最新线面平行与垂直基础练习题

合集下载

平行与垂直练习题

平行与垂直练习题

平行与垂直练习题一、选择题1. 在同一平面内,两条直线的位置关系有几种?A. 1种B. 2种C. 3种D. 4种2. 以下哪组线段是平行线?A. AB与CDB. EF与GHC. MN与OPD. PQ与RS3. 如果两条直线相交成90度角,这两条直线的关系是什么?A. 垂直B. 平行C. 相交D. 异面4. 已知直线a和直线b平行,直线c垂直于直线a,那么直线c与直线b的关系是什么?A. 平行B. 垂直C. 相交D. 异面5. 在平面几何中,平行线的性质不包括以下哪项?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上都不是二、填空题1. 如果两条直线相交,那么它们相交所成的角叫做______。

2. 两条直线相交所成的角中,有一个角是直角,那么这两条直线的关系是______。

3. 在同一平面内,不相交的两条直线叫做______。

4. 如果两条直线都与第三条直线平行,那么这两条直线的关系是______。

5. 两条直线相交所成的角中,如果有一个角是锐角,那么这两条直线的关系是______。

三、判断题1. 两条直线不相交,则它们一定平行。

(对/错)2. 垂直线段是最短的线段。

(对/错)3. 两条直线相交,所成的角中,锐角和钝角的和为180度。

(对/错)4. 两条平行线之间的距离处处相等。

(对/错)5. 如果两条直线相交成锐角,则它们一定不是平行线。

(对/错)四、计算题1. 已知直线AB和直线CD平行,直线EF垂直于直线AB,求证:直线EF也垂直于直线CD。

2. 已知直线m和直线n相交于点O,且∠AOM=90°,求证:直线m垂直于直线n。

3. 已知直线a和直线b平行,直线c和直线d平行,且直线c与直线a相交,求证:直线d与直线b也相交。

4. 已知直线PQ和直线RS垂直,直线PQ和直线ST平行,求证:直线RS和直线ST垂直。

5. 已知直线x和直线y相交成锐角,直线x和直线z平行,求证:直线y和直线z不平行。

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题练习(高三党必做)

立体几何线面平行垂直、面面平行垂直专题一、解答题(本大题共27小题,共324.0分)1.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.2.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=AD,∠BAD=∠ABC=90°,E是PD的中点.BC=12(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.3.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.4.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD=√6,AP=4AF.(Ⅰ)求证:PO⊥底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得CM∥平面BDF如果存在,求BM的值,如果不存在,请说明理BP由.5.如图,在直三棱柱ABC-A1B l C1中,AC=BC=√2,∠ACB=90°.AA1=2,D为AB的中点.(Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面B1CD:(Ⅲ)求异面直线AC1与B1C所成角的余弦值.6.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.7.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=√6,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=√3,三棱锥P-ABD的体积V=√3,求A到平面PBC的距4离.9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.10.如图,已知四棱锥P-ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.11.如图,正三角形ABE与菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中点,N是CE的中点.(I)求证:EM⊥AD;(II)求证:MN∥平面ADE;(III)求点A到平面BCE的距离.12.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.13.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF∥平面PAD;(2)求证:平面AEF⊥平面PAB;(3)设AB=√2AD,求直线AC与平面AEF所成角θ的正弦值.14.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45∘,AD=AC=2,O为AC的中点,PO⊥平面ABCD且PO=6,M为BD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.15.如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=√2,点D为A1C1的中点.(I)求证:BC1∥平面AB1D;(II)求证:A1C⊥平面AB1D;(Ⅲ)求异面直线AD与BC1所成角的大小.16.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.(Ⅰ)求证:BD⊥平面APQ;(Ⅱ)求直线PB与平面PDQ所成角的正弦值.17.如图,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E为AC的中点,侧棱CC1=2.(1)求证:A1C⊥平面C1EB;(2)求直线CC1与平面ABC所成角的余弦值.18.如图,在三棱锥P-ABC中,平面PAB⊥平面ABC,AB=6,BC=2√3,AC=2√6,D为线段AB上的点,且AD=2DB,PD⊥AC.(1)求证:PD⊥平面ABC;,求点B到平面PAC的距离.(2)若∠PAB=π419.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC为正三角形,D是BC边的中点,AA1=AB=1.(1)求证:平面ADB1⊥平面BB1C1C;(2)求点B到平面ADB1的距离.20.如图,在三棱锥P-ABC中,点D,E,F分别为棱PC,AC,AB的中点,已知PA⊥平面ABC,AB⊥BC,且AB=BC.(1)求证:平面BED⊥平面PAC;(2)求二面角F-DE-B的大小;(3)若PA=6,DF=5,求PC与平面PAB所成角的正切值.21.如图,在四棱锥P—ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2√2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;(3)求直线BC与平面PBD所成的角的正切值.22.如图所示,在四棱台ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,AB=AA1=2A1B1=2.(Ⅰ)若M为CD中点,求证:AM⊥平面AA1B1B;(Ⅱ)求直线DD1与平面A1BD所成角的正弦值.=√2.23.如图,在直三棱柱ABC−A1B1C1中,∠ACB=90°,E为A1C1的中点,CC1C1E(Ⅰ)证明:CE⊥平面AB1C1;(Ⅱ)若AA1=√6,∠BAC=30°,求点E到平面AB1C的距离.24.如图,在四棱锥E-ABCD中,底面ABCD是边长为√2的正方形,平面AEC⊥平面CDE,∠AEC=90°,F为DE中点,且DE=1.(Ⅰ)求证:BE∥平面ACF;(Ⅱ)求证:CD⊥DE;(Ⅲ)求FC与平面ABCD所成角的正弦值.25.已知:平行四边形ABCD中,∠DAB=45°,AB=√2AD=2√2,平面AED⊥平面ABCD,△AED为等边三角形,EF∥AB,EF=√2,M为线段BC的中点.(1)求证:直线MF∥平面BED;(2)求证:平面BED⊥平面EAD;(3)求直线BF与平面BED所成角的正弦值.26.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AC=√2,AB=BC=1,E为AD中点.(Ⅰ)求证:PE⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求平面PAB与平面PCD所成的二面角.27.如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.答案和解析1.【答案】(1)证明:法一、如图,取PB 中点G ,连接AG ,NG ,∵N 为PC 的中点, ∴NG ∥BC ,且NG =12BC ,又AM =23AD =2,BC =4,且AD ∥BC , ∴AM ∥BC ,且AM =12BC ,则NG ∥AM ,且NG =AM ,∴四边形AMNG 为平行四边形,则NM ∥AG , ∵AG ⊂平面PAB ,NM ⊄平面PAB , ∴MN ∥平面PAB ; 法二、在△PAC 中,过N 作NE ⊥AC ,垂足为E ,连接ME , 在△ABC 中,由已知AB =AC =3,BC =4,得cos ∠ACB =42+32−322×4×3=23,∵AD ∥BC ,∴cos ∠EAM =23,则sin ∠EAM =√53,在△EAM 中,∵AM =23AD =2,AE =12AC =32,由余弦定理得:EM =√AE 2+AM 2−2AE ⋅AM ⋅cos∠EAM =√94+4−2×32×2×23=32,∴cos ∠AEM =(32)2+(32)2−42×32×32=19,而在△ABC 中,cos ∠BAC =32+32−422×3×3=19,∴cos ∠AEM =cos ∠BAC ,即∠AEM =∠BAC , ∴AB ∥EM ,则EM ∥平面PAB .由PA ⊥底面ABCD ,得PA ⊥AC ,又NE ⊥AC , ∴NE ∥PA ,则NE ∥平面PAB . ∵NE ∩EM =E ,∴平面NEM ∥平面PAB ,则MN ∥平面PAB ;(2)解:在△AMC 中,由AM =2,AC =3,cos ∠MAC =23,得CM 2=AC 2+AM 2-2AC •AM •cos ∠MAC =9+4−2×3×2×23=5.∴AM 2+MC 2=AC 2,则AM ⊥MC , ∵PA ⊥底面ABCD ,PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD ∩平面PAD =AD , ∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD .在平面PAD 内,过A 作AF ⊥PM ,交PM 于F ,连接NF ,则∠ANF 为直线AN 与平面PMN 所成角.在Rt△PAC中,由N是PC的中点,得AN=12PC=12√PA2+PC2=52,在Rt△PAM中,由PA•AM=PM•AF,得AF=PA⋅AMPM =√42+22=4√55,∴sin∠ANF=AFAN =4√5552=8√525.∴直线AN与平面PMN所成角的正弦值为8√525.【解析】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=12BC,再由已知得AM∥BC,且AM=12BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)由勾股定理得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.2.【答案】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF∥AD,EF=12AD,AB=BC=12AD,∠BAD=∠ABC=90°,∴BC∥AD,EF∥BC,EF=BC,∴四边形BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:如图所示,取AD中点O,连接PO,CO,由于△PAD为正三角形,则PO⊥AD,因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO⊥CO. 因为AO=AB=BC=12AD,且∠BAD=∠ABC= 90∘,所以四边形ABCO是矩形,所以CO⊥AD,以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系,不妨设AB=BC=12AD=1,则OA=OD=AB=CO=1.又因为△POC为直角三角形,|OC|=√33|OP|,所以∠PCO=60∘.作MN⊥CO,垂足为N,连接BN,因为PO ⊥CO ,所以MN //PO ,且PO ⊥平面ABCD ,所以MN ⊥平面ABCD ,所以∠MBN 即为直线BM 与平面ABCD 所成的角, 设CN =t ,因为∠PCO =60∘,所以MN =√3t ,BN =√BC 2+CN 2=√t 2+1. 因为∠MBN =45∘,所以MN =BN ,即√3t =√t 2+1,解得t =√22,所以ON =1−√22,MN =√62,所以A (0,−1,0),B (1,−1,0),M (1−√22,0,√62),D (0,1,0),则AB ⃗⃗⃗⃗⃗ =(1,0,0),AD⃗⃗⃗⃗⃗⃗ =(0,2,0),AM ⃗⃗⃗⃗⃗⃗ =(1−√22,1,√62). 设平面MAB 和平面DAB 的法向量分别为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),n 2⃗⃗⃗⃗ =(x 2,y 2,z 2), 则{AB ⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0AM ⃗⃗⃗⃗⃗⃗ ·n 1⃗⃗⃗⃗ =0,即{x 1=0(1−√22)x 1+y 1+√62z 1=0, 可取z 1=−2,则n 1⃗⃗⃗⃗ =(0,√6,−2), 同理可得n 2⃗⃗⃗⃗ =(0,0,1),所以.因为二面角M -AB -D 是锐角,所以其余弦值为√105.【解析】本题考查直线与平面平行的判定定理的应用,空间向量求二面角夹角,考查空间想象能力以及计算能力,属于中档题.(1)取PA 的中点F ,连接EF ,BF ,通过证明CE ∥BF ,利用直线与平面平行的判定定理证明即可.(2)取AD 中点O ,连接PO ,CO ,作MN ⊥CO ,垂足为N ,以O 为原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,即可求出二面角M -AB -D 的余弦值.3.【答案】证明:(1)因为BB 1⊥面ABC ,AE ⊂面ABC ,所以AE ⊥BB 1,由AB =AC ,E 为BC 的中点得到AE ⊥BC , ∵BC ∩BB 1=B ,BC 、BB 1⊂面BB 1C 1C , ∴AE ⊥面BB 1C 1C ,,∴AE ⊥B 1C ;解:(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,则AE ∥A 1E 1, ∴∠E 1A 1C 是异面直线AE 与A 1C 所成的角, 设AC =AB =AA 1=2,则由∠BAC =90°, 可得A 1E 1=AE =√2,A 1C =2√2,E 1C 1=EC =12BC =√2,∴E 1C =√E 1C 12+C 1C 2=√6,∵在△E 1A 1C 中,cos ∠E 1A 1C =2+8−62⋅√2⋅2√2=12, 所以异面直线AE 与A 1C 所成的角为π3;(3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,又∵平面ABC ⊥平面ACC 1A 1,平面ABC ∩平面ACC 1A 1=AC ∴EP ⊥平面ACC 1A 1, 而PQ ⊥AG ∴EQ ⊥AG .∴∠PQE 是二面角C -AG -E 的平面角, 由(2)假设知:EP =1,AP =1, Rt △ACG ∽Rt △AQP ,PQ =CG·AP AG=1√5,故tan ∠PQE =PEPQ =√5,所以二面角C -AG -E 的平面角正切值是√5.【解析】本题考查异面直线的夹角,线线垂直的判定,属于中档题,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键,属于较难题.(1)由BB 1⊥面ABC 及线面垂直的性质可得AE ⊥BB 1,由AC =AB ,E 是BC 的中点,及等腰三角形三线合一,可得AE ⊥BC ,结合线面垂直的判定定理可证得AE ⊥面BB 1C 1C ,进而由线面垂直的性质得到AE ⊥B 1C ;(2)取B 1C 1的中点E 1,连A 1E 1,E 1C ,根据异面直线夹角定义可得,∠E 1A 1C 是异面直线A 与A 1C 所成的角,设AC =AB =AA 1=2,解三角形E 1A 1C 可得答案. (3)连接AG ,设P 是AC 的中点,过点P 作PQ ⊥AG 于Q ,连EP ,EQ ,则EP ⊥AC ,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP ⊥平面ACC 1A 1,进而由二面角的定义可得∠PQE 是二面角C -AG -E 的平面角.4.【答案】(Ⅰ)证明:因为底面ABCD 是菱形,AC ∩BD =O ,所以O 为AC ,BD 中点.-------------------------------------(1分)又因为PA =PC ,PB =PD ,所以PO ⊥AC ,PO ⊥BD ,---------------------------------------(3分)所以PO ⊥底面ABCD .----------------------------------------(4分)(Ⅱ)解:由底面ABCD 是菱形可得AC ⊥BD , 又由(Ⅰ)可知PO ⊥AC ,PO ⊥BD .如图,以O 为原点建立空间直角坐标系O -xyz .由△PAC 是边长为2的等边三角形,PB =PD =√6,可得PO =√3,OB =OD =√3.所以A(1,0,0),C(−1,0,0),B(0,√3,0),P(0,0,√3).---------------------------------------(5分)所以CP ⃗⃗⃗⃗⃗ =(1,0,√3),AP ⃗⃗⃗⃗⃗ =(−1,0,√3). 由已知可得OF ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗ +14AP ⃗⃗⃗⃗⃗ =(34,0,√34)-----------------------------------------(6分) 设平面BDF 的法向量为n −=(x ,y ,z ),则{√3y =034x +√34z =0令x =1,则z =−√3,所以n ⃗ =(1,0,-√3).----------------------------------------(8分) 因为cos <CP ⃗⃗⃗⃗⃗ ,n ⃗ >=CP ⃗⃗⃗⃗⃗ ⋅n ⃗⃗|CP ⃗⃗⃗⃗⃗ ||n ⃗⃗ |=-12,----------------------------------------(9分) 所以直线CP 与平面BDF 所成角的正弦值为12,所以直线CP 与平面BDF 所成角的大小为30°.-----------------------------------------(10分)(Ⅲ)解:设BMBP =λ(0≤λ≤1),则CM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +λBP ⃗⃗⃗⃗⃗ =(1,√3(1−λ),√3λ).---------------------------------(11分)若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,---------------------(12分) 解得λ=13∈[0,1],----------------------------------------(13分) 所以在线段PB 上存在一点M ,使得CM ∥平面BDF . 此时BM BP =13.-----------------------------------(14分)【解析】(Ⅰ)证明PO ⊥底面ABCD ,只需证明PO ⊥AC ,PO ⊥BD ;(Ⅱ)建立空间直角坐标系,求出直线CP 的方向向量,平面BDF 的法向量,利用向量的夹角公式可求直线CP 与平面BDF 所成角的大小;(Ⅲ)设BMBP =λ(0≤λ≤1),若使CM ∥平面BDF ,需且仅需CM −⋅n ⃗ =0且CM ⊄平面BDF ,即可得出结论.本题考查线面垂直,考查线面平行,考查线面角,考查向量知识的运用,正确求出向量的坐标是关键.5.【答案】解:(I )证明:∵CC 1⊥平面ABC ,AC ⊂平面ABC ,∠ACB =90°, ∴CC 1⊥AC ,AC ⊥BC ,又BC ∩CC 1=C ,∴AC ⊥平面BCC 1,BC 1⊂平面BCC 1, ∴AC ⊥BC 1.(II )证明:如图,设CB 1∩C 1B =E ,连接DE , ∵D 为AB 的中点,E 为C 1B 的中点,∴DE ∥AC 1, ∵DE ⊂平面B 1CD ,AC 1⊄平面B 1CD , ∴AC 1∥平面B 1CD .(III )解:由DE ∥AC 1,∠CED 为AC 1与B 1C 所成的角,在△CDE 中,DE =12AC 1=12√AC 2+CC 12=√62, CE =12B 1C =12√BC 2+BB 12=√62,CD =12AB =12√AC 2+BC 2=1,cos ∠CED =CE 2+DE 2−CD 22×CE×DE=32+32−12×√62×√62=23,∴异面直线AC 1与B 1C 所成角的余弦值为23.【解析】本题考查线线垂直的判定、线面平行的判定、异面直线及其所成的角. (I )先证线面垂直,再由线面垂直证明线线垂直即可; (II )作平行线,由线线平行证明线面平行即可;(III )先证明∠CED 为异面直线所成的角,再在三角形中利用余弦定理计算即可. 6.【答案】解:如图,在正三棱柱ABC -A 1B 1C 1中, 设AC ,A 1C 1的中点分别为O ,O 1, 则,OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底, 建立空间直角坐标系O -xyz ,∵AB =AA 1=2,A (0,-1,0),B (√3,0,0), C (0,1,0),A 1(0,-1,2),B 1(√3,0,2),C 1(0,1,2).(1)点P 为A 1B 1的中点.∴P(√32,−12,2),∴BP ⃗⃗⃗⃗⃗ =(−√32,−12,2),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2). |cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=|−1+4|√5×2√2=3√1020.∴异面直线BP 与AC 1所成角的余弦值为:3√1020; (2)∵Q 为BC 的中点.∴Q (√32,12,0)∴AQ ⃗⃗⃗⃗⃗ =(√32,32,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,2),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),设平面AQC 1的一个法向量为n⃗ =(x ,y ,z ), 由{AQ ⃗⃗⃗⃗⃗ ·n ⃗ =√32x +32y =0AC 1⃗⃗⃗⃗⃗⃗⃗ ·n⃗ =2y +2z =0,可取n⃗ =(√3,-1,1), 设直线CC 1与平面AQC 1所成角的正弦值为θ, sinθ=|cos|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n⃗ |=2√5×2=√55, ∴直线CC 1与平面AQC 1所成角的正弦值为√55.【解析】本题考查了向量法求空间角,属于中档题.设AC ,A 1C 1的中点分别为O ,O 1,以{OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,OO 1⃗⃗⃗⃗⃗⃗⃗⃗ }为基底,建立空间直角坐标系O -xyz ,(1)由|cos <BP ⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗||BP ⃗⃗⃗⃗⃗⃗ |⋅|AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |可得异面直线BP 与AC 1所成角的余弦值;(2)求得平面AQC 1的一个法向量为n⃗ ,设直线CC 1与平面AQC 1所成角的正弦值为θ,可得sinθ=|cos <CC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ >|=|CC 1⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗⃗ ||CC 1⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗⃗ |,即可得直线CC 1与平面AQC 1所成角的正弦值.7.【答案】(1)证明:如图,设AC ∩BD =O ,∵ABCD 为正方形,∴O 为BD 的中点,连接OM ,∵PD ∥平面MAC ,PD ⊂平面PBD ,平面PBD ∩平面AMC =OM , ∴PD ∥OM ,则BOBD =BM BP,即M 为PB 的中点;(2)解:取AD 中点G , ∵PA =PD ,∴PG ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD , ∴PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,由G 是AD 的中点,O 是AC 的中点,可得OG ∥DC ,则OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系, 由PA =PD =√6,AB =4,得D (2,0,0),A (-2,0,0),P (0,0,√2),C (2,4,0),B (-2,4,0),M (-1,2,√22),DP ⃗⃗⃗⃗⃗ =(−2,0,√2),DB⃗⃗⃗⃗⃗⃗ =(−4,4,0). 设平面PBD 的一个法向量为m ⃗⃗⃗ =(x ,y ,z),则由{m ⃗⃗⃗ ⋅DP ⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得{−2x +√2z =0−4x +4y =0,取z =√2,得m ⃗⃗⃗ =(1,1,√2). 取平面PAD 的一个法向量为n ⃗ =(0,1,0).∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗ |m ⃗⃗⃗ ||n ⃗⃗ |=12×1=12. ∴二面角B -PD -A 的大小为60°;(3)解:CM ⃗⃗⃗⃗⃗⃗ =(−3,−2,√22),平面BDP 的一个法向量为m ⃗⃗⃗ =(1,1,√2).∴直线MC 与平面BDP 所成角的正弦值为|cos <CM ⃗⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CM ⃗⃗⃗⃗⃗⃗⋅m ⃗⃗⃗|CM ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||=|−2√9+4+12×1|=2√69.【解析】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,属中档题.(1)设AC ∩BD =O ,则O 为BD 的中点,连接OM ,利用线面平行的性质证明OM ∥PD ,再由平行线截线段成比例可得M 为PB 的中点;(2)取AD 中点G ,可得PG ⊥AD ,再由面面垂直的性质可得PG ⊥平面ABCD ,则PG ⊥AD ,连接OG ,则PG ⊥OG ,再证明OG ⊥AD .以G 为坐标原点,分别以GD 、GO 、GP 所在直线为x 、y 、z 轴距离空间直角坐标系,求出平面PBD 与平面PAD 的一个法向量,由两法向量所成角的大小可得二面角B -PD -A 的大小;(3)求出CM⃗⃗⃗⃗⃗⃗ 的坐标,由CM ⃗⃗⃗⃗⃗⃗ 与平面PBD 的法向量所成角的余弦值的绝对值可得直线MC 与平面BDP 所成角的正弦值.8.【答案】解:(Ⅰ)证明:设BD 与AC 的交点为O ,连结EO , ∵ABCD 是矩形, ∴O 为BD 的中点 ∵E 为PD 的中点, ∴EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ∴PB ∥平面AEC ;(Ⅱ)∵AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,∴V =16PA ⋅AB ⋅AD =√36AB =√34,∴AB =32,PB =√1+(32)2=√132.作AH ⊥PB 交PB 于H , 由题意可知BC ⊥平面PAB , ∴BC ⊥AH ,故AH ⊥平面PBC .又在三角形PAB 中,由射影定理可得:AH =PA⋅AB PB=3√1313A 到平面PBC 的距离3√1313.【解析】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.(Ⅰ)设BD 与AC 的交点为O ,连结EO ,通过直线与平面平行的判定定理证明PB ∥平面AEC ;(Ⅱ)通过AP =1,AD =√3,三棱锥P -ABD 的体积V =√34,求出AB ,作AH ⊥PB 角PB于H ,说明AH 就是A 到平面PBC 的距离.通过解三角形求解即可. 9.【答案】证明:(I )∵PA ⊥底面ABCD ,AD ⊥AB , 以A 为坐标原点,建立如图所示的空间直角坐标系,∵AD =DC =AP =2,AB =1,点E 为棱PC 的中点. ∴B (1,0,0),C (2,2,0),D (0,2,0), P (0,0,2),E (1,1,1)∴BE⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(2,0,0) ∵BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0, ∴BE ⊥DC ;(Ⅱ)∵BD ⃗⃗⃗⃗⃗⃗ =(-1,2,0),PB ⃗⃗⃗⃗⃗ =(1,0,-2),设平面PBD 的法向量m⃗⃗⃗ =(x ,y ,z ), 由{m ⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0m⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =0,得{−x +2y =0x −2z =0, 令y =1,则m⃗⃗⃗ =(2,1,1), 则直线BE 与平面PBD 所成角θ满足: sinθ=m⃗⃗⃗ ⋅BE ⃗⃗⃗⃗⃗⃗ |m ⃗⃗⃗ |⋅|BE ⃗⃗⃗⃗⃗⃗ |=2√6×√2=√33, 故直线BE 与平面PBD 所成角的正弦值为√33.(Ⅲ)∵BC⃗⃗⃗⃗⃗ =(1,2,0),CP ⃗⃗⃗⃗⃗ =(-2,-2,2),AC ⃗⃗⃗⃗⃗ =(2,2,0), 由F 点在棱PC 上,设CF⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ =(-2λ,-2λ,2λ)(0≤λ≤1), 故BF ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ =(1-2λ,2-2λ,2λ)(0≤λ≤1), 由BF ⊥AC ,得BF ⃗⃗⃗⃗⃗ •AC ⃗⃗⃗⃗⃗ =2(1-2λ)+2(2-2λ)=0, 解得λ=34,即BF ⃗⃗⃗⃗⃗ =(-12,12,32), 设平面FBA 的法向量为n ⃗ =(a ,b ,c ), 由{n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =0n ⃗ ⋅BF ⃗⃗⃗⃗⃗ =0,得{a =0−12a +12b +32c =0令c =1,则n⃗ =(0,-3,1), 取平面ABP 的法向量i =(0,1,0), 则二面角F -AB -P 的平面角α满足: cosα=|i ⋅n ⃗⃗ ||i|⋅|n ⃗⃗ |=3√10=3√1010,故二面角F -AB -P 的余弦值为:3√1010【解析】本题考查的知识点是空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(I )以A 为坐标原点,建立空间直角坐标系,求出BE ,DC 的方向向量,根据BE ⃗⃗⃗⃗⃗ •DC ⃗⃗⃗⃗⃗ =0,可得BE ⊥DC ;(II )求出平面PBD 的一个法向量,代入向量夹角公式,可得直线BE 与平面PBD 所成角的正弦值;(Ⅲ)根据BF ⊥AC ,求出向量BF ⃗⃗⃗⃗⃗ 的坐标,进而求出平面FAB 和平面ABP 的法向量,代入向量夹角公式,可得二面角F -AB -P 的余弦值. 10.【答案】证明:(Ⅰ)取AD 的中点F ,连接EF ,CF ,∵E 为PD 的中点,∴EF ∥PA ,EF ∥平面PAB ,在四边形ABCD 中,BC ∥AD ,AD =2DC =2CB ,F 为中点,∴四边形CBAF 为平行四边形,故CF ∥AB ,CF ∥平面PAB ,∵CF ∩EF =F ,EF ∥平面PAB ,CF ∥平面PAB , ∴平面EFC ∥平面ABP , ∵EC ⊂平面EFC , ∴EC ∥平面PAB .解:(Ⅱ)连接BF ,过F 作FM ⊥PB 于M ,连接PF , ∵PA =PD ,∴PF ⊥AD ,∵DF ∥BC ,DF =BC ,CD ⊥AD ,∴四边形BCDF 为矩形,∴BF ⊥AD , 又AD ∥BC ,故PF ⊥BC ,BF ⊥BC ,又BF ∩PF =F ,BF 、PF ⊂平面PBF ,BC ⊄平面PBF , ∴BC ⊥平面PBF ,∴BC ⊥PB ,设DC =CB =1,由PC =AD =2DC =2CB ,得AD =PC =2, ∴PB =√PC 2−BC 2=√4−1=√3, BF =PF =1,∴MF =√12−(√32)2=12,又BC ⊥平面PBF ,∴BC ⊥MF ,又PB ∩BC =B ,PB 、BC ⊂平面PBC ,MF ⊄平面PBC , ∴MF ⊥平面PBC ,即点F 到平面PBC 的距离为12,∵MF =12,D 到平面PBC 的距离应该和MF 平行且相等,均为12, E 为PD 中点,E 到平面PBC 的垂足也为所在线段的中点,即中位线, ∴E 到平面PBC 的距离为14,在△PCD 中,PC =2,CD =1,PD =√2,,故由余弦定理得CE =√2, 设直线CE 与平面PBC 所成角为θ,则sinθ=14CE=√28.【解析】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、能力,考查数形结合思想、化归与转化思想,属于中档题.(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.11.【答案】证明:(Ⅰ)∵EA=EB,M是AB的中点,∴EM⊥AB,∵平面ABE⊥平面ABCD,平面ABE∩平面ABCD=AB,EM⊂平面ABE,∴EM⊥平面ABCD,∵AD⊂平面ABCD,∴EM⊥AD;(Ⅱ)取DE的中点F,连接AF,NF,∵N是CE的中点,∴NF=//12CD,∵M是AB的中点,∴AM=//12CD,∴NF=//AM,∴四边形AMNF是平行四边形,∴MN∥AF,∵MN⊄平面ADE,AF⊂平面ADE,∴MN∥平面ADE;解:(III)设点A到平面BCE的距离为d,由(I)知ME⊥平面ABC,BC=BE=2,MC=ME=√3,则CE=√6,BN=√BE2−EN2=√102,∴S△BCE=12CE⋅BN=√152,S△ABC=12BA×BC×sin60°=√3,∵V A-BCE=V E-ABC,即13S△BCE×d=13S△ABC×ME,解得d=2√155,故点A到平面BCE的距离为2√155.【解析】本题考查线线垂直、线面平行的证明,考查点到平面的距离的求法,涉及到力、数据处理能力,考查数形结合思想,是中档题.(Ⅰ)推导出EM ⊥AB ,从而EM ⊥平面ABCD ,由此能证明EM ⊥AD ;(Ⅱ)取DE 的中点F ,连接AF ,NF ,推导出四边形AMNF 是平行四边形,从而MN ∥AF ,由此能证明MN ∥平面ADE ;(III )设点A 到平面BCE 的距离为d ,由V A -BCE =V E -ABC ,能求出点A 到平面BCE 的距离.12.【答案】(I )证明:∵AB ∥CD ,AD ⊥DC ,AB =AD =1,CD =2,∴BD =BC =√2, ∴BD 2+BC 2=CD 2, ∴BD ⊥BC ,∵EA ⊥平面ABCD ,BD ⊂平面ABCD , ∴EA ⊥BD ,∵EA ∥FC , ∴FC ⊥BD ,又BC ⊂平面BCF ,FC ⊂平面BCF ,BC ∩CF =C , ∴BD ⊥平面FBC , 又BD ⊂平面BDE ,∴平面BDE ⊥平面BCF .(II )解:过A 作AM ⊥DE ,垂足为M , ∵EA ⊥平面ABCD ,CD ⊂平面ABCD , ∴EA ⊥CD ,又CD ⊥AD ,EA ∩AD =A , ∴CD ⊥平面EAD ,又AM ⊂平面EAD , ∴AM ⊥CD ,又AM ⊥DE ,DE ∩CD =D , ∴AM ⊥平面CDE ,∵AD =AE =1,EA ⊥AD ,∴AM =√22,即A 到平面CDE 的距离为√22,∵AB ∥CD ,CD ⊂平面CDE ,AB ⊄平面CDE , ∴AB ∥平面CDE ,∴B 到平面CDE 的距离为√22.【解析】(I )先计算BD ,BC ,利用勾股定理的逆定理证明BD ⊥BC ,再利用EA ⊥平面ABCD 得出AE ⊥BD ,从而有CF ⊥BD ,故而推出BD ⊥平面FBC ,于是平面EBD ⊥平面BCF ;(II )证明AB ∥平面CDE ,于是B 到平面CDE 的距离等于A 到平面CDE 的距离,过A 作AM ⊥DE ,证明AM ⊥平面CDE ,于是AM 的长即为B 到平面CDE 的距离. 本题考查了线面垂直、面面垂直的判定与性质,空间距离的计算,属于中档题. 13.【答案】证明:方法一:(1)取PA 中点G ,连结DG 、FG . ∵F 是PB 的中点, ∴GF ∥AB 且GF =12AB ,又底面ABCD 为矩形,E 是DC 中点, ∴DE ∥AB 且DE =12AB∴GF ∥DE 且GF =DE ,∴EF ∥DG∵DG ⊂平面PAD ,EF ⊄平面PAD , ∴EF ∥平面PAD .(2)∵PD ⊥底面ABCD ,AB ⊂面ABCD ∴PD ⊥AB又底面ABCD 为矩形 ∴AD ⊥AB 又PD ∩AD =D ∴AB ⊥平面PAD ∵DG ⊂平面PAD ∴AB ⊥DG∵AD =PD ,G 为AP 中点 ∴DG ⊥AP又AB ∩AP =A , ∴DG ⊥平面PAB又由(1)知EF ∥DG ∴EF ⊥平面PAB ,又EF ⊂面AEF ∴平面AEF ⊥平面PAB .证法二:(1)以D 为坐标原点,DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系.设AB =a . ∵AD =PD =2,∴A (2,0,0),B (2,a ,0),C (0,a ,0),P (0,0,2), ∵E 、F 分别为CD ,PB 的中点 ∴E (0,a2,0),F (1,a2,0).∴EF ⃗⃗⃗⃗⃗ =(1,0,1), ∵DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =(0,0,2)+(2,0,0)=(2,0,2), ∴EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ , 故EF ⃗⃗⃗⃗⃗ 、DP ⃗⃗⃗⃗⃗ 、DA ⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ∴EF ∥平面PAD .(2)由(1)知EF ⃗⃗⃗⃗⃗ =(1,0,1),AB ⃗⃗⃗⃗⃗ =(0,a ,0),AP⃗⃗⃗⃗⃗ =(−2,0,2). ∴EF ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ •AP ⃗⃗⃗⃗⃗ =-2+0+2=0, ∴EF ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ⊥AP ⃗⃗⃗⃗⃗ , 又AB ∩AP =A ,∴EF ⊥平面PAB , 又EF ⊂平面AEF ,∴平面AEF ⊥平面PAB , (3)AB =2√2由(1)知,∴AE ⃗⃗⃗⃗⃗ =(-2,√2,0),EF⃗⃗⃗⃗⃗ =(1,0,1)设平面AEF 的法向量n ⃗ =(x ,y ,z),则{n⃗ ⋅AE ⃗⃗⃗⃗⃗ =0n ⃗ ⋅EF ⃗⃗⃗⃗⃗ =0即−2x +√2y =0令x =1,则y =√2,z =-1, ∴n⃗ =(1,√2,-1), 又AC⃗⃗⃗⃗⃗ =(-2,2√2,0), ∴cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >=−2+4+02√12=√36, ∴sinθ=|cos <AC⃗⃗⃗⃗⃗ ,n ⃗ >|=√36.【解析】方法一;(1)取PA 中点G ,连结DG 、FG ,要证明EF ∥平面PAD ,我们可以证明EF 与平面PAD 中的直线AD 平行,根据E 、F 分别是PB 、PC 的中点,利用中位线定理结合线面平行的判定定理,即可得到答案. (2)根据线面垂直的和面面垂直的判断定理即可证明.方法二:(1)求出直线EF 所在的向量,得到EF ⃗⃗⃗⃗⃗ =12(DP ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ )=12DP ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ ,即可证明EF ∥平面PAD .(2)再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直,即可证明平面AEF ⊥平面PAB(3)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.本题考查了本题考查的知识点是直线与平面平行的判定,面面垂直,直线与平面所成的角,解决此类问题的关键是熟练掌握几何体的结构特征,进而得到空间中点、线、面的位置关系,利于建立空间之间坐标系,利用向量的有关知识解决空间角与空间距离以及线面的位置关系等问题,属于中档题.14.【答案】解:(1)证明:∵PO ⊥平面ABCD ,且AD ⊂平面ABCD , ∴PO ⊥AD , ∵∠ADC =45°且AD =AC =2, ∴∠ACD =45°, ∴∠DAC =90°, ∴AD ⊥AC ,∵AC ⊂平面PAC ,PO ⊂平面PAC ,且AC ∩PO =O , ∴由直线和平面垂直的判定定理知AD ⊥平面PAC . (2)解:取DO 中点N ,连接MN ,AN , 由PO ⊥平面ABCD ,得MN ⊥平面ABCD , ∴∠MAN 是直线AM 与平面ABCD 所成的角, ∵M 为PD 的中点, ∴MN ∥PO ,且MN =12PO =3, AN =12DO =√52,在Rt △ANM 中,tan ∠MAN =MNAN =3√52=6√55, 即直线AM 与平面ABCD 所成角的正切值为6√55.【解析】(1)由PO ⊥平面ABCD ,得PO ⊥AD ,由∠ADC =45°,AD =AC ,得AD ⊥AC ,从而证明AD ⊥平面PAC .(2)取DO 中点N ,连接MN ,AN ,由M 为PD 的中点,知MN ∥PO ,由PO ⊥平面出直线AM 与平面ABCD 所成角的正切值.本题考查直线与平面垂直的证明,考查直线与平面所成角的正切值的求法.解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题. 15.【答案】证明:(I )在三棱柱ABC -A 1B 1C 1中,连接A 1B ,交AB 1于O 点,连接OD∵在△A 1BC 1中,A 1D =DC 1,A 1O =OB , ∴OD ∥BC 1,又∵OD ⊂平面AB 1D ,BC 1⊄平面AB 1D ; ∴BC 1∥平面AB 1D ;(II )在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1; ∵B 1D ⊂平面A 1B 1C 1; ∴A 1A ⊥B 1D在△A 1B 1C 1中,D 为A 1C 1的中点 ∴B 1D ⊥A 1C 1又∵A 1A ∩A 1C 1=A 1,A 1A ,A 1C 1⊂平面AA 1C 1C , ∴B 1D ⊥平面AA 1C 1C , 又∵A 1C ⊂平面AA 1C 1C , ∴B 1D ⊥A 1C又∵A 1D AA 1=AA1AC =√22∴∠DA 1A =∠A 1AC =90°∴△DA 1A ∽△A 1AC ,∠ADA 1=∠CA 1A∵∠DA 1C +∠CA 1A =90° ∴∠DA 1C +∠ADA 1=90°∴A 1C ⊥AD又∵B 1D ∩AD =D ,B 1D ,AD ⊂平面AB 1D ; ∴A 1C ⊥平面AB 1D ;解:(III )由(I )得,OD ∥BC 1, 故AD 与BC 1所成的角即为∠ADO在△ADO 中,AD =√3,OD =12BC 1=√62,AO =12A 1B =√62,∵AD 2=OD 2+AO 2,OD =AO∴△ADO 为等腰直角三角形故∠ADO =45°即异面直线AD 与BC 1所成角等于45°【解析】(I )连接A 1B ,交AB 1于O 点,连接OD ,由平行四边形性质及三角形中位线定理可得OD ∥BC 1,进而由线面平行的判定定理得到BC 1∥平面AB 1D ;(II )由直棱柱的几何特征可得A 1A ⊥B 1D ,由等边三角形三线合一可得B 1D ⊥A 1C 1,进而由线面垂直的判定定理得到B 1D ⊥平面AA 1C 1C ,再由三角形相似得到A 1C ⊥AD 后,可证得A 1C ⊥平面AB 1D .(III )由(I )中OD ∥BC 1,可得异面直线AD 与BC 1所成角即∠ADO ,解△ADO 可得答案.本题考查的知识点是直线与平面垂直的判定,异面直线及其所成的角,直线与平面平行的判定,(I )的关键是证得OD ∥BC 1,(II )的关键是熟练掌握线面垂直与线线垂直之间的转化,(III )的关键是得到异面直线AD 与BC 1所成角即∠ADO .16.【答案】(Ⅰ)证明:由P -ABD ,Q -BCD 是相同正三棱锥,且∠APB =90°,分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,垂足分别为E 、F ,则E 、F 分别为底面正三角形ABD 与BCD 的中心. 连接EF 交BD 于G ,则G 为BD 的中点,连接PG 、QG ,则PG ⊥BD ,QG ⊥BD ,又PG ∩QG =G ,∴BD ⊥平面PQG ,则BD ⊥PQ , 再由正三棱锥的性质可得PA ⊥BD , 又PQ ∩PA =P ,∴BD ⊥平面APQ ;(Ⅱ)∵正三棱锥的底面边长为1,且∠APB =90°,∴PQ =EF =2EG =2×13AG =2×13×√32=√33, PE =√(√22)2−(√33)2=√66,则V B−PQD =13×12×√33×√66×1=√236.△PDQ 底边PQ 上的高为√(√22)2−(√36)2=√156,∴S △PDQ =12×√33×√156=√512.设B 到平面PQD 的距离为h ,则13×√512ℎ=√236,得h =√105.∴直线PB 与平面PDQ 所成角的正弦值为√105√22=2√55.【解析】(Ⅰ)由题意分别过P 、Q 作PE ⊥平面ABD ,QF ⊥平面BCD ,可得E 、F 分别为底面正三角形ABD 与BCD 的中心.连接EF 交BD 于G ,可得PG ⊥BD ,QG ⊥BD ,由线面垂直的判定及性质可得BD ⊥PQ ,再由正三棱锥的性质可得PA ⊥BD ,则BD ⊥平面APQ ;(Ⅱ)由已知求得PQ ,PE 的长,求得四面体B -PQD 的体积,利用等积法求出B 到平面PQD 的距离,则直线PB 与平面PDQ 所成角的正弦值可求.本题考查直线与平面所成的角,考查线面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题. 17.【答案】(1)证明:如图:∵AB =BC ,E 为AC 的中点,∴BE ⊥AC ,∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , ∴BE ⊥平面A 1ACC 1,∵A 1C ⊂平面A 1ACC 1,∴BE ⊥A 1C .(2)解:∵面A1ACC1⊥面ABC,∴C1在面ABC上的射影H在AC上,∴∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,在Rt△C1CM中,CM=CC1cos∠C1CM=2cos60°=1.在Rt△CMH中,CH=CMcos∠ACB =2√33.∴在Rt△C1CH中,cos∠C1CH=CHCC1=23√32=√33.∴直线C1C与面ABC所成的角的余弦值为√33.【解析】(1)证明BE⊥平面A1ACC1,可得BE⊥A1C,即可证明:A1C⊥平面C1EB;(2)判断∠C1CA为直线C1C与面ABC所成的角.过H作HM⊥BC于M,连C1M,即可求直线CC1与平面ABC所成角的余弦值.本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.18.【答案】证明:(1)连接CD,据题知AD=4,BD=2,∵AC2+BC2=AB2,∴∠ACB=90°,∴cos∠ABC=2√36=√33,∴CD2=4+12−2×2×2√3cos∠ABC=8,∴CD=2√2,∴CD2+AD2=AC2,∴CD⊥AB,又∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,CD⊂平面ABC,∴CD⊥平面PAB,∵PD⊂平面PAB,∴CD⊥PD,∵PD⊥AC,CD∩AC=C,CD、AC⊂平面ABC,∴PD⊥平面ABC.解:(2)∵∠PAB=π4,∴PD=AD=4,∴PA=4√2,在Rt△PCD中,PC=√PD2+CD2=2√6,∴△PAC是等腰三角形,∴S△PAC=8√2,设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,得13S△PAC×d=13S△ABC×PD,∴d==3,故点B到平面PAC的距离为3.【解析】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)连接CD,推导出CD⊥AB,CD⊥PD,由此能证明PD⊥平面ABC.(2)设点B到平面PAC的距离为d,由V B-PAC=V P-ABC,能求出点B到平面PAC的距离.19.【答案】解:(1)证明:∵ABC-A1B1C1中,A1A⊥平面ABC,又BB 1⊂平面BB 1C 1C , ∴平面BB 1C 1C ⊥平面ABC ,∵△ABC 为正三角形,D 为BC 的中点, ∴AD ⊥BC ,又平面BB 1C 1C ∩平面ABC =BC , ∴AD ⊥平面BB 1C 1C , 又AD ⊂平面ADB 1,∴平面ADB 1⊥平面BB 1C 1C ;(2)由(1)可得△ADB 1为直角三角形, 又AD =√32,B 1D =√52,∴S △ADB 1=12×AD ×B 1D =√158,又S △ADB =12S △ABC =√38,设点B 到平面ADB 1的距离为d , 则V B−ADB 1=V B 1−ADB , ∴13S △ADB 1⋅d =13S △ADB ⋅BB 1, ∴点B 到平面ADB 1的距离d =S △ADB ⋅BB 1S △ADB 1=√3√15=√55.【解析】本题考查面面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.(1)推导出BB 1⊥平面ABC ,从而平面BB 1C 1C ⊥平面ABC ,推导出AD ⊥BC ,从而AD ⊥平面BB 1C 1C ,由此能证明平面ADB 1⊥平面BB 1C 1C ;(2)设点B 到平面ADB 1的距离为d ,由V B−ADB 1=V B 1−ADB ,能求出点B 到平面ADB 1的距离.20.【答案】证明:(1)∵PA ⊥平面ABC ,BE ⊂平面ABC , ∴PA ⊥BE .∵AB =BC ,E 为AC 的中点, ∴BE ⊥AC ,又PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC =A , ∴BE ⊥平面PAC ,又BE ⊂平面BED , ∴平面BED ⊥平面PAC .(2)∵D ,E 是PC ,AC 的中点, ∴DE ∥PA ,又PA ⊥平面ABC ,∴DE ⊥平面ABC ,∵EF ⊂平面ABC ,BE ⊂平面ABC , ∴DE ⊥EF ,DE ⊥BE .∴∠FEB 为二面角F -DE -B 的平面角.∵E ,F 分别是AC ,AB 的中点,AB =AC , ∴EF =12BC =12AB =BF ,EF ∥BC .又AB ⊥BC ,∴BF ⊥EF ,∴△BEF 为等腰直角三角形,∴∠FEB =45°. ∴二面角F -DE -B 为45°.∴PA⊥BC,又BC⊥AB,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB.∴∠CPB为直线PC与平面PAB所成的角.∵PA=6,∴DE=12PA=3,又DF=5,∴EF=√DF2−DE2=4.∴AB=BC=8.∴PB=√PA2+AB2=10.∴tan∠CPB=BCPB =4 5.【解析】(1)通过证明BE⊥平面PAC得出平面BED⊥平面PAC;(2)由DE∥PA得出DE⊥平面ABC,故DE⊥EF,DE⊥BE,于是∠FEB为所求二面角的平面角,根据△BEF为等腰直角三角形得出二面角的度数;(3)证明BC⊥平面PAB得出∠CPB为所求角,利用勾股定理得出BC,PB,即可得出tan∠CPB.本题考查了线面垂直,面面垂直的判定,空间角的计算,做出空间角是解题关键,属于中档题.21.【答案】解:(1)证明:设AC∩BD=H,连接EH,在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点,又有题设,E为PC的中点,故EH∥PA,又HE⊂平面BDE,PA⊄平面BDE,所以PA∥平面BDE(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC由(1)知,BD⊥AC,PD∩BD=D,故AC⊥平面PBD(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,所以∠CBH为直线与平面PBD所成的角.由AD⊥CD,AD=CD=1,DB=2√2,可得DH=CH=√22,BH=3√22在Rt△BHC中,tan∠CBH=CHBH =13,所以直线BC与平面PBD所成的角的正切值为13.【解析】(1)欲证PA∥平面BDE,根据直线与平面平行的判定定理可知只需证PA与平面BDE内一直线平行,设AC∩BD=H,连接EH,根据中位线定理可知EH∥PA,而又HE⊂平面BDE,PA⊄平面BDE,满足定理所需条件;(2)欲证AC⊥平面PBD,根据直线与平面垂直的判定定理可知只需证AC与平面PBD内两相交直线垂直,而PD⊥AC,BD⊥AC,PD∩BD=D,满足定理所需条件;(3)由AC⊥平面PBD可知,BH为BC在平面PBD内的射影,则∠CBH为直线与平面PBD所成的角,在Rt△BHC中,求出此角即可.本小题主要考查直线与平面平行.直线和平面垂直.直线和平面所成的角等基础知识,考查空间想象能力、运算能力和推理能力.。

线线,线面平行与垂直专项练习

线线,线面平行与垂直专项练习

线面、面面平行1、已知m、n、l1、l2表示不同直线,α、β表示不同平面.若m⊂α,n⊂α,l1⊂βl2⊂β,l1∩l2=M,则能得到结论α∥β的选项是( )A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l1 D.m∥l1且n∥l22、a,b是两条直线,α,β是两个平面,则能使a⊥b成立的条件是( ) A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β3、若有直线m、n和平面α、β,下列四个命题中,正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α4、能使平面α∥平面β成立的条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a、b,a⊂α、b⊂β、a∥β、b∥αD.存在两条异面直线a、b,a⊂α、b⊂β、a∥β、b∥α5、已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的( ) A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β6、设m、n表示不同直线,α、β表示不同平面,则下列命题中正确的是( ) A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β7、设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( )A.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥nD.若m,n为两条异面直线,且m∥α,n∥α,m∥β,n∥β,则α∥β8、已知m,n,l为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )A.α∥β,m⊂α,n⊂β⇒ m∥n B.l⊥β,α⊥β⇒l∥αC.m⊥α,m⊥n⇒n∥αD.α∥β,l⊥α⇒l⊥β9、已知直线l、m,平面α、β,则下列命题中的假命题是( )A.若α∥β,l⊂α,则l∥βB.若α∥β,l⊥α,则l⊥βC.若l∥α,m⊂α,则l∥mD.若α⊥β,α∩β=l,m⊂α,m⊥l,则m⊥β10、给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为( )A.3 B.2 C.1 D.0线面、面面垂直1.平面外的一条直线与内的两条平行直线垂直,那么( ).A. B. C.与相交 D.与的位置关系不确定2.已知直线a、b和平面,下列推论错误的是( ).A. B.C. D.3.若直线a⊥直线b,且a⊥平面,则有( ).A. B. C. D.或4.若P是平面外一点,则下列命题正确的是( ).A.过P只能作一条直线与平面相交B.过P可作无数条直线与平面垂直C.过P只能作一条直线与平面平行D.过P可作无数条直线与平面平行5.设是直二面角,直线,直线,且a不垂直于,b不垂直于,那么( ).A.a与b可能垂直,但不能平行B.a与b可能垂直,也可能平行C.a与b不可能垂直,但可能平行D.a与b不可能平行,也不能垂直6.设、为两个不同的平面,、m为两条不同的直线,且,有如下两个命题:①若,则;②若,则届那么( ).A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题7.关于直线m、n与平面与,有下列四个命题:①若且,则m∥n;②若且,则;③若且,则;④若且,则m∥n.其中真命题的序号是( ).A.①②B.③④C.①④D.②③8.已知直线m⊥平面,直线,给出下列四个命题,其中正确的命题是( ).①若,则;②若,则m∥n;③若m∥n,则;④若,则.A.③④B.①③C.②④D.①②9.下面四个命题:①两两相交的三条直线只可能确定一个平面;②经过平面外一点,有且仅有一个平面垂直这个平面;③平面内不共线的三点到平面的距离相等,则;④两个平面垂直,过其中一个平面内一点作它们交线的垂线,则此垂线垂直于另一个平面其中真命题的个数是( ).A.0个B.1个C.2个D.3个10.设有不同的直线a、b和不同的平面、、,给出下列三个命题:①若,,则;②若,,则;③若,则.其中正确的个数是( )A.0B.1C.2D.3。

最新《平行与垂直》专题练习(含答案)

最新《平行与垂直》专题练习(含答案)

《平行与垂直》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.仔细观察下列图形,其中线段长度能表示点P到直线AB的距离的是( ) A.PD B.PC C.PO D.PE2.仔细观察下列方格中的线段AB,CD,其中不平行的是( )3.下列说法中正确的个数是( )①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②过一点有且只有一条直线和已知直线垂直;③过一点有且只有一条直线与已知直线平行;④两点之间直线最短;⑤火车从南京到上海所行驶的路程就是南京到上海的距离.A.1 B.2 C.3 D.44.在同一平面内,如果直线AB与直线CD平行,直线CD与直线EF相交,那么直线AB 与EF的位置关系是( )A.平行B.相交C.相交或平行D.不能确定5.下列说法:①在同一平面内,不相交的线段;②在同一平面内,不相交的射线;③不相交的直线;④在同一平面内,不相交的直线,其中可判定为平行线的有( ) A.1个B.2个C.3个D.4个6.如图,AB⊥CD,垂足为O,EF为过点D的一条直线,则∠1与∠2的关系一定成立的是( )A.相等B.互余C.互补D.互为对顶角7.在同一平面内有三条互不重合的直线,如果要使其中有两条且只有两条直线平行,那么它们之间的交点只能有( )A.0个B.1个C.2个D.3个8.如图,P为直线a外一点,点A,B,C为直线a上的三点,已知PA=2 cm,PB=3 cm,PC=5 cm.则点P到直线a的距离( )A.2 cm B.3 cm C.5 cm D.不大于2 cm9.在如图所示的长方体中,和棱AB平行的棱共有( )A.1条B.2条C.3条D.4条10.如图,平行四边形ABCD中,对角线AC,BD相交于点O,将△AOD平移至△BEC 的位置,则图中各线段所在的直线互相平行的有( )A.1对B.2对C.3对D.4对二、填空题(每小题3分,共24分)11.在同一平面内,两条相交直线公共点的个数是_______;两条平行直线的公共点的个数是______;两条直线重合,公共点有______个.12.如图,根据图上的标注可以知道,直线EF的垂线有_______条,分别是_______.13.如图,AC⊥BC,CD⊥AB,图中线段______的长度表示点C到AB的距离,线段_______的长度表示点A到BC的距离,线段BC的长度表示______的距离.14.如图,直线AB与CD平行,直线EF与AB,CD分别相交于点G,H请你用量角器量一量,然后判断∠1与∠2的关系是______,∠2与∠3的关系是_______.15.如图,BA⊥AC,AD⊥BC,其长度能表示点到直线(或线段)的距离的线段有___条.16.某人画AB⊥l,CB⊥l,B为垂足如图情况,判断A,B,C三点不在同一条直线上,你认为有道理吗?答:_______;请将你的理由写出:_______.17.已知直线a与b都经过P点,且直线a∥c,b∥c,那么a与b必______,这是因为______________.18.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”,根据上述规定,“距离坐标”是(2,1)的点共有______个.三、解答题(共46分)19.(6分)如图,点D在∠BAC的内部,请根据下列要求完成画图并回答问题:(1)过点D画直线DE//AB,交AC于点E;(2)过点D画直线DF//AC,交AB于点F;(3)诵讨度量判断AE与DF的大小关系以及∠A与∠EDF的大小关系.20.(6分)如图,OA⊥OC,∠1=∠2,试判断OB与OD的位置关系,并说明理由.21.(7分)点P在∠AOC的边OA上,PB⊥OA,交OC于点B,PM⊥OC交OC于点M.(1)图中哪条线段的长表示P到OB的距离?(2)线段OP的长表示什么?(3)比较线段PM与线段OP的大小,你能说出其中的道理吗?22.(7分)如图,直线AB,CD交于点O,OE⊥AB,O为垂足,∠AOC=60°,求∠DOE的度数.(填空并添写理由)解:因为AB,CD交于O点,∠AOC=60°(已知),所以∠BOD=∠AOC=_______度(_______)因为OE⊥AB(_______),所以∠BOE=_______度(_______),所以∠EOD=∠BOE-∠BOD=_______度.23.(10分)如图①,一条直线l1把平面分成了2个部分;如图②,两条直线l2,l3把平面分成了3个或者4个部分(分l2∥l3和l2与l3相交两种情况).画出图形,并探究:如果是三条直线l4,l5,l6,那么它们把平面分成多少个部分?(不需要说明理由)24.(10分)如图,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,(1)①当∠BOC=30°时,∠DOE=_______;②当∠BOC=60°时,∠DOE=_______.(2)通过上面的计算,猜想∠DOE的度数与∠AOB有什么关系,并说明理由.参考答案一、1.C 2.C 3.A 4.B 5.A 6.B 7.C 8.D 9.C 10.D二、11.1 0 无数12.2 AB,CD13.CD AC点B到AC 14.相等互补15.5 16.没有道理过一点有且只有一条与已知直线垂直17.重合经过直线外一点有且只有一条直线与已知直线平行18.4 三、1 9.(1)图略(2)图略.(3)AE=DF,∠A=∠EDF.20.OB⊥OD.21.(1)P到OB的距离应该是P点到OB垂线段的长度,即线段PM的长度.(2)线段OP可以看成是点D到直线PB的一条垂线段,所以OP的长表示点O到PB的距离.(3)PM<OP,因为线段PM是点P到射线OC的垂线段,而线段PO 是点P到射线OC的斜线段.22.因为AB,CD交于O点,∠AOC=60°(已知),所以∠BOD=∠AOC=60度(对顶角相等),因为OE⊥AB(已知),所以∠BOE=90度(垂直的定义),所以∠EOD=∠BOE-∠BOD=30度.故答案为60,对顶角相等,已知,90,垂直的定义,30.23.如图,可以分四种情况,故三条直线可以把平面分成4或6或7个部分.24.(1)①45°.②45°.(2)∠DOE=∠AOB.。

四年级平行和垂直训练题

四年级平行和垂直训练题

四年级平行和垂直训练题一、平行1. 在同一平面内,不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

2. 平行线的特征:两条平行线之间的距离处处相等。

3. 画平行线的方法:固定三角尺,沿一条直角边先画一条直线。

用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺。

沿平移后的三角尺的直角边再画一条直线。

二、垂直1. 如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

2. 垂线的性质:从直线外一点到这条直线所画的垂线段最短,它的长度叫做这点到直线的距离。

3. 画垂线的方法:把三角尺的一条直角边与已知直线重合。

沿着直线移动三角尺,使三角尺的另一条直角边经过已知点。

沿三角尺的另一条直角边画一条直线,并标上直角符号。

三、平行与垂直的应用1. 日常生活中,许多物体的形状和结构都利用了平行和垂直的原理,如窗户的边框、黑板的边框等。

2. 在数学计算和几何图形的证明中,平行和垂直的性质也经常被运用。

示例题目及解析题目 1:判断下面每组直线的位置关系。

(1) 直线 a 和直线 b 永不相交。

(2) 直线 c 和直线 d 相交成直角。

解析:(1) 直线 a 和直线 b 永不相交,说明它们是平行线,互相平行。

(2) 直线 c 和直线 d 相交成直角,说明它们互相垂直。

题目 2:过直线外一点 A 画已知直线的平行线和垂线。

解析:画平行线:1. 把三角尺的一条直角边与已知直线重合。

2. 用直尺紧靠三角尺的另一条直角边。

3. 固定直尺,然后平移三角尺,直到三角尺的直角边经过点 A。

4. 沿着三角尺经过点 A 的直角边画直线,就是已知直线的平行线。

画垂线:1. 把三角尺的一条直角边与已知直线重合。

2. 沿着直线移动三角尺,使三角尺的另一条直角边经过点 A。

3. 沿三角尺的另一条直角边画直线,并标上直角符号,就是已知直线的垂线。

题目 3:在同一平面内,直线 a 与直线 b 互相平行,直线 b 与直线 c 互相平行,那么直线 a 与直线 c 是什么关系?解析:因为直线 a 与直线 b 互相平行,直线 b 与直线 c 互相平行,所以直线 a 与直线 c 互相平行。

线面平行、垂直练习题

线面平行、垂直练习题

线面、面面平行和垂直的判定和性质班别: 姓名:1、在正方体1111ABCD A B C D -中,E 是11B D 的中点,F 是1BC 的中点, 求证:11//EF ABB A 平面2、正方体中1111D C B A ABCD -中,M ,N ,E ,F 分别是棱11B A ,11D A ,11C B ,11D C 的中点。

求证:平面AMN ∥平面EFDB 。

FED 1C 1DB 1A3.如图,四棱锥P ABCD -中,底面ABCD 为平行四边60,2,DAB AB AD PD ∠==⊥o 底面ABCD ,证明:PA BD ⊥4.如图,已知四棱锥P ABCD -的底面ABCD 是菱形, PA ⊥平面ABCD , 点F 为PC 的中点. (Ⅰ)求证://PA 平面BDF ; (Ⅱ)求证:平面PAC ⊥平面BDF .AFPDCB5、如图,P 为ABC ∆所在平面外一点,PA ┴面BAC ,90,ABC ∠=o AE ┴PB 于E ,AF ┴PC 于F ,求证:(1)BC ┴面PAB ,(2)AE ┴面PBC ,(3)PC ┴面AEF 。

6. 如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,(1)求证:AC ⊥平面B 1D 1DB; (2)求三棱锥B-ACB 1体积.ACD 1C 1B 1A 1CDBA7.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点。

求证:(1)PA ∥平面BDE ;(2)BD ⊥平面PAC8、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。

AEDBC。

平行线与垂直线的练习题

平行线与垂直线的练习题

平行线与垂直线的练习题练习题一:1. 画出下面两条线段,使它们互相平行。

AB = 5cmCD = 5cm2. 给定直线l和点P,在直线l上找出与点P不重合的一点Q,使直线PQ与l平行。

直线l:y = 2x + 3点P(-1, 4)练习题二:1. 画出下面两条线段,使它们互相垂直。

EF = 4cmGH = 4cm2. 给定直线m和点R,在直线m上找出与点R不重合的一点S,使直线RS与m垂直。

直线m:y = -0.5x + 2点R(3, 1)练习题三:1. 画出下面两条线段,使一条线段平行于x轴,另一条线段平行于y轴。

IJ = 6cmKL = 6cm2. 给定直线n和点T,在直线n上找出与点T不重合的一点U,使直线UT平行于y轴。

直线n:y = 3x - 1点T(-2, 2)解答及示意图见下一页。

(以下为题目的解答及示意图,为方便呈现,采用文字形式展示)练习题一:1. 线段AB和线段CD的示意图如下所示:(请参考示意图1)2. 线段PQ与直线l平行,示意图如下所示:(请参考示意图2)练习题二:1. 线段EF和线段GH的示意图如下所示:(请参考示意图3)2. 线段RS与直线m垂直,示意图如下所示:(请参考示意图4)练习题三:1. 线段IJ和线段KL的示意图如下所示:(请参考示意图5)2. 线段UT与直线n平行于y轴,示意图如下所示:(请参考示意图6)注意:示意图中的线段和箭头仅用于表示相对方向,并非按照实际比例进行绘制。

感谢阅读以上练习题的答案。

希望这些练习题能够帮助您更好地理解平行线和垂直线的概念和特性。

如有任何疑问,请随时向我提问。

平行线和垂直线练习题

平行线和垂直线练习题

平行线和垂直线练习题1. 问题描述:小明在数学课上研究了平行线和垂直线的概念,现在老师给了他一些练题,请帮忙解答以下问题。

2. 练题:a. 画出下列平行线组:(1) AB // CD(2) EF // GH(3) PQ // RSb. 画出下列垂直线组:(1) AB ⊥ CD(2) EF ⊥ GH(3) PQ ⊥ RSc. 判断下列线段是否平行:(1) AB // CD(2) AB // EF(3) AB // PQd. 判断下列线段是否垂直:(1) AB ⊥ CD(2) AB ⊥ EF(3) AB ⊥ PQ3. 解答:a. 平行线组的画法如下:(1) 以点A为起点,画一条与CD同样方向的直线,标记为AB;(2) 以点E为起点,画一条与GH同样方向的直线,标记为EF;(3) 以点P为起点,画一条与RS同样方向的直线,标记为PQ。

b. 垂直线组的画法如下:(1) 以点A为起点,画一条与CD垂直的直线,标记为AB;(2) 以点E为起点,画一条与GH垂直的直线,标记为EF;(3) 以点P为起点,画一条与RS垂直的直线,标记为PQ。

c. 判断线段是否平行的规则:若两条线段有且仅有一个公共点,并且两条线段的斜率相等,则这两条线段平行。

根据上述规则,判断如下:(1) AB和CD线段平行;(2) AB和EF线段不平行;(3) AB和PQ线段不平行。

d. 判断线段是否垂直的规则:若两条线段的斜率之积为-1,则这两条线段垂直。

根据上述规则,判断如下:(1) AB和CD线段垂直;(2) AB和EF线段不垂直;(3) AB和PQ线段不垂直。

4. 注意事项:在画线段时,需保证线段间的距离相等,以保证平行或垂直关系的正确性。

以上是对平行线和垂直线的练习题的解答,请核对答案并进行相应纠正。

如有疑问,请及时向老师请教。

线面垂直练习题及答案

线面垂直练习题及答案

线面垂直练习题及答案一、选择题(每题2分,共10分)1. 在空间几何中,如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面的关系是什么?A. 平行B. 垂直C. 相交D. 无法确定2. 若直线l与平面α垂直,直线m在平面α内,且直线l与直线m相交于点P,那么直线l与直线m的关系是什么?A. 平行B. 垂直C. 异面D. 相交但非垂直3. 在一个正方体中,如果一条直线垂直于正方体的一个面,那么这条直线与正方体的对角线的关系是什么?A. 垂直B. 平行C. 相交D. 异面4. 已知直线AB与直线CD相交于点P,且直线AB垂直于平面α,直线CD在平面α内,那么点P到平面α的距离是多少?A. 0B. 长度APC. 长度CPD. 无法确定5. 如果直线a与平面β垂直,直线b在平面β内,且直线a与直线b不共面,那么直线a与直线b的关系是什么?A. 平行B. 垂直C. 相交D. 异面二、填空题(每空1分,共5分)6. 已知直线l垂直于平面α,若直线m在平面α内,且直线l与直线m的距离为d,则直线l与直线m的夹角为________。

7. 在三棱锥P-ABC中,若PA垂直于平面ABC,且AB垂直于AC,则PA 与AB的夹角为________。

8. 已知直线a垂直于直线b,直线c垂直于直线b,且直线a与直线c 相交,那么直线a与直线c的夹角为________。

三、计算题(每题5分,共10分)9. 在空间直角坐标系中,设直线l的方程为 \( x - 2y + z = 0 \),平面α的方程为 \( 3x + y - 2z + 5 = 0 \)。

求证直线l与平面α垂直。

10. 已知直线AB通过点A(1,2,3)和点B(4,5,6),求证直线AB垂直于平面xOy。

2025高考数学一轮复习-7.4-直线、平面垂直的判定与性质-专项训练【含答案】

2025高考数学一轮复习-7.4-直线、平面垂直的判定与性质-专项训练【含答案】

2025高考数学一轮复习-7.4-直线、平面垂直的判定与性质-专项训练基础巩固练1.能保证直线a与平面α平行的条件是()A.b⊂α,a∥bB.b⊂α,c∥α,a∥b,a∥cC.b⊂α,A,B∈a,C,D∈b,且AC∥BDD.a⊄α,b⊂α,a∥b2.在三棱台ABC-A1B1C1中,直线AB与平面A1B1C1的位置关系是()A.相交B.平行C.在平面内D.不确定3.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,现给出以下四个命题:① ∥ ∥ ⇒α∥β;② ∥ ∥ ⇒α∥β;③ ∥ ∥ ⇒a∥α;④ ∥ ∥ ⇒a∥β.其中为真命题的是()A.①②③B.①④C.②D.①③④4.(2023连云港质检)若过直线l外两点作与l平行的平面,则这样的平面()A.不存在B.只有一个C.有无数个D.不能确定5.(多选题)如图所示,P为矩形ABCD所在平面外一点,矩形对角线的交点为O,M为PB的中点,给出以下结论,其中正确的是()A.OM∥PDB.OM∥平面PCDC.OM∥平面PDAD.OM∥平面PBA6.(多选题)(2023无锡调研)设a,b是两条不同的直线,α,β,γ是三个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在一个平面γ,满足α∥γ,β∥γD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α7.如图,E,F,G分别是四面体ABCD的棱BC,CD,DA的中点,则此四面体中与过点E,F,G的截面平行的棱是.8.如图所示,在正方体ABCD-A1B1C1D1中,M,E,F,N分别是A1B1,B1C1,C1D1,D1A1的中点,求证:(1)E,F,B,D四点共面;(2)平面MAN∥平面EFDB.9.如图所示,已知正方体ABCD-A1B1C1D1.(1)求证:平面A1BD∥平面B1D1C.(2)若E,F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.综合提升练10.(多选题)四棱锥的平面展开图如图所示,其中四边形ABCD为正方形,点E,F,G,H分别为PA,PD,PC,PB的中点,则在原四棱锥中()A.平面EFGH∥平面ABCDB.BC∥平面PADC.AB∥平面PCDD.平面PAD∥平面PAB11.如图,点A,B,C,M,N为正方体的顶点或所在棱的中点,则下列各图中,不满足直线MN∥平面ABC的是()A BC D12.(2023苏州月考)如图,在斜三棱柱ABC-A1B1C1中,点D1为A1C1上的点.当 1 1 1 1=时,BC1∥平面AB1D1.第12题图第13题图13.如图,在直三棱柱ABC-A1B1C1中,D为AA1的中点,点P在侧面BCC1B1上运动,当点P满足条件时,A1P∥平面BCD.(填一个满足题意的条件即可)14.如图,在四棱锥P-ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面PAD.(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF?若存在,请证明你的结论;若不存在,请说明理由.创新应用练15.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P的长度的取值范围是()A.1,2 D.[2,3]参考答案1.D2.B3.C4.D5.ABC6.CD7.BD,AC8.证明(1)如图,连接B1D1.∵E,F分别是B1C1和C1D1的中点,∴EF∥B1D1.又BD∥B1D1,∴BD∥EF.∴E,F,B,D四点共面.(2)由题意知MN∥B1D1,B1D1∥BD,∴MN∥BD.又MN⊄平面EFDB,BD⊂平面EFDB,∴MN∥平面EFDB,如图,连接MF.∵点M,F分别是A1B1与C1D1的中点,∴MF AD.∴四边形ADFM是平行四边形.∴AM∥DF.∵AM⊄平面EFDB,DF⊂平面EFDB,∴AM∥平面EFDB.又AM∩MN=M,∴平面MAN∥平面EFDB.9.证明(1)因为B1B DD1,所以四边形BB1D1D是平行四边形,所以B1D1∥BD.又BD⊄平面B1D1C,B1D1⊂平面B1D1C,所以BD∥平面B1D1C.同理A1D∥平面B1D1C.又A1D∩BD=D,所以平面A1BD∥平面B1D1C.(2)由BD∥B1D1,B1D1⊂平面EB1D1,BD⊄平面EB1D1,得BD∥平面EB1D1.如图,取BB1的中点G,连接AG,GF,易得AE∥B1G,又因为AE=B1G,所以四边形AEB1G是平行四边形,所以B1E∥AG.易得GF∥AD,又因为GF=AD,所以四边形ADFG是平行四边形,所以AG∥DF,所以B1E ∥DF,又B1E⊂平面EB1D1,DF⊄平面EB1D1,所以DF∥平面EB1D1.又因为BD∩DF=D,所以平面EB1D1∥平面FBD.10.ABC11.D12.113.P是CC1的中点(答案不唯一)14.解(1)如图,取P A的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,且EH=12AB,又AB∥CD,且CD=12AB,所以EH∥CD,且EH=CD,所以四边形DCEH为平行四边形,所以CE∥DH,又DH⊂平面PAD,CE⊄平面PAD,所以CE ∥平面PAD.(2)存在.当F为AB的中点时,平面P AD∥平面CEF.证明如下:如图,取AB的中点F,连接CF,EF,则AF=12AB,因为CD=12AB,所以AF=CD,又AF∥CD,所以四边形AFCD为平行四边形,所以CF∥AD.又AD⊂平面PAD,CF⊄平面PAD,所以CF∥平面PAD,由(1)知CE∥平面PAD,又CE∩CF=C,CE,CF⊂平面CEF,所以平面CEF∥平面PAD.故当F为AB的中点时,平面PAD∥平面CEF.15.B。

平行与垂直的练习题

平行与垂直的练习题

平行与垂直的练习题平行与垂直的练习题无论是在学习还是在工作中,我们会经常接触并使用试题,试题是命题者根据测试目标和测试事项编写出来的。

一份什么样的试题才能称之为好试题呢?以下是小编为大家整理的平行与垂直的练习题,希望能够帮助到大家。

平行与垂直的练习题篇11.填空题。

(1)在()内不相交的两条直线叫做(),平行线间的距离处处()。

(2)长方形的长和宽互相()。

2.判断题。

(1)不相交的两条直线叫做平行线。

()(2)两条线段平行,它们一定相等。

()(3)平行线之间的垂线只有一条。

()(4)两条平行线之间的'距离处处相等。

()3.选择题(1)有两条直线都和一条直线平行,这两条直线()。

①互相垂直②互相平行③相交(2)过直线外的一点画已知直线的平行线,这样的平行线可以画()条。

①1条②2条③无数条(3)在同一平面内不重合的两条直线()①相交②平行③不相交就平行平行与垂直的练习题篇21.填空题(1)两条直线相交成直角时,这两条直线叫做互相(),其中的一条叫做另一条的(),它们的交点叫做()。

(2)从直线外一点到这条直线所画的线段中,这条直线的()线段为最短。

(3)经过一点可以画()条直线;经过两点可以画()条直线。

(4)两条直线相交成()时,这两条直线叫做互相垂直。

(5)在同一平面内如果两条直线都垂直于第三条直线,那么这两条互相()。

2.选择题(1)过直线外的一点画已知直线的垂线,这样的垂线可以画()条。

①1条②2条③无数条(2)两条直线互相垂直,这两条直线相交成()°的角。

①180°②90°③45°。

平行与垂直练习题

平行与垂直练习题

平行与垂直练习题一、选择题:1. 两条直线的位置关系有几种?A. 1种B. 2种C. 3种D. 4种2. 在同一平面内,两条不重合的直线的位置关系是平行或相交,这种说法正确吗?A. 正确B. 错误3. 两条直线相交成90度角,我们称这两条直线为:A. 平行B. 垂直C. 相交D. 异面4. 根据垂直的性质,如果两条直线都垂直于同一条直线,那么这两条直线的关系是:A. 平行B. 垂直C. 相交D. 无法确定5. 在同一平面内,如果两条直线不相交,那么它们的位置关系是:A. 平行B. 垂直C. 相交D. 异面二、填空题:1. 两条直线相交成90度角,我们称这两条直线为________。

2. 如果直线a与直线b平行,直线b与直线c平行,那么直线a与直线c的关系是________。

3. 在同一平面内,两条不重合的直线的位置关系是________或________。

4. 如果两条直线都垂直于同一条直线,那么这两条直线的关系是________。

5. 垂直的性质告诉我们,如果两条直线都垂直于同一条直线,那么这两条直线________。

三、判断题:1. 在同一平面内,两条直线不相交,它们一定是平行的。

(对/错)2. 垂直的两条直线一定相交。

(对/错)3. 两条平行线之间的距离处处相等。

(对/错)4. 垂直的两条直线永远不会平行。

(对/错)5. 两条直线相交,它们的位置关系只能是垂直。

(对/错)四、解答题:1. 已知直线AB与直线CD在同一平面内,且AB垂直于CD。

如果点E 在直线AB上,点F在直线CD上,求证:EF与AB垂直。

2. 如果直线a与直线b平行,直线b与直线c平行,求证直线a与直线c平行。

3. 已知直线AB与直线CD相交,且AB垂直于CD。

如果点P在直线AB 上,点Q在直线CD上,求证:PQ与AB垂直。

五、应用题:1. 一个长方形的长和宽分别是12厘米和8厘米,求这个长方形的对角线长度。

2. 一个直角三角形的两条直角边分别是3厘米和4厘米,求这个直角三角形的斜边长度。

线面平行和垂直练习题

线面平行和垂直练习题

线面平行和垂直练习题一、选择题1. 在正方体ABCDA1B1C1D1中,下列哪个平面与平面ABCD平行?A. 平面A1B1C1D1B. 平面ADD1A1C. 平面BCC1B1D. 平面ABB1A12. 已知直线a平行于平面α,直线b垂直于平面α,则直线a 与直线b的关系是:A. 平行B. 相交C. 异面D. 垂直3. 下列关于线面垂直的说法,正确的是:A. 如果一条直线与平面内的任意一条直线垂直,则该直线与平面垂直B. 如果一条直线与平面内的两条相交直线垂直,则该直线与平面垂直C. 如果一条直线与平面内的两条平行直线垂直,则该直线与平面垂直D. 如果一条直线与平面内的任意一条直线平行,则该直线与平面垂直二、填空题1. 已知直线a垂直于平面α,直线b平行于直线a,则直线b与平面α的夹角为______。

2. 在正方体ABCDA1B1C1D1中,平面ADD1A1与平面ABCD的夹角为______。

3. 若直线a与平面α所成的角为45°,直线b与平面α垂直,则直线a与直线b所成的角为______。

三、解答题1. 在正方体ABCDA1B1C1D1中,求证:平面ABB1A1垂直于平面BCC1B1。

2. 已知直线a平行于平面α,直线b垂直于平面α,证明:直线a与直线b所成的角等于直线b与平面α的夹角。

3. 在空间直角坐标系中,设点A(1,0,0),点B(0,1,0),点P(x,y,z),平面α过点A、B且垂直于平面xOy。

若直线AP垂直于平面α,求点P的坐标。

4. 已知四棱锥PABCD的底面ABCD是矩形,侧面PAB是等边三角形,侧面PAD是等腰直角三角形,求证:侧面PAB垂直于底面ABCD。

5. 在长方体ABCDA1B1C1D1中,求证:平面ABB1A1平行于平面CDD1C1。

四、判断题1. 若直线a垂直于平面α,直线b平行于直线a,则直线b一定垂直于平面α。

()2. 在空间中,若两个平面都垂直于同一条直线,则这两个平面平行。

平行与垂直的练习题

平行与垂直的练习题

平行与垂直的练习题一、选择题1. 在平面内,两条直线的位置关系有几种?A. 一种B. 两种C. 三种D. 四种2. 下列说法中,正确的是:A. 平行线永远不会相交B. 垂直线是相交的C. 垂直线是平行的D. 垂直线是异面的3. 如果直线a与直线b相交成90度角,那么直线a与直线b的关系是:A. 平行B. 垂直C. 相交D. 异面4. 在同一平面内,不相交的两条直线叫做:A. 垂直线B. 平行线C. 相交线D. 异面线5. 下列几何图形中,哪些图形的对边是平行的?A. 矩形B. 三角形C. 圆D. 梯形二、填空题6. 两条直线相交所成的角中,有一个角是直角时,这两条直线互相______。

7. 如果两条直线相交成90度角,那么这两条直线叫做______。

8. 在平面直角坐标系中,直线y=kx+b与x轴相交于点(-b/k,0),当k=0时,直线与x轴的关系是______。

9. 在平面内,如果两条直线没有公共点,则称这两条直线为______。

10. 两条平行线之间的距离处处相等,这个距离指的是两条平行线之间的______。

三、判断题11. 平行线在任何情况下都不会相交。

()12. 垂直线是两条相交成90度的直线。

()13. 在平面内,如果两条直线不相交,那么它们一定是平行的。

()14. 两条直线相交所成的角中,至少有一个角是锐角。

()15. 两条平行线之间的距离是恒定的。

()四、简答题16. 解释什么是平行线,并给出两条平行线的性质。

17. 描述什么是垂直线,并解释垂直线在几何学中的重要性。

18. 给出一个实际生活中的例子,说明平行线和垂直线的应用。

19. 如果两条直线不相交也不平行,它们的位置关系是什么?20. 解释为什么在一个平面直角坐标系中,两条直线的斜率可以决定它们是否平行或垂直。

五、解答题21. 在平面直角坐标系中,给定直线l1: y = 3x + 2 和直线l2: y = -3x + 7,判断这两条直线的位置关系,并说明理由。

平行垂直练习题

平行垂直练习题

平行垂直练习题一、选择题1. 已知直线a与直线b平行,直线b与直线c垂直,那么直线a与直线c的关系是:A. 平行B. 垂直C. 相交D. 无法确定2. 如果两条直线相交所成的四个角中有一个角是直角,那么这两条直线:A. 平行B. 垂直C. 相交D. 异面3. 在同一平面内,两条不重合的直线的位置关系有:A. 只有一种B. 两种C. 三种D. 四种4. 如果直线l1与直线l2相交成30度角,那么直线l1与直线l2的位置关系是:A. 平行B. 垂直C. 相交D. 无法确定二、填空题5. 在同一平面内,如果两条直线没有交点,则这两条直线_________。

6. 如果两条直线相交所成的四个角都是直角,那么这两条直线_________。

7. 两条平行线之间的距离是指_________。

8. 两条直线相交,如果其中一个角是锐角,则其余三个角的和为_________。

三、判断题9. 如果直线a与直线b平行,直线b与直线c平行,那么直线a与直线c也平行。

()10. 如果直线a与直线b垂直,直线b与直线c平行,那么直线a与直线c垂直。

()11. 在同一平面内,两条直线要么平行,要么相交。

()12. 如果两条直线相交成90度角,那么这两条直线垂直。

()四、简答题13. 解释什么是平行线,并给出两条直线平行的条件。

14. 解释什么是垂直线,并给出两条直线垂直的条件。

15. 说明在同一平面内,两条直线的位置关系有哪些可能,并解释每种情况。

五、计算题16. 在平面直角坐标系中,已知直线l1的方程为y = 2x - 3,直线l2的方程为y = -2x + 7。

请判断这两条直线是否平行,并说明理由。

17. 已知直线l1与直线l2垂直,且直线l1的方程为y = 3x + 5,直线l2通过点(2, 3)。

求直线l2的方程。

18. 如果两条平行线的距离为5单位,且其中一条直线的方程为x +2y - 7 = 0,请写出另一条平行线的方程。

初二数学下册平行线与平面的垂直性练习题

初二数学下册平行线与平面的垂直性练习题

初二数学下册平行线与平面的垂直性练习题平行线和平面的垂直性是初中数学中的一个重要概念。

理解和掌握这个概念对于解决几何问题至关重要。

通过练习题的形式,我们可以检验自己对这个概念的掌握程度,并进一步加深对该概念的理解。

下面是一些关于平行线和平面垂直性的练习题。

练习题 1:已知一直线l和一个平面P,证明:若直线l和平面P垂直,则与这个平面上任何一条直线相交的直线都与l平行。

解答:首先,已知直线l与平面P垂直,则直线l与平面P上任意一条直线的夹角为90度。

假设l与平面P的交点为A,与平面P上的直线交于B点。

我们需要证明,直线AB与直线l平行。

我们可以通过反证法来证明这个命题。

假设直线AB与直线l不平行,即直线AB与直线l相交于C点。

根据直线AB与平面P的垂直关系,得知直线AB在平面P上。

这样,就有直线l与平面P上的两条直线AB和BC相交于C点,与已知条件直线l与平面P的垂直性相矛盾。

因此,我们可以得出结论:直线AB与直线l平行。

练习题 2:已知直线l与平面P垂直,且直线l与平面P上的某一条直线相交于点A。

若平面P上有一条直线BC与直线AB平行,试证明:直线BC与直线l平行。

解答:设平面P上的直线BC与直线AB平行,即直线BC与平面P的交点为D。

我们需要证明直线BC与直线l平行。

根据已知条件,直线l与平面P垂直,即直线l与平面P上的任意一条直线所成角均为90度。

因此,角BAD为90度。

接下来,我们利用反证法假设直线BC与直线l不平行,即直线BC 与直线l相交于点E。

由于直线BC与平面P的垂直性,直线BC与平面P上的两条直线BC和BE相交于点E,与已知条件直线BC与直线AB平行相矛盾。

因此,我们可以得出结论:直线BC与直线l平行。

练习题 3:已知一个平面P与一条直线l垂直,平面P上有一条直线DE与直线l平行。

若平面P上有一条直线EF与直线DE垂直,试证明:直线EF与平面P平行。

解答:设直线EF与平面P相交于点F,我们需要证明直线EF与平面P平行。

线面_面面___垂直平行练习题

线面_面面___垂直平行练习题

立体几何选择题一、选择题1、直线和平面平行是指该直线与平面内的( ) (A)一条直线不相交 (B)两条直线不相交 (C)无数条直线不相交 (D)任意一条直线都不相交2、已知a b ||,αα⊂,则必有( )()||(),A a b B a b异面 (),C a b 相交 (),D a b 平行或异面3、若直线a,b 都与平面α平行,则a 和b 的位置关系是( ) (A)平行 (B)相交 (C)异面 (D)平行或相交或是异面直线@4、下列四个命题中,正确命题的个数是( )个 (1)过直线外一点,只能作一条直线与这条直线平行; (2)过平面外一点,只能作一条直线与这个平面平行; (3)过直线外一点,只能作一个平面与这条直线平行;(4)过两条异面直线中的一条直线,只能作一个平面与另一条直线平行。

(A)1 (B)2 (C)3 (D)45、下列命题中,错误的命题是( )(A)如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个 平面相交;(B)一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行; (C)经过两条异面直线中的一条直线,有一个平面与另一条直线平行; (D)空间四边形相邻两边的中点的连线,平行于经过另外两边的平面。

6.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线( ) A .异面 B .相交 C .平行 D .不确定7.已知平面@、β和直线m ,给出条件:①m ∥@;②m ⊥@;③m ⊂@;④@⊥β;⑤@∥β.为使m ∥β,应选择下面四个选项中的 ( )A .①④B .①⑤C .②⑤D .③⑤8.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行D 一直线与平面平行,则平面内任意直线都与已知直线异面9.若直线l 与平面α的一条平行线平行,则l 和α的位置关系是 ( ) A α⊂l B α//l C αα//l l 或⊂ D 相交和αl10.若直线a 在平面α内,直线a,b 是异面直线,则直线b 和α平面的位置关系是 ( ) A .相交 B 。

线面垂直练习题

线面垂直练习题

线面垂直练习题一、选择题1. 若直线a与平面α内的直线b垂直,且b⊂α,那么直线a与平面α的关系是()。

A. 平行B. 垂直B. 相交D. 无法确定2. 在空间几何中,若直线m与平面α垂直,直线n在平面α内,且m与n相交,那么直线m与直线n的关系是()。

A. 垂直B. 平行C. 异面D. 相交3. 已知直线l垂直于平面α,点P在平面α外,若要确定过点P且垂直于平面α的直线,需要()。

A. 一条直线B. 两条直线C. 至少两条直线D. 无数条直线4. 若直线a与直线b相交,且a垂直于平面α,b在平面α内,则直线b与平面α的关系是()。

A. 垂直B. 平行C. 相交D. 无法确定5. 已知直线m垂直于直线n,直线m在平面β内,直线n在平面α内,若平面α与平面β垂直,则直线m与平面α的关系是()。

A. 垂直B. 平行C. 相交D. 异面二、填空题6. 若直线a与平面α垂直,直线a上的点A到平面α的距离为d,则直线a上任意一点到平面α的距离都是________。

7. 在空间几何中,若直线l1与直线l2垂直,且l1在平面α内,l2在平面β内,若平面α与平面β垂直,则直线l1与直线l2的位置关系是________。

8. 已知直线m垂直于平面α,若平面β与平面α垂直,且直线m在平面β内,则直线m与平面α的位置关系是________。

9. 若直线a与直线b垂直,直线a在平面α内,直线b在平面β内,且平面α与平面β垂直,则直线a与平面β的位置关系是________。

10. 若直线l垂直于平面α,点P在平面α上,直线l'过点P且与直线l垂直,则直线l'与平面α的位置关系是________。

三、解答题11. 已知直线a与平面α垂直,直线b在平面α内,直线a与直线b 相交于点A。

求证:点A是直线b在平面α上的垂足。

12. 已知平面α与平面β垂直,直线m垂直于平面α且在平面β内,直线n在平面α内。

求证:直线m与直线n垂直。

平行垂直练习题

平行垂直练习题

平行垂直练习题一、选择题1. 在同一平面内,如果两条直线相交成90度角,那么这两条直线是:A. 平行线B. 垂直线C. 异面直线D. 相交线2. 下列说法正确的是:A. 平行线永远不会相交B. 垂直线是相交的C. 垂直线永远不会平行D. 两条直线要么平行,要么相交3. 如果一条直线与另一条直线相交,但不是垂直的,那么它们的关系是:A. 平行B. 垂直C. 斜交D. 异面4. 在平面几何中,两条直线的位置关系不包括:A. 平行B. 垂直C. 重合D. 相交5. 如果直线a和直线b在同一平面内,且不相交,那么直线a和直线b是:A. 平行线B. 垂直线C. 异面直线D. 重合直线二、填空题6. 在同一平面内,如果两条直线不相交,则它们是_________。

7. 如果两条直线相交所成的角是90度,则这两条直线是_________。

8. 两条直线相交成30度角,它们是_________。

9. 在平面几何中,两条直线的位置关系有_________、_________和_________。

10. 如果直线a与直线b垂直,那么直线a的斜率与直线b的斜率的乘积是_________。

三、判断题11. 平行线之间的距离处处相等。

()12. 垂直线之间的距离是固定的。

()13. 两条直线相交,它们的位置关系只能是垂直或平行。

()14. 两条直线可以同时是平行的和垂直的。

()15. 在同一平面内,两条直线不相交则它们一定是平行的。

()四、简答题16. 解释什么是平行线,并给出一个例子。

17. 描述垂直线的定义,并解释为什么两条垂直线相交所成的角是90度。

18. 如果两条直线相交,但不是垂直的,它们的位置关系是什么?请给出一个例子。

19. 在平面几何中,两条直线的位置关系有哪些?请列举并简要解释。

20. 为什么说两条直线在同一平面内,如果不相交,则它们一定是平行的?五、应用题21. 已知直线L1的方程为y=2x+3,直线L2的方程为y=-x+1,判断这两条直线是否平行或垂直,并说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线面、面面平行和垂直的判定和性质
大题专练
1、在正方体1111ABCD A B C D -中,E 是11B D 的中点,F 是1BC 的中点, 求证:11//EF ABB A 平面
2、正方体中1111D C B A ABCD -中,M ,N ,E ,F 分别是棱11B A ,11D A ,11C B ,11D C 的中点。

求证:平面AMN ∥平面EFDB 。

3.如图,四棱锥P ABCD -中,底面ABCD 为平行四边
60,2,DAB AB AD PD ∠==⊥ 底面ABCD ,
证明:PA BD ⊥
A
4.如图,已知四棱锥P ABCD -的底面ABCD 是菱形, PA ⊥平面ABCD , 点F 为PC 的中点.
(Ⅰ)求证://PA 平面BDF ; (Ⅱ)求证:平面PAC ⊥平面BDF .
5、如图,P 为ABC ∆所在平面外一点,PA ┴面BAC ,90,ABC ∠=AE ┴PB 于E ,AF ┴PC 于F ,求证:(1)BC ┴面PAB ,(2)AE ┴面PBC ,(3)PC ┴面AEF 。

6. 如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,
(1)求证:AC ⊥平面B 1D 1DB; (2)求三棱锥B-ACB 1体积.
A
C
D 1
C 1
B 1
A 1
C
D
B
A
A
F
P
D
C
B
7.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点。

求证:(1)PA ∥平面BDE ;(2)BD ⊥平面PAC
8、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面CDE;
(2)平面CDE ⊥平面ABC 。

小题专练
1. 设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )
A
E
D
B
C
A .若l β⊥,则αβ⊥
B .若αβ⊥,则l m ⊥
C .若//l β,则//αβ
D .若//αβ,则//l m
2. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命
题正确的是( )
A .l 至少与1l ,2l 中的一条相交
B .l 与1l ,2l 都相交
C .l 至多与1l ,2l 中的一条相交
D .l 与1l ,
2l 都不相交
3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命
题正确的是( )
(A )若α,β垂直于同一平面,则α与β平行
(B )若m ,n 平行于同一平面,则m 与n 平行
(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面
4.一个几何体的三视图如图所示,则该几何体的表面积为( )
A .3π
B .4π
C .24π+
D .34π+
5.个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的
比值为( )
A .
81 B .71 C .61 D .5
1 6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .
7.若正三棱柱的所有棱长均为a ,且其体积为,则a = .
8.(2014浙江高考)设m,n 是两条不同的直线,α,β是两个不同的平面.( ) A.若m ⊥n,n ∥α,则m ⊥α B.若m ∥β,β⊥α,则m ⊥α
C.若m ⊥β,n ⊥β,n ⊥α,则m ⊥α
D.若m ⊥n,n ⊥β,β⊥α,则m ⊥α
9.(2013广东高考)设l 为直线,α,β是两个不同的平面.下列命题中正确的是( )
A.若l ∥α,l ∥β,则α∥β
B.若l ⊥α,l ⊥β,则α∥β
C.若l ⊥α,l ∥β,则α∥β
D.若α⊥β,l ∥α,则l ⊥β。

相关文档
最新文档