
• EPR的堆芯设计有利于提高燃料的利用率, 减少铀的使用量,降低钚和长寿命废物的 产量;有利于控制和降低钚的储量;由于 EPR的技术寿期将达到60年,在生产同等电 力的情况下,EPR退役后的最终废物数量将 减少;利用核能有利于储备本世纪中叶将 逐渐枯竭的化石燃料。
AP1000
总体概况
• AP1000是西屋公司开发的一种双环路1000 MW的压水堆核电机组,其主要特点有:采 用非能动的安全系统,安全相关系统和部 件大幅减少、具有竞争力的发电成本、60 年的设计寿命、数字化仪空室、容量因子 高、易于建造(工厂制造和现场建造同步进 行)等,其设计与性能特点满足用户要求文 件(URD)的要求。
相对简单性能比 较
安全性——设计理念
• AP1000安全系统采用“非能动”的设计理 念,更好地达到“简化”的设计方针。安全系 统利用物质的自然特性:重力、自然循环、 压缩气体的能量等简单的物理原理,不需 要泵、交流电源、1E级应急柴油机,以及 相应的通风、冷却水等支持系统,大大简 化了安全系统(它们只在发生事故时才动 作),大大降低了人因错误。“非能动”安全 系统的设计理念是压水堆核电技术中的一 次重大革新。

3. 降低运行和检修人员的辐照剂量 EPR运行和检修人员的辐射防护工作将进 一步加强:集体剂量目标确定为0.4人希弗特/ 堆年,与目前经济合作与发展组织国家核电站 的平均剂量(1人希弗特/堆年)相比,将降低 一倍以上。 目前法国核电站检修人员的人希弗特集体 剂量水平约合人均剂量5毫希弗特/年 (5mSv)。换言之,法国核电站工作人员的 平均剂量等同于法国天然放射性当量。
• 5、EPR的电功率约为1600兆瓦。具有大规模电 网的地区适于建设这种大容量机组。另外,人 口密度大、场址少的地区也适于采用大容量机 组。 • 6、EPR可使用各类压水堆燃料:低富集铀燃料 (5%)、循环复用的燃料(源于后处理的再 富集铀,或源于后处理的钚铀氧化物燃料 MOX)。EPR堆芯可全部使用MOX燃料装料。 这样,一方面可实现稳定乃至减少钚存量的目 标,同时也可降低废物的产量; • 7、EPR的技术寿期为60年,目前在运行的反应 堆的技术寿期为40年。由于设备方面的改进, EPR运行40年无需更换重型设备。

CPR1000、AP1000和EPR1000的分级标准

CPR1000、AP1000和EPR1000的分级标准

C级 非安全级
仪控设备
1E 级 NC(含 SR 类) * 注 3
C级 非安全级(含 D 类)
构筑物
LS
NC
C 级(安全级为 B 级) 非安全级
抗震Ⅰ类
C-I
抗震分类
抗震Ⅱ类
C-II
非核抗震类
NS
RCC-M
ASME 第 III 卷
B 篇:1 级设备
NB 篇:1 级设备
规 安全级机械设备

C 篇:2 级设备 D 篇:3 级设备
总体技术规范名称
CPR1000 机组
EPR1000 机组
压水堆核电站系统设计和建造规则 RCC-P(1991 年第四版+1995 修订) PSAR 各章第 0 节
压水堆核电站核岛机械设备设计和 RCC-M(2000 年版+2002 年版补遗)
建造规则
RCC-M(2000 年 版 +2002、2005、2007 年版补遗)
CPR1000、AP1000 和 EPR1000 的物项分级和标准 1、CPR1000 和AP1000 的物项分级
1/2
项目
CPR1000 * 注 1
AP1000
分级依据
三项基本功能:反应性控制、余热排出和放射性包容
分级方法
以确定论方法为主,辅以概率论方法和工程判断
遵循的法规和标准
国内相关法规和标准 法国 RCC 系列标准 RCC-M 借鉴了 ASME 吸收了法国 工业发展实践中所取得的成果
压水堆核电站土建设计和建造规则 RCC-G(1986 年版)
ETC-C(2006 年 B 版)
RCC-I(1983 年版+1987 年应用,对
压水堆核电站防火设计和建造规则

第三代压水堆核电站AP1000简介1

第三代压水堆核电站AP1000简介1

– 下部堆芯支撑板
AP1000的RCS主要特点
在RCS中增设了多级自动降压系统,确保非能动堆芯冷却系统 运行,实现高、中、低压阶段的安注功能。 冷却剂管道采用4进2出的布置,即每一环路有两条冷管段和一 条热管段。适应于采用屏蔽泵、有利于泵的维护及半管运行。 采用屏蔽电机泵作为反应堆冷却剂泵。具有较高的运行寿命和 可靠性,减少维修工作量,消除了因轴封水失效或全厂断电情 况下冷却剂泄漏的潜在根源,提高了电厂的安全性和可用率。 加大了稳压器的容积,提高了RCS承受瞬态工况的能力,减少 了非计划停堆次数。 采用一体化顶盖技术,取消了堆芯下部(压力容器底部)贯穿 件,将压力容器泄漏的可能性降至最低,降低堆芯裸露风险。
AP1000主要特点---简化
系统、设备、厂房等物项减少--降低电厂建造成本
设备、厂房数量比较
项目 安全级阀 各类泵 安全级管道 电缆 抗震厂房容积 单位 (只) (台) (m) (106× m) (m3) 1000MW 参考电站 2844 280 33528 2.77 359773 AP1000 592 180 5791 0.366 158640
AP1000非能动安全系统
非能动堆芯冷却系统
AP1000非能动安全系统
① 非能动余热排出系统
非能动余热排出系统,在电厂瞬态、事故工况下,当反 应堆正常余热排出系统失效时,利用冷热流体的密度差形 成的驱动力,自动排出堆芯的余热。(自然循环) 该系统主要设备是非能动余热排出热交换器和相连的管道、 阀门。热交换器布置在换料水箱内,可大量吸收反应堆内 的余热。 当换料水箱内的水达到饱和温度时,箱内产生的蒸汽进入 反应堆钢制安全壳,并由安全壳的壁面冷却,使凝水沿钢 壳内壁向下流,回到换料水箱内,继续作为热交换器的冷 却介质。 钢安全壳外,设有非能动安全壳冷却系统,通过给安全壳 外喷水和自然对流的空气带走CV热量,实现反应堆余热 的排出。

AP1000和EPR两种核电技术的比较

AP1000和EPR两种核电技术的比较

AP1000和EPR两种核电技术的比较1、AP1000和EPR的安全系统采用了两种完全不同的设计理念AP1000安全系统采用“非能动”的设计理念,更好地达到“简化”的设计方针。

安全系统利用物质的自然特性:重力、自然循环、压缩气体的能量等简单的物理原理,不需要泵、交流电源、1E级应急柴油机,以及相应的通风、冷却水等支持系统,大大简化了安全系统(它们只在发生事故时才动作),大大降低了人因错误。

“非能动”安全系统的设计理念是压水堆核电技术中的一次重大革新。

EPR安全系统在传统第二代压水堆核电技术的基础上,采用“加”的设计理念,即用增加冗余度来提高安全性。

安全系统全部由两个系列增加到四个系列,EPR在增加安全水平的同时,增加了安全系统的复杂性。

核电站安全系统的设计基本上属于第二代压水堆核电技术,是一种改良性的变化。

2、AP1000和EPR的安全性的比较由于AP1000和EPR的安全系统采用了两种完全不同的设计理念AP1000 和E PR的安全性有较大的差别。

AP1000在发生事故后的堆芯损坏频率为5.0894×10-7/堆年比EPR的1.18×10-6 /堆年小2.3倍,大量放射性释放概率为5.94×10-8/堆年也比EPR的9.6×10-8/堆年小1.6倍(而且AP1000采用的设备可靠性数据均比较保守);核电站发生事故后,AP1000操作员可不干预时间高达72小时,而EPR为半小时;AP1000 在发生堆芯熔化事故时,能有效地防止反应堆压力容器(第二道屏障)熔穿,将堆芯放射性熔融物保持在反应堆压力容器内,使放射性向环境释放的概率降到最低;而EPR不防止反应堆压力容器熔穿,堆芯放射性熔融物暂时滞留在堆腔内,然后采取措施延缓熔融物和安全壳(第三道屏障)底板的混凝土相互作用,防止安全壳底板熔穿。

AP1000的人因失误占堆熔频率的7.74%,共因失效占堆熔频率的57%,而EP R分别为29%和94%,AP1000 明显优于EPR。

AP1000与EPR堆芯中子注量率测量系统的差异性比较和分析

AP1000与EPR堆芯中子注量率测量系统的差异性比较和分析

测器 , E R则把模式 ( ) 3 结合起来使 而 P 2 和( )
用。
1 A 1o P oO堆 芯 中 子 注 量 率 系 统 的 组 成 和 特点
A 10 P 00堆 芯 中子 注 量 率 测 量 采 用 的 是 固
属铑 , , 钒 钴等。其中模式 ( ) ( ) 1 和 2 只能实现 周期性测量 , 采集的数据处理是离线进行 的, 模
的延迟补偿处理 , 还可以参 与到反应堆 的保护
和控 制 。
自2 世纪 9 o 0年代开始 , 国和欧洲先后 美 提出了符合“ 用户要求” 的概念 , 并在此ห้องสมุดไป่ตู้础上 开发 了安全性、 经济性更好 的第三代核 电技术 ,
以美 国西 屋 公 司 开 发 的 先 进 压 水 堆 ( P 00 A 10 )
测量 ,P 00选 用 了模式 ( ) A 10 3 固定 式 自给 能 探
重要作用。用 于反应堆的堆芯中子注量率测量 的模式一般有 3种: 1 移动式微 型裂变室 , () 常 用的中子灵敏材料是掰U;2 气动 活化球 , () 常
用 的 中子灵 敏 材 料 是 金 属 钒 球 ;3) 定 式 自 ( 固 给 能探 测器 , 多种 中子灵 敏 材料 可选 择 , 有 有金
黄 美 良, 金思奇 , 秦 戈
( 中广核工程设计有 限公 司 , 广东深圳 5 8 2 ) 10 9
摘要 : 堆芯 中子注 量率测量系统是核 电站监测 系统 的一个重 要组成部 分。它主要测 量反应堆堆 芯 的中子注量率分布 , 测堆芯功率畸 变 , 监 积累燃 耗数 据 , 对核 电站 的安全 运行 及经 济性起 到重要 作用 。 论文 简单介 绍了 A 10 P 00和 E R堆芯中子注量率测 量系统 的组成 和特点 , 析 比较 了两者之 间的差异 P 分

EPR1000简介

EPR1000简介

降低堆芯熔化概率方面的设计选择:
2.针对有关设备和系统采取的选择旨在减少 不正常工况恶化为事故的可能
破裂排除的概念:反应堆冷却剂系统的设 计、锻造管道及部件的采用、高机械性能材 料的使用、无缝工艺和方案的使用、复杂的 布置再综合采取早期泄漏检测,并加强在役 检查,实质性根除了反应堆冷却剂管道双端 剪切断裂情况的发生
主系统设计:
主系统的设计、环路布置和主设备的设计非常 接近于现有设计,因此,可以认为是成熟技术。
设计方面遵循了简单性、实体隔离、多样化和 冗余原则,任何安全级系统功能都能被另一系统 (或一组系统)所备用。
主系统特点 1.主系统设计和 环路布置类似 2.主设备增加 自由容积 3.瞬态和事故 工况下延长 不干预时间
改进人机界面、全计算机化主控室。
主要的严重事故对策是:
根除可能导致早期大规模释放的情况,包括高 压熔堆、高能堆芯熔融物/水相互作用导致蒸汽爆炸、 在安全壳内的氢爆燃;
一旦出现熔堆事故后,堆芯熔融物在压力容器 外扩展,要把堆芯熔融物收集起来,冷却,稳定, 保证反应堆安全壳完整性。
In-Vessel Retention of Core Damage 堆芯熔融物 保持在反应 堆压力容器 内 (IVR)
3严重事故预防与缓解措施 (1)氢气控制 (2)防止压力容器高压破损 (3)减缓压力容器破损的后果
EPR设计基本原则
1. 通过采用确定论和概率论方法,使EPR比现有核电厂有 更高的安全水平;
2. 通过限制严重事故对核电厂本身可能造成后果缓解假想 严重事故;
3. 降低发电成本,使核能与其它一次能源相比具有竞争性。
Safety & relief valves
EFWS tank

我国正在使用的五种第三代核电技术

我国正在使用的五种第三代核电技术

我国正在使用的五种第三代核电技术作者:来源:《中国经济周刊》2015年第17期1. AP1000技术AP1000是美国西屋公司研发的一种“非能动型压水堆核电技术”。

2003 年,中共中央作出引进美国西屋 AP1000 技术、合作建设自主化依托项目 4 台机组、在消化吸收引进技术基础上自主创新、成立国家核电技术公司等4项决定。

目前我国应用AP1000技术的主要目标工程包括:山东海阳核电厂1、2号机组和浙江三门1、2号机组。

2. CAP1400CAP1400型压水堆核电机组是国家核电技术公司在消化、吸收、全面掌握我国引进的第三代先进核电AP1000非能动技术的基础上,通过再创新开发出具有我国自主知识产权、功率更大的非能动大型先进压水堆核电机组。

目前,我国应用CAP1400技术的项目为山东荣成CAP1400示范项目1、2号机组,单机容量140万千瓦,设计寿命60年。

该项目已于2014年7月开工建设。

3. 华龙一号“华龙一号”源自中广核 ACPR1000+与中核 ACP1000 两种自主开发的技术,而这两种技术都是由法国阿海珐公司二代 M310 技术改进而来,后者有近20年的发展历史。

“华龙一号”是在我国30余年核电科研、设计、制造、建设和运行经验的基础上,充分借鉴国际三代核电技术先进理念,采用国际最高安全标准研发设计的三代核电机型。

根据国家有关部门的批复,“华龙一号”将在福建福清 5、6 号机组上首堆示范落地。

4. 法国核电技术(EPR)EPR是与美国AP1000并列的当代先进的三代核电技术,是法马通核能公司和西门子联合开发的反应堆,是在国际上最新型反应堆(法国N4和德国建设的Konvoi反应堆)的基础上开发的,吸取了核电站运行30多年的经验。

广东台山核电站一期工程就采用的EPR技术,该工程已于2009年底正式开工。

5. 俄罗斯核电技术(VVER)VVER是前苏联所发展的压水动力堆的简称。

20世纪90年代,俄罗斯在VVER- 1000基础上先后推出了AES-91(V- 428)和AES-92(V- 412)两种机型。

压水堆核电厂完

压水堆核电厂完

非能动安全壳冷却系统
堆 腔 充 水 系 统
堆腔淹没技术
模块化施工,工期48个月
三、EPR
三、EPR
高功率(1500MWe—1700MWe) •4通道安全系统 •双层安全壳 •严重事故预防及缓解 • 稳压器卸压 • 堆芯扑集器 • 非能动氢复合器 •全数字化仪控,先进控制室 •模块化施工
安全壳内布置
双层安全壳 带过滤排放
安全壳内储 存水箱
堆芯熔融物 冷却区
安全壳热量 扩散区
四组冗余安 全系统
四通道安注和余热排出系统
防止高压堆芯熔化和安全壳直接 加热的卸压设备
dedicated severe accident depressurization device function: depressurization and open position in depressurized state
暂缺 72小时
二、AP1000
二、AP1000
非能动安全系统 • 非能动安注 • 多级非能动自动卸压系统 • 非能动余热排放系统 • 非能动安全壳冷却系统 严重事故预防和缓解 • 堆腔淹没技术 • 安全壳内氢点火和氢复合系统 双层安全壳 全数字化仪控,先进控制室 模块化施工,工期48个月
反应堆冷却剂系统
一、压水堆核电厂结构
核岛主要设备(主泵) 如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。
它的功用是把冷却剂送进堆内,然后流过蒸汽发生器,以保证裂变 反应产生的热量及时传递出来。
主泵
一、压水堆核电厂结构
核岛主要设备(稳压器) 又称压力平衡器,是用来控制反应堆系统压力变化的设备。在正常运 行时,起保持压力的作用;在发生事故时,提供超压保护。稳压器里 设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当 堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AP1000与EPR简介【关键词】AP1000EPR压水堆1.AP1000与EPR简介1.1 AP1000西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。

2002年3月,核管会已经完成AP1000设计的预认证审查(Pre-certification Review),AP600有关的试验和分析程序可以用于AP1000设计。

2004年12月获得了美国核管会授予的最终设计批准。

AP1000为单堆布置两环路机组,电功率1250MWe,设计寿命60年,主要安全系统采用非能动设计,布置在安全壳内,安全壳为双层结构,外层为预应力混凝土,内层为钢板结构。

AP1000主要的设计特点包括:(1)主回路系统和设备设计采用成熟电站设计AP1000堆芯采用西屋的加长型堆芯设计,这种堆芯设计已在比利时的Doel 4号机组、Tihange 3号机组等得到应用;燃料组件采用可靠性高的Performance+;采用增大的蒸汽发生器(D125型),和正在运行的西屋大型蒸汽发生器相似;稳压器容积有所增大;主泵采用成熟的屏蔽式电动泵;主管道简化设计,减少焊缝和支撑;压力容器与西屋标准的三环路压力容器相似,取消了堆芯区的环焊缝,堆芯测量仪表布置在上封头,可在线测量。

(2)简化的非能动设计提高安全性和经济性AP1000主要安全系统,如余热排出系统、安注系统、安全壳冷却系统等,均采用非能动设计,系统简单,不依赖交流电源,无需能动设备即可长期保持核电站安全,非能动式冷却显著提高安全壳的可靠性。

安全裕度大。

针对严重事故的设计可将损坏的堆芯保持在压力容器内,避免放射性释放。

在AP1000设计中,运用PRA分析找出设计中的薄弱环节并加以改进,提高安全水平。

AP1000考虑内部事件的堆芯熔化概率和放射性释放概率分别为5.1×10-7/堆年和5.9×10-8/堆年,远小于第二代的1×10-5/堆年和1×10-6/堆年的水平。

简化非能动设计大幅度减少了安全系统的设备和部件,与正在运行的电站设备相比,阀门、泵、安全级管道、电缆、抗震厂房容积分别减少了约50%,35%,80%,70%和45%。

同时采用标准化设计,便于采购、运行、维护,提高经济性。

西屋公司以AP600的经济分析为基础,对AP1000作的经济分析表明,AP1000的发电成本小于3.6美分/kWh,具备和天然气发电竞争的能力。

AP1000隔夜价低于1200美元/千瓦(包括业主费用和厂址费用)。

(3)严重事故预防与缓解措施AP1000设计中考虑了以下几类严重事故:堆芯和混凝土相互反应;高压熔堆;氢气燃烧和爆炸;蒸汽爆炸;安全壳超压;安全壳旁路。

为防止堆芯熔融物熔穿压力容器和混凝土底板发生反应,AP1000采用了将堆芯熔融物保持在压力容器内设计(IVR)。

在发生堆芯熔化事故后,将水注入到压力容器外璧和其保温层之间,可靠地冷却掉到压力容器下封头的堆芯熔融物。

在AP600设计时已进行过IVR的试验和分析,并通过核管会的审查。

对于AP1000,这些试验和分析结果仍然适用,但需作一些附加试验。

由于采用了IVR技术,可以保证压力容器不被熔穿,从而避免了堆芯熔融物和混凝土底板发生反针对高压熔堆事故,AP1000主回路设置了4列可控的自动卸压系统(ADS),其中3列卸压管线通向安全壳内换料水储存箱,1列卸压管线通向安全壳大气。

通过冗余多样的卸压措施,能可靠地降低一回路压力,从而避免发生高压熔堆事故。

针对氢气燃烧和爆炸的危险,AP1000在设计中使氢气从反应堆冷却剂系统逸出的通道远离安全壳壁,避免氢气火焰对安全壳璧的威胁。

同时在环安全壳内部布置冗余、多样的氢点火器和非能动自动催化氢复合器,消除氢气,降低氢气燃烧和爆炸对安全壳的危险。

对于蒸汽爆炸事故,由于AP1000设置冗余多样的自动卸压系统,避免了高压蒸汽爆炸发生。

而在低压工况下,由于IVR技术的应用,堆芯熔融物没有和水直接接触,避免了低压蒸汽爆炸发生。

对于由于丧失安全壳热量排出引起的安全壳超压事故,AP1000非能动安全壳冷却系统的两路取水管线的排水阀在失去电源和控制时处于故障安全位置,同时设置一路管线从消防水源取水,确保冷却的可靠性。

事故后长期阶段仅靠空气冷却就足以带出安全壳内的热量,有效防止安全壳超压。

由于采用了IVR技术,不会发生堆芯熔融物和混凝土底板的反应,避免了产生非凝结气体引起的安全壳超压事针对安全壳旁路事故,AP1000通过改进安全壳隔离系统设计、减少安全壳外LOCA发生等措施来减少事故的发生。

(4)仪控系统和主控室设计AP1000仪控系统采用成熟的数字化技术设计,通过多样化的安全级、非安全级仪控系统和信息提供、操作避免发生共模失效。

主控室采用布置紧凑的计算机工作站控制技术,人机接口设计充分考虑了运行电站的经验反馈。

(5)建造中大量采用模块化建造技术AP1000在建造中大量采用模块化建造技术。

模块建造是电站详细设计的一部分,整个电站共分4种模块类型,其中结构模块122个,管道模块154个,机械设备模块55个,电气设备模块11个。

模块化建造技术使建造活动处于容易控制的环境中,在制作车间即可进行检查,经验反馈和吸取教训更加容易,保证建造质量。

平行进行的各个模块建造大量减少了现场的人员和施工活动。

通过与前期工程平行开展的按模块进行混凝土施工、设备安装的建造方法,AP1000的建设周期大大缩短至60个月,其中从第一罐混凝土到装料只需36个月。

1.2欧洲先进压水堆EPR技术1.2.1欧洲先进压水堆发展情况简介1993年5月,法国和德国的核安全当局提出在未来压水堆设计中采用共同的安全方法,通过降低堆芯熔化和严重事故概率和提高安全壳能力来提高安全性,从放射性保护、废物处理、维修改进、减少人为失误等方面根本改善运行条件。

1998年,完成了EPR基本设计。

2000年3月,法国和德国的核安全当局的技术支持单位IPSN和GRS 完成了EPR基本设计的评审工作,并于2000年11月颁发了一套适用于未来核电站设计建造的详细技术导则。

目前EPR正在进行补充设计。

1.2.2欧洲先进压水堆EPR设计特点EPR为单堆布置四环路机组,电功率1525MWe,设计寿命60年,双层安全壳设计,外层采用加强型的混凝土壳抵御外部灾害,内层为预应力混凝土。

EPR主要的设计特点包括:(1)安全性和经济性高EPR通过主要安全系统4列布置,分别位于安全厂房4个隔开的区域,简化系统设计,扩大主回路设备储水能力,改进人机接口,系统地考虑停堆工况,来提高纵深防御的设计安全水平。

设计了严重事故的应对措施,保证安全壳短期和长期功能,将堆芯熔融物稳定在安全壳内,避免放射性释放。

EPR考虑内部事件的堆芯熔化概率6.3×10-7/堆年,在电站寿期内可用率平均达到90%,正常停堆换料和检修时间16天,运行维护成本比现在运行的电站低10%,经济性高。

建造EPR的投资费用低于1300欧元/千瓦,发电成本低于3欧分/kWh。

(2)严重事故预防与缓解措施EPR设计中考虑了以下几类严重事故:高压熔堆;氢气燃烧和爆炸;蒸汽爆炸;堆芯熔融物;安全壳内热量排出。

为避免高压熔堆事故发生,在为对付设计基准事故设置3个安全阀(3×300t/h)的基础上,EPR专门设置了针对严重事故工况的卸压装置(900t/h),安全阀和卸压装置都通过卸压箱排到安全壳内。

当堆芯温度大于650℃时,操纵员启动专设卸压装置,可以有效避免压力容器超压失效,并防止压力容器失效后堆芯熔融物的散射。

针对氢气燃烧和爆炸的危险,EPR在设计中采用大容积安全壳(80000m3)。

在设备间布置了40台大型氢复合器,在反应堆厂房升降机部位也安装了4台氢复合器。

通过计算分析氢气产生量、氢气分布和燃烧导致的压力载荷,结果表明采取上述措施后氢气产生的危险不会威胁安全壳的完整性。

对于蒸汽爆炸事故,EPR在RPV设计中没有设置特殊的装置。

通过选择相关事故和边界条件,计算判断RPV封头允许承受的载荷能力,分析论证导致安全壳早期失效的压力容器内蒸汽爆炸已基本消除,不需要设置特殊的装置对付蒸汽爆炸事故。

已做的试验显示熔融物不会像以前假设的那样爆炸(极低的概率和/或爆炸性)。

进一步的试验仍在进行中。

对于堆芯熔融物,在EPR设计中,RPV失效前堆坑内保持干燥,RPV失效后堆芯熔融物暂时滞留在堆坑内,然后进入专用的展开隔室中展开。

堆坑和展开隔室装有保护材料,保护熔融物中残余的锆,降低了氧化物的密度和温度,改善了展开条件。

在展开区域设有氧化锆防护层,防护层底下设有冷却管线,安全壳内换料水箱的水非能动地流入并淹没熔融物,从两边对熔融物进行冷却,避免底板熔穿和安全壳失效。

对于安全壳内热量排出,EPR设计有带外部循环的安全壳喷淋系统,2个系列,可以在较短的时间内降低安全壳温度和压力。

该系统可以从喷淋工作模式切换至直接冷却熔融物的工作模式,并能长时间防止蒸汽产生,长期地将熔融物和安全壳中的热量导出。

(3)仪控系统和主控室设计EPR的仪控系统和主控室采用成熟的设计,充分吸取已运行电站数字化仪控系统、人机接口等经验反馈,吸取先进技术设备的优点。

仪控采用4列布置,分别位于安全厂房的不同区域,避免发生共模失效。

主控室与N4机组的高度计算机化控制室相同,专门设有用于维护和诊断工作的人机接口。

2 第二代与第三代核电站的衔接特点2.1 SYSTEM80、M314和AP1000从上世纪80年代中期开始,美国西屋公司致力于开发改进型压水堆——非能动先进压水堆。

当时根据电力市场环境条件和电力公司的建议,选择了600MWe级的容量作设计(AP600)。

西屋公司投入了巨大的人力,完成了大量的设计文件和试验研究。

AP600设计经过美国核管会的技术审查,于1998年9月获得最终设计许可(Final Design Approval)。

1999年12月,核管会向西屋公司颁发了最终设计认证证书(Final Design Certification)。

近年来,随着美国电力市场非管制化的发展以及天然气价格的下跌,市场竞争要求进一步降低发电成本。

由于不能通过继续改进AP600设计达到新的目标,西屋公司决定提高电功率至百万千瓦级来提高非能动先进压水堆的市场竞争能力。

AP1000堆芯采用成熟的、经工程验证的西屋公司加长堆芯设计(M314型),活性段高度14英尺,首炉装料157个17×17 Performance+高性能燃料组件。

压力容器内径3.98m,环锻结构;经验证的堆芯围筒,代替通常用的径向反射层,采用全焊接结构;堆芯测量系统经上封头穿出,取消下封头贯穿件;通过材料改进等措施保证压力容器60年设计寿命;堆内构件和控制棒驱动机构均应用M314堆型成熟技术。

相关文档
最新文档