九年级上册数学 二次函数(1) 教案
九年级数学上册22.1.1二次函数说课稿
九年级数学上册二次函数讲课稿(一)一、教材剖析:1、教材所处的地位:二次函数是人教版初中数学九年级(上册)第 22 章的内容,在此以前,学生在八年级已经学过了函数及一次函数的内容,关于函数已经有了初步的认识。
从一次函数的学习来看,学习一种函数大概包含以下内容:经过详细实例认识这类函数;研究这类函数的图象和性质,利用这类函数解决实质问题;研究这类函数与相应方程不等式的关系。
本章“二次函数” 的学习也是从以上几个方面睁开的。
本节课的主要内容在于使学生认识并认识两个变量之间的二次函数的关系,为二次函数的后续学习确定基础2、教课目的要求:(1)学生经历从实质问题中抽象出两个变量之间的二次函数关系的过程,进一步体验怎样用数学的方法描绘变量之间的数目关系;(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;(3)知道实质问题中存在的二次函数关系中,多自变量的取值范围的要求。
(4)把数学识题和实质问题相联系,使学生初步领会数学与人类生活的密切联系及对人类历史发展的作用。
3、教课要点和难点本着课程标准,在吃透教材基础上,我确定了以下的教课要点、难点:要点:(1)二次函数的观点(2)能够表示简单变量之间的二次函数关系.难点:详细的剖析、确定实质问题中函数关系式二.教法、学法剖析:下边,为了讲清要点、难点,使学生能达到本节设定的教课目的,我再从教法和学法上说说:1、教法研究教课中教师应该裸露观点的再创建过程,鼓舞学生不只要动口、动脑,并且要着手,学生经过自己亲自的实践活动,形成自己的经验、猜想,产生对结论的感知,这不单让学生对所学内容留下了深刻的印象,并且能力获取培育,素质得以提高,充足地调换学生学习的热忱,让学生学会主动学习,学会研究问题的方法,培育学生的能力。
本节课的设计坚持以学生为主体,充足发挥学生的主观能动性。
教课过程中,着重学生研究能力的培育。
还讲堂给学生,让学生去亲自体验知识的产生过程,拓展学生的创建性思想。
人教版九年级数学上册22.1.1二次函数(教案)
此外,我也注意到,在解答学生疑问时,需要更加耐心和细致。有些学生对于二次函数的理解可能还不够深入,这就需要我在课后给予他们更多的关注和指导,帮助他们真正掌握这部分内容。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如篮球投篮的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数的奥秘。
5.二次函数的实际应用:求解最值问题。
二、核心素养目标
1.理解并掌握二次函数的定义、图像与性质,培养直观想象和逻辑推理能力;
2.学会运用二次函数顶点式及其图像变换,提高问题解决能力和数学建模素养;
3.通过二次函数的实际应用,培养数据分析、数学抽象及数学应用素养,增强解决实际问题的能力;
4.在探索二次函数图像与性质的过程中,培养数学运算和数学探究素养,提高合作交流与反思评价的能力。
人教版九年级数学上册22.1.1二次函数(教案)
一、教学内容
人教版九年级数学上册22.1.1二次函数:
1.二次函数的定义:形如y=ax^2+bx+c(a、b、c为常数,a≠0)的函数;
2.二次函数的图像与性质:开口方向、顶点、对称轴、最小(大)值;
3.二次函数的顶点式:y=a(x-h)^2+k;
4.二次函数的图像变换:平移、伸缩;
2022年人教版九年级数学上册第二十二章二次函数教案 实际问题与二次函数(第1课时)
22.3 实际问题与二次函数(第1课时)一、教学目标【知识与技能】1.能根据实际问题构造二次函数模型.2.能用抛物线的顶点坐标来确定二次函数的最大(小)值问题.【过程与方法】通过对“矩形面积”等实际问题的探究,让学生经历数学建模的基本过程,体会建立数学模型的思想.【情感态度与价值观】体会二次函数是一类最优化问题的模型,感受数学的应用价值,增强数学的应用意识.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】用二次函数的最大值(或最小值)来解决实际应用问题.【教学难点】将实际问题转化为数学问题,并用二次函数性质进行决策.五、课前准备课件、三角尺、铅笔等.六、教学过程(一)导入新课出示课件3:排球运动员从地面竖直向上抛出排球,排球的高度h(单位:m)与排球的运动时间t(单位:s)之间的关系式是h=20t-5t2(0≤t≤4).排球的运动时间是多少时,排球最高?排球运动中的最大高度是多少?(二)探索新知探究二次函数与几何图形面积的最值出示课件5:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?教师分析:可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t取顶点的横坐标时,这个函数有最大值.教师问:如何求出二次函数y=ax2+bx+c的最小(大)值?(出示课件6)学生答:由于抛物线y=ax 2+bx+c 的顶点是最低(高)点,当2b x a=-时,二次函数y=ax 2+bx+c 有最小(大)值244ac b y a -=. 师生共同解答:(出示课件7)解:303225ba -=-=⨯-(), 2243045445ac b h a --===⨯-().小球运动的时间是3s 时,小球最高;小球运动中的最大高度是45m .师生共同总结: 一般地,当a>0(a<0)时,抛物线y=ax 2+bx+c 的顶点是最低(高)点,也就是说,当2b x a=-时,二次函数有最小(大)值244ac b y a -=. 出示课件8:例 用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少时,场地的面积S 最大?问题1 矩形面积公式是什么?问题2 如何用l 表示另一边?问题3 面积S 的函数关系式是什么?学生思考后,师生共同解答.解:矩形场地的周长是60m,一边长为lm, 所以另一边长为(60l 2-)m. 场地的面积S=l(30-l),即S=-l 2+30l(0<l<30).因此,当301522(1)b l a =-=-=⨯-时,S有最大值22430225.44(1)ac ba--==⨯-即当l是15m时,场地的面积S最大.教师点拨:利用二次函数解决几何图形中的最值问题的要点:(出示课件10)1.根据面积公式、周长公式、勾股定理等建立函数关系式;2.确定自变量的取值范围;3.根据开口方向、顶点坐标和自变量的取值范围画草图;4.根据草图求所得函数在自变量的允许范围内的最大值或最小值.变式1 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?(出示课件11)教师问:变式1与例题有什么不同?学生答:一边靠墙.教师问:我们可以设面积为S,如何设自变量?学生答:设垂直于墙的边长为x米.教师问:面积S的函数关系式是什么?学生答:S=x(60-2x)=-2x2+60x.教师问:如何求解自变量x的取值范围?墙长32m对此题有什么作用?(出示课件12)学生答:0<60-2x≤32,即14≤x<30.教师问:如何求最值?学生答:最值在其顶点处,即当x=15m 时,S=450m 2.变式2 如图,用一段长为60m 的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?(出示课件13)教师问:变式2与变式1有什么异同?学生答:墙长不一样.教师问:可否模仿变式1设未知数、列函数关系式?学生答:设垂直于墙的边长为x 米.S =x(60-2x)=-2x 2+60x.教师问:可否试设与墙平行的一边为x 米?则如何表示另一边与面积? 学生答:设矩形面积为Sm 2,与墙平行的一边为x 米,则22601130(30)450.222x S x x x x •-==-+=--+ 教师问:当x=30时,S 取最大值,此结论是否正确?(出示课件14)学生答:不正确.教师问:如何求自变量的取值范围?学生答:0<x ≤18.教师问:如何求最值?学生答:由于30>18,因此只能利用函数的增减性求其最值.当x=18时,S 有最大值是378.教师总结:(出示课件15)实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围.通过变式1与变式2的对比,希望同学们能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值. 出示课件16:已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?师生共同分析后,生独立解决.解:∵直角三角形两直角边之和为8,设一边长x,∴另一边长为8-x.则该直角三角形面积:S=(8-x )x ÷2,即:214.2S x x =-+ 当x=2b a -=4,另一边为4时, S 有最大值244ac b a-=8, ∴当两直角边都是4时,直角三角形面积最大,最大值为8.(三)课堂练习(出示课件17-25)1.如图,在足够大的空地上有一段长为a 米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD ≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.2.用一段长为15m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形菜园的最大面积是________.3.如图,在△ABC中, ∠B=90°,AB=12cm,BC=24cm,动点P从点A开始沿AB 向B以2cm/s的速度移动(不与点B重合),动点Q从点B开始BC以4cm/s的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过秒,四边形APQC的面积最小.4.如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小?5.某小区在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙, 另三边用总长为40m的栅栏围住.设绿化带的边长BC为xm,绿化带的面积为ym².(1)求y与x之间的函数关系式,并写出自变量的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?6.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费用每平方米1000元,设矩形的一边长为x(m),面积为S(m2).(1)写出S与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.参考答案:1.解:⑴设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45.当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10.答:AD的长为10m;⑵设AD=xm,∴S=12x(100﹣x)=﹣12(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大;当x=a时,S的最大值为50a﹣12a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣12a2.2.2225m 83.34.解:令AB 长为1,设DH=x,正方形EFGH 的面积为y,则DG=1-x.2211114(1)2(01).222y x x x x ⎛⎫ ⎪⎝⎭=-⨯-=-+<< 当x=12时,y 有最小值12. 即当E 位于AB 中点时,正方形EFGH 面积最小.5.解:40(1)()2x y x -=2240120,22x x x x -==-+即2120(025).2y x x x =-+<≤∵0<x <25,∴当x=20时,满足条件的绿化带面积y 最大=200.6.解:(1)设矩形一边长为x,则另一边长为(6-x),S=x(6-x)=-x 2+6x,其中0<x<6.(2)S=-x 2+6x=-(x-3)2+9;当x=3时,即矩形的一边长为3m 时,矩形面积最大,为9m 2.这时设计费最多,为9×1000=9000(元).x x y 202122+-=)()40(212x x --=)202040(21222-+--=x x 200)20(212+--=x(四)课堂小结1.通过本节课的学习你有什么收获?2.你觉得这节课有哪些问题需要特殊关注的?谈谈自己的看法.(五)课前预习预习下节课(22.3第2课时)的相关内容.七、课后作业1教材习题22.3第4、5、6、7题.2.配套练习册内容八、板书设计:九、教学反思:二次函数是描述现实世界变量之间关系的重要模型,也是某些单变量最优化的数学模型,如最大利润、最大面积等实际问题,因此本课时主要结合这两类问题进行了一些探讨.生活中的最优化问题通过数学模型可抽象为二次函数的最值问题,由于学生对于这一转化过程较难理解,因此教学时教师可通过分步设问的方式让学生逐层深入、稳步推出,让学生自主建立数学模型,在这个过程中教师可通过让学生画图探讨最值.总之,在本课时的教学过程中,要让学生经历数学建模的基本过程,体验探究知识的乐趣.。
2022年人教版九年级数学上册第二十二章二次函数教案 二次函数的图象和性质 (第1课时)
22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2 ,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:然后描点画图:(出示课件8)教师问:抛物线y=2x2+1 , y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x <0时,y 随x 的增大而减小; 当x >0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理. 解:如图所示.出示课件12:在同一坐标系内画出下列二次函数的图象:;;. 学生自主操作,画图,教师巡视加以指导.231x y -=23121--=x y 23122+-=x y出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6) 函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷( 0,2),(0,0),( 0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x =0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将( )A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k 中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:4.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2), 则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看. (五)课前预习预习下节课(22.1.3第2课时)的相关内容. 七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
人教版九年级数学上册22.1.1《二次函数》教学设计
人教版九年级数学上册22.1.1《二次函数》教学设计一. 教材分析人教版九年级数学上册22.1.1《二次函数》是整个初中数学的重要内容,它不仅巩固了之前学习的函数知识,还为高中阶段的数学学习奠定了基础。
这一节主要介绍二次函数的定义、性质和图象。
教材通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在,进而引导学生去探究、理解二次函数的性质。
二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、性质有所了解。
但是,二次函数相对于一次函数和反比例函数,其性质更为复杂,图象也更为抽象。
因此,学生在学习本节内容时可能会感到困惑。
另外,学生的数学思维能力和探究能力参差不齐,需要教师在教学中进行针对性的引导和帮助。
三. 教学目标1.理解二次函数的定义,掌握二次函数的一般形式。
2.了解二次函数的性质,包括对称轴、顶点、开口方向等。
3.能够绘制二次函数的图象,从图象中观察和理解二次函数的性质。
4.能够运用二次函数解决实际问题,提高解决问题的能力。
四. 教学重难点1.二次函数的定义和一般形式。
2.二次函数的性质,尤其是对称轴、顶点、开口方向等。
3.二次函数图象的绘制和分析。
4.运用二次函数解决实际问题。
五. 教学方法1.情境教学法:通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在。
2.探究教学法:引导学生通过小组合作、讨论的方式,探究二次函数的性质。
3.数形结合教学法:利用图象展示二次函数的性质,让学生从图象中观察和理解二次函数。
4.实践教学法:让学生通过解决实际问题,运用二次函数的知识。
六. 教学准备1.教学课件:制作课件,展示二次函数的图象和性质。
2.实例:准备一些实际问题,用于引入二次函数。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次函数的概念。
例如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。
让学生思考:这个二次函数是什么样子?它的图象是什么样的?2.呈现(10分钟)利用课件,呈现二次函数的一般形式和图象。
九年级上册数学 二次函数y=ax2+k的图象和性质(1) 教案
22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.会用描点法画出y=ax2+k的图象.2.掌握形如y=ax2+k的二次函数图象的性质,并会应用.3.理解二次函数y=ax2+k与y=ax2之间的联系.一、情境导入在边长为15cm的正方形铁片中间剪去一个边长为x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm2)与x(cm)的函数关系式是什么?它的顶点坐标是什么?二、合作探究探究点一:二次函数y=ax2+k的图象与性质【类型一】y=ax2+k的图象与性质的识别若二次函数y=ax+2的图象经过点(-2,10),则下列说法错误的是( )A.a=2B.当x<0,y随x的增大而减小C.顶点坐标为(2,0)D.图象有最低点解析:把x=-2,y=10代入y=ax2+2可得10=4a+2,所以a=2,∴y=2x2+2,抛物线开口向上,有最低点,当x<0,y随x的增大而减小,所以A、B、D均正确,而顶点坐标为(0,2),而不是(2,0).故选C.方法总结:抛物线y=ax2+k(a≠0)的顶点为(0,k),对称轴是y轴.【类型二】二次函数y=ax2+k增减性判断y1),(x2,y2)均在抛物线y=x2-1上,下列说法中正确的是( )已知点(xA.若y1=y2,则x1=x2B.若x1=-x2,则y1=-y2C.若0<x1<x2,则y1>y2D.若x1<x2<0,则y1>y2解析:如图所示,选项A:若y1=y2,则x1=-x2,所以选项A是错误的;选项B:若x1=-x2,则y1=y2,所以选项B是错误的;选项C:若0<x1<x2,在对称轴的右侧,y随x 的增大而增大,则y1<y2,所以选项C是错误的;选项D:若x1<x2<0,在对称轴的左侧,y随x的增大而减小,则y1>y2,所以选项D是正确的.方法总结:讨论二次函数的增减性时,应对自变量分区讨论,通常以对称轴为分界线.【类型三】识别y=ax2+k的图象与一次函数图象在同一直角坐标系中,一次函数y=ax+c与二次函数y=ax2+c的图象大致为( )解析:当a>0时,抛物线开口向上,且直线从左向右逐渐上升,当a<0时,抛物线开口向下,且直线从左向右逐渐下降,由此排除选项A,C,D,故选B.【类型四】确定y=ax2+k与y=ax2的关系抛物线y=ax+c与y=-5x的形状大小,开口方向都相同,且顶点坐标是(0,3),求抛物线的表达式,它是由抛物线y=-5x2怎样得到的?解:抛物线y=ax2+c与y=-5x2的形状、大小相同,开口方向也相同,∴a=-5.又∵其顶点坐标为(0,3).∴c=3.∴y=-5x2+3.它是由抛物线y=-5x2向上平移3个单位得到的.方法总结:抛物线y=ax2+k与y=ax2开口大小,方向都相同,只是顶点不同,二者可相互平移得到.探究点二:二次函数y=ax2+k的应用【类型一】y=ax2+k的图象与几何图形的综合应用如图,在平面直角坐标系中,二次函数y =ax 2+c (a <0)的图象过正方形ABOC 的三个顶点A 、B 、C ,则ac 的值是________.解析:二次函数y =ax 2+c 与y 轴的交点为(0,c ),因此OA =c ,根据正方形对角线互相垂直平分且相等,不难求得B (-c 2,c 2)、C (c 2,c 2),因为C (c 2,c2)在函数y =ax 2+c 的图象上,将点C 坐标代入关系式即可求出ac 的值.解:∵y =ax 2+c 与y 轴的交点为(0,c ),四边形ABOC 为正方形,∴C 点坐标为(c 2,c2).∵二次函数y =ax 2+c 经过点C ,∴c 2=a (c2)2+c ,即ac =-2.方法总结:在解决此类问题时,应充分利用抛物线及正方形的对称性.【类型二】二次函数y =ax 2+k 的实际应用如图所示,一位篮球运动员投篮,球沿抛物线y =-15x 2+72运行,然后准确落入篮筐内,已知篮筐的中心离地面的距离为3.05m.(1)球在空中运行的最大高度为多少?(2)如果该运动员跳起,球出手时离地面的高度为 2.25m ,要想投入篮筐,则他距离篮筐中心的水平距离是多少?解:(1)∵y =-15x 2+72的顶点坐标为(0,3.5),∴球在空中运行的最大高度为3.5m.(2)在y =-15x 2+72中,当y =3.05时,3.05=-15x 2+72,解得x =±1.5.∵篮筐在第一象限内,∴篮筐中心的横坐标x =1.5.又当y =2.25时,2.25=-15x 2+72,解得x =±2.5.∵运动员在第二象限内,∴运动员的横坐标x =-2.5.故该运动员距离篮球筐中心的水平距离为1.5-(-2.5)=4(m).三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=ax2+k的图象与性质,体会抛物线y=ax2与y=ax2+k之间联系与区别.。
九年级数学上册二次函数教案模板优秀8篇
九年级数学上册二次函数教案模板优秀8篇二次函数教案篇一一、由实际问题探索二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。
果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+z)(6005x)=-5x2+100x+ 60000.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?我们可以列表表示橙子的总产量随橙子树的增加而变化情况。
你能根据表格中的数据作出猜测吗 ?自己试一试。
x/棵y/个三。
做一做银行的储蓄利率是随时间的变化而变化的。
也就是说,利率是一个变量。
在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的。
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。
如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).四、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为零。
例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数。
我们以前学过的正方形面积A与边长a的关系A=a2,圆面积s与半径r的关系s=Try2等也都是二次函数的例子。
随堂练习1.下列函数中(x,t是自变量),哪些是二次函数?y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.(1)写出y与x之间的关系表达式;(2)当圆的半径分别增加lcm、㎝、2㎝时,圆的面积增加多少?五、课时小结1. 经历探索和表示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。
二次函数教学设计(精选19篇)
二次函数教学设计二次函数教学设计(精选19篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
以下是小编为大家收集的二次函数教学设计,欢迎阅读与收藏。
二次函数教学设计篇1教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课一、例题讲解投影片:(§2.8.1A)我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么(1)h与t的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议投影片:(§2.8.1B)二次函数①y=x2+2x,②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习随堂练习(P67)Ⅳ.课时小结本节课学了如下内容:1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业习题2.9板书设计§2.8.1 二次函数与一元二次方程(一)一、1.例题讲解(投影片§2.8.1A)2.议一议(投影片§2.8.1B)3.想一想二、课堂练习随堂练习三、课时小结四、课后作业备课资料思考、探索、交流把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r= .∴S圆=πr2=π·( )2=π· = ≈796(m2).所以圆的面积最大.二次函数教学设计篇2一、教学目标:1。
沪科版数学九年级上册21.1《二次函数》教学设计1
沪科版数学九年级上册21.1《二次函数》教学设计1一. 教材分析《二次函数》是沪科版数学九年级上册第21.1节的内容,本节主要让学生了解二次函数的定义、性质和图像,以及会运用二次函数解决实际问题。
二次函数是中学数学中的重要内容,也是高考的热点,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,对于函数的概念和图像是有一定的了解的。
但是二次函数相对于一次函数来说,其图像和性质更加复杂,需要学生有良好的数学思维能力和抽象思维能力。
同时,学生对于实际问题的解决能力也需要加强。
三. 教学目标1.了解二次函数的定义,掌握二次函数的性质和图像;2.学会运用二次函数解决实际问题;3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.二次函数的定义和性质;2.二次函数图像的特点;3.运用二次函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究二次函数的定义和性质;2.使用多媒体展示二次函数的图像,帮助学生直观理解二次函数的特点;3.通过实际例题,让学生运用二次函数解决实际问题;4.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备;2.二次函数的PPT;3.实际问题的例题;4.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如抛物线射击、最大利润等问题,引导学生思考如何解决这些问题,从而引出二次函数的概念。
2.呈现(10分钟)通过PPT呈现二次函数的定义、性质和图像,让学生直观地了解二次函数的特点。
同时,教师进行讲解,让学生理解二次函数的概念和性质。
3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用二次函数的知识解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些练习题,巩固二次函数的知识。
教师选取一些题目进行讲解,纠正学生的错误。
5.拓展(10分钟)让学生思考一些拓展问题,如二次函数在实际生活中的应用等。
新人教版九年级上册数学22.1二次函数的图像教案
1,设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另2,2 . x的值是否可以任意取有限定范围吗3 .我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况, 提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜测?让学生思考、交流、发表意见,达成共识:当AB的长为5cm, BC的长为10m时,围成的矩形面积最大;最大面积为50M.对于2,可让学生分组讨论、交流,然后各组派代表发表意见.形成共识, x的值不可以任意取,有限定范围,其范围是0 vx <10.对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20 — 2x)(0 v x v 10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的方法来提升利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件.将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并答复:1 .商品的利润与售价、进价以及销售量之间有什么关系?2 .如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?3 .假设每件商品降价x元,那么每件商品的利润是多少元?一天可销售约多少件商品?4 .x的值是否可以任意取?如果不能任意取,请求出它的范围,5 .假设设该商品每天的利润为y元,求y与x的函数关系式.一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图 象)3. 一次函数的图象是什么?二次函数的图象是什么 ?二、范例例1、画二次函数y=x 2的图象.解:(1)列表:在x 的取值范围内列出函数对应值(2)在直角坐标系中描点:用表里各组对应值作为 点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数提问:观察这个函数的图象,它有什么特点 ?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象 有一点交点.抛物线概念:像这样的曲线通常叫做抛物线.顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1 .在同一直角坐标系中,画出函数y=x 2与y=-x 2的图象,观察并比拟两个图象,你发现有什么共同点?又有什么区别 ?2 .在同一直角坐标系中,画出函数 y=2x 2与y=-2x 2的图象,观察并比拟这两个函数的图象,你能发现什么?3 .将所画的四个函数的图象作比拟,你又能发现什么 ?在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生 讨论选几个点比拟适宜以及如何选点.两个函数图象的共同点以及它们的区别,可分组讨论.交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线, 都关于y 轴对称,顶点坐标都是(0 , 0),区别在于函数 y=x 2的图象开口向上,函数 y=-x 2的图象开口向下.四、归纳、概括函数 y=x 2、y=-x 2、y=2x 2、y=-2x 2是函数 y=ax 2的特例,由函数 y = x 2、y=-x 2、y = 2x 2、y=-2x 2的图象的共同特点,可猜测:函数y=ax 2的图象是一条 ,它关于 对称,它的顶点坐标是 .如果要更细致地研究函数 y=ax 2图象的特点和性质,应如何分类?为什么 ?让学生观察y = x 2、y=2x 2的图象,填空;当a>0时,抛物线y=ax 2开口,在对称轴的左边,曲线自左向右 ;在对称轴的右边,曲线自左向右 , 是抛物线上位置最低的点. 图象的这些特点反映了函数的什么性质 ? 先让学生观察下列图,答复以下问题;(1)X A 、内大小关系如何?是否都小于0?(2)y A 、y B 大小关系如何?(3)X C 、X D 大小关系如何?是否都大于0?(4)y C 、y D 大小关系如何?(X A <X B ,且 X A <0, X B <0; y A >y B ; X C <X ),且 X C >0, X D >0, y c <y D )其次,让学生填空.x … -3 —2 —1 0 1 2 3 … y…9 4 1 0 1 4 9…2 一y=x 的图象,如图所不.-4 -3-a-] 0 2 3 4表:(2)(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象.(图象略)问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?教师引导学生观察上表,当x依次取一3, —2, —1, 0, 1, 2, 3时,两个函数的函数值之间有什么关系,由此让学生归纳得到, 当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y = 2x2的函数值大1.教师引导学生观察函数y = 2x2+1和y=2x2的图象,先研究点(一1, 2)和点(一1, 3)、点(0, 0)和点(0 , 1)、点(1 , 2)和点(1 , 3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2 + 1的图象上的点都是由函数y = 2x2的图象上的相应点向上移动了一个单位.问题4:函数y = 2x2+ 1和y= 2x2的图象有什么联系?由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y =2x2的图象向上平移一个单位得到的.问题5:现在你能答复前面提出的第2个问题了吗?让学生观察两个函数图象,说出函数y = 2x2+ 1与y= 2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y = 2x2的图象的顶点坐标是(0 , 0),而函数y =2x2+1的图象的顶点坐标是(0 , 1).问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?完成填空:当x 时,函数值y随x的增大而减小;当x 时,函数值y随x的增大而增大,当x 时,函数取得最值,最值y=.以上就是函数y = 2x2+1的性质.三、做一做问题7:先在同一直角坐标系中画出函数y=2x2—2与函数y=2x2的图象,再作比拟,说说它们有什么联系和区别?教学要点1 .在学生画函数图象的同时,教师巡视指导;2 .让学生发表意见,归纳为:函数y=2x2—2与函数y = 2x2的图象的开口方向、对称轴相同,但顶点坐标不同.函数y=2x2—2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的.问题8:你能说出函数y=2x2—2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?教学要点1 .让学生口答,函数y = 2x2—2的图象的开口向上,对称轴为y轴,顶点坐标是(0 , —2);2 .分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时, 函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y = — 2.问题9:在同一直角坐标系中. 函数y = —:x2+2图象与函数y = —^x2的图象有 3 3什么关系?2 .让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数 y =2(x — 1)2与y=2x 2的图象、开口方向相同、对称轴和顶点坐标不同;函数 y=2(x 一 1)2的图象可以看作是函数 y = 2x 2的图象向右平移1个单位得到的,它的对称轴是直 线x=1,顶点坐标是(1 , 0).问题4:你可以由函数 y = 2x 2的性质,得到函数 y = 2(x —1)2的性质吗? 教学要点1 .教师引导学生回忆二次函数 y=2x 2的性质,并观察二次函数 y = 2(x —1)2的图象; 2 .让学生完成以下填空:当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当 x =时,函数取得最 值y =. 三、做一做 问题5:你能在同一直角坐标系中画出函数 y=2(x + 1)2与函数y=2x 2的图象,并比 较它们的联系和区别吗?教学要点1 .在学生画函数图象的同时,教师巡视、指导;2 .请两位同学上台板演,教师讲评;3 .让学生发表不同的意见,归结为:函数 y=2(x+1)2与函数y=2x 2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y= 2x2的图象向左平移1个单位得到的.它的对称轴是直线 x= - 1,顶点坐标是(一 1,0).问题6;你能由函数y=2x2的性质,得到函数 y=2(x + 1)2的性质吗? 教学要点让学生讨论、交流,举手发言,达成共识:当 xv — 1时,函数值y 随x 的增大 而减小;当x>- 1时,函数值y 随x 的增大而增大;当 x = - 1时,函数取得最小 值,最小值y= 0.1 21 2 问题7:函数y= —g(x+2)图象与函数y= —gx 的图象有何关系?问题8:你能说出函数y= — \(x + 2)2图象的开口方向、对称轴和顶点坐标吗 3 问题9:你能得到函数 y = ;(x+2)2的性质吗?、提出问题1 .在同一直角坐标系内,画出二次函数 y = -2x 2, y=—;x 2—1的图象,并答复:(1)两条抛物线的位置关系.(2)分别说出它们的对称轴、开口方向和顶点坐标. (3)说出它们所具有的公共性质.2 .二次函数y=2(x — 1)2的图象与二次函数 y = 2x 2的图象的开口方向、对称轴以 及顶点坐标相同吗?这两个函数的图象之间有什么关系 ?二、分析问题,解决问题问题1:你将用什么方法来研究上面提出的问题?(画出二次函数y = 2(x — 1)2和二次函数y=2x 2的图象,并加以观察)问题2:你能在同一直角坐标系中, 画出二次函数y=2x 2与y = 2(x —1)2的图象吗?教学要点1 .让学生完成列表.2 .让学生在直角坐标系中画出图来: 问题3:现在你能答复前面提出的问题吗 教学要点 1.教师引导学生观察画出的两个函数图象. 根据所画出的图象,完成以下填空:3 .教师巡视、指导.。
沪科版数学九年级上册21.4《二次函数的应用》(第1课时)教学设计
沪科版数学九年级上册21.4《二次函数的应用》(第1课时)教学设计一. 教材分析《二次函数的应用》是沪科版数学九年级上册第21.4节的内容,这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的。
本节课的主要内容是让学生学会如何运用二次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。
教材中提供了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念和图像有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为数学模型,因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的数学应用能力。
三. 教学目标1.理解二次函数在实际问题中的应用。
2.学会将实际问题转化为二次函数模型,并解决实际问题。
3.提高学生的数学应用能力和解决实际问题的能力。
四. 教学重难点1.重点:二次函数在实际问题中的应用。
2.难点:如何将实际问题转化为二次函数模型,并解决实际问题。
五. 教学方法1.情境教学法:通过创设情境,激发学生的学习兴趣,引导学生主动参与学习。
2.案例分析法:通过分析具体案例,让学生理解二次函数在实际问题中的应用。
3.小组合作学习:引导学生分组讨论,培养学生的团队合作精神和沟通能力。
六. 教学准备1.教学课件:制作课件,展示二次函数在实际问题中的应用。
2.案例材料:收集一些实际问题,用于教学中的案例分析。
3.练习题:准备一些练习题,巩固学生所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如抛物线形状的物体、二次函数图像等,引导学生思考这些实际问题与二次函数之间的关系。
2.呈现(15分钟)讲解教材中的例题,引导学生学会将实际问题转化为二次函数模型,并解决实际问题。
例如,讲解如何根据抛物线形状的物体求解最大值或最小值。
3.操练(15分钟)让学生分组讨论,分析教材中的练习题,将实际问题转化为二次函数模型,并解决实际问题。
二次函数的图象和性质(1)教案
湘教版数学九年级二次函数的图象与性质(1)教学设计课题二次函数的图象与性质(一) 单元第一单元学科数学年级九年级学习目标1.学生会用描点法画出的图象,理解抛物线的有关概念.2.使学生经历、探索二次函数图象性质的过程.3.培养学生观察、思考、归纳的良好思维习惯.重点使学生理解抛物线的有关概念,会用描点法画出二次函数的图象.难点用描点法画出二次函数的图象以及探索二次函数性质教学过程教学环节教师活动学生活动设计意图复习导入师:同学们,回忆一下1、二次函数的一般形式是怎样的?2、一次函数图象是什么样的?它的图像画法步骤,你还记得吗,请列出来。
3、二次函数图象是什么形状呢?是否可以借鉴一次函数的图像画法呢?学生回顾.通过回顾所学知识为本节课的学习做好铺垫.讲授新课一、探究二次函数y=ax2(a>0)的图象和性质1.探究:画二次函数的图象.(1)列表:在列表时对自变量x取这些值的理由是什么?观察表格中的数据,你有什么发现?(2)描点:描点时应以哪些数值作为点的坐标?在平面直角坐标系内,以x取的值为横坐标,相应的函数值为纵坐标,描出相应的点.(3)连线:光滑的曲线顺次连接学生填表.在教师的引导启发学生观察表达式的特点.通过学生思考和点A与点A′,点B与点B′,…,它们有什么关系?由此你能作出什么猜想?从图还可看出,y轴右边描出的各点,当横坐标增大时,纵坐标怎样变化?y=x2的图象在y轴右边所有点都具有这样的性质吗?图象在y轴右边的部分,函数值随自变量取值的增大而增大,简称为“右升”.当x<0 (在对称轴的左侧)时,y随着x的增大而减小.简称为“左降”.当x>0 (在对称轴的右侧)时,y随着x的增大而增大.简称为“右升”.抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.我们已经正确画出了y=x2的图象,因此,现在可以从图象看出的其他一些性质(除了上面已知的关于y轴对称和“右升”外),还有哪些性质?对称轴与图象的交点是___________;图象的开口向_________;图象在对称轴左边的部分,函数值随自变量取值的增大而_________,简称“左降;当x=_______时,函数值最_____.一般地,当a>0时,y=ax2的图象都具有上述性质.于是我们画y=ax2(a>0)的图象时,可以下观察图像,引导学生自主探究,让学生讨论、交流,达成共识.交流对函数性质的认识,并积累从图象的角度研究函数性质的经验.先画出图象在y 轴右边的部分,然后利用对称性,画出图象在y 轴左边的部分.在画右边部分时,只需“列表、描点、连线”三个步骤.例 1 画二次函数212y x =的图象. 二、探究二次函数y =ax 2(a <0)的图象和性质探究:我们已经会画212y x =的图象, 能不能从它得出二次函数212y x =-的图象呢? 分析:把212y x =的图象沿着x 轴翻折并将图象 “复制”出来, 就可以得到212y x =-的图象.画二次函数212y x =-的图象. 在212y x =的图象上任取一点21(,)2P a a ,它关于x 轴的对称点Q 的坐标是21(,)2P a a -.如图所示,从点Q 的坐标看出,点Q 在212y x =-的图象上.由此可知,212y x =-的图象与 212y x =的图象关于x 轴对称.因此只要把212y x = 的图象沿着x 轴翻折并将图象“复制”出来,就可得到212y x =-的图象.如图的绿色曲线.观察图象,归纳与总结:一般地,抛物线y =ax 2的对称轴是_____,顶点是________.当a >0时,抛物线的开口向______,顶点是抛物线的最_____点,在对称轴的左侧,y 随x 的增大而_____,在对称轴的右学生动手画图象.对比画图.归纳二次函数y =ax 2(a <0)的图象和性培养学生画图能力.体会二次函数y =ax 2(a <0)的图象和性质.掌握y =ax 2(a <0)的图象和性质.侧,y 随x 的增大而_____.当a <0时,抛物线的开口向___,顶点是抛物线的最_____点,在对称轴的左侧,y 随x 的增大而______,在对称轴的右侧,y 随x 的增大而________. 例2 画二次函数214y x =-的图象.观察函数2y x =和212y x =图象的开口大小,你能得出什么结论?观察函数2y x =-和212y x =-图象的开口大小,你又能得出什么结论?三、抛物线的概念在棒球赛场上,棒球在空中沿着一条曲线运动,它与二次函数y =x 2的图象相像吗?以棒球在空中经过的路线的最高点为原点建立直角坐标系,x 轴的正方向水平向右,y 轴的正方向竖直向上,则可以看出棒球在空中经过的路线是形如y =ax 2(a <0)的图象的一段.由此受到启发,我们把二次函数y =ax 2的图象这样的曲线叫作抛物线,简称为抛物线y =ax 2.一般地,二次函数y =ax 2的图象关于y 轴对称,抛物线与它的对称轴的交点(0,0)叫作抛物线y =ax 2的顶点.质.通过实际问题理解抛物线的概念.帮助学生理解二次函数是具有广泛应用价值的,重要的数学模型.巩固练习 1、直接运用性质填空: (1)图象的对称轴是 , 顶点是 ,图象的开口向 ; (2)图象的对称轴是 , 顶点是 ,图象的开口向 . 2、如图所示,已知二次函数y =ax 2的图象经过点A . (1)求a 的值;(2)试判断点(-4,12)是否在此函数的图象上.3、已知函数221m m y mx --=的图象是开口向下的抛物线.(1)求m 的值;(2)当x =3时,函数值是多少?当y =-6时,求x 的值;(3)试说明当x <3时,函数值的变化情况,并求当x 为何值时,函数有最小值,最小值是多少? 4、底面是边长为x (cm )的正方形,高为0.5 cm 的长方体的体积为y (cm 3).(1)求y 关于x 的函数关系式,并画出函数图象; (2)根据图象求出y =8 cm 3时,底面边长x 的值; (3)根据图象,求出x 为何值时,y ≥4.5 cm 3.学生独立完成并展示.巩固学习,让学生用自己的方法展示出来,并且让学生得到进一步的锻炼.让学生建立自己对本节内容的认知.课堂小结学生自主交流、归纳、总结.培养学生的归纳、总结能力.板书1.2 二次函数的图象与性质(1)1.探究:画二次函数的图象. (1)列表:(2)描点:(3)连线:。
22.1.1二次函数-教案
人教版数学九年级上22.1.1二次函数第一课时教学设计课题22.1.1二次函数单元第二十一章学科数学年级九年级上学习目标情感态度和价值观目标体会数学与生活的联系,锻炼学生的理性思维,体会通过探究学习新知识的乐趣。
能力目标经历探索具体问题中数量关系和变化规律的过程,体会二次函数是刻画现实世界的一个有效的数学模型。
知识目标 1.结合具体情境体会二次函数的意义,理解二次函数的有关概念;2.能够表示简单变量之间的二次函数关系,能应用二次函数的相关知识解决简单的问题。
重点将简单的实际问题转化为二次函数的模型. 理解二次函数的有关概念,能应用二次函数的相关知识解决简单的问题。
难点将简单的实际问题转化为二次函数的模型。
学法自主思考、协作讨论、类比学习法教法引导发现法、合作交流、讨论以及讲练结合教学过程教学环节教师活动学生活动设计意图导入新课一、情境引入回忆:1.什么是函数?2.我们学过哪些函数?出示章前图,学生观察。
从喷头飞出的水珠,在空中走过一条美丽曲线,你想知道在这条曲线的各个位置上,水珠的竖直高度h与它距离喷头的水平距离x之间有什么关系吗?通过本章的学习,我们就可解开这一疑团。
引发学生兴趣,导入本课主题。
通过图片联系生活,从生活中发现问题,启发思考。
讲授新课二、探究新知【例题1】正方体的六个面是全等的正方形,如果正方体形的棱长为x,表面积为y,请你写出y与x的关系式。
分析:正方体的六个面是全等的正方形,设正方体的棱长为x,表面积为y.显然,对于x的每一个值,y都有一个对应值,即y是x的函数,它们的具体关系可以表示为y=6x2. ①【例题2】n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?分析:每个队要与其他(n-1)支球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛是同一场比赛,所以比赛的场次数是y=1(1)2n n ②【例题3】某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x 之间的关系应怎样表示?分析:这种产品的原产量是20件,一年后的产量是件,再经过一年后的产量是______件,即两年后的产量为_________,教师出示问题,并给予一定的分析。
人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案
人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案一. 教材分析人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时主要介绍了二次函数在实际问题中的应用。
这部分内容是对前面学习的二次函数知识的巩固和拓展,通过实际问题引导学生将理论知识和实际应用相结合,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生掌握二次函数在实际问题中的运用方法。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步的了解。
但是,将二次函数应用于实际问题中,解决实际问题对学生来说还是一个挑战。
因此,在教学过程中,需要关注学生对知识的掌握程度,以及他们在解决实际问题时的思维方式和方法。
三. 教学目标1.了解二次函数在实际问题中的应用。
2.能够将实际问题转化为二次函数问题,利用二次函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.掌握二次函数在实际问题中的应用。
2.将实际问题转化为二次函数问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数在实际问题中的应用。
同时,运用讨论法、案例分析法等,激发学生的学习兴趣,提高学生的参与度。
六. 教学准备1.准备相关的实际问题案例。
2.准备PPT,展示二次函数在实际问题中的应用。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出本节课的主题,激发学生的兴趣。
例如:一个农场计划种植两种作物,种植面积一定的条件下,如何安排两种作物的种植面积,使得总收益最大?2.呈现(10分钟)呈现实际问题,引导学生认识到实际问题可以通过二次函数来解决。
通过PPT展示实际问题的图像,让学生观察和分析图像,理解二次函数在实际问题中的应用。
3.操练(10分钟)让学生分组讨论,尝试将实际问题转化为二次函数问题。
每组选择一个实际问题,分析问题中的变量关系,列出二次函数的表达式。
数学《二次函数》优秀教案
数学《二次函数》优秀教案数学《二次函数》优秀教案(精选7篇)作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。
教案要怎么写呢?以下是店铺为大家整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3、通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2、具有初步的创新精神和实践能力。
教学重点1、体会方程与函数之间的联系。
2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1、探索方程与函数之间的联系的过程。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法讨论探索法。
教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案
22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质(第1课时)一、教学目标【知识与技能】1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.【过程与方法】通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.【情感态度与价值观】经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课教师问:二次函数y=a(x-h)2+k的性质有哪些?(出示课件2)师生共同回忆:教师问:我们已经知道二次函数y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论二次函数y=ax2+bx+c 图象和性质?(出示课件3)(二)探索新知探究一 画出二次函数y=ax 2+bx+c 的图象我们已经知道y=a(x-h)2+k 的图象和性质,能否利用这些知识来讨论216212y x x =-+的图象和性质?(出示课件5) 问题1:怎样将216212y x x =-+化成y=a(x-h)2+k 的形式?学生回忆配方的方法及步骤,并回答.(出示课件6)216212y x x =-+ 21(1242)2x x =-+ 2221(126642)2x x =-+-+ 2221[(126)642]2x x =-+-+ 21[(6)6]2x =-+ 21(6) 3.2x =-+ 学生回答后,教师总结并强调.(出示课件7) 配方的步骤:(1)“提”:提出二次项系数; (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式.配方后的表达式通常称为配方式或顶点式. 问题2:你能说出21(6)32y x =-+的对称轴及顶点坐标吗?(出示课件8) 生答:对称轴是直线x=6,顶点坐标是(6,3). 问题3:二次函数21(6)32y x =-+可以看作是由212y x =怎样平移得到的? 生答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的. 问题4:如何画二次函数216212y x x =-+的图象?(出示课件:9) 学生自主操作,画图,教师加以巡视.并引导他们进行分析. 方法一:描点法. 1.列表.2.描点,连线:方法二:平移法.(出示课件10)问题5:结合二次函数216212y x x =-+的图象,说出其性质.(出示课件11) 生答:当x<6时,y 随x 的增大而减小;当x>6时,y 随x 的增大而增大. 开口方向:向上.对称轴:x=6. 顶点:(6,3). 例 画出函数21522y x x =-+-的图象,并说明这个函数具有哪些性质.(出示课件12)师生共同解答如下: 解:函数21522y x x =-+-通过配方可得21(1)22y x =---, 先列表:然后描点、连线,得到图象如下图:(出示课件13)生观察图象,并总结性质如下: 开口方向:向下. 顶点坐标:(1,-2). 对称轴:x=1.最值:x=1时,y 最大值=-2.当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小; 当x=1时,函数取得最大值,最大值y=-2.出示课件14:求二次函数y=2x 2-8x+7图象的对称轴和顶点坐标. 生板演解题过程: 解:y=2x 2-8x+722(4)7x x =-+ 22(44)87x x =-+-+ 22(2) 1.x =--因此,二次函数y=2x 2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1). 探究二 二次函数y=ax 2+bx+c 的图象与性质出示课件15:根据下列关系你能发现二次函数y=ax 2+bx+c 的图象和性质吗?师生共同探究强化认知:y=ax 2+bx+c 224()24b ac b a x a a-++=出示课件16:显然,二次函数y 224()24b ac b a x a a-++=的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =- 因此,抛物线y=ax 2+bx+c 的对称轴是2bx a=-,顶点坐标是24,24b ac b a a ⎛⎫ ⎪⎝-⎭- . 师生共同总结整理如下:(出示课件18)出示课件19:例二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)学生自主思考后,师生共同解答如下:解析∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x²+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).教师加以强调:把函数的一般式化为顶点式,再由顶点式确定开口方向、对称轴、顶点及其他性质.出示课件20:填一填.生自主思考,并填表. 答案:(1,1);x=1;最大值1; (0,-1);y 轴;最大值-1;(13-,-6);x=13-;最小值-6. 出示课件21:一次函数y=kx+b 的图象如下图所示,请根据一次函数图象的性质填空:生观察图象,并填空.k 1<0;b 1>0;k 2>0;b 2<0;k 3>0;b 3>0.出示课件22,23:二次函数y=ax 2+bx+c 的图象如下图所示,请根据二次函数的性质填空:a1___0,b1___0,c1___0;a20,b2___0,c20;a3___0,b3___0,c3___0;a4___0,b4___0,c4___0.生观察图象后,独立填空,教师加以纠正.a1>0,b1>0,c1>0;a2>0,b2<0,c2=0;a3<0,b3=0,c3>0;a4<0,b4>0,c4<0.师生共同总结:二次函数y=ax2+bx+c的图象与a、b、c的关系(出示课件24)出示课件25:例已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是( )A.1 B.2 C.3 D.4生独立思考后,师生共同分析:由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图可知x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.出示课件26:二次函数y=ax²+bx+c的图象如图所示,下列选项中正确的是()A.a>0 B.b>0 C.c<0 D.ac>0生独立思考后,自主解决.解析根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.①∵开口向下,∴a<0,A错误;②对称轴在y轴的右侧和a<0,可知b>0,B正确;③抛物线与y轴交于正半轴,c>0,C错误;④因为a<0,c>0,所以ac<0,D错误.(三)课堂练习(出示课件27-32)1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤2.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y 轴B.直线x=52C.直线x=2D.直线x=323.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:(1)a ,b 同号;(2)当x=–1和x=3时,函数值相等;(3)4a+b=0;(4)当y=–2时,x 的值只能取0;其中正确的是 .4.如图是二次函数y=ax 2+bx+c(a ≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.根据公式确定下列二次函数图象的对称轴和顶点坐标:()()()22(1) 21213;(2) 580319;1(3) 22;2(4)12.y x x y x x y x x y x x =-+=-+-⎛⎫=-- ⎪⎝⎭=+-6.已知函数y=-2x2+x-4,当x= 时,y 有最大值 .7.已知二次函数y=x 2-2x+1,那么它的图象大致为( )参考答案:1.A2.D3.(2)4.B5.⑴直线x=3,(3,-5);⑵直线x=8,(8,1);⑶直线x=1.25,59, 48⎛⎫- ⎪⎝⎭; ⑷直线x=0.5,19, 24⎛⎫ ⎪⎝⎭. 6.14;318- 7.B(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.4第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时的主要任务是理解和掌握二次函数的一般式.我们研究函数的一般基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征.因此本课时的教学仍可采用这种思维方法来探讨二次函数一般式的性质(如顶点坐标,对称轴以及增减性等),另外还要向学生渗透转化思想,即如何将相对复杂的一般式转化为其他解析式的形式.。
人教版九年级数学上册教案 22.1.1 二次函数(第1课时)
22.1二次函数的图象和性质22.1.1二次函数(第1课时)一、基本目标【知识与技能】1.理解并掌握二次函数的概念,能判断一个给定的函数是否为二次函数.2.根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想.【过程与方法】经历与一次函数类比学习的过程,学会与人合作,并获得代数学习的一些常用方法:类比法、合情推理、抽象概括等.【情感态度与价值观】通过对几个特殊的二次函数的讲解,体验数学中的探索精神,初步体会二次函数的数学模型.二、重难点目标【教学重点】二次函数的概念.【教学难点】能根据已知条件写出二次函数的解析式.环节1自学提纲,生成问题【5 min阅读】阅读教材P28~P29的内容,完成下面练习.【3 min反馈】1.正比例的函数的表达式为y=kx(k为常数,且k≠0);一次函数的表达式为__y=ax +b__(a、b为常数,且a≠0).2.二次函数的概念:一般地,形如__y=ax2+bx+c__(a、b、c是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为__a、b、c__.3.下列函数中,是二次函数的有__①②③__.①y =(x -3)2-1;②y =1-2x 2;③y =13(x +2)(x -2);④y =(x -1)2-x 2. 4.二次函数y =-x 2+2x 中,二次项系数是__-1__,一次项系数是___2____,常数项是___0____.5.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数关系式为__y =πx 2+2πRx (x ≥0)__.环节2 合作探究,解决问题【活动1】 小组讨论(师生互学)【例1】已知关于x 的函数y =(m +1)xm 2-m 是二次函数, 求m 的值.【互动探索】(引发学生思考)已知含参函数的解析式为二次函数,那么二次函数的自变量及各项系数应该满足哪些条件?【解答】 由题意,得⎩⎪⎨⎪⎧m 2-m =2,m +1≠0, 解得m =2.【互动总结】(学生总结,老师点评)y =ax 2+bx +c 为二次函数的前提条件是a ≠0,且自变量x 的最高次数为2,注意不要忽略二次项系数不为0这一隐含条件.【例2】某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个.如果超市将篮球售价定为x 元(x >50),每月销售这种篮球获利y 元,求y 与x 之间的函数关系式.【互动探索】(引发学生思考)解决实际应用问题的一般步骤是什么?本题中所隐含的等量关系是什么?【解答】根据题意,得每个篮球的利润为50+x -40=10+x ;篮球的销售量为500-10x . 则y =(10+x )(500-10x )=-10x 2+400x +5000.【互动总结】(学生总结,老师点评)根据实际问题写出二次函数的解析式的一般步骤:(1)阅读并理解题意;(2)找出问题的变量与常量,并分析它们之间的关系,若有图形,则要注意结合图形进行分析;(3)设适当的未知数,用二次函数表示出变量之间的关系,建立二次函数模型,写出二次函数解析式.【活动2】 巩固练习(学生独学)1.如图,用长为10米的篱笆,一面靠墙(墙的长度超过10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x 米,花圃面积为S 平方米,则S 关于x 的函数解析式是__S =-2x 2+10x __.(不写定义域)2.如果函数y =(k +1)x k 2+1+1是y 关于x 的二次函数,则k 的值为多少?解:根据题意,得⎩⎪⎨⎪⎧ k +1≠0,k 2+1=2.解得k =1.【活动3】 拓展延伸(学生对学)【例3】已知关于x 的二次函数,当x =-1时,函数值为10,当x =1时,函数值为4,当x =2时,函数值为7,求这个二次函数的解析式.【互动探索】(引发学生思考)我们学过了一次函数以及一次函数解析式的求法——待定系数法,求二次函数的解析式用这种方法同样适用吗?【解答】设所求的二次函数的解析式为y =ax 2+bx +c .根据题意,得⎩⎪⎨⎪⎧ a -b +c =10,a +b +c =4,4a +2b +c =7.解得a =2,b =-3,c =5.故所求二次函数为y =2x 2-3x +5.【互动总结】(学生总结,老师点评)求二次函数的解析式与求一次函数的解析式的方法相同,都是待定系数法,二次函数有三个未知数,所以求二次函数的解析式需要三个方程.环节3 课堂小结,当堂达标(学生总结,老师点评) 二次函数⎩⎪⎨⎪⎧ 定义:形如y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的函数二次函数y =ax 2+bx +c 中隐含的条件:a ≠0请完成本课时对应练习!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.1.1二次函数
1.理解、掌握二次函数的概念和一般形式.
2.会利用二次函数的概念解决问题.
3.列二次函数表达式解决实际问题.
一、情境导入
已知长方形窗户的周长为6米,窗户面积为y(米2),窗户宽为x(米),你能写出y与x 之间的函数关系式吗?它是什么函数呢?
二、合作探究
探究点一:二次函数的有关概念
【类型一】二次函数的识别
下列函数哪些是二次函数?
(1)y=2-x2; (2)y=
1
x2-1
;
(3)y=2x(1+4x); (4)y=x2-(1+x)2.
解析:(1)是二次函数;(2)
1
x2-1
是分式而不是整式,不符合二次函数的定义式,故y
=1
x2-1
不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.
解:二次函数有(1)和(3).
方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;
②所表示的函数关系式有唯一的自变量;③所含自变量的关系式最高次数为2,且函数关系式中二次项系数不等于0.
【类型二】确定二次函数中待定字母的取值
如果函数y =(k +2)xk 2
-2是y 关于x 的二次函数,则k 的值为多少?
解析:紧扣二次函数的定义求解.注意易错点为忽视k +2≠0的条件.
解:根据题意知⎩⎪⎨⎪⎧k 2
-2=2,k +2≠0,解得⎩⎪⎨⎪⎧k =±2,
k ≠-2,
∴k =2.
方法总结:紧扣定义中的两个特征:①a ≠0;②自变量最高次数为2的二次三项式ax 2
+bx +c .
【类型三】求函数值
当x =-3时,函数y =2-3x -x 2
的值为________.
解析:把x =-3直接代入函数的表达式得y =2-3×(-3)-(-3)2
=2+9-9=2.即函
数的值为2.
方法总结:求函数值实际上就是求代数式的值.用所给的自变量的值替换函数关系式中的自变量,然后计算,注意运算顺序不要改变.
【类型四】确定自变量的取值
当x =________时,函数y =x 2
+5x -5的函数值为1.
解析:令y =1,即x 2
+5x -5=1,解这个一元二次方程得x 1=-6,x 2=1.即x =-6
或1.
方法总结:求二次函数自变量的值实际上就是解一元二次方程.直接转化为关于自变量的一元二次方程,通过解方程确定自变量的取值.
探究点二:列二次函数的解析式
一个正方形的边长是12cm ,若从中挖去一个长为2x cm ,宽为(x +1)cm 的小长方
形.剩余部分的面积为y cm 2
.
(1)写出y 与x 之间的函数关系式,并指出y 是x 的什么函数? (2)当x 的值为2或4时,相应的剩余部分面积是多少?
解析:几何图形的面积一般需要画图分析,相关线段必须先用x 的代数式表示出来.如
图所示.
解:(1)y=122-2x(x+1),即y=-2x2-2x+144,∴y是x的二次函数.
(2)当x=2或4时,相应的y的值分别为132cm2或104cm2.
方法总结:二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题的解决,可以通过分析题目中变量之间的关系,建立二次函数模型.
某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需
降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:若设每件降价x元,每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围.
解析:根据题意可知:实际商品的利润为(60-x-40),每星期售出商品的数量为(300+20x),则每星期售出商品的利润为y=(60-x-40)(300+20x),化简,注意要求出自变量x的取值范围.
解:由题意,得:y=(60-x-40)(300+20x)=(20-x)(300+20x)=-20x2+100x+6000,自变量x的取值范围为0≤x<20.
方法总结:销售利润=单位商品利润×销售数量;商品利润=售价-进价.
三、板书设计
教学过程中,强调判断一个函数为二次函数的三个条件,可对比已学过的一次函数,进一步巩固函数的有关知识.。