2015高考真题数学理(新课标Ⅱ卷)含解析

合集下载

2015年高考全国新课标卷Ⅱ理科数学真题含答案解析(超完美版)

2015年高考全国新课标卷Ⅱ理科数学真题含答案解析(超完美版)

2015年高考全国新课标卷Ⅱ理科数学真题(青海;西藏;甘肃;贵州;内蒙古;新疆;宁夏;吉林;黑龙江;云南;辽宁;广西;海南)一、选择题1.已知集合A={-2,-1,0,1,2},B={X|(X-1)(X+2)<0},则AB=( ) A .{-1,0} B .{0,1} C .{-1,0,1} D .{0,1,2}2.若a 为实数,且(2+ai )(a-2i )= - 4i ,则a=( )A .-1B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .2006年以来我国二氧化硫排放量与年份正相关4.已知等比数列{a n } 满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .845.设函数f (x )=f (x )={1+log 2,(2−x ),x <12x−1,x ≥1则f (-2)+f (log 212)=( )A .3B .6C .9D .12 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .157.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则IMNI=( )A .2√6B .8C .4√6D .108.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

执行该程序框图,若输入的a , b 分别为14 ,18,则输出的a=( )A .0B .2C .4D .149.已知A,B 是球O 的球面上两点,∠AOB=90o ,C 为该球上的动点,若三棱锥O-ABC 的体积最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=,将动点P 到,A B 两点距离之和表示为x 的函数,则()y f x =的图像大致为( )A .B .C .D .11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A B .2 C D 12.设函数f ’(x)是奇函数f(x)(x ∈R)的导函数,f(-1)=0,当x>0时,x f ’(x)- f(x)<0,则使得f(x)>0成立的x 的取值范围是( )A .(−∞,-1)∪(0,1)B .(−1,0)∪(1,+∞)C .(−∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)二、填空题13.设向量a,b 不平行,向量λ a+b 与a+2b 平行,则实数 λ =14.若x ,y 满足约束条件,则z=x+y 的最大值为 15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a=16.设S n 是数列{a n }的前n 项和,且1111,n n n a a s s ++=-=,则S n =三、解答题17.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍(I )求Csin B sin ∠∠ (II )若AD=1,DC=22,求BD 和AC 的长18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果互相独立。

2015年全国统一高考数学试卷(理科)(新课标i)附详细解析

2015年全国统一高考数学试卷(理科)(新课标i)附详细解析

2015年全国统一高考数学试卷(理科)(新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()B2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则().8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC . (Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()满足=iB.2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....=﹣(﹣<<6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则,××(,÷7.(5分)设D为△ABC所在平面内一点,,则().利用向量的三角形法则首先表示为=本题考查了向量的三角形法则的运用;关键是想法将向量表示为8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+)的部分图象,可得函数的周期为(﹣可得+=,)≤≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()﹣﹣≤﹣≤﹣=﹣=2552,的通项为=的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()×+22r+12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[<﹣时,,>﹣时,﹣,,解得二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,).)15.(5分)若x,y满足约束条件.则的最大值为3.,则,解得,即=3的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x x xx+m=+AD=x+mx+m=,x+m x=+x的取值范围是(﹣+﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣(﹣+﹣)(﹣.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=,且BE=,故,,EF=,),=,)=,﹣,,>=﹣.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.w=,建立y=c+dw=的线性回归方程,由于===563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68)﹣+20.12=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由),利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为=a=处的切线方程为:,化为==.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,,即可得出零点的个数;,解得.时,﹣=a+<﹣=a+=,∴当)在内单调递减,在x==,即,则,即,=a+a时,或时,或选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=2=.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,或求得<,a|=,,[2a+1]参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;cst;lincy;吕静;双曲线;whgcn;孙佑中(排名不分先后)菁优网2015年7月20日。

2015年高考真题:理科数学(山东卷)试卷(含答案)

2015年高考真题:理科数学(山东卷)试卷(含答案)

2015年普通高等学校招生全国统一考试(山东卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中只有一项是符合题目要求的. (1) 已知集合A=2{|430},{|24}x x x B x x -+<=<<,则A B =(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)解析:2{|430}{|13},(2,3)A x x x x x A B =-+<=<<= ,答案选(C)(2) 若复数z 满足1zi i=-,其中i 是虚数单位,则z = (A)1i - (B) 1i + (C) 1i -- (D) 1i -+解析:2(1)1,1z i i i i i z i =-=-+=+=-,答案选(A) (3)要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像(A)向左平移12π个单位 (B) 向右平移12π个单位(C)向左平移3π个单位 (D) 向右平移3π个单位解析:sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位答案选(B)(4)已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=(A)232a - (B) 234a - (C)234a (D) 232a 解析:由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+= ,答案选(D)(5)不等式|1||5|2x x ---<的解集是(A)(,4)-∞ (B) (,1)-∞ (C) (1,4) (D) (1,5)解析:当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,答案选(A)(6)已知,x y 满足约束条件0,2,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =(A)3 (B) 2 (C) 2- (D) 3-解析:由z a x y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >;答案选(B) 7.在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)23π (B) 43π (C) 53π (D) 2π 解析:2215121133V πππ=⋅⋅-⋅⋅=,答案选(C)8.已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=.)(A)4.56% (B) 13.59% (C) 27.18% (D) 31.74%解析:1(36)(95.44%68.26%)13.59%2P ξ<<=-=,答案选(B) (9)一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为(A)53-或35- (B) 32-或32- (C) 54-或45- (D) 43-或34- 解析:(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则1,|55|d k ==+=解得43k =-或34-,答案选(D)(10)设函数31,1,()2, 1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是 (A)2[,1]3(B) [0,1] (C) 2[,)3+∞ (D) [1,)+∞解析:由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,答案选(C)二、填空题:本大题共5小题,每小题5分,共25分. (11)观察下列各式:0010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .解析:14n -.具体证明过程可以是:0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++ 021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n n n n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 . 解析:“[0,],t a n 4xx mπ∀∈≤”是真命题,则tan14m π≥=,于是实数m 的最小值为1.(13)执行右边的程序框图,输出的T解析:11200111123T xdx x dx =++=++=⎰⎰(14)已知函数()xf x a b =+(0,a a >≠和值域都是[1,0]-,则a b += .解析:当1a >时101a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2,b =-则13222a b +=-=-. (15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 . 解析:22122:1(0,0)x y C a b a b -=>>的渐近线为by x a =±,则22222222(,),(,)pb pb pb pb A B a a a a-22:2(0)C x py p =>的焦点(0,)2p F ,则22222AF pb pa a k pb b a-==,即2222222593,,.442b c a b c e a a a a +===== 三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,.a b c 若()0,1,2Af a ==求ABC ∆面积的最大值. 解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=- 由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈. (Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1,a =由余弦定理可得2212cos2(26b c bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即2bc ≤=+1112sin sin 22644ABC S bc A bc bc π∆+===≤,故ABC ∆. (17)(本小题满分12分)如图,在三棱台DEF-2,,AB DE G H =分别为,AC BC 的中点.(Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,AB BC CF DE ⊥=∠求平面FGH 与平面ACFD 所成角(锐角)的大小. 解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T. 在三棱台DEF ABC -中,2,AB DE =则2AC DF =而G 是AC 的中点,DF//AC ,则//DF GC ,所以四边形DGCF是平行四边形,T是DC的中点,DG//FC. 又在BDC∆,H是BC的中点,则TH//DB,又BD⊄平面FGH,TH⊂平面FGH,故//BD(Ⅱ)由CF⊥平面ABC,可得DG⊥平面ABC而则GB AC⊥,于是,,GB GA GC两两垂直,以点G为坐标原点,,,GA GB GC所在的直线分别为,,x y z轴建立空间直角坐标系,设2AB=,则1,DE CF AC AG====((B C F H则平面ACFD的一个法向量为1(0,1,0)n=,设平面FGH的法向量为2222(,,)n x y z=,则22n GHn GF⎧⋅=⎪⎨⋅=⎪⎩,即222222x yz-=⎪⎨⎪+=⎩,取21x=,则221,y z==2(1,1n=,121cos,2n n<>==,故平面FGH与平面ACFD所成角(锐角)的大小为60 .(18)(本小题满分12分)设数列{}na的前n项和为nS,已知23 3.nnS=+(Ⅰ)求数列{}na的通项公式;(Ⅱ)若数列{}nb满足3logn n na b a=,求数列{}nb的前n项和nT.解:(Ⅰ)由233nnS=+可得111(33)32a S==+=,11111(33)(33)3(2)22n n nn n na S S n---=-=+-+=≥而11133a-=≠,则13,1,3, 1.n nnan-=⎧=⎨>⎩(Ⅱ)由3logn n na b a=及13,1,3, 1.n nnan-=⎧=⎨>⎩可得311,1,log31, 1.3nnnnnabnan-⎧=⎪⎪==⎨-⎪>⎪⎩2311123133333n n n T --=+++++ . 2234111123213333333n n n n n T ---=++++++ 2231223121111111333333331111111()33333331121213133193922331313211823n n n n n n n nnn n T n n n n ---=+-++++--=-+++++----=+-=+--⋅-+=-⋅ 113211243n n n T -+=-⋅19(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX. 解:(Ⅰ)125,135,145,235,245,345; (Ⅱ)X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-===== 甲得分X 的分布列为:0(1)13144221EX =⨯+⨯-+⨯=(20)(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值. 解析:(Ⅰ)由椭圆2222:1(0)x y C a b a b +=>>的离心率为可知c e a ==,而222a b c =+则2,a b c ==,左、右焦点分别是12(,0),,0)F F ,圆1F:22()9,x y +=圆2F:22()1,x y +=由两圆相交可得24<<,即12<<,交点,在椭圆C 上,则224134b b =⋅, 整理得424510b b -+=,解得21,b =214b =(舍去) 故21,b =24,a =椭圆C 的方程为2214x y +=. (Ⅱ)(ⅰ)椭圆E 的方程为221164x y +=, 设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<, 代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP ==. (ⅱ)点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d ==221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-= 2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->||AB =2211||||||36221414m m S AB d k k∆==⋅⋅⋅=++ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k ==+等号成立. 而直线y kx m =+与椭圆C :2214x y +=有交点P ,则 2244y kx m x y =+⎧⎨+=⎩有解,即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解, 其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥,则上述2282m k =+不成立,等号不成立,设(0,1]t =,则2||614m S k ∆==+(0,1]为增函数,于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12. (21)(本小题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax a f x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点. 当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点. 若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <, 且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减; 当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增. 因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<, 所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调递増; 当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减. 所以函数只有一个极值点。

2015年高考真题江苏卷理科数学(含答案解析)

2015年高考真题江苏卷理科数学(含答案解析)

理科数学2015年高三2015江苏卷理科数学理科数学填空题(本大题共13小题,每小题____分,共____分。

)1.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为____.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为____.3.设复数z满足z2=3+4i(i是虚数单位),则z的模为____.4.根据如图所示的伪代码,可知输出的结果S为____.5.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为____.6.已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n 的值为____.7.不等式2<4的解集为____.8.已知tanα=﹣2,tan(α+β)=,则tanβ的值为____.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为____.10.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为____.11.设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为____.13.已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为____.14.设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为____.简答题(综合题)(本大题共10小题,每小题____分,共____分。

)12.在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为____.在△ABC中,已知AB=2,AC=3,A=60°.17.求BC的长;18.求sin2C的值.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:19.DE∥平面AA1C1C;20.BC1⊥AB1.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.21.求a,b的值;22.设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.23.求椭圆的标准方程;24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.已知函数f(x)=x3+ax2+b(a,b∈R).25.试讨论f(x)的单调性;26.若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.27.证明:2,2,2,2依次构成等比数列;28.是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;29.是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.选做题。

2015年湖北省高考数学试卷(理科)(含解析版)

2015年湖北省高考数学试卷(理科)(含解析版)

2015年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,]6。

7的共轲复数为()A.iB.-iC.1D.-12.(5分)我国古代数学名著《九章算术》有"米谷粒分〃题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D,1365石3.(5分)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.294.(5分)设X—N(山,oi2),Y〜N(由,廿),这两个正态分布密度曲线如图所示.下列结论中正确的是()C.对任意正数t,P(XWt)NP(YWt)D.对任意正数t,P(XNt)3P(YNt)5.(5分)设ai,a?,a n^R.nN3.若p:a2,an成等比数列;q:(ai2+a22+...+a n-i2)(a22+a32+...+a n2)=(aia2+a2a3+...+a n-ia n)2,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件1,K>06.(5分)已知符号函数sgnx=0,x=0,f(x)是R上的增函数,g(x)=f-1,x<0(x)- f(ax)(a>l),贝!J()A.sgn[g(x)]=sgnxB.sgn[g(x)]=-sgnxC.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=-sgn[f(x)]7.(5分)在区间[0,1]上随机取两个数x,y,记Pi为事件“x+yN*的概率,P2为事件"|x-y|W»的概率,P3为事件“xyW»的概率,则()22A.Pi<P2<P3B.P2VP3VP1C.P3VP1VP2D.P3VP2VP18.(5分)将离心率为ei的双曲线Ci的实半轴长a和虚半轴长b(a尹b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,ei>e2B.当a>b时,ei>e2;当a<b时,ei<e2C.对任意的a,b,ei<e2D.当a>b时,ei<e2;当a<b时,ei>e29.(5分)已知集合A={(x,y)Ix2+y2<l,x,yGZ},B={(x,y)||x|W2,|y|W2,x,yCZ},定义集合AffiB={(X1+X2,yi+y2)(xi,yi)GA,(X2,y2)GB},则A®B中元素的个数为()A.77B.49C.45D.3010.(5分)设xUR,[x]表示不超过x的最大整数.若存在实数t,使得[t]=l,[t2]=2,[t n]=n同时成立,则正整数n的最大值是()A.3B.4C.5D.6二、填空题:本大题共4小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)已知向量0A±AB,I0Al=3,则菰•岳・12.(5分)函数f(x)=4cos2A cos-x)-2sinx-|In(x+1)|的零点个数为.13.(5分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30。

2015年高考理科数学(新课标全国卷1)(含解析)

2015年高考理科数学(新课标全国卷1)(含解析)

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1z-=i ,则|z|= ( )A .1BCD .2 2.sin 20cos10cos160sin10︒︒︒︒-=( )A.BC .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2nn n ∀∈N 2,> B .2nn n ∃∈N 2,≤ C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212 xC y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A.( B.( C.( D.( 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[)21,e -B .43[,)23e -C .3[,)234e D .3[,)21e--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数()=(ln f x x x 为偶函数,则a =________.14.一个圆经过椭圆22=1164x y +的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i ωω=8i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围.1sin20cos10cos20sin10sin302+==,故选10<数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)2exy,AB 的取值范围是(62,62)-+.11111111=235572123n b n n ⎡⎤⎛⎫⎛⎫⎛⎫++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=AC FG G=,⊥平面AFC⊂平面AEC3数学试卷第13页(共21页)数学试卷第14页(共21页)数学试卷第15页(共21页)数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)60(Ⅰ)连接AE 90, 90,90,∴DE 是圆1AE =,CE BE ,212x -,解得∴60ACB ∠=.90,可得1sin45=2.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。

2015年高考安徽理科数学试卷(含解析)

2015年高考安徽理科数学试卷(含解析)

2015年普通高等学校全国统一考试(安徽卷)数学(理科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、草稿纸上答题无效...........................。

4.考试结束,务必将试卷和答题卡一并上交。

参考公式:第Ⅰ卷(选择题共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。

(1)设i是虚数单位,则复数21ii在复平面内所对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】B(2)下列函数中,既是偶函数又存在零点的是(A )y cos x = (B )y sin x = (C )y n l x = (D )21y x =+【答案】A【解析】(3)设:12,:21xp x q <<>,则p 是q 成立的(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【答案】A4、下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= 【答案】C【解析】–5、已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D6、若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为()(A )8 (B )15 (C )16 (D )32【答案】C7、一个四面体的三视图如图所示,则该四面体的表面积是()(A)1+(B)2+(C)1+(D)【答案】B【解析】8、C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b -⊥B 【答案】D9、函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】C10、已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )(A )()()()220f f f <-< (B )()()()022f f f <<-(C )()()()202f f f -<< (D )()()()202f f f <<-【答案】A【解析】第二卷二.填空题 11.371()x x 的展开式中3x 的系数是 (用数字填写答案)【答案】35【解析】12.在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是【答案】6【解析】13.执行如图所示的程序框图(算法流程图),输出的n 为【答案】4【解析】14.已知数列{}n a 是递增的等比数列,24239,8a a a a +==,则数列{}n a 的前n 项和等于【答案】21n -【解析】15. 设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号) (1)3,3a b =-=-;(2)3,2a b =-=;(3)3,2a b =->;(4)0,2a b ==;(5)1,2a b ==.【答案】①③④⑤【解析】三.解答题16.在ABC ∆中,,6,4A AB AC π===,点D 在BC 边上,AD BD =,求AD 的长。

2015年高考理科数学全国卷1(含答案解析)

2015年高考理科数学全国卷1(含答案解析)

绝密★启用前 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1z-=i ,则|z|=( ) A .1B .2C .3D .2 2.sin20cos10cos160sin10︒︒︒︒-=( )A .32-B .32C .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2n n n ∀∈N 2,>B .2n n n ∃∈N 2,≤C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212x C y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A .33()33-, B .33()66-, C .2222()33-, D .2323()33-, 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________A .3[)21,e-B .43[,)23e -C .3[,)234e D .3[,)21e第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数2()=()ln f x x a x x ++为偶函数,则a =________. 14.一个圆经过椭圆22=1164x y+的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω28i=1()ixx -∑28i=1()iωω∑-8i=1()()iiy x x y-∑-8i=1()()ii y y ωω--∑46.65636.8289.8 1.6 1 469108.8表中i ω=i x ,ω=188i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A 【解析】由1=i 1z z+-,得1i (1i)(1i)=i 1i (1i)(1i)z -+-+-===++-,故1z =,故选C . 【提示】先化简复数,再求模即可. 【考点】复数的运算. 2.【答案】D【解析】原式1sin 20cos10cos20sin10sin302=+==,故选D . 【提示】直接利用诱导公式以及两角和的正弦函数,化简求解即可. 【考点】三角函数的运算. 3.【答案】C【解析】命题的否定是:22n n n ∀∈≤N ,.【提示】根据特称命题的否定是全称命题即可得到结论. 【考点】命题. 4.【答案】A【解析】根据独立重复试验公式可得,该同学通过测试的概率为2233C 0.60.40.6=0.648.⨯+【提示】判断该同学投篮投中是独立重复试验,然后求解概率即可.【考点】概率. 5.【答案】A【解析】由题知12(F F ,,220012x y -=,所以222120000000(3,)(3,)331MF MF x y xy x y y =-----=+-=-<,解得0y <<,故选A . 【提示】利用向量的数量积公式,结合双曲线方程,即可确定0y 的取值范围. 【考点】双曲线. 6.【答案】B【解析】设圆锥底面半径为r ,则116238,43r r ⨯⨯=⇒=所以米堆的体积为 2111632035,4339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭故堆放的米约为320 1.6222,9÷≈故选B . 【考点】圆锥体积.【提示】根据圆锥的体积公式计算出对应的体积即可. 7.【答案】A【解析】由题知1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+【提示】将向量AD 利用向量的三角形法则首先表示为AC CD +,然后结合已知表示为AC AC ,的形式.【考点】向量运算. 8.【答案】D【解析】由五点作图知,1π42,53π42ωϕωϕ⎧+=⎪⎪⎨⎪+=⎪⎩解得ππ,4ωϕ==,所以π()cos π,4f x x ⎛⎫=+ ⎪⎝⎭令2ππ2ππ,,4k x k k π<+<+∈Z 解得1322,,44k x k k -<<+∈Z故()f x 的单调递减区间为132,2,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,故选D .【提示】由周期求出ω,由五点法作图求出ϕ,可得()f x 的解析式,再根据余弦函数的单调性,求得()f x 的减区间. 【考点】三角函数运算. 9.【答案】C【解析】执行第1次,0.01,1,t S ==10,0.5,2n m === 0.5,0.25,2mS S m m =-===1,0.50.01n S t ==>=,是,循环,执行第2次, 0.25,0.125,2mS S m m =-===2,0.250.01n S t ==>=,是,循环,执行第3次,0.125,0.0625,2mS S m m =-===3,0.1250.01n S t ==>=,是,循环,执行第4次,0.0625,0.03125,2mS S m m =-===4,0.06250.01n S t ==>=,是,循环,执行第5次,0.03125,0.015625,2mS S m m =-===5,0.031250.01n S t ==>=,是,循环,执行第6次,0.015625,0.0078125,2mS S m m =-===6,0.0156250.01n S t ==>=,是,循环,执行第7次,0.0078125,S S m =-=2mm =0.00390625=, 7,0.00781250.01n S t ==>=,否,输出7,n =故选C .【提示】由题意依次计算,当7,0.00781250.01,n S t ==>=停止由此可得结论. 【考点】程序框图. 10.【答案】C【解析】在25()x x y ++的五个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为212532C C C 30,=故选C .【提示】利用展开式的通项进行分析,即可得出结论. 【考点】二项式展开式. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱和球的半径都是r ,圆柱的高为2r ,其表面积为222214ππ2π225π41620π2r r r r r r r r ⨯+⨯++⨯=+=+,解得r=2,故选B .【提示】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可. 【考点】空间几何体的表面积. 12.【答案】D【解析】设()()e 21,,xg x x y ax a =-=-由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()e (21)xg'x x =+,所以当12x <-时,'()0g x <,当12x >-,()0,g'x >所以当12x =-时,12min [()]2e g x -=-.当0x =时(0)1g =-,(1)e 0g =>,直线y ax a =-恒过(1,0)且斜率a ,故(0)1a g ->=-,且1(1)3e g a a --=-≥--,解得312ea ≤<,故选D .【提示】设()()e 21,,xg x x y ax a =-=-,问题转化为存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,由导数可得函数的极值,数形结合可得(0)1a g ->=-且1(1)3e g a a --=-≥--,解关于a 的不等式组可得.【考点】带参函数.第Ⅱ卷二、填空题 13.【答案】1【解析】由题知ln(y x =是奇函数,所以22ln(ln(ln()ln 0x x a x x a +-=+-==,解得 1.a =【提示】由题意可得,()()f x f x -=,代入根据对数的运算性质即可求解 【考点】函数奇偶性.14.【答案】2232524x y ⎛⎫±+= ⎪⎝⎭【解析】设圆心为(,0)a ,则半径为4a -,则222(4)2,a a -=+解得32a =±, 故圆的标准方程为2232524x y ⎛⎫±+= ⎪⎝⎭.【提示】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程. 【考点】圆的标准方程. 15.【答案】3【解析】做出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点(1,3)与原点连线的斜率最大,故yx的最大值3.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定y x的最大值.【考点】线性规划问题.16.【答案】【解析】如下图所示:延长BACD ,交于点E ,则可知在△ADE 中,105DAE ∠=︒,45ADE ∠=︒,30,E ∠=︒∴设12AD x =,2AE x =,4DE x =,CD m =,2BC =,sin151m ⎫∴+︒=⎪⎪⎝⎭⇒m +=∴04x <<,而2AB m x +-,2x∴AB的取值范围是.【提示】如图所示,延长BACD ,交于点,设12AD x =,2AE x =,4DE x =,CD m =m +=AB 的取值范围. 【考点】平面几何问题. 三.解答题17.【答案】(Ⅰ)21n + (Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,221122n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{}n a 是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(1)知,1111(21)(23)22123n b n n n n ⎛⎫==- ⎪++++⎝⎭,所以数列{}n b 前n 项和为121111111=235572123n b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫+++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=11646n -+. 【提示】(Ⅰ)根据数列的递推关系,利用作差法即可求{}n a 的通项公式:(Ⅱ)求出11n n n b a a +=,利用裂项法即可求数列{}n b 的前n 项和.【考点】数列前n 项和与第n 项的关系,等差数列定义与通项公式. 18.【答案】(Ⅰ)答案见解析 【解析】(Ⅰ)连接BD ,设,BDAC G =连接EG FG EF ,,,在菱形ABCD 中,不妨设1GB =,由∠ABC=120°,可得AG GC ==由BE ⊥平面ABCD ,AB BC =,可知AE EC =, 又∵AE EC ⊥,∴EG EG AC =⊥,在Rt EBG △中,可得BE,故DF =在Rt FDG △中,可得FG =在直角梯形BDEF 中,由2BD =,BE,2DF =,可得2EF =, ∴222EG FG EF +=, ∴EG FG ⊥, ∵ACFG G =,∴EG ⊥平面AFC , ∵EG ⊂平面AEC , ∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得0,A (,(E,2F ⎛- ⎝⎭,C ,∴AE =,1,CF ⎛=- ⎝⎭.故cos ,3||||AE CFAE CF AE CF <>==-,所以直线AE 与CF .【提示】(Ⅰ)连接BD ,设BD AC G =,连接EG EF FG ,,,运用线面垂直的判定定理得到EG ⊥平面AFC ,再由面面垂直的判定定理,即可得到.(Ⅱ)以G 为坐标原点,分别以GB GC ,为x 轴,y 轴,GB 为单位长度,建立空间直角坐标系G xyz -,求得AE F C ,,,的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【考点】空间垂直判定与性质,异面直线所成角的计算.19.【答案】(Ⅰ)答案见解析 (Ⅱ)答案见解析 (Ⅲ)(i )66.32 (ii )46.24【解析】(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =先建立y 关于w 的线性回归方程,由于81821()()108.8=68,16()iii ii w w yy d w w ==--==-∑∑ ∴56368 6.8100.6.==c y d w -⨯=-∴y 关于w 的线性回归方程为=100.6+68y w ,y ∴关于x 的回归方程为y (Ⅲ)(i )由(Ⅱ)知,当49x =时,年销量y的预报值576.6y =, 年利润z 的预报值=576.60.249=66.32z ⨯-(ii )根据(Ⅱ)的结果知,年利润z 的预报值20.12z x =x +--,∴13.66.8,2=即46.24x =,z 取得最大值,故宣传费用为46.24千元时,年利润的预保值最大.【提示】(Ⅰ)根据散点图,即可判断出.(Ⅱ)先建立中间量w =y 关于w 的线性回归方程,根据公式求出w ,问题得以解决.(Ⅲ)(Ⅰ)年宣传费49x =时,代入到回归方程,计算即可. (ii )求出预报值得方程,根据函数的性质,即可求出.【考点】线性回归方程求法,利用回归方程进行预报预测. 20.【答案】0y a --=0y a ++=(Ⅱ)答案见解析【解析】(Ⅰ)由题设可得)Ma ,()N a -,或()M a-,)N a .∵12yx '=,故24x y =在x =C在)a 处的切线方程为y a x -=-0y a --=,故24x y =在x =-处的导数值为,C 在()a -处的切线方程为y a x -=+,0y a ++=0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设(0,)P b 为符合题意得点,11(,)M x y ,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,.将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴1212121212122()()()=y b y b kx x a b x x k a b k k x x x x a--+-+++=+. 当b a =-时,有12k k + =0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故OPM OPN ∠=∠,所以(0,)P a -符合题意.【提示】(Ⅰ)求出C在)a 处的切线方程,故24x y =在x =-即可求出方程.(Ⅱ)存在符合条件的点(0,)P b ,11(,)M x y,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,直线方程与抛物线方程联立化为2440x kx a --=,利用根与系数的关系,斜率计算公式可得12()=k a b k k a++=即可证明. 【考点】抛物线的切线,直线与抛物线位置关系. 21.【答案】(Ⅰ)34a =- (Ⅱ)答案见解析【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-,因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,)+∞无零点. 当1x =时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h f g g ===,故1x =是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x在⎛ ⎝单调递减,在⎫⎪⎪⎭单调递增,故当x =()f x取的最小值,最小值为14f =.①若0f >,即304x -<<,()f x 在(0,1)无零点.②若0f =,即34a =-,则()f x 在(0,1)有唯一零点;③若0f <,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时, ()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.【提示】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=解出即可. (Ⅱ)对x 分类讨论:当(1,)x ∈+∞时,()ln 0g x x =-<,可得函数(1)min{(1),(1)}(1)0h f g g ===,即可得出零点的个数.当1x =时,对a 分类讨论利用导数研究其单调性极值即可得出.【考点】利用导数研究曲线的切线,分段函数的零点. 22.【答案】(Ⅰ)答案见解析 (Ⅱ)60ACB ∠=【解析】(Ⅰ)连接AE ,由已知得,AE BC AC AB ⊥⊥,,在Rt AEC △中,由已知得DE DC =,∴DEC DCE ∠=∠,连接OE ,OBE OEB ∠=∠, ∵90ACB ABC ∠+∠=, ∴90DEC OEB ∠+∠=,∴90OED ∠=,∴DE 是圆O 的切线.(Ⅱ)设1CE AE x ==,,由已知得AB =,BE =,由射影定理可得,2AE CE BE =,∴2x =x = ∴60ACB ∠=.【提示】(Ⅰ)连接AE 和OE ,由三角形和圆的知识易得90OED ∠=,可得DE 是O 的切线.(Ⅱ)设1CE AE x ==,,由射影定理可得关于x的方程2x =,解方程可得x 值,可得所求角度.【考点】圆的切线判定与性质,圆周角定理,直角三角形射影定理. 23.【答案】(Ⅰ)22cos 4sin 40ρρθρθ--+= (Ⅱ)12【解析】(Ⅰ)因为cos ,sin x y ρθρθ==, ∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4θπ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ12=MN ρρ-,因为2C 的半径为1,则2C MN △的面积111sin 45=22⨯.【提示】(Ⅰ)由条件根据cos sin x y ρθρθ==,求得12C C ,的极坐标方程.(Ⅱ)把直线3C 的极坐标方程代入22cos 4sin 40ρρθρθ--+=,求得12ρρ,的值,从而求出2C MN △的面积.【考点】直角坐标方程与极坐标互化,直线与圆的位置关系.24.【答案】(Ⅰ)22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)(2)+∞,【解析】(Ⅰ)当1a =时,不等式()1f x >化为1211x x +-->,等价于11221x x x ≤⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,∴不等式()1f x >的解集为22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,(21,0)B a +,(,+1)C a a ,所以ABC △的面积为22(1)3a +, 由题设得22(1)63a +>,解得2a >,所以a 的取值范围为(2)+∞,. 【提示】(Ⅰ)当1a =时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。

2015高考理科数学新课标全国2答案及解析

2015高考理科数学新课标全国2答案及解析
(16)-���1���
解析:������������+1=������������������������+1得到������������+1−������������=������������������������+1,同除������������������������+1,得到������������1+1-���1���������=-1
(11)D 解析:
(12)A
< ∠ABM=120,∆ABM 为等腰三角形 做 MC 垂直于 X 轴,交点为 C ∴∠MBA=30,∠MBA=60 AB=2a,所以 BM=2a,AM=2√3a OC=2a,MC=√3a M 点坐标(2a,√3a)代入双曲 线方程,为等轴双曲线,离心率 e=√2
解析:当 x>0 时,xf (́ x) − f(x) < 0可以构造可导函数 F(x)=������(������������)
V=13
×
1 2
������3=36
∴ R = 6,∴ S = 4π������2=144π
(10)B
解析:特殊点法,当点 P 与点 C 重合,x=���Байду номын сангаас���,此时 P 到 AB 两点距离之和=√5+1
当点 P 为 CD 中点,x=���2���,此时 P 到 AB 两点距离之和=2√2
当点 P 为 CD 中点,x=���2���时,P 到 AB 两点距离之和最小。
F
(́ x)=xf
(́ x)−f(x) ������2
<
0,所以
F(x)=������(������������),当
x>0
时为减函数

2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2015年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2015 年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2} 2.(5分)若a 为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.23.(5分)根据如图给出的2004 年至2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008 年减少二氧化硫排放量的效果最显著B.2007 年我国治理二氧化硫排放显现成效C.2006 年以来我国二氧化硫年排放量呈减少趋势D.2006 年以来我国二氧化硫年排放量与年份正相关4.(5 分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.845.(5 分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5 分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y 轴于M,N 两点,则|MN|=()A.2B.8 C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b 分别为14,18,则输出的a=()A.0 B.2 C.4 D.149.(5 分)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π10.(5 分)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A,B 两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5 分)已知A,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,顶角为120°,则E 的离心率为()A.B.2 C.D.12.(5 分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0 时,xf′(x)﹣f(x)<0,则使得f(x)>0 成立的x 的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5 分)若x,y 满足约束条件,则z=x+y 的最大值为.15.(5 分)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= .16.(5 分)设数列{a n}的前n 项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5 小题,满分60 分)17.(12 分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2 倍.(1)求;(2)若AD=1,DC=,求BD 和AC 的长.18.(12 分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了20 个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70 分70 分到89 分不低于90 分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(12 分)如图,长方体ABCD﹣A1B1C1D1 中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1 上,A1E=D1F=4,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.20.(12 分)已知椭圆C:9x2+y2=m2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.21.(12 分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m 的取值范围.四、选做题.选修4-1:几何证明选讲22.(10 分)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M,N 两点,与底边上的高AD 交于点G,且与AB,AC 分别相切于E,F 两点.(1)证明:EF∥BC;(2)若AG 等于⊙O 的半径,且AE=MN=2,求四边形EBCF 的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C1:(t 为参数,t≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2 与C3 交点的直角坐标;(2)若C1 与C2 相交于点A,C1 与C3 相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d 均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015 年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0} B.{0,1} C.{﹣1,0,1} D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5 分)若a 为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004 年至2013 年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008 年减少二氧化硫排放量的效果最显著B.2007 年我国治理二氧化硫排放显现成效C.2006 年以来我国二氧化硫年排放量呈减少趋势D.2006 年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A 从图中明显看出2008 年二氧化硫排放量比2007 年的二氧化硫排放量减少的最多,故A 正确;B 从2007 年开始二氧化硫排放量变少,故B 正确;C 从图中看出,2006 年以来我国二氧化硫年排放量越来越少,故C 正确;D2006 年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误.【解答】解:A 从图中明显看出2008 年二氧化硫排放量比2007 年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B2004﹣2006 年二氧化硫排放量越来越多,从2007 年开始二氧化硫排放量变少,故B 正确;C 从图中看出,2006 年以来我国二氧化硫年排放量越来越少,故C 正确;D2006 年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5 分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7= =3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5 分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)= ,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)= =2 ×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5 分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y 轴于M,N 两点,则|MN|=()A.2B.8 C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b 分别为14,18,则输出的a=()A.0 B.2 C.4 D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b 的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b 变为18﹣14=4,由a>b,则a 变为14﹣4=10,由a>b,则a 变为10﹣4=6,由a>b,则a 变为6﹣4=2,由a<b,则b 变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点,若三棱锥O﹣ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大,利用三棱锥O﹣ABC 体积的最大值为36,求出半径,即可求出球O 的表面积.【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大,设球O 的半径为R ,此时V O ﹣ABC=V C ﹣AOB===36,故R=6,则球O 的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C 位于垂直于面AOB 的直径端点时,三棱锥O﹣ABC 的体积最大是关键.10.(5 分)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC,CD 与DA 运动,记∠BOP=x.将动点P 到A,B 两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P 在CD 边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2 ,当P 在AD 边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5 分)已知A,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,顶角为120°,则E 的离心率为()A.B.2 C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M 在双曲线﹣=1 的左支上,由题意可得M 的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M 在双曲线﹣=1 的左支上,且MA=AB=2a,∠MAB=120°,则M 的坐标为(﹣2a,a),代入双曲线方程可得,-=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M 的坐标是解题的关键.12.(5 分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0 时,xf′(x)﹣f(x)<0,则使得f(x)>0 成立的x 的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0 时总有xf(′x)﹣f(x)<0 成立,可判断函数g(x)= 为减函数,由已知f(x)是定义在R 上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0 等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0 时总有xf′(x)<f(x)成立,即当x>0 时,g′(x)恒小于0,∴当x>0 时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1 或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)= ,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5 分)若x,y 满足约束条件,则z=x+y 的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y 轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过 D 点时,z 最大,由得D(1,),所以z=x+y 的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5 分)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=3 .【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x 分别赋值1,﹣1,可得两个等式,两式相减,再除以2 得到答案.【解答】解:设 f (x )=(a +x )(1+x )4=a 0+a 1x +a 2x 2+…+a 5x 5,令 x=1,则 a 0+a 1+a 2+…+a 5=f (1)=16(a +1),① 令 x=﹣1,则 a 0﹣a 1+a 2﹣…﹣a 5=f (﹣1)=0.② ①﹣②得,2(a 1+a 3+a 5)=16(a +1),所以 2×32=16(a +1), 所以 a=3. 故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5 分)设数列{a n}的前 n 项和为 Sn,且a1=﹣1,a【考点】8H :数列递推式. 【专题】54:等差数列与等比数列. 【分析】通过 S n +1﹣S n =a n +1 可知 S n +1﹣S n =S n +1S n ,两边同时除以 S n +1S n 可知﹣ =1,进而可知数列{}是以首项、公差均为﹣1 的等差数列,计算即得结论. 【解答】解:∵a n +1=S n +1S n , ∴S n +1﹣S n =S n +1S n , ∴﹣=1, 又∵a 1=﹣1,即=﹣1, ∴数列{}是以首项是﹣1、公差为﹣1 的等差数列, ∴=﹣n , ∴S n =﹣, 故答案为:﹣. 【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5 小题,满分60 分)17.(12 分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2 倍.(1)求;(2)若AD=1,DC=,求BD 和AC 的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A 作AE⊥BC 于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC 及正弦定理可得sin ∠B= ,sin ∠ C=,从而得解.(2)由(1)可求BD=.过D 作DM⊥AB 于M,作DN⊥AC 于N,由AD 平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD 和AC 的长.【解答】解:(1)如图,过A 作AE⊥BC 于E,∵= =2∴BD=2DC,∵AD 平分∠BAC∴∠BAD=∠DAC在△ABD 中,=,∴sin∠B=在△ADC 中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D 作DM⊥AB 于M,作DN⊥AC 于N,∵AD 平分∠BAC,∴DM=DN,∴= =2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD 的长为,AC 的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12 分)某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了20 个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70 分70 分到89 分不低于90 分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B 地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意评分的平均值高于B 地区用户满意评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散;(2)记C A1 表示事件“A地区用户满意度等级为满意或非常满意”,记C A2 表示事件“A 地区用户满意度等级为非常满意”,记C B1 表示事件“B地区用户满意度等级为不满意”,记C B2 表示事件“B 地区用户满意度等级为满意”,则C A1 与C B1 独立,C A2 与C B2 独立,C B1 与C B2 互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12 分)如图,长方体ABCD﹣A1B1C1D1 中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1 上,A1E=D1F=4,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1 为x,y,z 轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F 几点的坐标.设平面EFGH 的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF 与平面EFGH 所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH 如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1 所在直线为x,y,z 轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH 的法向量,则:,取z=3,则;若设直线AF 和平面EFGH 所成的角为θ,则:sinθ==;∴直线AF 与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12 分)已知椭圆C:9x2+y2=m2(m>0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(,m),延长线段OM 与C 交于点P,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M (x M,y M),将y=kx+b 代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2= ,则x M== ,y M=kx M+b=,于是直线OM 的斜率k OM== ,即k OM•k=﹣9,∴直线OM 的斜率与l 的斜率的乘积为定值.(2)四边形OAPB 能为平行四边形.∵直线l 过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l 不过原点且与C 有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y= x,设P 的横坐标为x P,由得,即x P= ,将点(,m)的坐标代入l 的方程得b=,即l 的方程为y=kx+,将y= x,代入y=kx+,得kx+= x解得x M=,四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l 的斜率为4﹣或4+时,四边形OAPB 能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12 分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m 的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0 说明函数为增函数,利用f′(x)≤0 说明函数为减函数.注意参数m 的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m 的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0 处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1 的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0 时,g′(t)<0;当t>0 时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1 时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1 时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m 的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10 分)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M,N 两点,与底边上的高AD 交于点G,且与AB,AC 分别相切于E,F 两点.(1)证明:EF∥BC;(2)若AG 等于⊙O 的半径,且AE=MN=2,求四边形EBCF 的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD 是∠CAB 的角平分线及圆O 分别与AB、AC 相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD 是EF 的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC 为等腰三角形,AD⊥BC,∴AD 是∠CAB 的角平分线,又∵圆O 分别与AB、AC 相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD 是EF 的垂直平分线,又∵EF 为圆O 的弦,∴O 在AD 上,连结OE、OM,则OE⊥AE,由AG 等于圆O 的半径可得AO=2OE,∴∠OAE=30°,∴△ABC 与△AEF 都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN= ,∴OD=1,∴AD=5,AB=,∴四边形EBCF 的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy 中,曲线C1:(t 为参数,t≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2 与C3 交点的直角坐标;(2)若C1 与C2 相交于点A,C1 与C3 相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3 交点的直角坐标.(2)由曲线C1 的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠ 0),利用|AB|= 即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2 与C3 交点的直角坐标为(0,0),.(2)曲线C1:(t 为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B 都在C1 上,∴A(2sinα,α),B.∴|AB|= =4 ,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d 均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d 均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d 均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。

2015年高考数学(理)真题分项解析:专题09+圆锥曲线

2015年高考数学(理)真题分项解析:专题09+圆锥曲线

专题九 圆锥曲线1.【2015高考福建,理3】若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( )A .11B .9C .5D .3 【答案】B【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .【考点定位】双曲线的标准方程和定义.【名师点睛】本题考查了双曲线的定义和标准方程,利用双曲线的定义列方程求解,属于基础题,注意运算的准确性.2.【2015高考四川,理5】过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(B) (C)6 (D )【答案】D 【解析】双曲线的右焦点为(2,0)F ,过F 与x 轴垂直的直线为2x =,渐近线方程为2203y x -=,将2x =代入2203y x -=得:212,||y y AB ==±∴=.选D.【考点定位】双曲线.【名师点睛】双曲线22221x y a b -=的渐近线方程为22220x y a b-=,将直线2x =代入这个渐近线方程,便可得交点A 、B 的纵坐标,从而快速得出||AB 的值.3.【2015高考广东,理7】已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为( )A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x【答案】B .【解析】因为所求双曲线的右焦点为()25,0F 且离心率为54c e a ==,所以5c =,4a =,2229b c a =-=所以所求双曲线方程为221169x y -=,故选B . 【考点定位】双曲线的标准方程及其简单几何性质.【名师点睛】本题主要考查学生利用双曲线的简单几何性质求双曲线的标准方程和运算求解能力,由离心率和其右焦点易得a ,c 值,再结合双曲线222b c a =-可求,此题学生易忽略右焦点信息而做错,属于容易题.4.【2015高考新课标1,理5】已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ∙<,则0y 的取值范围是( )(A )() (B )()(C )() (D )() 【答案】A【考点定位】双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.【名师点睛】本题考查利用向量数量积的坐标形式将12MF MF ∙表示为关于点M 坐标的函数,利用点M 在双曲线上,消去x 0,根据题意化为关于0y 的不等式,即可解出0y 的范围,是基础题,将12MF MF ∙表示为0y 的函数是解本题的关键.5.【2015高考湖北,理8】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >【答案】D【解析】依题意,2221)(1ab a b a e +=+=,2222)(1)()(m a m b m a m b m a e +++=++++=, 因为)()()(m a a a b m m a a am ab bm ab m a m b a b +-=+--+=++-,由于0>m ,0>a ,0>b , 所以当b a >时,10<<a b ,10<++<m a m b ,m a m b a b ++<,22)()(ma mb a b ++<,所以12e e <;当b a <时,1>a b ,1>++m a m b ,而m a m b a b ++>,所以22)()(ma mb a b ++>,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >. 【考点定位】双曲线的性质,离心率.【名师点睛】分类讨论思想是一种重要的数学思想方法.分类讨论的时应做到:分类不重不漏;标准要统一,层次要分明;能不分类的要尽量避免或尽量推迟,决不无原则地讨论. 6.【2015高考四川,理10】设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )(A )()13,(B )()14, (C )()23, (D )()24, 【答案】D 【解析】显然当直线l 的斜率不存在时,必有两条直线满足题设.当直线l 的斜率存在时,设斜率为k .设11221200(,),(,),,(,)A x y B x y x x M x y ≠,则21122244y x y x ⎧=⎪⎨=⎪⎩,相减得121212()()4()y y y y x x +-=-.由于12x x ≠,所以12121222y y y y x x +-⋅=-,即02ky =.圆心为(5,0)C ,由CM AB ⊥得000001,55y k ky x x -⋅=-=--,所以0025,3x x =-=,即点M 必在直线3x =上.将3x =代入24y x =得2012,y y =∴-<<.因为点M 在圆()()22250x y r r -+=>上,所以22222000(5),412416x y r r y -+==+<+=.又2044y +>(由于斜率不存在,故00y ≠,所以不取等号),所以204416,24y r <+<∴<<.选D.xy–12123456789–1–2–3–4–5–6123456ABCFO M【考点定位】直线与圆锥曲线,不等式.【名师点睛】首先应结合图形进行分析.结合图形易知,只要圆的半径小于5,那么必有两条直线(即与x轴垂直的两条切线)满足题设,因此只需直线的斜率存在时,再有两条直线满足题设即可.接下来要解决的问题是当直线的斜率存在时,圆的半径的范围是什么.涉及直线与圆锥曲线的交点及弦的中点的问题,常常采用“点差法”.在本题中利用点差法可得,中点必在直线3x =上,由此可确定中点的纵坐标0y 的范围,利用这个范围即可得到r 的取值范围.7.【2015高考重庆,理10】设双曲线22221x y a b-=(a >0,b >0)的右焦点为1,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于a + ( ) A 、(1,0)(0,1)-B 、(,1)(1,)-∞-+∞C 、((0,2)D 、(,(2,)-∞+∞【答案】A【考点定位】双曲线的性质.【名师点晴】求双曲线的渐近线的斜率取舍范围的基本思想是建立关于,,a b c 的不等式,根据已知条件和双曲线中,,a b c 的关系,要据题中提供的条件列出所求双曲线中关于,a b 的不等关系,解不等式可得所求范围.解题中要注意椭圆与双曲线中,,a b c 关系的不同.8.【2015高考天津,理6】已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为( )(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -=【答案】D【解析】双曲线()222210,0x y a b a b-=>> 的渐近线方程为b y x a =±,由点(在渐近线上,所以b a =,双曲线的一个焦点在抛物线2y =准线方程x =c =2,a b ==22143x y -=,故选D.【考点定位】双曲线、抛物线的定义、标准方程及几何性质.【名师点睛】本题主要考查双曲线的定义、标准方程及几何性质,同时也学生的考查运算能.把双曲线的几何性质与抛物线的几何性质相结合,找出双曲线中,,a b c 的关系,求出双曲线方程,体现圆锥曲线的统一性.是中档.9.【2015高考安徽,理4】下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=【答案】C【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C.【考点定位】1.双曲线的渐近线.【名师点睛】双曲线确定焦点位置的技巧:2x 前的系数是正,则焦点就在x 轴,反之,在y轴;在双曲线22221x y a b -=的渐近线方程中,b aa b 容易混淆,只要根据双曲线22221x y a b -=的渐近线方程是22220x y a b-=,便可防止上述错误.10.【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A.【考点定位】抛物线的标准方程及其性质【名师点睛】本题主要考查了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不能遗漏相应平面几何知识的复习.11.【2015高考新课标2,理11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A B .2 C D【答案】D【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =,故选D .【考点定位】双曲线的标准方程和简单几何性质.【名师点睛】本题考查双曲线的标准方程和简单几何性质、解直角三角形知识,正确表示点M 的坐标,利用“点在双曲线上”列方程是解题关键,属于中档题.12.【2015高考北京,理10】已知双曲线()22210x y a a -=>0y +=,则a =.【解析】双曲线()22210x y a a -=>的渐近线方程为1y x a=±,0y y +=⇒=,0a >,则1a a-==【考点定位】本题考点为双曲线的几何性质,正确利用双曲线的标准方程,求出渐近线方程,利用已给渐近线方程求参数.【名师点睛】本题考查双曲线的几何性质,重点考查双曲线的渐近线方程,本题属于基础题,正确利用双曲线的标准方程,求出渐近线方程,求渐近线方程的简单方法就是把标准方程中的“1”改“0”,利用已知渐近线方程,求出参数a 的值.【2015高考上海,理5】抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】2【解析】因为抛物线上动点到焦点的距离为动点到准线的距离,因此抛物线上动点到焦点的最短距离为顶点到准线的距离,即1, 2.2pp == 【考点定位】抛物线定义【名师点睛】标准方程中的参数p 的几何意义是指焦点到准线的距离;p >0恰恰说明定义中的焦点F 不在准线l 上这一隐含条件;参数p 的几何意义在解题时常常用到,特别是具体的标准方程中应找到相当于p 的值,才易于确定焦点坐标和准线方程. 涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.【2015高考湖南,理13】设F 是双曲线C :22221x y a b-=的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为 . 【答案】5.【考点定位】双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行等价的转化是解题的关键,在求解双曲线的方程时,主要利用222b a c +=,焦点坐标,渐近线方程等性质,也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来.13.【2015高考浙江,理9】双曲线2212x y -=的焦距是 ,渐近线方程是 . 【答案】32,x y 22±=. 【解析】由题意得:2=a ,1=b ,31222=+=+=b a c ,∴焦距为322=c ,渐近线方程为x x a b y 22±=±=. 【考点定位】双曲线的标准方程及其性质【名师点睛】本题主要考查了双曲线的标准方程及其焦距,渐近线等相关概念,属于容易题,根据条件中的双曲线的标准方程可以求得a ,b ,c ,进而即可得到焦距与渐近线方程,在复习时,要弄清各个圆锥曲线方程中各参数的含义以及之间的关系,避免无谓失分.14.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=错误!未找到引用源。

2015年湖南省高考数学试卷(理科)(含解析版)

2015年湖南省高考数学试卷(理科)(含解析版)

2015年湖南省高考数学试卷(理科)一、选择题,共10小题,每小题5分,共50分1.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.4.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7B.﹣1C.1D.25.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数第 1 页共 32 页 1D.偶函数,且在(0,1)上是减函数6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6D.﹣67.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386B.2718C.3413D.47728.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6B.7C.8D.99.(5分)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x 1、x 2,有|x 1﹣x 2|min=,则φ=()A.B.C.D.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()2第 2 页共 32 页A.B.C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.第 3 页共 32 页 3三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO 与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.4第 4 页共 32 页选修4-5:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.七、标题19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.第 5 页共 32 页 520.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为ξ,求ξ的分布列和数学期望21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ 的体积.6第 6 页共 32 页22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(1)若|AC|=|BD|,求直线l的斜率;(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.(13分)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.第 7 页共 32 页72015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B .1﹣i C.﹣1+i D .﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5J:集合;5L:简易逻辑.【分析】直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.【解答】解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.【点评】本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.8第 8 页共 32 页3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.【考点】EF:程序框图.【分析】列出循环过程中S与i的数值,满足判断框的条件即可结束循环.【解答】解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B.【点评】本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力第 9 页共 32 页94.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7B.﹣1C.1D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数10第 10 页共 32 页B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【考点】3K:函数奇偶性的性质与判断;3N:奇偶性与单调性的综合.【专题】53:导数的综合应用.【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.【点评】本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6D.﹣6【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;第 11 页共 32 页11展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386B.2718C.3413D.4772【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】求出P(0<X≤1)=×0.6826=0.3413,即可得出结论.【解答】解:由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.12第 12 页共 32 页8.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6B.7C.8D.9【考点】9D:两向量的和或差的模的最值;9O:平面向量数量积的性质及其运算.【专题】11:计算题;5B:直线与圆.【分析】由题意,AC为直径,所以||=|2+|.B为(﹣1,0)时,|2+|≤7,即可得出结论.【解答】解:由题意,AC 为直径,所以||=|2+|所以B为(﹣1,0)时,|2+|≤7.所以||的最大值为7.另解:设B(cosα,sinα),|2+|=|2(﹣2,0)+(cosα﹣2,sinα)|=|(cosα﹣6,sinα)|==,当cosα=﹣1时,B为(﹣1,0),取得最大值7.故选:B.【点评】本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.(5分)将函数f(x)=sin2x 的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.第 13 页共 32 页13【专题】57:三角函数的图像与性质.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数f(x )=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min =,不妨x1=,x2=,即g(x)在x 2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x )在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.另解:f(x)=sin2x ,g(x)=sin(2x﹣2φ),设2x1=2kπ+,k∈Z,2x2﹣2φ=﹣+2mπ,m∈Z,x1﹣x2=﹣φ+(k﹣m)π,由|x1﹣x2|min=,可得﹣φ=,解得φ=,故选:D.【点评】本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()14第 14 页共 32 页A .B.C.D.【考点】L!:由三视图求面积、体积.【专题】2:创新题型;5F:空间位置关系与距离;5I:概率与统计.【分析】根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.【解答】解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=第 15 页共 32 页15∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A.【点评】本题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=0.【考点】67:定积分、微积分基本定理.【专题】52:导数的概念及应用.【分析】求出被积函数的原函数,代入上限和下限求值.【解答】解:(x﹣1)dx=(﹣x)|=0;故答案为:0.【点评】本题考查了定积分的计算;关键是求出被积函数的原函数.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图16第 16 页共 32 页如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4.【考点】BA:茎叶图.【专题】5I:概率与统计.【分析】根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.【解答】解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).故答案为:4.【点评】本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.【解答】解:设F(c,0),P(m,n),(m<0),第 17 页共 32 页17设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.(5分)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=3n﹣1.【考点】8M:等差数列与等比数列的综合.【专题】54:等差数列与等比数列.【分析】利用已知条件列出方程求出公比,然后求解等比数列的通项公式.【解答】解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4(1+q)=1+q+q2+3,q=3.∴a n=3n﹣1.故答案为:3n﹣1.【点评】本题考查等差数列以及等比数列的应用,基本知识的考查.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是{a|a<0或a>1} .18第 18 页共 32 页【考点】51:函数的零点.【专题】11:计算题;2:创新题型;51:函数的性质及应用.【分析】由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围【解答】解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意第 19 页共 32 页19④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}【点评】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.20第 20 页共 32 页【考点】N4:相似三角形的判定.【专题】17:选作题;5M:推理和证明.【分析】(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.【解答】证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.【点评】本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】17:选作题;5S:坐标系和参数方程.第 21 页共 32 页21【分析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.【考点】R6:不等式的证明.【专题】59:不等式的解法及应用.【分析】(ⅰ)由a >0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.【解答】证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,22第 22 页共 32 页当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a <2与b2+b<2可能同时成立.由a2+a <2及a >0,可得0<a<1,由b 2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.【点评】本题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.七、标题19.设△ABC的内角A 、B、C 的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA<,化简可得sinA+sinC=﹣2(sinA﹣)2+,由二次函数区间的最值可得.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)第 23 页共 32 页23=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA ﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]【点评】本题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有1个红球,则获得二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为ξ,求ξ的分布列和数学期望【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.【解答】解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱24第 24 页共 32 页中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件B2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B 1=A1A2,B2=+,C=B1+B 2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P ()=+==,故所求概率为:P (C )=P(B1+B2)=P(B1)+P (B 2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X0123PE(X)=3×=.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ 的体积.第 25 页共 32 页25【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q 在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q 点坐标变成Q (6,y2,0),设平面PQD的法向量为,根据即可表示,平面AQD的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD 的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.【解答】解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;26第 26 页共 32 页∴(1)证明:若P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y1﹣y2)=0;∴y 1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;第 27 页共 32 页27又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ =V三棱锥P﹣ADQ=.【点评】考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F 的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(1)若|AC|=|BD|,求直线l的斜率;(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,第 28 页共 32 页28△MFD总是钝角三角形.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(1)根据向量的关系,得到(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k的方程,解得即可;(2)根据导数的几何意义得到C1在点A 处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.【解答】解:(Ⅰ)抛物线C1:x2=4y的焦点F的坐标为(0,1),因为F也是椭圆C 2的一个焦点,∴a 2﹣b2=1,①,又C1与C2的公共弦长为2,C 1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为(±,),所以=1,②,联立①②得a2=9,b2=8,故C 2的方程为+=1.(Ⅱ)设A(x1,y 1),B(x2,y2),C(x3,y3),D(x4,y4),(1)因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,第 29 页共 32 页29由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(2)由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y 1=x1(x﹣x1),即y=x1x﹣x12,令y=0,得x=x1,M(x1,0),所以=(x1,﹣1),而=(x1,y1﹣1),于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.【点评】本题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k的方程,计算量大,属于难题.30第 30 页共 32 页23.(13分)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n <|f(x n)|恒成立.【考点】6D:利用导数研究函数的极值;6E:利用导数研究函数的最值.【专题】2:创新题型;53:导数的综合应用;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(Ⅰ)求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;(Ⅱ)由sinφ=,可得对一切n∈N *,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),求出导数,求得最小值,由恒成立思想即可得证.【解答】证明:(Ⅰ)f′(x)=e ax(asinx+cosx)=•e ax sin(x+φ),tanφ=,0<φ<,令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x<(2k+2)π﹣φ,则f′(x)<0,因此在((m﹣1)π﹣φ,mπ﹣φ)和(mπ﹣φ,(m+1)π﹣φ)上f′(x )符号总相反.于是当x=nπ﹣φ,n∈N*,f(x)取得极值,所以x n=nπ﹣φ,n∈N*,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a(nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,第 31 页共 32 页31故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g (t)递减,当t >1时,g′(t)>0,g(t )递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g(ax n)>g(1)=e=,故①亦恒成立.综上可得,若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.【点评】本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.32第 32 页共 32 页。

2015年全国高考数学(理科)新课标1卷真题及答案

2015年全国高考数学(理科)新课标1卷真题及答案

2015年全国高考数学(理科)新课标1卷真题及答案绝密★启封并使用完毕前试题类型:A 2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

=i,则|z|=(1)设复数z满足1+z-1z(A)1 (B2(C3(D)2 (2)sin20°cos10°-con160°sin10°=(A)3(B)3(C)1-(D)122(3)设命题P:∃n∈N,2n>2n,则⌝P为堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A.14斛 B.22斛 C.36斛 D.66斛(7)设D 为ABC 所在平面内一点CD BC 3=,则(A )AC AB AD 3431+-= (B) AC AB AD 3431-= (C )AC AB AD 3134+= (D) AC AB AD 3134-=(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Zππ-+∈(C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)25()++的展开式中,52x y的系数x x y为(A)10 (B)20 (C)30(D)60(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

2015年高考陕西省理科数学真题含答案解析(超完美版)

2015年高考陕西省理科数学真题含答案解析(超完美版)

2015年高考陕西省理科数学真题一、选择题1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .933.如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( ) A .5B .6C .8D .104.二项式(1)()nx n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .75.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+ 6. “sin cos αα=”是“cos20α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要 7.对任意向量,a b ,下列关系式中不恒成立的是( ) A .|?|||||a b a b ≤B .||||||||a b a b -≤-C .22()||a b a b +=+D .22(a b)(a b)a b +-=-8.根据下边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D .29.设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q =>10.某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A .12万元B .16万元C .17万元D .18万元11.设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B .1142π- C .112π- D .112π+ 12.对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( ) A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值D .点(2,8)在曲线()y f x =上二、填空题13.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为14.若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p=15.设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标为 16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为三、解答题17.C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c . 向量(),3m a b =与()cos ,sin n =A B 平行.()I 求A ; ()II 若7a =,2b =求C ∆AB 的面积.18.如图1,在直角梯形CD AB 中,D//C A B ,D 2π∠BA =,C 1AB =B =,D 2A =,E 是D A 的中点,O 是C A 与BE 的交点.将∆ABE 沿BE 折起到1∆A BE 的位置,如图2.()I 证明:CD⊥平面1CA O;()II若平面1A BE⊥平面CDB E,求平面1CA B与平面1CDA夹角的余弦值.19.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:()I求T的分布列与数学期望ET;()II刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20.已知椭圆:E22221x ya b+=(0a b>>)的半焦距为c,原点O到经过两点(),0c,()0,b的直线的距离为12c.()I求椭圆E的离心率;()II如图,AB是圆:M()()225212x y++-=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.21.设()nf x是等比数列1,x,2x,⋅⋅⋅,n x的各项和,其中0x>,n∈N,2n≥.()I证明:函数()()F2n nx f x=-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为nx),且11122nn nx x+=+;()II设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()ng x,比较()nf x与()ng x的大小,并加以证明.22.如图,AB切O于点B,直线DA交O于D,E两点,C DB⊥E,垂足为C.()I证明:C D D∠B=∠BA;()II若D3DCA=,C2B=,求O的直径.23.在直角坐标系x yO中,直线l的参数方程为13232x ty t⎧=+⎪⎪⎨⎪=⎪⎩(t为参数).以原点为极点,x轴正半轴为极轴C ()I 写出C 的直角坐标方程;()II P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.2015年高考陕西省理科数学真题答案一、选择题 1.答案:A 解析过程: 由==⇒=2{x }{0,1},M xx M=≤⇒=<≤N {x lg 0}N {x 0x 1}x所以0,1MN ⎡⎤=⎣⎦,选A2.答案:B解析过程:由图可知该校女教师的人数为,选B3.答案:C 解析过程:试题分析:由图像得, 当时,求得, 当时,,选C4.答案:B 解析过程:二项式(1)nx +的展开式的通项是1r rr n T C x +=,令2r =得2x 的系数是2n C ,因为2x 的系数为15,所以215n C =,即2300n n --=,解得:6n =或5n =-,11070%150(160%)7760137⨯+⨯-=+=sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=因为n N +∈,所以6n =,选C 5.答案:D 解析过程:试题分析:由几何体的三视图可知该几何体为圆柱的截去一半, 所以该几何体的表面积为,选 6. 答案:A 解析过程:ααα=⇒-=22cos 20cos sin 0αααα⇒-+=(cos sin )(cos sin )0所以sin cos 或sin =-cos αααα=,选A 7.答案:B 解析过程:因为cos ,a b a b a b a b ⋅=<>≤,所以选项A 正确;当a 与b 方向相反时,a b a b -≤-不成立,所以选项B 错误; 向量的平方等于向量的模的平方,所以选项C 正确;22(a b)(a b)a b +-=-所以选项D 正确,选B8.答案:C 解析过程:初始条件:;第1次运行:;第2次运行:; 第3次运行:;;第1003次运行:; 第1004次运行:.不满足条件,停止运行, 所以输出的,故选 B .9.答案:B 解析过程:()ln p f ab ab ==,()ln22a b a bq f ++==, 11(()())ln ln 22r f a f b ab ab =+==函数()ln f x x =在()0,+∞上单调递增,21121222342πππ⨯⨯+⨯⨯⨯+⨯=+D 2006x =2004x =2002x =2000x =⋅⋅⋅⋅⋅⋅0x =2x =-0?x ≥23110y =+=因为2a b ab +>,所以()()2a bf f ab +>, 所以q p r >=,故选C10.答案:D 解析过程:设该企业每天生产甲、乙两种产品分别为、吨,则利润由题意可列,其表示如图阴影部分区域:当直线过点时,取得最大值, 所以,故选D 11.答案:D解析过程:如图可求得,,阴影面积等于 若,则的概率是,故选B . 12.答案:A 解析过程:假设选项A 错误,则选项B 、C 、D 正确,()2f x ax b '=+, 因为1是()f x 的极值点,3是()f x 的极值,所以(1)0(1)3f f '=⎧⎨=⎩,203a b a b c +=⎧⎨++=⎩,解得23b ac a=-⎧⎨=+⎩,因为点(2,8)在曲线()y f x =上,所以428a b c ++=, 解得:5a =,所以10b =-,8c =, 所以2()5108f x x x =-+x y 34z x y =+32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩340x y z +-=(2,3)A z max 324318z =⨯+⨯=2222(1)||(1)1(1)1z x yi z x y x y =-+⇒=-+≤⇒-+≤(1,1)A (1,0)B 21111114242ππ⨯-⨯⨯=-||1z ≤y x ≥211142142πππ-=-⨯因为()215(1)10(1)8230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以假设成立,选A 二、填空题 13.答案:5 解析过程:设数列的首项为,则, 所以,故该数列的首项为 14.答案:解析过程:抛物线22(0)y px p =>的准线方程是2px =-, 双曲线221x y-=的一个焦点1(F , 因为抛物线22(0)y px p =>的准线 经过双曲线221x y -=的一个焦点, 所以2p-=p =15.答案:(1,1) 解析过程:因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则, 因为,所以, 所以曲线在点处的切线的斜率, 因为,所以,即,解得, 因为,所以,所以,即的坐标是1a 12015210102020a +=⨯=15a =5xy e =xy e '=xy e =()0,10101x k y e ='===P ()00,x y 00x >001y x =1y x =21y x'=-1y x=P 02201x x k y x ='==-121k k ⋅=-211x -=-201x =01x =±00x >01x =01y =P ()1,116.答案:1.2 解析过程:建立空间直角坐标系,如图所示:原始的最大流量是, 设抛物线的方程为(), 因为该抛物线过点,所以,解得,所以,即, 所以当前最大流量是,故原始的最大流量与当前最大流量的比值是三、解答题 17.答案:(I );(II ).解析过程:(I )因为,所以,由正弦定理,得 又,从而,由于,所以(II)解法一:由余弦定理,得而得,即因为,所以.故ABC 的面积为()11010222162⨯+-⨯⨯=22x py =0p >()5,22225p ⨯=254p =2252x y =2225y x =()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰161.2403=3π332//m n sin 3cos 0a B b A sinAsinB 3sinBcos A 0sin 0B ≠tan 3A 0A π<<3A π=2222cos a b c bc A 7b 2,a 3πA =2742c c 2230c c 0c3c ∆133bcsinA 22解法二:由正弦定理得72sin sin3Bπ=,从而21sin 7B =,又由a b >,知A B >,所以27cos 7B = 故sin sin()C A B =+sin()3B π=+sin coscos sin33B B ππ=+32114=所以ABC ∆的面积为133sin 22bc A = 18.答案:(I )证明见解析;(II )解析过程:(I )在图1中,因为AB=BC=1,AD=2,E 是AD 的中点,BAD=,所以BE AC 即在图2中,BE ,BE OC 从而BE 平面又CD BE ,所以CD 平面. (II)由已知,平面平面BCDE , 又由(1)知,BE ,BE OC所以为二面角的平面角,所以.如图,以O 为原点,建立空间直角坐标系,因为, 所以 63∠2π⊥⊥1OA ⊥⊥1A OC ⊥1A OC 1A BE ⊥⊥1OA ⊥1A OC ∠1--C A BE 1OC 2A π∠=11B=E=BC=ED=1A A BC ED 12222(,0,0),E(,0,0),A (0,0,),C(0,,0),2222B得 ,.设平面的法向量, 平面的法向量,平面与平面夹角为,则,得,取,,得,取, 从而, 即平面与平面夹角的余弦值为 19.答案:()I T 的分布列为:ET=32(分钟)()II解析过程:从而 (分钟) (II)设分别表示往、返所需时间,的取值相互独立,且与T 的分布列相同.22BC(,,0),22122A C(0,)22CD BE (2,0,0)1BC A 1111(,,)n x y z 1CD A 2222(,,)n x y z 1BC A 1CD A θ11100n BC n A C ⎧⋅=⎪⎨⋅=⎪⎩111100x y yz -+=⎧⎨-=⎩1(1,1,1)n 2210n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩22200xy z =⎧⎨-=⎩2(0,1,1)n =12cos |cos ,|3n n θ=〈〉==1BC A 1CD A 30.910.4400.132⨯+⨯=12,T T 12,T T设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟, 所以事件A 对应于“刘教授在途中的时间不超过70分钟”.解法一:.解法二:故.20.答案:()I 2()II 22x y +=1123解析过程:(I )过点(c,0),(0,b)的直线方程为,则原点O 到直线的距离,由, 得,解得离心率. (II)解法一:由(I )知,椭圆E 的方程为. (1) 依题意,圆心M(-2,1)是线段AB 的中点,且.易知,AB 不与x 轴垂直, 设其直线方程为,代入(1)得设 则 由,得解得. 从而.121212(A)P(70)P(25,45)P(30,40)P T T T T T T =+≤==≤+=≤1212P(35,35)P(40,30)T T T T +=≤+=≤10.210.30.90.40.50.10.91=⨯+⨯+⨯+⨯=121212(A)P(70)P(35,40)P(40,35)P T T T T T T 12P(40,40)T T 0.40.10.10.40.10.10.09=⨯+⨯+⨯=(A)1P(A)0.91P 0bx cy bc bcd a ==12d c 2222ab ac 32c a22244x y b |AB |10(2)1yk x 2222(14)8(21)4(21)40k x k k x k b 1122(,y ),B(,y ),A x x 221212228(21)4(21)4,.1414k k k b x x x x k k 124x x 28(21)4,14k k k 12k21282x x b于是. 由,得,解得.故椭圆E 的方程为.解法二:由(I )知,椭圆E 的方程为. (2) 依题意,点A ,B 关于圆心M(-2,1)对称,且.设 则,,两式相减并结合得.易知,AB 不与x 轴垂直,则, 所以AB 的斜率 因此AB 直线方程为, 代入(2)得 所以,.于是. 由,得,解得.故椭圆E 的方程为.21.答案:(I )证明见解析;(II )当时, ,12|AB ||x x =-==|AB |1022)1023b 221123x y 22244x y b |AB |101122(,y ),B(,y ),A x x 2221144x y b 2222244x y b 12124,y 2,x x y 1212-4()80x x y y 12x x ≠12121k .2AB y y x x 1(2)12yx 224820.xx b 124x x 21282x x b 12|AB ||x x =-==|AB |1022)1023b 221123x y 1x ()()n n f x g x当时,,证明见解析.解析过程: (I )则所以在内至少存在一个零点. 又,故在内单调递增,所以在内有且仅有一个零点. 因为是的零点,所以,即,故.(II)解法一:由题设,设当时,当时,若,1x ≠()()n n f x g x 2()()212,n n n F x f x x x x (1)10,n F n 1211111112()1220,12222212n nn n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-=-=-< ⎪ ⎪⎝⎭⎝⎭-()n F x 1,12⎛⎫⎪⎝⎭n x 1()120n n F x x nx -'=++>1,12⎛⎫⎪⎝⎭()n F x 1,12⎛⎫⎪⎝⎭n x n x ()n F x ()=0n n F x 11201n n nx x 111=+22n n n x x 11().2nn n x g x 211()()()1,0.2nnn n n x h x f x g x x x x x 1x ()()n n f x g x 1x ≠()111()12.2n n n n x h x x nx--+'=++-01x ()11111()22n n n n n n h x x x nx x ----+'>++-11110.22nnn n n n x x若,所以在上递增,在上递减, 所以,即.综上所述,当时, ;当时解法二 由题设,当时,当时, 用数学归纳法可以证明.当时, 所以成立.假设时,不等式成立,即.那么,当时,.又令,则所以当,,在上递减;当,,在上递增. 1x ()11111()22n n n n n n h x xx nx x ----+'<++-11110.22nnn n n n x x ()h x (0,1)(1,)+∞()(1)0h x h ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x 211()1,(),0.2nn n n n x f x x x x g x x 1x ()()n n f x g x 1x ≠()()n n f x g x 2n2221()()(1)0,2f xg x x 22()()f x g x (2)n k k =≥()()k k f x g x +1nk 111k+1k 11()()()2kk kk k k x f x f x x g x x x 12112kk x k x k 11k+121111()22kk kk x k x k kx k x g x 1()11(x 0)kk k h x kx k x ()()11()(k 1)11(x 1)kk k k h x k x k k x k k x --'=+-+=+-01x ()0k h x '<()k h x (0,1)1x ()0kh x '>()k h x (1,)+∞所以,从而故.即,不等式也成立.所以,对于一切的整数,都有.解法三:由已知,记等差数列为,等比数列为,则,,所以, 令当时, ,所以.当时, 而,所以,.若, ,,当,,, 从而在上递减,在上递增.所以,所以当又,,故综上所述,当时, ;当时22.答案:()I 见解析()II 直径为3 解析过程:(Ⅰ)因为是的直径,则,又,所以, 又切于点,得,所以;(Ⅱ)由(Ⅰ)知平分,则, ()(1)0k k h x h 1k+1211()2kk x k x k g x 11()()k k f x g x +1n k 2n ≥()()n n f x g x k a k b k 1,2,, 1.n 111a b 11n n na b x ()11+1(2n)n k x a k k n-=-⋅≤≤1(2),k k b x k n -=≤≤()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤1x =k k a b ()()n n f x g x 1x ≠()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=--2k n ≤≤10k 11n k -+≥01x 11nk x ()0k m x '<1x 11nk x()0km x '>()k m x (0,1)()k m x (1,)+∞()(1)0k k m x m 01(2),k k x x a b k n >≠>≤≤且时,11a b 11n n a b ()()n n f x g x 1x ()()n n f x g x 1x ≠()()n n f x g x DE O 90BED EDB ∠+∠=︒BC DE ⊥90CBD EDB ∠+∠=︒AB O B DBA BED ∠=∠CBD DBA ∠=∠BD CBA ∠3BA ADBC CD==又,从而,由,解得,所以,由切割线定理得,解得, 故,即的直径为3.23.答案:()I 22(-3x y +=()II (3,0)解析过程:(1)由,得,从而有,所以(2)设,又, 则24.已知关于x 的不等式x a b +<的解集为{}24x x <<.()I 求实数a ,b 的值;()II答案:()I a=-3,b=1()II 4 解析过程:(Ⅰ)由,得,由题意得,解得;,时等号成立, 故BC=AB =222AB BC AC =+4AC =3AD =2AB AD AE =⋅6AE =3DE AE AD =-=O ρθ=2sin ρθ=22x y +=(223x y +-=132P t ⎛⎫+⎪⎝⎭C PC ==x a b +<b a x b a --<<-24b a b a --=⎧⎨-=⎩3,1a b =-==+≤4===1t =min4=。

2015年高考新课标卷2理科数学(含解析)

2015年高考新课标卷2理科数学(含解析)

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质. 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =,故选C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】 试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】考点:函数的图象和性质. 11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD【答案】D 【解析】DPCx试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =,故选D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。

2015年高考理科数学天津卷(含答案解析)

2015年高考理科数学天津卷(含答案解析)

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(天津卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共40分)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号. 2.本卷共8小题,每小题5分,共40分. 参考公式:·如果事件A ,B 互斥,那么()()()P A B P A P B =+. ·如果事件A ,B 相互独立,()()()P AB P A P B =.·柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高.·椎体的体积公式13V Sh =.其中S 表示椎体的底面面积,h 表示椎体的高.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7,8}U =,集合{2,3,5,6}A =,集合{1,3,4,6,7}B =,则集合A U B =ð( )A .{2,5}B .{3,6}C .{2,5,6}D .{2,3,5,6,8}2.设变量,x y 满足约束条件2030230x x y x y ≥,≥,≤,+⎧⎪-+⎨⎪+-⎩则目标函数6z x y =+的最大值为( )A .3B .4C .18D .403.阅读如图所示的程序框图,运行相应的程序,则输出S 的值为( )A .-10B .6C .14D .18 4.设x R ∈,则“|2|1x -<”是“220x x +->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.如图,在圆O 中,M ,N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N .若CM =2,MD =4,CN =3,则线段NE 的长为( )A .83B .3C .103D .526.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线过点(,且双曲线的一个焦点在抛物线2y =的准线上,则双曲线的方程为( )A .2212128x y -=B .2212821x y -=C .22134x y -=D .22143x y -=7.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记0.5(log 3)a f =,2(log 5)b f =,(2)c f m =,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<8.已知函数22|| ,2()(2) ,2x xf x x x ≤,>,-⎧=⎨-⎩函数2g x b f x ()()=--,其中b R ∈.若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A .7,4()+∞ B .7,4()-∞ C .70,4()D .7,24()--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共18页)数学试卷 第5页(共18页)数学试卷 第6页(共18页)第Ⅱ卷(非选择题 共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中的横线上. 9.i 是虚数单位,若复数()()12i i a -+是纯虚数,则实数a 的值为___________. 10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为___________3m .11.曲线2y x =与直线y x =所围成的封闭图形的面积为___________.12.在61()4x x-的展开式中,2x 的系数为_________.13.在ABC △中,内角,,A B C 所对的边分别为a ,b ,c ,已知ABC △的面积为,2b c -=,1cos 4A =-,则a 的值为_________.14.在等腰梯形ABCD 中,已知AB DC ∥,2AB =,1BC =,ABC ∠=60.动点E 和F分别在线段BC 和DC 上,BE BC 且λ=,19DF DC λ=,则 AE AF 的最小值为_________.三、 解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数22sin sin 6f x x x ()()π=--,x R ∈. (Ⅰ)求()f x 最小正周期; (Ⅱ)求()f x 在区间[,]34ππ-上的最大值和最小值.16.(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(Ⅱ)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.17.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD 底面⊥,AB AC ⊥,1AB =,12AC AA ==,AD CD ==M 和N 分别为11C D B D 和的中点.(Ⅰ)求证:MN ∥平面ABCD ;(Ⅱ)求二面角11D AC B --的正弦值.(III )设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1EA 的长.18.(本小题满分13分)已知数列{}n a 满足2()n n n a qa q q *N 为实数,且1,+=≠∈,11a =,22a =,且23a a +,34a a +,45a a +成等差数列.(Ⅰ)求q 的值和{}n a 的通项公式;(Ⅱ)设2221log ,nn n a b n a *N -=∈,求数列{}n b 的前n 项和.19.(本小题满分14分)已知椭圆2222+=1(0)x y a b a b>>的左焦点为0F c (-,),离心率为3,点M 在椭圆上且位于第一象限,直线FM 被圆222+4bx y =截得的线段的长为c,|FM(Ⅰ)求直线FM 的斜率;(Ⅱ)求椭圆的方程;(III )设动点P 在椭圆上,若直线FP,求直线OP (O 为原点)的斜率的取值范围.20.(本小题满分14分)已知函数(),n f x nx x x R =-∈,其中,2n n *N ≥∈.(Ⅰ)讨论()f x 的单调性; (Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III )若关于x 的方程()=f x a (a 为实数)有两个正实数根1x ,2x ,求证:21|-|21ax x n<+-.数学试卷 第7页(共18页)数学试卷 第8页(共18页)数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(天津卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】{2,5,8}U B =ð,所以{2,5}U A B =ð,故选A .【提示】由全集U 及B ,求出B 的补集,找出A 与B 补集的交集即可. 【考点】集合的运算 2.【答案】C【解析】不等式组2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩所表示的平面区域如图所示,当6z x y =+所表示直线经过点(0,3)B 时,z 有最大值18.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【考点】线性规划的最值求解问题第2题图 3.【答案】B【解析】模拟法:输入20S =,1i =;21i =⨯,20218S =-=,25>不成立;224i =⨯=,18414S =-=,45>不成立;248i =⨯=,1486S =-=,85>成立;输出6,故选B .【提示】模拟执行程序框图,依次写出每次循环得到的i ,S 的值,当8i =时满足条件5i >,退出循环,输出S 的值为6. 【考点】程序框图.AM MB CM MD =,CN NE AN NB =,又因为AM MB AN NB =,所以CN NE CM MD =, 2833CM MD CN ⨯=,故选A . 【提示】由相交弦定理求出AM ,再利用相交弦定理求NE 即可. 4数学试卷 第10页(共18页)数学试卷 第11页(共18页)数学试卷 第12页(共18页)19D F D λ=,1DC AB =,1191999CF DF DC DC DC DC AB λλλλ--=-=-==AE AB BE AB BCλ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+, 22191919()1181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫=++=+++ ⎪ ⎪⎝⎭⎝⎭19194121cos1201818λλλλλλ++=⨯+++⨯⨯⨯︒ 117218λλ+=时,AE AF 有最小值,18数学试卷 第13页(共18页)数学试卷 第14页(共18页) 数学试卷 第15页(共18页)可得(0,0,1)n =为平面的一个法向量,0,MN ⎛=- 由此可得,0MN n =, ⊄平面ABCD MN ∥平面ABCD .(Ⅱ)1(1,AD =-,(2,0,0)AC =,设(,n x y =1110n AD n AC ⎧=⎪⎨=⎪⎩,即0=,不妨设1z =,可得(0,1,1)n =设2(,,)n x y z =为平面2120n AB n AC ⎧=⎪⎨=⎪⎩,又1(0,1,2)AB =20x =⎩不妨设1z =,可得2(0,2,1)n =-,121210,10||||n n n n n n ==-2310,10n n =, 所以二面角1D AC -10(Ⅲ)依题意,可设11AE A B λ=,其中从而(1,NE =-,又(0,0,1)n =为平面,||||(1)NE n NE n NE n ==-30λ-=,72-,所以线段1A E 的长为72-.为坐标原点,以的一个法向量与MN 的数量积为(Ⅲ)通过设AE A B λ=,利用平面的一个法向量与NE 的夹角的余弦值为22,33⎫⎛⎪ ⎪ ⎭⎝(Ⅰ)由已知有2213c a =数学试卷 第16页(共18页)数学试卷 第17页(共18页)数学试卷 第18页(共18页)22,33⎫⎛⎪ ⎪ ⎭⎝。

2015年高考湖北理科数学试卷(含解析)

2015年高考湖北理科数学试卷(含解析)

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 为虚数单位,607i =( ) A .i B .-i C .1 D .-1 【答案】A 【解析】试题分析:i i i i -=⋅=⨯31514607,选 B . 考点:复数概念.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1365石 【答案】B 【解析】试题分析:依题意,这批米内夹谷约为169153425428=⨯石,选B. 考点:用样本估计总体.3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.122B .112 C .102 D .92 【答案】D考点:1.二项式系数,2.二项式系数和. 4.设211(,)XN μσ,222(,)YN μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥【答案】C考点:正态分布密度曲线. 5.设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A 【解析】试题分析:对命题p :12,,,n a a a 成等比数列,则公比)3(1≥=-n a a q n n且0≠n a ; 对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立; ②当≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a 成等比数列, 所以p 是q 的充分条件,但不是q 的必要条件.考点:1.等比数列的判定,2.柯西不等式,3.充分条件与必要条件.6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B 【解析】试题分析:因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0s g n 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0s g n [()]0,0s g n1,0x g x x x x ->⎧⎪===-⎨⎪<⎩. 考点:1.符号函数,2.函数的单调性.7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<【答案】B(1) (2) (3) 考点:几何概型.8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D考点:1.双曲线的性质,2.离心率.9.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30 【答案】C 【解析】试题分析:因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.考点:1.集合的相关知识,2.新定义题型.10.设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6 【答案】B考点:1.函数的值域,2.不等式的性质.二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.已知向量OA AB ⊥,||3OA =,则OA OB ∙=. 【答案】9 【解析】试题分析:因为OA AB ⊥,||3OA =,所以OA OB ∙=93||||)(222===∙+=+∙. 考点:1.平面向量的加法法则,2.向量垂直,3.向量的模与数量积. 12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为.【答案】2考点:1.二倍角的正弦、余弦公式,2.诱导公式,3.函数的零点.13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =m.【答案】6100 【解析】试题分析:依题意, 30=∠BAC , 105=∠ABC ,在ABC ∆中,由180=∠+∠+∠ACB BAC ABC ,所以 45=∠ACB ,因为600=AB ,由正弦定理可得30sin 45sin 600BC=,即230=BC m , 在BCD Rt ∆中,因为 30=∠CBD ,2300=BC ,所以230030tan CD BC CD ==,所以6100=CD m.考点:1.三角形三内角和定理,2.三角函数的定义,3.有关测量中的的几个术语,4.正弦定理.14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=; ③NB MA NAMB+=其中正确结论的序号是. (写出所有正确结论的序号)【答案】(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③所以11)2NB MA NAMB-==-=,11NB MA NAMB+===正确结论的序号是①②③.考点:1.圆的标准方程,2.直线与圆的位置关系.(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=.【答案】21考点:1.圆的切线、割线,2.切割线定理,3.三角形相似. 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l与C 相交于A ,B 两点,则||AB =. 【答案】52考点:1.极坐标方程、参数方程与普通方程的转化,2.两点间的距离.三、解答题:本大题共5小题,共65分,解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ( ) A .{}1,0A =- B .{}0,1 C .{}1,0,1- D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质.5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) A .3 B .6 C .9 D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A A B D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】考点:函数的图象和性质.11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD【答案】D 【解析】试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN=,DPCx故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞ 【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞- ,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。

第13题 ~ 第21题为必考题,每个试题考生都必须作答。

第22题 ~ 第24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

13.设向量a ,b 不平行,向量a b λ+ 与2a b +平行,则实数λ=_________.【答案】12【解析】试题分析:因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则12,k k λ=⎧⎨=⎩,所以12λ=. 考点:向量共线.14.若x ,y 满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y =+的最大值为____________.【答案】32【解析】试题分析:画出可行域,如图所示,将目标函数变形为y x z =-+,当z 取到最大时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z x y =+的最大值为32.考点:线性规划.xy–1–2–3–41234–1–2–3–41234DCBO15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】试题分析:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. 考点:二项式定理.16.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 【答案】1n- 【解析】试题分析:由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n S n n =---=-,所以1n S n=-. 考点:等差数列和递推关系.三、解答题:解答应写出文字说明、证明过程或演算步骤。

17.(本题满分12分)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍. (Ⅰ) 求sin sin BC∠∠;(Ⅱ)若1AD =,DC =BD 和AC 的长. 【答案】(Ⅰ)12;(Ⅱ)1.(Ⅱ)因为::ABD ADC S S BD DC ∆∆=,所以BD =ABD ∆和ADC ∆中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠. 222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.考点:1、三角形面积公式;2、正弦定理和余弦定理. 18.(本题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 【答案】(Ⅰ)详见解析;(Ⅱ)0.48. 【解析】试题分析:(Ⅰ)将,A B 两地区用户对产品的满意度评分的个位数分别列与茎的两侧,并根据数字的集中或分散来判断平均值和方差的大小;(Ⅱ)事件“A 地区用户的满意度等级高于B 地区用户的满意度等级”分为两种情况:当B 地区满意度等级为不满意时,A 地区的满意度等级为满意或非常满意;当B 地区满意度等级为满意时,A 地区满意度等级为非常满意.再利用互斥事件和独立事件的概率来求解.试题解析:(Ⅰ)两地区用户满意度评分的茎叶图如下A 地区B 地区4 5 6 7 8 92B C 表示事件:“B 地区用户满意度等级为满意”. 则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122B A B A C C C C C = .1122()()B A B A P C P C C C C = 1122()()B A B A P C C P C C =+1122()()()()B A B A P C P C P C P C =+.由所给数据得1A C ,2A C ,1B C ,2B C 发生的概率分别为1620,420,1020,820.故1()A P C 16=20, 2()=A P C 420,1()=B P C 1020,2()B P C 8=20,故101684()=+0.4820202020P C ⨯⨯=. 考点:1、茎叶图和特征数;2、互斥事件和独立事件. 19.(本题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11C D 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.A 地区B 地区45 6 7 8 96 81 3 6 4 32 4 5 5 6 4 23 34 6 9 6 8 8 6 4 3 3 2 1 9 2 8 65 11 37 5 5 2(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF 与平面α所成角的正弦值.【答案】(Ⅰ)详见解析;【解析】试题分析:(Ⅰ)由线面平行和面面平行的性质画平面α与长方体的面的交线;(Ⅱ)由交线围成的正方形EHGF ,计算相关数据.以D 为坐标原点,DA的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,并求平面α的法向量和直线AF 的方向向量,利用sin cos ,n AF n AF n AFθ⋅<>=⋅ 求直线AF 与平面α所成角的正弦值. 试题解析:(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,所以10AH =.以D 为坐标原点,DA 的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE = ,(0,6,8)HE =- .设(,,)n x y z = 是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩ 即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n = .又(10,4,8)AF =-,故cos ,n AF n AF n AF⋅<>==⋅ AF 与平面αD D 1 C 1A 1 EF A B CB 1考点:1、直线和平面平行的性质;2、直线和平面所成的角.A 1AB 1BD 1D C 1CF EH G M20.(本题满分12分)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l过点(,)3m m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,44【解析】试题分析:(Ⅰ)题中涉及弦的中点坐标问题,故可以采取“点差法”或“韦达定理”两种方法求解:设端点,A B 的坐标,代入椭圆方程并作差,出现弦AB 的中点和直线l 的斜率;设直线l 的方程同时和椭圆方程联立,利用韦达定理求弦AB 的中点,并寻找两条直线斜率关系;(Ⅱ)根据(Ⅰ)中结论,设直线OM 方程并与椭圆方程联立,求得M 坐标,利用2P M x x =以及直线l 过点(,)3m m 列方程求k 的值. 试题解析:(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+, 299M M b y kx b k =+=+.于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点(,)3m m ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =.将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x ==2(3)23(9)mk k k -⨯+.解得14k =-24k =+.因为0,3i i k k >≠,1i =,2,所以当l 的斜率为44OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.21.(本题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.【答案】(Ⅰ)详见解析;(Ⅱ)[1,1]-.【解析】试题分析:(Ⅰ)先求导函数'()(1)2mx f x m e x =-+,根据m 的范围讨论导函数在(,0)-∞和(0,)+∞的符号即可;(Ⅱ)12()()1f x f x e -≤-恒成立,等价于12max ()()1f x f x e -≤-.由12,x x 是两个独立的变量,故可求研究()f x 的值域,由(Ⅰ)可得最小值为(0)1f =,最大值可能是(1)f -或(1)f ,故只需(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩,从而得关于m 的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.考点:导数的综合应用.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号。

相关文档
最新文档