2017年(全国1卷文科)
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.5.(5分)已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A. B. C. D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A. B. C. D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A. B. C.D.9.(5分)已知函数f(x)=lnx+ln(2-x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC-cosC)=0,a=2,c=,则C=( )A. B. C. D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017全国卷1文科数学试题(卷)与答案(最新完整版).doc
(ⅱ) 在( x 3s, x 3s)之外的数据称为离群值,
试剔除离群值, 估计这条生产线当天
生产的零件尺寸的均值与标准差.(精确到
0.01)
n
附 : 样 本( xi, yi) (i1,2,, n)的 相 关 系 数r
( xix )( yiy )
3
是(1,3).
则△APF的面积为
A.1
B.1
C.2
D.3
3
2
3
2
6.如图,在下列四个正方体中,A,B为正方体的两个顶点,
M,N,Q为所在棱的中点,则
在这四个正方体中,直接
AB与平面MNQ不平行的是
x
3 y
3,
7.设
x
,
y
满足约束条件
x
y
1,
则
= +
的最大值为
z x y
y
0,
A.0
B.1
C.2
D.3
n块地作试验田.这n块地的亩产量(单位:
kg)分
别为x1,x2, ,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A.x1
,x2
, ,xn的平均数
B.x1,x2, ,xn的标准差
C.x
,x
, ,x
的最大值
D.x,x, ,x
的中位数
1
2
n
12
n
3.下列各式的运算结果为纯虚数的是
A.i(1+i)2B.i2(1-i)C.(1+i)2D.i(1+i)
4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色
2017年高考文科综合全国卷1(含答案)
绝密启用前2017年普通高等学校招生全国统一考试文科综合能力测试试题参考答案一、选择题1.B 2.D 3.A 4.A 5. D6.C 7.A 8.B 9.B 10. C11.D 12.C 13.A 14.D 15. A16.C 17.B 18.A 19.C 20. D21.B 22.B 23.B 24.A 25. C26.C 27.B 28.A 29.A 30. B31.C 32.B 33.D 34.D 35. A二、非选择题(一)必考题36.(1)剑麻纤维生产:我国热带地区面积小,用于种植剑麻的土地较少,产量低;我国热带地区纬度较高,气候季节差异大,种植的剑麻质量较差。
剑麻纤维需求:我国船舶、汽车制造等规模大,对剑麻纤维需求量大。
(2)离沿海(首都、港口)较近,临铁路(便于剑麻纤维运输),临河流。
(3)在热带气候条件下,收割的剑麻极易腐烂、变质,影响纤维质量。
(4)增加就业,增加税收,促进基础(民生)设施建设和经济发展。
37.(1)遭受干扰的坡向和部位:阳坡,苔原带的下部(中下部, 2 000-2 300 米左右)。
干扰强度分布特征:随海拔升高而降低(海拔越低,干扰越强烈)。
(2)(未遭受干扰时)阴坡较阳坡植物多样性高。
依据:(按单峰变化规律,)阳坡苔原带的植物多样性最高值应在中部( 2 300 米左右),低于阴坡最高值。
(3)特点:阳坡地表温度高、湿度低(水分条件差)。
原因:阳坡太阳辐射强,地表温度高,蒸发强度大;阳坡融雪早,蒸发历时长。
(4)随着海拔升高,阴、阳坡面积减小,坡面差异对植物多样性的影响减弱;阴、阳坡相互影响(水分、热量交换作用)增强。
38.我国消费品的供给与需求之间存在结构性矛盾,生产不能有效满足消费者的需要。
采用先进工艺和高的质量标准,提高消费品质量;加大高端消费品研发投入,优化消费品供给结构;加强品牌培育和推广,提升自主品牌的价值;降低生产成本,提高产品性价比。
39.全国人民代表大会是最高国家权力机关,全国人大常委会是全国人大的常设机关;根据宪法和香港基本法的规定,全国人大常委会有解释基本法的权力。
2017年高考真题——语文(全国Ⅰ卷) Word版精校版含答案
绝密★启用前2017年普通高等学校招生全国统一考试语文注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
气候正义是环境主义在气候变化领域的具体发展和体现。
2000年前后,一些非政府组织承袭环境正义运动的精神。
开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题,公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遇到在满足基本需求之上的奢侈排放。
从时间维度上来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务,就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
我们这一代既是受益人,有权使用并受益于地球,又是受托人,为下一代掌管地球。
(完整word版)2017年高考语文真题及答案全国卷1解析,推荐文档
2017年高考新课标I卷语文试题解析(正式版)绝密★启用前2017年普通高等学校招生全国统一考试语文(河南、河北、山西、江西、湖北、湖南、广东、安徽、福建使用)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
气候正义是环境正义在气候变化领域的具体发展和体现。
2000年前后,一些非政府组织承袭环境正义运动的精神,开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题。
公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遏制在满足基本需求之上的奢侈排放。
从时间维度来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务,就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
2017年全国卷1高考语文试题及答案解析(完整版).doc
2017年全国卷1高考语文试题及答案解析(完整版) ★启用前2017年普通高等学校招生全国统一考试语文(新课标1)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
气候正义是环境正义在气候变化领域的具体发展和体现。
2000年前后,一些非政府组织承袭环境正义运动的精神。
开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题,公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遏制在满足基本需求之上的奢侈排放。
从时间维度上来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务,就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
2017年高考新课标Ⅰ卷文数试题解析(正式版)(解析版)
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x =<<=<,选A . 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1−i)C .(1+i)2D .i(1+i)【答案】C【解析】由2(1i)2i +=为纯虚数知选C .4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B5.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,学/网点A 的坐标是(1,3),则△APF 的面积为 A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3||=PF ,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D . 6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是A .B .C .D .【答案】A【解析】对于B ,易知AB ∥MQ ,则直线AB ∥平面MNQ ;对于C ,易知AB ∥MQ ,则直线AB ∥平面MNQ ;对于D ,易知AB ∥NQ ,则直线AB ∥平面MNQ .故排除B ,C ,D ,选A . 7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .8.函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C .9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C10.下面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c =2,则C =A .π12B .π6C .π4D .π3【答案】B12.设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A【解析】当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab≥=≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞,选A . 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 【答案】7【解析】由题得(1,3)m +=-a b ,因为()0+⋅=a b a ,所以(1)230m --+⨯=,解得7m =. 14.曲线21y x x=+在点(1,2)处的切线方程为______________. 【答案】1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 15.已知π(0)2α∈,,tan α=2,则πcos ()4α-=__________.16.已知三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S−ABC 的体积为9,则球O 的表面积为________. 【答案】36π【解析】取SC 的中点O ,连接,OA OB , 因为,SA AC SB BC ==, 所以,OA SC OB SC ⊥⊥, 因为平面SAC ⊥平面SBC , 所以OA ⊥平面SBC , 设OA r =,则3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=, 所以31933r r =⇒=,所以球的表面积为24π36πr =.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【解析】(1)设{}n a 的公比为q .由题设可得121(1)2,(1) 6.a q a q q +=⎧⎨++=-⎩解得2q =-,12a =-. 故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P−ABCD 的体积为83,求该四棱锥的侧面积. 【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .19.(12分)为了监控某种零件的一条生产线的学科*程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序910 11 12 13 14 15 16 零件尺寸 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.【解析】(1)由样本数据得(,)(1,2,,16)i x i i =的相关系数为16()(8.5)0.18ix x i r --==≈-∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,0.09≈. 20.(12分)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2224x y =,x 1+x 2=4,于是直线AB 的斜率12121214y y x x k x x -+===-.21.(12分)已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2ee (2e )(e )x x x xf x a a a a '=--=+-, ①若0a =,则2()e x f x =,在(,)-∞+∞单调递增.②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-. 当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增.(2)①若0a =,则2()e x f x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a af a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a tt yt =+⎧⎨=-⎩(为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到la .【解析】(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=. 由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =当4a ≥-时,d=8a =;当4a <-时,d=16a =-.综上,8a =或16a =-.23.[选修4−5:不等式选讲](10分)已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g .(1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.(2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.。
2017年全国统一高考数学试卷(文科)全国卷1(详解版)
2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2017•新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)(2017•新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)(2017•新课标Ⅰ)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)(2017•新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)(2017•新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)(2017•新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.38.(5分)(2017•新课标Ⅰ)函数y=的部分图象大致为()A.B.C.D.9.(5分)(2017•新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)(2017•新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年新课标全国卷1文科数学试题及答案(word版)
2017年新课标全国卷1文科数学试题及答案(word版)绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B3|2x x ⎧⎫=<⎨⎬⎩⎭ D .A B=R5.已知F 是双曲线C :x 2-23y=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13B .1 2C .2 3D .326.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3 8..函数sin21cos x y x=-的部分图像大致为9.已知函数()ln ln(2)=+-,则f x x xA.()f x在(0,2)单调递增B.()f x在(0,2)单调递减C.y=()f x的图像关于直线x=1对称D.y=()f x的图像关于点(1,0)对称10.如图是为了求出满足321000n n->的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1 B.A>1000和n=n+2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年高考真题——语文(全国Ⅰ卷)+Word版精校版含答案
绝密★启用前2017年普通高等学校招生全国统一考试语文注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
气候正义是环境主义在气候变化领域的具体发展和体现。
2000年前后,一些非政府组织承袭环境正义运动的精神。
开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题,公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹”控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遇到在满足基本需求之上的奢侈排放。
从时间维度上来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务,就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
我们这一代既是受益人,有权使用并受益于地球,又是受托人,为下一代掌管地球。
2017全国Ⅰ卷高考文科综合真题及答案
2017全国Ⅰ卷高考文科综合真题及答案本试题卷共15页,46题(含选考题)。
全卷满分300分。
考试用时150分钟。
★祝考试顺利★注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小时选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上帝非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:本题共35小题,每小题4分,共140分。
在每小题给出第四个选项中,只有一项是符合题目要求的。
图1为我国东部地区某城市街道机动车道与两侧非机动车道绿化隔离带的景观对比照片,拍摄于2017年3月25日,数年前,两侧的绿化隔离带按统一标准栽种了常绿灌木;而如今,一侧灌木修剪齐整(左图),另一侧则杂树丛生,灌木零乱(右图)。
拍摄当日,这些杂树隐有绿色,新叶呼之欲出。
据此完成1—3题。
1.当地自然植被属于()。
A.常绿阔叶林B.落叶阔叶林C.常绿硬叶林D.针叶林【参考答案】B【试题点评】本题考查堆积地貌形成条件相关知识点。
在* 支持回车高三强化提高班《自然地理——地形专题》中有重点讲解,在寒假特训班和百日冲刺班也均有涉及。
2.造成图示绿化隔离带景观差异的原因可能是该街道两侧()。
A.用地类型差异B.居民爱好差异C.景观规划差异D.行政管辖不同【参考答案】C【试题点评】本题考查堆积地貌形成条件相关知识点。
2017高考全国1卷文科数学试题和答案解析.docx
这条生产线当天生产的零件尺寸的标准差的估计值为
0.008
0.09.
20.(12分)解:
(1)设A(x1,y1),B(x2,y2),则x1
x2,y1
x1
2
,y2
x2
2
,x1+x2=4,
4
4
于是直线AB的斜率k
y1
y2
x1
x2
1 .
x1
x2
4
(2)由y
x2
,得y'
x.
4
2
设M(x3,y3),由题设知
4小题,每小题
5分,共20分。
13.已知向量a=(–1,2),b=(m,1).若向量a+b与a垂直,则m=______________.
14.曲线y
x2
1
在点(1,2)处的切线方程为_________________________.
x
15.已知a
π
,tanα,=2则cos (
π
(0,)
4
) =__________。
|,即4
2( m 1)
2( m
1),解得m
7 .
所以直线AB的方程为yx7 .
21.
(12
分 ) (1) 函 数f ( x)
的 定 义 域 为( ,
),
f (x)
2e2x
aex
a2
(2 ex
a)(ex
a),
①若a
0
,则f ( x)
e2 x,在(
,
)单调递增.
②若a
0
,则由f ( x)
0
得x
ln a
.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第
(完整版)2017年高考全国卷1语文试题及答案,推荐文档
绝密★启用前2017 年普通高等学校招生全国统一考试语文注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(35 分)(一)论述类文本阅读(本题共 3 小题,9 分)阅读下面的文字,完成 1~3 题。
气候正义是环境主义在气候变化领域的具体发展和体现。
2000 年前后,一些非政府组织承袭环境正义运动的精神。
开始对气候变化的影响进行伦理审视,气候正义便应运而生。
气候正义关注的核心主要是在气候容量有限的前提下,如何界定各方的权利和义务,主要表现为一种社会正义或法律正义。
从空间维度来看,气候正义涉及不同国家和地区之间公平享有气候容量的问题,也涉及一国内部不同区域之间公平享有气候容量的问题,因而存在气候变化的国际公平和国内公平问题,公平原则应以满足人的基本需求作为首要目标,每个人都有义务将自己的“碳足迹” 控制在合理范围之内。
比如说,鉴于全球排放空间有限,而发达国家已实现工业化,在分配排放空间时,就应首先满足发展中国家在衣食住行和公共基础设施建设等方面的基本发展需求,同时遇到在满足基本需求之上的奢侈排放。
从时间维度上来看,气候正义涉及当代人与后代之间公平享有气候容量的问题,因而存在代际权利义务关系问题。
这一权利义务关系,从消极方面看,体现为当代人如何约束自己的行为来保护地球气候系统,以将同等质量的气候系统交给后代;从积极方面看,体现为当代人为自己及后代设定义务,就代际公平而言,地球上的自然资源在代际分配问题上应实现代际共享,避免“生态赤字”。
因为,地球这个行星上的自然资源包括气候资源,是人类所有成员,包括上一代、这一代和下一代,共同享有和掌管的。
我们这一代既是受益人,有权使用并受益于地球,又是受托人,为下一代掌管地球。
2017年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷满分150分,考试时间120分钟考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,监考员将试题卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|2A x x =<,{}|320B x x =->,则( ) A .3|2A B x x ⎧⎫=<⎨⎬⎩⎭B .A B =∅C .3|2AB x x ⎧⎫=<⎨⎬⎩⎭D .AB =R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为1x ,2x ,……,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,……,n x 的平均数B .1x ,2x ,……,n x 的标准差C .1x ,2x ,……,n x 的最大值D .1x ,2x ,……,n x 的中位数3.下列各式的运算结果为纯虚数的是( ) A .2(1)i i +B .2(1)i i -C .2(1)i +D .(1)i i +4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π 45.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),△APF 的面积为( )A .13B .1 2C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z x y =+的最大值为( )A .0B .1C .2D .3-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名_____________ 考生号_________________________________________________________________数学试卷 第3页(共18页)数学试卷 第4页(共18页)8.函数sin21cos xy x=-的部分图像大致为( )A .B .C .D .9.已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点(1,0)对称10.下面程序框图是为了求出满足321000nn->的最小偶数n ,框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,2a =,c =C =( )A .π12B .π6 C .π4 D .π3 12.设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒,则m 的取值范围是( ) A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞二、填空题:本题共4小题,每小题5分,共20分.13.已知向量)2(–1,=a ,)1(,m =b .若向量+a b 与a 垂直,则m =________.14.曲线21y x x=+在点(1,2)处的切线方程为______________. 15.已知π(0)2α∈,,tan 2α=,则πcos ()4α-=__________.16.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22.23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.18.(12分)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=.数学试卷 第5页(共18页)数学试卷 第6页(共18页)(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min ,从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.20.(12分)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程. 21.(12分)已知函数2()()xxe ef x a a x =--. (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l a . 23.[选修4−5:不等式选讲](10分)已知函数2()4f x x ax =-++,g()|1||1|x x x =++-. (1)当1a =时,求不等式()g()f x x ≥的解集;毕业学校_____________ 姓名_____________ 考生号_________________________________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页)数学试卷 第8页(共18页)(2)若不等式()g()f x x ≥的解集包含[1,1] ,求a 的取值范围.2017年普通高等学校招生全国统一考试文科数学答案解析一、选择题 1.【答案】A 【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A .2.【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.【答案】C【解析】由2(1)2i i +=为纯虚数,选C . 4.【答案】B【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积π2S =,则对应概率ππ248P ==,故选B .5.【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D .6.【答案】A【解析】由B ,AB MQ ∥,则直线AB ∥平面MNQ ;由C ,AB MQ ∥,则直线AB ∥平面MNQ ;由D ,AB NQ ∥,则直线AB ∥平面MNQ .故A 不满足,选A .7.【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D .8.【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当πx =时,0y =,排除D ;当1x =时,sin 201cos2y =>-,排除A ,故选C .9.【答案】C 【解答】解:函数()ln ln(2)f x x x =+-,(2)ln(2)ln f x x x ∴-=-+,即()(2)f x f x =-,即()y f x =的图象关于直线1x =对称,故选:C . 10.【答案】D【解析】由题意选择321000n n ->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D . 11.【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即πsin (sin cos )sin()0C A A C A ++=,所以3π4A =.由正弦定理sin sin a c A C =得23πsin 4=即1sin 2C =,得π6C =,故选B . 12.【答案】A【解析】当03m <<,焦点在x 轴上,要使C 上存在点M满足120AMB ∠=,则tan 603ab ≥=≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab ≥=≥9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A .二、填空题 13.【答案】7【解析】由题得(1,3)m +=-a b , 因为()0+=a b a , 所以(1)230m --+⨯= 解得7m =14.【答案】1y x =+ 【解析】设()y f x = 则21()2f x x x'=-所以(1)211f '=-=所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+.15.【解析】π(0,)2α∈,tan 2α=,sin 2cos αα∴=,22sin cos 1αα+=,解得sin αcos α=πππcos()cos cos sin sin 444ααα∴-=+=+=, 16.【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=所以球的表面积为24π36πr = 三、解答题17.【答案】(1)(2)n n a =- (2)1n S +,n S ,2n S +成等差数列.【解析】(1)设等比数列{}n a 首项为1a ,公比为q ,则332628a S S ==--=--,则31228a a q q -==,328a a q q-==, 由122a a +=,2882q q--+=,整理得2440q q ++=, 解得:2q =-, 则12a =-,1(2)(2)(2)n nn a =--=﹣-.(2)由(1)可知:11(1q )1[2(2)]13n n n a S q +-==-+--, 则211[2(2)]3n n S ++=-+-,321[2(2)]3n n S ++=-+-, 由231211[2(2)][2(2)]33n n n n S S +++++=-+--+-=12114(2)(2)[](2)(2)3n n ++-+-⨯-+-⨯- 111142(2)2(2(2)33[][)]n n ++=-+⨯-=⨯-⨯+-2n S =,即122n n n S S S +++=所以1n S +,n S ,2n S +成等差数列. 18.【答案】(1)90BAP AB PA ∠=︒⇒⊥90CDP CD PD ∠=︒⇒⊥AB CD ∥,PA PD P =,AB PAD ∴⊥平面 AB PAD ⊂平面 PAB PAD ∴平面⊥平面(2)6+【解析】(1)见答案(2)由(1)知AB PAD ⊥平面,90APB ∠=︒,PA PD AB DC ===.取AD 中点O ,所以OP ABCD ⊥底面,,OP AB AD =, 1833P ABCDV AB AB -∴=⨯= 2AB ∴=AD BC ∴==,2PA PD AB DC ====,PO =,PB PC ∴==111222PADPABPDCPBCPA PD PA PB DC S SSSS=⨯⨯+⨯⨯+⨯⨯∴=+++侧111122222222226=⨯⨯+⨯⨯+⨯⨯+⨯=+ 19.【答案】(1)0.18-(2)(i )需要对当天的生产过程进行检查. (ii )均值为10.02,标准差约为0.09. 【解析】(1)16()(8.5)0.18ixx i r --==≈-∑因为||0.25r <,所以可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小. (2)(i)39.9730.2129.334x s -=-⨯=,39.9730.21210.636x s +=+⨯=所以合格零件尺寸范围是(9.334,10.606),显然第13号零件尺寸不在此范围之内,因此需要对当天的生产过程进行检查.(ii )剔除离群值后,剩下的数据平均值为169.22169.979.2210.021515x -⨯-==, 0.09s ==.20.【答案】(1)1 (2)7y x =+【解析】(1)设()()1122,,,A x y B x y ,则2221212121214414ABx x y y x x K x x x x --+====-- (2)设20(,)4x M x ,则C 在M 处的切线斜率'00112ABy K K x x x ====- 02x ∴=,则()12,1A ,又AM BM ⊥,22121212121111442222AM BM x x y y K K x x x x ----==----()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++= 又设AB :y x m =+,代入24x y = 得2440x x m --=124x x ∴+=,124x x m =-48200m =-++7m ∴=故AB :y x =+721.【答案】(1)当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增,当0a <时,()f x 在(,ln())2a -∞-上单调递减,在(ln())2a -+∞,上单调递增, (2)34]21[,e -.【解析】(1)222()x x x x f x e e a a x e e a a x =-=-()--, 222(2)()x x x x f x e ae a e a e a ∴'==-+-()﹣,①当0a =时,()0f x '>恒成立,()f x ∴在R 上单调递增.②当0a >时,20x e a +>,令()0f x '=,解得ln x a =, 当ln x a <时,()0f x '<,函数()f x 单调递减, 当ln x a >时,()0f x '>,函数()f x 单调递增,③当0a <时,0x e a -<,令()0f x '=,解得ln()2ax =-,当ln()2a x -<时,()0f x '<,函数()f x 单调递减,当ln()2ax ->时,()0f x '>,函数()f x 单调递增.综上所述,当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(ln )a -∞,上单调递减,在(ln )a +∞,上单调递增,当0a <时,()f x 在(,ln())2a-∞-上单调递减,在(ln())2a -+∞,上单调递增,(2)①当0a =时,2()0x f x e =>恒成立,②当0a >时,由(1)可得2()()ln 0min f x f lna a a ==-≥,ln 0a ∴≤, 01a ∴≤<.③当0a <时,由(1)可得:223()(ln(-))ln(-)0242mina a af x f a ==-≥,3ln(-)24a ∴≤,3420e a ∴≤﹣<,综上所述a 的取值范围为34]21[,e -. 22.【答案】(1)(3,0)和(,2125)4225- (2)16a =-或8a =【解析】(1)当1a =-时,14,:1,x t L y t =-+⎧⎨=-⎩(t 为参数),L 消参后的方程为430x y +-=,曲线C 消参后为221x y y +=,与直线联立方程221,430,x y y x y ⎧+=⎪⎨⎪+-=⎩解得3,0,x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩椭圆C 和直线L 的交点为(3,0)和(,2125)4225-.(2)L 的普通方程为440x y a +--=, 设曲线C 上任一点为()3cos,sin P θθ, 由点到直线的距离公式,d =,d =max d =∴()max5sin 417aθϕ+--=,当()sin 1θϕ+=时最大,即5417a --=时,16a =-, 当()sin1θϕ+=-时最大,即917a +=时,8a =,综上:16a =-或8a =. 23.【答案】(1)(1. (2)a 的取值范围是[]1,1-.【解析】(1)当1a =时,21()4a f x x x ==-++时,,是开口向下,对称轴为12x =的二次函数, 2,1,()112|,1,|12,1,x x g x x x x x x ⎧⎪=++-=-⎨⎪--⎩>≤≤<当(1)x ∈+∞,时,令242x x x ++=-,解得x =,()g x 在(1)+∞,上单调递增,()f x 在(1)+∞,上单调递减,此时()()f x g x ≥的解集为(1; 当,1[]1x ∈-时,()2g x =,()(1)2f x f ≥-=.当(1)x ∈-∞,-时,()g x 单调递减,()f x 单调递增,且(1)(1)2g f -=-=.综上所述,()()f x g x ≥的解集为(1; (2)依题意得:242x ax -++≥在[]1,1-恒成立,即220x ax -≤-在[]1,1-恒成立,则只需221120,(1)(1)20,a a ⎧--⎨----⎩≤≤解得11a -≤≤, 故a 的取值范围是[]1,1-.数学试卷第17页(共18页)数学试卷第18页(共18页)。
2017年全国新课标1卷高考文科数学真题及答案解析
【答案】
3 10 10
2 5 = , cos α 5 5 . 5
【解析】由题已知可得, = sin α
π π π 5 2 2 5 2 3 10 所以 cos (α − ) = cos α cos + sin α sin = . × + × = 4 4 4 5 2 5 2 10
12.设 A、B 是椭圆 C: 围是 A. (0,1] [9, +∞) C. (0,1] [4, +∞) 【答案】A
B. (0, 3] [9, +∞) D. (0, 3] [4, +∞)
【解析】当 M 位于短轴端点时,∠AMB 最大.因此当 0 < m < 3 ,此时焦点在 x 轴上,要使 C 上存在点 M 满 足 ∠AMB = 120 ,则
8 ,求该四棱锥的侧面积. 3
∠BAP = 90 ,∴∠GOF = 90 ,∴ OG ⊥ OE. 同理 ∠CDP = 90 ,∴∠GOE = 90 ,∴ OG ⊥ OF . ∴ OG ⊥ 平面PAD.
OG // AB, ∴ AB ⊥ 平面PAD,
E F O G
∴ 平面PAB ⊥ 平面PAD.
∴ Sn+1,Sn,Sn+2 成等差数列.
18.如图,在四棱锥 P-ABCD 中,AB//CD,且 ∠BAP = ∠CDP = 90 (1)证明:平面 PAB⊥平面 PAD; (2)若 PA=PD=AB=DC, ∠APD = 90 ,且四棱锥 P-ABCD 的体积为 解 (1)取 AD,PA,PD,BC 的中点,分别为点 O,E,F,G. 连结 OE,OF,OG,则 OG // AB//CD, OE// PD, OF// PA.
2017年全国Ⅰ卷文数12题
2017年全国1卷文科数学12题解析12.设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足120AMB ∠=︒, 则m 的取值范围是( )A.(][)0,19,+∞ B. ([)0,39,⎤+∞⎦ C.(][)0,14,+∞ D. ([)0,34,⎤+∞⎦【分析与解】设P 是椭圆C 上的动点,椭圆C 上存在点M 满足120AMB ∠=︒等价于APB ∠的最大值大于或等于120︒. 可以猜测:当点P 为椭圆短轴上的顶点时,APB ∠取得最大值(证明放在最后) 当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b≥=, 即33m≥,得01m <≤; 当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则=t a n6033a m b ≥=,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,故选A.命题:设A ,B 是椭圆22221(0)x y a b a b+=>>长轴的两个端点,P 是椭圆上任意一点,M 为椭圆短轴上一顶点,求证:APB AMB ∠≤∠.如图,设(,),(,0)P x y G x ,则2222222221x y a x a a b y b-+=⇒= 则tan P AGa x APG G y +==,tan BG a x BPG PG y-== 222222222tanA G tanB G 2tan tan()1tanA G tanB G 11aa y y P P ab APB APG BPG P P y a x ac y b +=+====-⨯-∙--- 故22222tan a b ab APB b c c≤-⨯=-,又由于tan 0APB <,y tan APB =在(,)2ππ递增 所以当yb =时,APB ∠取得最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A. 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出学.科.网的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 3.下列各式的运算结果为纯虚数的是 A .i(1+i)2 B .i 2(1-i) C .(1+i)2 D .i(1+i)【答案】C【解析】由2(1)2i i +=为纯虚数知选C.4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学 科&网则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF的面积为 A .13B .1 2C .2 3D .3 2【答案】D【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D. 6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是【答案】A【解析】由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ.故A 不满足,选A. 7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D【解析】如图,目标函数z x y =+经过(3,0)A 时最大,故max 303z =+=,故选D.8..函数sin21cos xy x=-的部分图像大致为【答案】C【解析】由题意知,函数sin 21cos xy x=-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 201cos 2y =>-,排除A.故选C.9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D【解析】由题意选择321000n n->,则判定框内填1000A ≤,由因为选择偶数,所以矩形框内填2n n =+,故选D.11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C = A .π12B .π6C .π4D .π3【答案】B【解析】由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即sin (sin cos )sin()04C A A C A π+=+=,所以34A π=.由正弦定理sin sin a c A C =得23sin sin 4C π=,即1sin 2C =,得6C π=,故选B. 12.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab≥=≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A. 二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =______________. 【答案】7【解析】由题得(1,3)a b m +=- 因为()0a b a +⋅= 所以(1)230m --+⨯= 解得7m = 14.曲线21y x x=+在点(1,2)处的切线方程为_________________________. 【答案】1y x =+ 【解析】设()y f x =则21()2f x x x'=-所以(1)211f '=-=所以在(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+ 15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。
【答案】31016.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。
【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒= 所以球的表面积为2436r ππ=三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积. 【解析】①∵90BAP AB PA ∠=︒⇒⊥90CDP CD PD ∠=︒⇒⊥ ∵,AB CD PA PD P ⋂=∴AB PAD ⊥平面 ∵AB PAD ⊂平面 ∴PAB PAD ⊥平面平面 ②由①知AB PAD ⊥平面 ∵90APB ∠=︒PA PD AB DC === 取AD 中点O ,所以OP ABCD ⊥底面 2,2OP AD AB ∴128233P ABCD V AB AB AB -=⨯=∴AO=2∴22PB PC BC ===∴2PADPABPBCS SSS=++例1112222222222sin60222=⨯⨯+⨯⨯⨯⨯︒ =24223+19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 78 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序910 111213 141516 零件尺寸 10.26 9.9110.13 10.02 9.2210.04 10.059.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅. (1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,0.0080.09≈.(ii ) 剔除9.22,这条生产线当天生产的零件尺寸的均值为169.22169.979.2210.021515x -⨯-== ,标准差为()162211[(10.02)9.2210.2]0.0080.0916i i s x ==---==∑()221610.029.220.0115s --≈20.(12分)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【解析】(1)设()()1122,,,A x y B x y ,则2221212121214414ABx x y y x x K x x x x --+====-- (2)设200,4x M x ⎛⎫ ⎪⎝⎭,则C 在M 处的切线斜率'00112AB y K K x x x ====- ∴02x =则()12,1A ,又AM ⊥BM ,22121212121111442222AM BM x x y y K K x x x x ----==---- ()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++= 又设AB :y=x +m 代入24x y =得2440 x x m--=∴124x x+=,124x x m=--4m+8+20=0∴m=7故AB:x+y=721.(12分)已知函数()f x=e x(e x﹣a)﹣a2x.(1)讨论()f x的单调性;(2)若()0f x≥,求a的取值范围.(二)选考题:共10分。