中考数学热点题型练习及参考答案
中考数学-热点01 与圆有关的计算问题(四川成都专用)(原卷版)
热点01与圆有关的计算问题圆得计算是四川成都中考数学的必考考点,常见以选填的形式,主要是求角、长度、面积等问题,一般出现在中考的第7或8题,偶尔也会出现在A 卷填空题中,以简单题为主,但除了常规考法以外,日常练习中多注意新颖题目的考向。
【题型1与圆有关的角度问题】【例1】(2023·四川成都·统考二模)如图,BC 是O 的直径,点,A D 在O 上,若30,ADC ∠=︒则ACB ∠的度数为()A .30°B .40°C .50°D .60°【变式1-1】(2023·四川成都·统考二模)如图,正五边形ABCDE 内接于O ,连接OA AC 、,则OAC ∠的大小是()A .18︒B .24︒C .30︒D .36︒【变式1-2】(2023·四川成都·统考二模)如图,在O 中,弦AB CD ∥,若82BOD ∠=︒,则ABC ∠的度数为()A .41︒B .52︒C .68︒D .82︒【变式1-3】(2023·四川成都·统考模拟预测)如图,正六边形ABCDEF 和正方形AGDH 都内接于O ,连接BG ,则弦BG 所对圆周角的度数为()A .15︒B .30︒C .15︒或165︒D .30︒或150︒【变式1-4】(2023·四川成都·模拟预测)如图,已知正五边形ABCDE ,AB BC CD DE AE ====,A 、B 、C 、D 、E 均在O 上,连接AC ,则ACD ∠的度数是()A .72︒B .70︒C .60︒D .45︒【题型2与圆有关的长度问题】【变式2-1】(2022·四川成都则正六边形的边长为()A .3B .A .cos36r R =︒C .2tan36a r =︒【变式2-3】(2023·的外切正六边形的边长为(A .233R【题型3与圆有关的面积问题】【例3】(2023·四川成都·统考中考真题)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是【变式3-1】(2021·的长为半径画圆,则图中阴影部分的面积为(A.16πB.12πA .23π【变式3-4】(2021·(建议用时:30分钟)1.(2023·四川成都·成都实外校考一模)如图,CD 是O 的直径,弦AB CD ⊥,若28CDB ∠=︒,则AOC ∠的度数为()A .28︒B .56︒C .58︒D .62︒2.(2023·四川成都·模拟预测)如图,ABC 中,3AC =,4BC =,90C ∠=︒,O 为ABC 的内切圆,与三边的切点分别为D 、E 、F ,则O 的面积为___________(结果保留π)()A .πB .2πC .3πD .4πA.22︒B.6.(2022·四川成都·模拟预测)A.5 3π9.(2022·四川成都·模拟预测)如图,已知⊙∠AOB+∠COD=180°,则弦A.610.(2022·四川成都·一模)的面积为()A.24πππ16.(2023·四川成都·统考二模)如图,已知上一点,连接点D,若P为O17.(2023·四川成都·成都七中校考三模)如图,已知18.(2023·四川成都·模拟预测)则扇形BOC的面积为19.(2021·四川成都·成都实外校考一模)则BE=.20.(2023·四川成都·校考三模)如图,多边形∠=.PAB21.(2023·四川成都·成都七中校考三模)如图,分别以边长为边长为半径作弧,三段弧所围成的图形是一个曲边三角形,内的概率为.。
专题四 几何测量——2023届中考数学热点题型突破(含答案)
专题四几何测量——2023届中考数学热点题型突破1.重庆轨道5号线正在如火如荼地建设中.如图工程队在由南向北的方向上将轨道线路铺设到A处时,测得档案馆C在A北偏西方向的600米处,再铺设一段距离到达B 处,测得档案馆C在B北偏西方向.(1)请求出A,B间铺设了多远的距离;(结果保留整数,参考数据:,)(2)档案馆C周围米内要建设文化广场,不能铺设轨道,若工程队将轨道线路铺设到B处时,沿北偏东的BE方向继续铺设,请问这是否符合建设文化广场的要求,通过计算说明理由.2.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O 距地面AC的高度为,此时观测到楼AB底部点A处的俯角为,楼CD上点E 处的俯角为,沿水平方向由点O飞行到达点F,测得点E处俯角为,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到.参考数据:,,,).3.周末,小刚和爸爸一起到某湿地公园进行数学实践活动.如图,在爸爸的协助下,小刚在河的南岸点A处观测到北岸的一棵大树P在北偏东方向上,他沿北偏东方向走了到达点B处,此时他发现这棵大树在自己的正北方向上.请你帮小刚求出点B和大树P之间的距离.(结果精确到.参考数据:,,,)4.某数学小组的同学利用两个高度相同的测角仪和一把卷尺测量路杆AB顶端巨型广告牌的高度AN,如图,他们在路杆AB两侧的点C和点D处分别放置测角仪CE和DF(点C,B,D在同一直线上,点A,N与点C,B,D在同一平面内),测角仪CE测得点N处的仰角为,测角仪DF测得点A处的仰角为.已知两个测角仪相距,测角仪CE与AB之间的距离为.(1)求广告牌的高度AN.(结果精确到.参考数据:,,,)(2)利用测角仪测角度时,有哪些注意事项?(写出两条即可)5.如图是某地铁出站口扶梯侧面设计示意图,起初工程师计划修建一段坡度为,高度为32米的扶梯AB,但这样坡度太陡容易引发安全事故.现工程师对设计图进行了修改:修建AC,DE两段扶梯,并在这两段扶梯之间修建5米的水平平台CD,其中,,扶梯AC长米,点B,E在同一水平线上.求修改后扶梯底部E与原来扶梯底部B之间的距离.(结果精确到0.1米.参考数据:,,,)6.为测量某机场东西两栋建筑物A,B之间的距离.如图,勘测无人机在点C处,测得建筑物A的俯角为,CA的距离为千米,然后沿着平行于AB的方向飞行6.4千米到点D处,测得建筑物B的俯角为.(参考数据:,,, ,,).(1)无人机距离地面的飞行高度是多少千米?(2)求该机场东西两栋建筑物A,B之间的距离.(结果精确到0.01千米)7.“一去紫台连朔漠,独留青冢向黄昏.”美丽的昭君博物院作为著名景区,现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像AB的高度,某数学兴趣小组在D处用测角仪测得雕像顶部A的仰角为,测得底部B的俯角为.已知测角仪CD与水平地面垂直且高度为1米,求雕像AB的高.(用非特殊角的三角函数及根式表示即可)8.中国廊桥是桥梁与房屋的珠联璧合之作.如图,某桥面建造古典楼阁和廊道,主跨顶部建造双层楼阁.数学兴趣小组的同学为测量桥面上楼阁AB的高度,从D处观测到楼阁顶部点A的仰角为,观测到A点的正下方楼阁底部点B的仰角为,已知桥面高BC为50米,则楼阁AB的高度约为多少米(参考数据:,,)9.如图,由飞行高度为2000米的飞机上的P点测得到大楼顶部A处的俯角为,到大楼底部B处的俯角为,问大楼AB的高度约为多少米?(结果保留整数.参考数据:,)答案以及解析1.答案:(1)220(2)见解析解析:(1)解:如图,过点C作,交AB的延长线于点F,根据题意可知,,,,(2)符合建设文化广场的要求,理由如下,如图,过点C作根据题意可得符合建设文化广场的要求.2.答案:AC的长约为解析:分别延长AB,CD与直线OF交于点G,点H,如图,则.又,四边形ACHG是矩形,.由题意,得,,,,.在中,,,.是的外角,,,.在中,,,,.答:楼AB与CD之间的距离AC的长约为.3.答案:解析:如图,过点B作于点F,过点P作于点E,则四边形EFBP 是矩形,,.在中,,,,.在中,,,.故点B和大树P之间的距离约为.4.答案:(1)(2)见解析解析:(1)如图,连接EF交AB于点G,则,,,.在中,,.在中,,,.答:广告牌的高度AN大约为.(2)①测量时,测角仪要与地面垂直;②需测量多次,取平均值.(答案不唯一,合理即可)5.答案:修改后扶梯底部E与原来扶梯底部B之间的距离约为20.7米解析:如图,分别过点A,D作EB的垂线,垂足分别为点F,H,延长DC交AF于点M,则四边形DMFH是矩形,,,.,.在中,,,.,的坡度为,,,.在中,,,.答:修改后扶梯底部E与原来扶梯底部B之间的距离约为20.7米.6.答案:(1)无人机距离地面的飞行高度约是1.54千米(2)该机场东西两建筑物AB的距离约为7.2千米解析:(1)过点A作于点E,过点B作于点F.,在中,,,(千米)答:无人机距离地面的飞行高度约是1.54千米;(2)在中,(千米),四边形AEFB是矩形,千米,,在中,,,解得(千米),(千米)(千米)答:该机场东西两建筑物AB的距离约为7.2千米.7.答案:雕像AB的高为米解析:如图,过点C作于H,则.在中,.在中,,则.答:雕像AB的高为米.8.答案:楼阁AB的高度约为9.5米解析:由题意得:,在中,米,,(米),在中,,(米),(米),楼阁AB的高度约为9.5米.9.答案:大楼AB的高度约为541米解析:解:根据题意构建数学模型,如图,过点P作AB的垂线,交BA的延长线于点D.飞机的飞行高度为2000米,米.在中,,.在中,,(米),(米).答:大楼AB的高度约为541米.。
中考数学热点题型专练不等式与不等式组含解析
热点06 不等式与不等式组【命题趋势】1.解不等式(组)并在数轴上表示解集.试题难度一般不大,选择题、填空题和解答题中都会出现.2.联系生活实际,用不等式(组)解决实际问题,常与函数、方程结合考查.【满分技巧】一、不等式的性质不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【规律方法】1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c.二、一元一次不等式及其解法(1)已知一元一次不等式(组)的解集,确定其中字母的取值范围的方法是:①逆用不等式(组)的解集确定;②分类讨论确定;③从反面求解确定;④借助于数轴确定.(2)根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.三、一元一次不等式组及其解法解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、一元一次不等式(组)的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”“最多”“不超过”“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【限时检测】(建议用时:30分钟)一、选择题1.如果0a b c ><,,那么下列不等式成立的是 A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选D .2.不等式2x ﹣1>3﹣x 的解集是A .x <43B .x >34C .x >43D .x <34【答案】C【解析】移项得2x +x >3+1,合并同类项得3x >4,系数化为1得x >43. 故选C .3.不等式3(x +1)>2x +1的解集在数轴上表示为A .B .C .D . 【答案】A【解析】去括号得,3x +3>2x +1,移项得,3x ﹣2x >1﹣3,合并同类项得,x >﹣2,在数轴上表示为:.故选A .4.不等式组2012x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是 A .B .C .D . 【答案】B【解析】2012x x +>⎧⎨-≤⎩①②, 由①得,x >﹣2,由②得,x ≤3,故此不等式组的解集为:﹣2<x ≤3.在数轴上表示为:故选B .5.关于x 的不等式组2150x x m ->⎧⎨-<⎩有三个整数解,则m 的取值范围是 A .67m <≤B .67m <<C .7m ≤D .7m <【答案】A 【解析】2150x x m ->⎧⎨-<⎩①② 由①得:x >3,由②得:x <m ,则不等式组的解集是:3<x <m .不等式组有三个整数解,则整数解是4,5,6.则6<m ≤7.故选A .6.已知关于x 的不等式(a ﹣2)x >1的解集为x <12a -,则a 的取值范围 A .a >2B .a ≥2C .a <2D .a ≤2 【答案】C【解析】∵不等式(a ﹣2)x >1的解集为x <12a -,∴a ﹣2<0,∴a 的取值范围为:a <2.故选C . 7.若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是 A .1B .2C .3D .4 【答案】C【解析】解不等式2x -6+m <0,得:解不等式4x -m >0,得:∵不等式组有解,解得m <4,如果m =2,<2,整数解为x =1,有1个; 如果m =0,则不等式组的解集为0<m <3,整数解为x =1,2,有2个;如果m =-1,整数解为x =0,1,2,3,有4个, 故选C .8.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[–2.5]=–3;已知,x y 满足方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩则[]2x y +可能的值有 A .2个B .3个C .4个D .5个【答案】C 【解析】解方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩可得[][]1,3,x y ⎧=⎪⎨=⎪⎩又∵[a ]表示不大于a 的最大整数,∴1≤x <2,3≤y <4,∴4≤x 2+y <8,∴[x 2+y ]可能的值有4,5,6,7,故选C .9.团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为A .20B .35C .30D .40【答案】C 【解析】∵990不能被13整除,∴两个部门人数之和:a +b ≥51,(1)若51≤a +b ≤100,则11(a +b )=990得:a +b =90,①由共需支付门票费为1290元可知,11a +13b =1290②解①②得:b =150,a =–60,不符合题意.(2)若a +b ≥100,则9(a +b )=990,得a +b =110③由共需支付门票费为1290元可知,1≤a ≤50,51≤b ≤100,得11a +13b =1290④,解③④得:a =70人,b =40人故两个部门的人数之差为70–40=30人,故选C .10.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种A .2B .3C .4D .5【答案】B【解析】设搭配A 种造型x 个,则B 种造型为(50﹣x )个.依题意,得: 7040(50)26603080(50)3000x x x x +-≤⎧⎨+-≤⎩,解得:20≤x≤22,∵x是整数,∴x可取20、21、22,∴可设计三种搭配方案:①A种园艺造型20个B种园艺造型30个.②A种园艺造型21个B种园艺造型29个.③A种园艺造型22个B种园艺造型28个.故选B.二、填空题11.不等式2x-3≤3的正整数解是___________.【答案】1、2、3【解析】解不等式2x-3≤3得x≤3,∴正整数解是1、2、3,故答案为:1、2、3.12.不等式组3121230xx+>-⎧⎨-≥⎩的解集为___________.【答案】﹣1<x≤4【解析】解不等式3x+1>﹣2,得:x>﹣1, 解不等式12﹣3x≥0,得:x≤4,则不等式组的解集为﹣1<x≤4,故答案为:﹣1<x≤4.13.解不等式组261,31513.22x xx x⎧+>-⎪⎪⎨⎪+≥-+⎪⎩①②,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得__________;(Ⅱ)解不等式②,得__________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为__________.【答案】3x >-;(Ⅱ)2x ≤;(Ⅲ)见解析;(Ⅳ)32x -<≤【解析】(Ⅰ)不等式①移项,得23x +x >1–6;合并同类项,得53x >–5;化系数为1,得x >–3故答案为x >–3.(Ⅱ)不等式②移项,得12x –52x ≥–3–1;合并同类项,得–2x 4≥-;化系数为1,得x 2≤故答案为x 2≤.(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)根据数轴上的公共部分可得原不等式组的解集为–3<x 2≤.14.不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2,那么k 的取值范围是__________.【答案】8≤k <12【解析】﹣4x ﹣k ≤0,﹣4x ≤k ,x ≥4k -, ∵不等式﹣4x ﹣k ≤0的负整数解是﹣1,﹣2, ∴﹣3<4k -≤﹣2, 解得:8≤k <12,故答案为:8≤k <12.15.对非负实数x “四舍五入”到个位的值记为(x ),即当n 为非负整数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是__________.【答案】13≤x <15【解析】依题意得:6-0.5≤0.5x -1<6+0.5,解得13≤x <15.故答案为:13≤x <15.三、解答题16.解不等式5132x x -+>-. 【解析】将不等式5132x x -+>-, 两边同乘以2得,x -5+2>2x -6,解得x <3.17.解不等式组: 4(1)273x x x x -<+⎧⎪+⎨>⎪⎩. 【解析】4(1)273x x x x -<+⎧⎪⎨+>⎪⎩①②, 解①得:x <2,解②得x <72, 则不等式组的解集为2<x <72. 18.解不等式组:31251422x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来. 【解析】31251422x x x x +>⎧⎪⎨+-≥⎪⎩①②,解不等式①,得x >﹣1, 解不等式②,得x ≤3,所以,原不等式组的解集为﹣1<x ≤3,在数轴上表示为:19.某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x 棵,购买乙种树苗(240)x -棵,由题意可得,3020(240)9000x x +-=,509800x =,196x =,∴购买甲种树苗196棵,乙种树苗352棵.(2)设购买甲树苗y 棵,乙树苗(10)y -棵,根据题意可得,3020(10)230y y +-≤,1030y ≤,∴3y ≤,∵y 为自然数,∴y =3、2、1、0,有四种购买方案,购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵.20.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售额相同,3件甲种商品比2件乙种商品的销售额多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总额不低于5400万元,则至少销售甲种商品多少万件?【解析】(1)设甲种商品的销售单价是x 元,乙种商品的单价为y 元.根据题意得:23321500x y x y =⎧⎨-=⎩. 解得:900600x y =⎧⎨=⎩. 答:甲种商品的销售单价是900元,乙种商品的单价为600元.(2)设销售甲产品a 万件,则销售乙产品(8)a -万件.根据题意得:900600(8)5400a a +-≥.解得:2a ≥.答:至少销售甲产品2万件.21.某商店计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600元购买乙种商品要比购买甲种商品多买10件.(1)求甲、乙两种商品的进价各是多少元?(2)该商店计划购进甲、乙两种商品共80件,且乙种商品的数量不低于甲种商品数量的3倍.甲种商品的售价定为每件80元,乙种商品的售价定为每件70元,若甲、乙两种商品都能卖完,求该商店能获得的最大利润.【解析】(1)设甲种商品的进价为x元/件,则乙种商品的进价为0.9x元/件,3600360010+=,0.9x x解得,x=40,经检验,x=40是原分式方程的解,∴0.9x=36,答:甲、乙两种商品的进价各是40元/件、36元/件.(2)设甲种商品购进m件,则乙种商品购进(80﹣m)件,总利润为w元,w=(80﹣40)m+(70﹣36)(80﹣m)=6m+2720,∵80﹣m≥3m,∴m≤20,∴当m=20时,w取得最大值,此时w=2840,答:该商店获得的最大利润是2840元.。
中考数学复习专题训练精选试题及答案
中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
中考数学专题知识点题型复习训练及答案解析(经典珍藏版):26 应用题
备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.4.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.5.一次函数的应用(1)分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)概括整合①简单的一次函数问题:a建立函数模型的方法;b分段函数思想的应用.②理清题意是采用分段函数解决问题的关键.6.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.五年中考1.(2019•成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p x来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?2.(2018•成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?3.(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.4.(2016•成都)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?5.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?一年模拟6.(2019•成华区模拟)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等.(1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a元(70<a<80)捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.7.(2019•邛崃市模拟)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.8.(2019•武侯区模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.(2019•锦江区模拟)十三五”以来,党中央,国务院不断加大脱贫攻坚的支持决策力度,并出台配套文件,国家机关各部门也出台多项政策文件或实施方案.某单位认真分析被帮扶人各种情况后,建议被帮扶人大力推进特色产业,大量栽种甜橙;同时搭建电商运营服务平台,开设网店销售农产品橙.丰收后,将一批甜橙采取现场销售和网络销售相结合进行试销,统计后发现:同样多的甜橙,现场销售可获利800元,网络销售则可获利1000元,网络销售比现场销售每件多获利5元(1)现场销售和网络销售每件分别多少元?(2)根据甜橙试销情况分析,现场销售量a(件)和网络销售量b(件)满足如下关系式:b a2+12a ﹣200.求a为何值时,农户销售甜橙获得的总利润最大?最大利润是多少?10.(2019•武侯区模拟)成都市某商场购进甲、乙两种商品,甲商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l1所示,乙商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l2所示.(1)请分别求出直线l1,l2的函数表达式,并直接写出甲、乙两种商品的购进单价各是多少元?(2)现该商场购进甲、乙两种商品各100件,甲、乙商品的销售单价均为70元,销售一段时间后,商场对甲商品搞促销活动,打八折继续销售剩余甲商品,乙商品的销售单价始终保持不变.若商场规定甲商品打折前的销售数量不得多于甲商品打折后的销售数量的,那么甲商品应接原销售单价销售多少件,才能使得甲、乙两种商品全部销售完后商场获得最大利润?最大利润为多少元?11.(2019•双流区模拟)某文具店出售一种文具,每个进价为2元,根据长期的销售情况发现:这种文具每个售价为3元时,每天能卖出500个,如果售价每上涨0.1元,其销售量将减少10个.物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润,每个文具的售价应是多少?(2)该如何定价,才能使这种文具每天的利润最大?最大利润是多少?12.(2016•荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.13.(2019•郫都区模拟)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?14.(2019•郫都区模拟)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)求果园增种橙子树x(棵)与果园橙子总产量y(个)的函数关系式;(2)多种多少棵橙子,可以使橙子的总产量在60420个以上?15.(2019•成都模拟)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?精准预测1.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?3.已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图象解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图象;(3)乙在第几分钟到达B地?(4)两人在整个行驶过程中,何时相距0.2km?4.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.5.某水果店经销一种高档水果,售价为每千克60元(1)连续两次降价后售价为每千克48.6元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克48元,每天可售出80千克,经市场调查发现,若售价每涨价1元,日销售量将减少4千克,设每千克涨价t元,每天获得的利润为w元.①当售价为多少元时,每天获得的利润为最大?最大为多少元?②水果店老板为保证每天的利润不低于988元,请直接写出t的取值范围是.6.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?7.我国为了实现到达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w (万元)的范围.8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.某公司生产的一种商品其售价是成本的1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?10.永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?11.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)12.为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?13.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?14.某运动品商场欲购进篮球和足球共100个,两种球进价和售价如下表所示,设购进篮球x个(x为正整数),且所购进的两种球能全部卖出,获得的总利润为w元.(1)求总利润W关于x的函数关系式.(2)如果购进两种球的总费用不低于5800元且不超过6000元,那么该商场如何进货才能获利最多?并求出最大利润.(3)在(2)的条件下,若每个篮球的售价降低a元,请分析如何进货才能获得最大利润.篮球足球进价(元/个)62 54售价(元/个)76 6015.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作。
专题二 二次函数的综合——2023届中考数学热点题型突破(含答案)
专题二二次函数的综合——2023届中考数学热点题型突破题型1 二次函数与线段最值问题1.在平面直角坐标系中, 点B 的坐标为, 将抛物线向左平移 2 个单位长度后的顶点记为A. 若点P是x 轴上一动点, 则的最小值是( )A. 8B.C. 9D.2.如图, 抛物线与x轴正半轴交于点A, 与y 轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)点P为第四象限内且在对称轴右侧抛物线上一动点, 过点 P作轴, 垂足为C,PC交AB于点D, 求的最大值, 并求出此时点P的坐标;(3)将抛物线向左平移n个单位长度得到抛物线, 若抛物线与直线AB 只有一个交点, 求n的值.3.已知:如图,二次函数与x轴交于点A,B,点A在点B左侧,交y 轴于点C,.(1)求抛物线的解析式;(2)在第一象限的抛物线上有一点D,连接AD,若,求点D坐标;(3)点P在第一象限的抛物线上,于点Q,求PQ的最大值?题型2 二次函数与图形面积问题4.如图,抛物线与x轴的两个交点坐标为、.(1)求抛物线的函数表达式;(2)矩形的顶点P,Q在x轴上(P,Q不与A,B重合),另两个顶点M,N在抛物线上(如图).①当点P在什么位置时,矩形周长最大?求这个最大值并写出点P的坐标;②判断命题“当矩形周长最大时,其面积最大”的真假,并说明理由.5.在平面直角坐标系xOy 中, 已知抛物线经过,两点. P是抛物线上一点, 且在直线AB的上方.(1)请直接写出抛物线的解析式.(2)若面积是面积的 2 倍, 求点P的坐标.(3)如图, OP交AB于点C,交AB于点D. 记,,的面积分别为,,. 判断是否存在最大值. 若存在, 求出最大值; 若不存在, 请说明理由.6.已知抛物线与x轴相交于A、B两点,与y轴交于C点,且,.(1)求抛物线的解析式;(2)点P为抛物线上位于直线BC上方的一点,连结PB、PC.①如图1,过点P作轴交BC于点D,交x轴于点E,连结OD.设的面积为,的面积为,若,求S的最大值;②如图2,已知,Q为平面内一点,若以点A、C、P、Q为顶点的四边形是以CP为边的平行四边形,求点Q的坐标.题型3 二次函数与图形判定问题7.如图,已知二次函数(b,c为常数)的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连接BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m()个单位,使平移后得到的二次函数图象的顶点落在的内部(不包括的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).8.如图, 已知点, 以点D为顶点的抛物线经过点A, 且与直线交于点B,.(1)求抛物线的表达式和点D的坐标.(2)在对称轴上存在一点M, 使得, 求出点M 的坐标.(3)已知点P 为抛物线对称轴上一点, 点Q 为平面内一点, 是否存在以P,B,C,Q为顶点的四边形是菱形的情形? 若存在, 直接写出点P 的坐标; 若不存在, 请说明理由.9.如图,已知抛物线与x轴交于点,,与y轴交于点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为,过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l交直线BD于点M,试探究m为何值时,四边形CQMD是平行四边形;(3)点P在线段AB上运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与相似?若存在,求出点Q的坐标;若不存在,请说明理由.答案以及解析1.答案:D解析:,平移后抛物线的解析式为,点A的坐标为.如图, 作点A关于 x轴对称的点连接交x轴于点P则此时有最小值,最小值为的长,易知,,的最小值是.2.答案: (1)(2)(3)解析: (1)对于,令, 则, 解得,,.令, 则,.设直线AB的解析式为,则解得直线AB的解析式为.抛物线顶点坐标为.(2)如图, 过点D作轴于点E, 则.,,.设点P的坐标为,则点D的坐标为,.,又,当时, 的值最大, 最大值为,此时,此时点P 的坐标为.(3)设抛物线的解析式为. 令,整理, 得,3.答案:(1)(2)(3)解析:(1)当时,,解得,,,.,,,抛物线的解析式为;(2)如图,作于E,,,设,则,,,解得,,,;(3)如图,作轴,交BC于F,则,,,,,由,可知,直线BC的解析式为,设,则,,,时,PF的最大值为,的最大值为.4.答案:(1)(2)①Р在时,矩形的周长最大,最大值为10;②命题是假命题解析:(1)解:将、代入中得,解得,抛物线的函数表达式为,(2)解:抛物线的对称轴为,设点,则,①P,Q关于对称,,则,矩形的周长为,当时,l的值最大,最大值为10,即Р在时,矩形的周长最大,最大值为10.②假命题.由①可知,当矩形周长最大时,长为3,宽为2,面积为6,当为正方形时,,解得,点Р的坐标为,点Q的坐标为,,正方形的面积;故命题是假命题.5.答案: (1)(2) 或(3) 存在,解析:(1)将,分别代入, 得解得所以抛物线的解析式为.(2)设直线AB的解析式为,将,分别代入, 得解得所以直线AB的解析式为.如图 (1), 过点P 作轴, 垂足为M,PM交AB于点N, 过点B 作, 垂足为E,所以因为,,所以.因为的面积是面积的 2 倍,所以, 所以.设,则,所以, 即,解得,,所以点P的坐标为或.(3) 存在.因为, 所以,, 所以,所以.因为,,所以.设直线AB交y轴于点F, 则.如图 (2), 过点P作轴, 垂足为H,PH交 AB于点G.因为, 所以.因为, 所以,所以,所以.设.由 (2) 可得,所以.又,所以当时, 的值最大, 最大值为.6.答案:(1)(2)见解析①6②或解析:(1)由题意,得,,此抛物线的解析式为:.(2)①由可得:设直线BC的解析式为:,则,,直线BC的解析式为:,设,则,,,当时,S的最大值为6.②在OB上截取,则,,又,,,,,运用待定系数法法可求:直线CF的解析式为:,直线BP的解析式为:,,解得或4,,,轴,ACPQ是以CP为边构成平行四边形,,点Q在x轴上,或.7.答案:(1)二次函数解析式为;点M的坐标为(2)(3),,,解析:(1)把点,点代入二次函数得,,解得,二次函数解析式为,配方得,点M的坐标为;(2)设直线AC解析式为,把点,代入得,,解得,直线AC的解析式为,如图所示,对称轴直线与两边分别交于点E、点F.把代入直线AC解析式解得,则点E坐标为,点F坐标为,,解得;(3)连接MC,作轴并延长交AC于点N,则点G坐标为,,,,把代入解得,则点N坐标为,,,,,由此可知,若点P在AC上,则,则点D与点C必为相似三角形对应点①若有,则有,,,,,,若点P在y轴右侧,作轴,,,,把代入,解得,;同理可得,若点P在y轴左侧,则把代入,解得,;②若有,则有,,,若点P在y轴右侧,把代入,解得;若点P在y轴左侧,把代入,解得;;.所有符合题意得点P坐标有4个,分别为,,,.8.答案: (1)(2)(3)存在, 点P的坐标为,, ,或解析: (1) 将代入, 得,将,分别代入, 得解得故抛物线的表达式为.抛物线的顶点D的坐标为.(2)易知抛物线的对称轴为直线, 且点A,C 关于对称轴对称.作直线AB, 交直线于点M, 则点M即为所求.令,解得,,故.设直线AB 的表达式为,将,分别代入, 得解得故直线AB 的表达式为,当时, , 故.(3)设,易得,①当时,该四边形是以BC为对角线的菱形, 则, 即, 解得,点P 的坐标为.②当时,该四边形是以PC 为对角线的菱形, 则, 即,解得, 故点P的坐标为或.③当时,该四边形是以PB为对角线的菱形, 则, 即, 解得,故点P 的坐标为或.综上可知, 点P的坐标为,,,或9.答案:(1)(2)当时,四边形CQMD是平行四边形(3)点Q的坐标为或解析:(1)设抛物线的解析式为,把点的坐标代入,得,解得抛物线的解析式为,即.(2)点D与点C关于x轴对称,点,,设直线BD的表达式为,把,代入得,,解得,直线BD的关系表达式为,设,,,,当时,四边形CQMD为平行四边形,,解得,(不合舍去),故当时,四边形CQMD是平行四边形;(3)在中,,,,当以点B、M为顶点的三角形与相似时,分三种情况:①若时,,如图1所示,当时,,即,,,,,,解得,,(不合舍去),,,,,点Q的坐标为;②若时,如图2所示,此时点P、Q与点A重合,,③由于点M在直线BD上,因此,这种情况不存在,综上所述,点Q的坐标为或.。
专题八 新定义问题__2023届中考数学热点题型突破(含答案)
专题八新定义问题——2023届中考数学热点题型突破1.对任意两个实数a,b定义两种运算:并且定义运算顺序仍然是先做括号内的,例如,,,那么等于( )A. B.3 C.6 D.2.我们知道, 如果直角三角形的三边的长都是正整数, 这样的三个正整数就叫做一组勾股数. 定义: 如果一个正整数m能表示为两个正整数a,b的平方和, 即, 那么称m 为广义勾股数. 下面的结论:① 7 不是广义勾股数;②13 是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数;⑤若,,, 其中x,y,z,m,n 均为正整数, 则x,y,z 为一组勾股数;⑥一个正奇数 (除 1 外) 与两个和等于此正奇数的平方的连续正整数是一组勾股数.正确的是( )A.①②⑤⑥B.①③④⑤C.②④⑥D.②④⑤⑥3.对x,y定义一种新运算T,规定:(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:,若,,则结论正确的个数为( )(1),;(2)若,则;(3)若,m,n均取整数,则或或;(4)若,当n取s,t时,m对应的值为c,d,当时,;(5)若对任意有理数x,y都成立(这里和T均有意义),则A.2个B.3个C.4个D.5个4.阅读材料:定义:如果一个数的平方等于,记为,这个数i叫做虚数单位,把形如为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似:例如计算:;;;.根据以上信息,完成下面的计算:__________.5.定义:在平面直角坐标系xOy中,如果将点绕点旋转得到点Q,那么称线段PQ为“拓展带”,点Q为点P的“拓展带”.(1)当时,点的“拓展带”坐标为__________.(2)如果,当点的“拓展带”N在函数的图象上时,t的值为__________.6.新定义:在平面直角坐标系中,对于点和点,若满足时,;时,,则称点是点的限变点.例如:点的限变点是,则点的限变点是____________.若点在二次函数的图象上,则当时,其限变点的纵坐标的取值范围是____________.7.阅读以下材料:指数与对数之间有密切的联系,它们之间可以互化.对数的定义:一般地,若(且),那么x叫做以a为底N的对数,记作,比如指数式可以转化为对数式,对数式,可以转化为指数式.我们根据对数的定义可得到对数的一个性质:(,,,),理由如下:设,,则,,,由对数的定义得又,.请解决以下问题:(1)将指数式转化为对数式__________;(2)求证:(,,,);(3)拓展运用:计算__________.8.定义如果一个正整数等于两个连续偶数的平方差, 那么称这个正整数为 “奇巧数”.发现数28,32,36 中, 是 “奇巧数” 的是探究已知正奇数的 4 倍一定是 “奇巧数”, 设一个正奇数为 (n为正整数), 请你论证这个结论.9.已知一个三位自然数N, 若满足十位数字与个位数字之和减去百位数字为 0 , 则称这个数为“雪花数”, 并把其十位数字与个位数字的乘积记为. 定义为 “雪花数”, m,n为常数),已知,. 例如: 945,,945是 “雪花数”, ,634,,634不是 “雪花数”.(1)请填空: 817 _______“雪花数”, 527______ “雪花数” (填“是”或“不是”);(2)求出常数m,n的值;(3)已知s 是个位数字不为 1 的 “雪花数”, 其十位数字为, 个位数字为b, 将s的个位数字移到十位上,十位数字移到百位上, 百位数字移到个位上, 得到一个新数, 若s 与的差能被17整除, 求出所有满足条件的s及由这些s两两组合形成的P 的值.答案以及解析1.答案:A解析:,故选A.2.答案:A解析:7 不能表示为两个正整数的平方和, 7不是广义勾股数,故结论①正确., 13是广义勾股数,故结论②正确. 两个广义勾股数的和不一定是广义勾股数, 如 5 和 10 是广义勾股数, 但是它们的和 15 不是广义勾股数, 故结论③错误 . 两个广义勾股数的积不一定是广义勾股数, 如 2 和 2 是广义勾股数, 但,4 不是广义勾股数, 故结论④错误. , 即. 又x,y,z均为正整数, 故结论⑤正确. 设正奇数为 (k为正整数), 2 个连续正整数为p,, 由题意得,,,. 又,p,都是正整数, 结论⑥正确. 综上, 正确结论有①②⑤⑥.故选 A.3.答案:C解析:由题意可知,,,即,解得,故(1)正确;,;,,则;故(2)正确m,n均取整数,,的取值为,,,1,2,4;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;当,即时,;故(3)不正确,,,,当时,;故(4)正确;,,,,,,对任意有理数x,y都成立(这里和均有意义),则故(5)正确故选C4.答案:解析:.5.答案:①.②.2解析:(1)根据“拓展带”的定义,互为“拓展带”的两点关于点成中心对称,互为“拓展带”的两点的横坐标互为相反数,纵坐标的平均数等于t,点的“拓展带”坐标为.(2)根据“拓展带”的定义,点M和点N关于点成中心对称,设N点坐标为,则,,解得,,在函数的图象上,,解得.6.答案:①.②.解析:,,,点的限变点是,点在二次函数的图象上,当时,,,当时,,当时,,综上,当时,其限变点的纵坐标n'的取值范围是,故答案为:,.7.答案:(1)(2)证明见解析(3)2解析:(1)解:根据指数与对数关系得:.故答案为:;(2)解:设,,则,,,..(3)解:.故答案为:2.8.答案:见解析解析:发现 28,36,,32不是两个连续偶数的平方差,28,36 是“奇巧数”.探究正奇数的 4 倍为.总能表示为两个连续偶数的平方差,正奇数的 4 倍一定是“奇巧数”.9.答案: (1) 是,不是(2)(3)见解析解析:817,, 817 是“雪花数”;527,,527不是 “雪花数”.(2),,,①,,,,②联立①②得解得(3) 由 “雪花数” 的定义可知, 由题意可知, s与的差能被 17 整除,能被 17 整除,为 17 的倍数.s为“雪花数”, 且个位数字不为 1 ,,且,,34,51,68 或 85 .若, 则不符合题意;若, 则符合题意;若, 则符合题意;若, 则此时, 不符合题意;若, 则此时, 不符合题意.综上可得或 615 .。
初三数学考试题型及答案
初三数学考试题型及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式的基本性质?A. 不等式两边同时乘以一个负数,不等号方向不变B. 不等式两边同时乘以一个正数,不等号方向不变C. 不等式两边同时加上同一个数,不等号方向不变D. 不等式两边同时除以一个正数,不等号方向不变答案:B2. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的直径是10cm,那么这个圆的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A5. 一个等腰三角形的两个底角相等,那么这个三角形的顶角是:A. 90度B. 60度C. 30度D. 无法确定答案:D6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 10D. -10答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是:A. 24cm³B. 12cm³C. 8cm³D. 6cm³答案:A8. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 一个二次函数y=ax²+bx+c的图象开口向上,那么a的值是:A. 正数B. 负数C. 0D. 无法确定答案:A10. 一个等差数列的前三项是2,5,8,那么这个数列的公差是:A. 3B. 2C. 1D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的立方是27,那么这个数是________。
答案:32. 一个直角三角形的两条直角边长分别是3cm和4cm,那么这个三角形的斜边长是________。
答案:5cm3. 一个数的倒数是1/2,那么这个数是________。
答案:24. 一个三角形的内角和是________度。
中考数学热点题型专练二次函数含解析
热点09 二次函数【命题趋势】中考中对二次函数的考查除定义、识图、性质、求解析式等常规题外,还会出现与二次函数有关的贴近生活实际的应用题,阅读理解和探究题,二次函数与其他函数方程、不等式、几何知识的综合题在压轴题中出现的可能性很大. 【满分技巧】一、二次函数表达式的确定 步骤:(1)设二次函数的表达式;(2)根据已知条件,得到关于待定系数的方程组;(3)解方程组,求出待定系数的值,从而写出函数的表达式. 二、二次函数的实际应用(1)利用二次函数解决实际生活中的利润问题,应理清变量所表示的实际意义,注意隐含条件的使用,同时考虑问题要周全,此类问题一般是运用“总利润=总售价-总成本”或“总利润=每件商品所获利润×销售数量”,建立利润与价格之间的函数关系式;(2)最值:若函数的对称轴在自变量的取值范围内,顶点坐标即为其最值,若顶点坐标不是其最值,那么最值可能为自变量两端点的函数值;若函数的对称轴不在自变量的取值范围内,可根据函数的增减性求解,再结合两端点的函数值对比,从而求解出最值. 三、二次函数的图象与几何图形的关系将函数知识与几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将问题转化函数模型,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. 【限时检测】(建议用时:30分钟) 一、选择题 1.抛物线y =﹣21(23)2x -+1的顶点坐标为 A .(3,1) B .(﹣3,1) C .(32,1) D .(﹣32,1) 【答案】C【解析】∵抛物线y =﹣21(23)2x -+1中,2x ﹣3=0时,x =32,故抛物线y =﹣21(23)2x -+1的顶点坐标为:(32,1). 故选C .2.对于函数y =–2(x –3)2,下列说法不正确的是 A .开口向下 B .对称轴是3x = C .最大值为0 D .与y 轴不相交【答案】D【解析】对于函数y =–2(x –3)2的图象,∵a =–2<0,∴开口向下,对称轴x =3,顶点坐标为(3,0),函数有最大值0, 故选项A 、B 、C 正确,选项D 错误, 故选D .3.若二次函数y =|a |x 2+bx +c 的图象经过A (m ,n )、B (0,y 1)、C (3-m ,n )、D ,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】D【解析】∵经过A (m ,n )、C (3-m ,n ),∴二次函数的对称轴x =32,∵B (0,y 1)、D ,y 2)、E (2,y 3)与对称轴的距离B 最远,D 最近,∵|a |>0, ∴y 1>y 3>y 2,故选D .4.当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是 A .0 B .﹣2 C .1 D .3【答案】D【解析】∵当x =a 或x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等, ∴以a 、b 为横坐标的点关于直线x =12对称,则122a b +=,∴a +b =1, ∵x =a +b ,∴x =1,当x =1时,y =2x 2﹣2x +3=2﹣2+3=3,故选D . 5.若函数y =(m ﹣1)x 2﹣6x +32m 的图象与x 轴有且只有一个交点,则m 的值为A .﹣2或3B .﹣2或﹣3C .1或﹣2或3D .1或﹣2或﹣3【答案】C【解析】当m =1时,函数解析式为:y =﹣6x +32是一次函数,图象与x 轴有且只有一个交点, 当m ≠1时,函数为二次函数, ∵函数y =(m ﹣1)x 2﹣6x +32m 的图象与x 轴有且只有一个交点, ∴62﹣4×(m ﹣1)×32m =0, 解得,m =﹣2或3,故选C . 6.将抛物线2yx 向右平移2个单位长度,再向上平移3个单位长度,得到的抛物线的解析式为A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+-D .2(2)3y x =--【答案】B【解析】抛物线y =x 2先向右平移2个单位长度,得:y =(x –2)2;再向上平移3个单位长度,得:y =(x –2)2+3.故选B .7.反比例函数k y x=的图象如图所示,则二次函数y =2kx 2﹣4x +k 2的图象大致是A .B .C.D.【答案】D【解析】∵函数kyx=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k<1,∴k>﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称轴为x=﹣422k-⨯=1k,﹣1<1k<0,∴对称轴在﹣1与0之间,∵当x=0时,y=k2>1.故选D.8.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1<y2≤y0,则x0的取值范围是A.x0>﹣1 B.x0>﹣5C.x0<﹣1 D.﹣2<x0<3【答案】A【解析】∵点C(x0,y0)是该抛物线的顶点.且y1<y2≤y0,∴a<0,x0﹣(﹣5)>|3﹣x0|,∴x0>﹣1.故选A.9.(福建省厦门市集美区2019年初中毕业班总复习练习(二模)数学试题)二次函数y=x2+bx﹣t的对称轴为x=2.若关于x的一元二次方程x2+bx﹣t=0在﹣1<x<3的范围内有实数解,则t的取值范围是A.﹣4≤t<5 B.﹣4≤t<﹣3C.t≥﹣4 D.﹣3<t<5【答案】A【解析】∵抛物线的对称轴x =2b -=2, ∴b =﹣4,则方程x 2+bx ﹣t =0,即x 2﹣4x ﹣t =0的解相当于y =x 2﹣4x 与直线y =t 的交点的横坐标, ∵方程x 2+bx ﹣t =0在﹣1<x <3的范围内有实数解, ∴当x =﹣1时,y =1+4=5, 当x =3时,y =9﹣12=﹣3, 又∵y =x 2﹣4x =(x ﹣2)2﹣4,∴当﹣4≤t <5时,在﹣1<x <3的范围内有解. ∴t 的取值范围是﹣4≤t <5, 故选A .10.已知抛物线()()1y x a x a =+--(a 为常数,0a ≠).有下列结论:①抛物线的对称轴为12x =;②方程()()11x a x a +--=有两个不相等的实数根;③抛物线上有两点P (x 0,m ),Q (1,n ),若m n <,则001x <<,其中,正确结论的个数为 A .0 B .1 C .2 D .3【答案】D【解析】∵()()1y x a x a =+--=x 2–x –a 2–a ,∴对称轴为直线x =121--⨯=12. ∴①正确,∵()()1x a x a +--=x 2–x –a 2–a =1, ∴x 2–x –a 2–a –1=0,∴∆=(–1)2–4×1×(–a 2–a –1)=1+4a 2+4a +4=(2a +1)2+4>0,∴方程(x +a )(x –a –1)=1有两个不相等的实数根; ∴②正确,∵P (x 0,m ),Q (1,n )在抛物线上,∴m =x 02–x 0–a 2–a ,n =12–1–a 2–a =–a 2–a , ∵m <n ,∴x02–x0–a2–a<–a2–a,∴x02–x0<0,∴x0(x0–1)<0∵x0>x0–1,∴x0>0且x0–1<0,即0<x0<1,∴③正确,综上所述:正确的结论有①②③,共3个,故选D.11.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示则下列结论:①4a﹣b=0;②c<0;③c>3a;④4a﹣2b>at2+bt(t为实数);⑤点(﹣72,y1),(﹣52,y2),(312y,)是该抛物线上的点,则y2<y1<y3,其中,正确结论的个数是A.1 B.2C.3 D.4【答案】C【解析】∵抛物线的对称轴为直线x=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a ﹣2b +c ≥at 2+bt +c ,即4a ﹣2b ≥at 2+bt (t 为实数),故④错误; ∵抛物线的开口向下,且对称轴为直线x =﹣2, ∴抛物线上离对称轴水平距离越小,函数值越大, ∴y 2>y 1>y 3,故⑤错误,故选C . 二、填空题12.二次函数2245y x x =--+的最大值是__________.【答案】7【解析】222452(1)7y x x x =--+=-++, 即二次函数245y x x =--+的最大值是7, 故答案为:7.13.已知函数y =﹣x 2+2x ﹣2图象上两点A (2,y 1),B (a ,y 2),其中a >2,则y 1与y 2的大小关系是__________.(填“<”“>”或“=”) 【答案】>【解析】y =﹣x 2+2x ﹣2=﹣(x ﹣1)2﹣1, 对称轴x =1,∵A (2,y 1),B (a ,y 2),其中a >2, ∴点A 与B 在对称轴的右侧, ∵–1<0,∴x >2时,y 随x 的增大而减小, ∴y 1>y 2, 故答案为:>.14.已知抛物线y =ax 2+bx +c (a >0)的对称轴是直线x =2,且经过点P (3,1),则a +b +c 的值为__________.【答案】1【解析】∵抛物线y =ax 2+bx +c (a >0)的对称轴是直线x =2, ∴P (3,1)对称点坐标为(1,1), ∴当x =1时,y =1, 即a +b +c =1, 故答案为:1.15.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为__________. 【答案】(2,5)【解析】∵二次函数y =ax 2+bx +c 的对称轴是直线x =2,方程ax 2+bx +c =5的一个根是2, ∴当x =2时,y =ax 2+bx +c =5, ∴抛物线的顶点坐标是(2,5). 故答案为:(2,5).16.将抛物线y =2(x ﹣1)2+3绕它的顶点旋转180°后得到的抛物线的函数表达式为__________.【答案】y =﹣2(x ﹣1)2+3【解析】抛物线y =2(x ﹣1)2+3的顶点坐标为(1,3),由于抛物线y =2(x ﹣1)2+3绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反, 则所得抛物线解析式为y =﹣2(x ﹣1)2+3, 故答案为:y =﹣2(x ﹣1)2+3.17.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为__________s .【答案】4【解析】依题意,令0h =得:∴20205t t =-, 得:(205)0t t -=,解得:0t =(舍去)或4t =, ∴即小球从飞出到落地所用的时间为4s ,故答案为:4. 三、解答题18.已知抛物线224y x x c =-+与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线224y x x c =-+经过点()2,A m 和点()3,B n ,试比较m 与n 的大小,并说明理由.【解析】(1)()2244816 8b ac c c -=--=-,由题意,得240b ac ->, ∴16 80c ->,∴c 的取值范围是2c <. (2)m n <,理由如下: ∵抛物线的对称轴为直线1x =, 又∵20a =>,∴当1x ≥时,y 随x 的增大而增大, ∵23<,∴m n <.19.已知抛物线26y x x c =-++.(1)若该抛物线与x 轴有公共点,求c 的取值范围;(2)设该抛物线与直线21y x =+交于M ,N 两点,若MN =,求C 的值;(3)点P ,点Q 是抛物线上位于第一象限的不同两点,PA QB ,都垂直于x 轴,垂足分别为A ,B ,若OPA OQB △≌△,求c 的取值范围.【解析】(1)∵抛物线26y x x c =-++与x 轴有交点, ∴一元二次方程260x x c -++=有实根.240b ac ∴∆=-,即264(1)0c -⨯-⨯.解得9c -.(2)根据题意,设()()1122,21,,21M x x N x x ++由2621y x x cy x ⎧=-++⎨=+⎩,消去y ,得2410x x c -+-=①. 由2(4)4(1)1240c c ∆=---=+>,得3c >-.∴方程①的解为1222x x ==()()()()22221212122121520(3)MN x x x x x x c ∴=-++-+=-=+⎡⎤⎣⎦, 20(3)20c ∴+=,解得2c =-.(3)设点P 的坐标为(, )m n ,则点Q 的坐标为(,)n m ,且0,0,m n m n >>≠,2266m m c n n n c m⎧-++=∴⎨-++=⎩,两式相减,得227()0n m m n -+-=,即()(7)0m n m n -+-= 7m n ∴+=,即7n m =-2770m m c ∴-+-=,其中07m <<由0∆,即274(1)(7)0c -⨯-⨯-,得214c -. 当214c =-时,72m n ==,不合题意. 又70c ->,得7c <. ∴c 的取值范围是2174c -<<. 20.我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x 元/件(x ≥6,且x 是按0.5元的倍数上涨),当天销售利润为y 元.(1)求y 与x 的函数关系式(不要求写出自变量的取值范围); (2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【解析】(1)由题意,y =(x -5)(100-60.5x -×5)=-10x 2+210x -800, 故y 与x 的函数关系式为:y =-10x 2+210x -800. (2)要使当天利润不低于240元,则y ≥240, ∴y =-10x 2+210x -800=-10(x -10.5)2+302.5=240, 解得,x 1=8,x 2=13,∵-10<0,抛物线的开口向下,∴当天销售单价所在的范围为8≤x ≤13. (3)∵每件文具利润不超过80%, ∴50.8x x-≤,得x ≤9, ∴文具的销售单价为6≤x ≤9,由(1)得y =-10x 2+210x -800=-10(x -10.5)2+302.5, ∵对称轴为x =10.5,∴6≤x ≤9在对称轴的左侧,且y 随着x 的增大而增大,∴当x =9时,取得最大值,此时y =-10(9-10.5)2+302.5=280,即每件文具售价为9元时,最大利润为280元.21.如图,已知抛物线经过点A (–1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是线段AB 上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)在点P 运动过程中,是否存在点Q ,使得△BQM 是直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)连接AC ,将△AOC 绕平面内某点H 顺时针旋转90°,得到△A 1O 1C 1,点A 、O 、C 的对应点分别是点A 、O 1、C 1、若△A 1O 1C 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A 1的横坐标.【解析】(1)设抛物线解析式为y =ax 2+bx +c ,将点A (–1,0),B (4,0),C (0,2)代入解析式,∴001642a b c a b c c =-+⎧⎪=++⎨⎪=⎩,∴1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴y =–212x +32x +2. (2)∵点C 与点D 关于x 轴对称,∴D (0,–2).设直线BD 的解析式为y =kx –2.∵将(4,0)代入得:4k –2=0,∴k =12. ∴直线BD 的解析式为y =12x –2.当P 点与A 点重合时,△BQM 是直角三角形,此时Q (–1,0); 当BQ ⊥BD 时,△BQM 是直角三角形,则直线BQ 的直线解析式为y =–2x +8,∴–2x +8=–21x 2+32x +2,可求x =3或x =4(舍), ∴x =3;∴Q (3,2)或Q (–1,0).(3)两个和谐点; AO =1,OC =2,设A 1(x ,y ),则C 1(x +2,y –1),O 1(x ,y –1),①当A 1、C 1在抛物线上时,∴()2213222131(2)2222y x x y x x ⎧=-++⎪⎪⎨⎪-=-++++⎪⎩, ∴13x y =⎧⎨=⎩, ∴A 1的横坐标是1;当O 1、C 1在抛物线上时,()22131222131(2)2222y x x y x x ⎧-=-++⎪⎪⎨⎪-=-++++⎪⎩, ∴12218x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴A 1的横坐标是12.。
数学中考复习用资料最值最小值最短路线问题中考热点专题新题型
OxyBD AC P y OxP DB(40)A ,(02)C , 最短路线问题1、在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 2、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .3.26C .3 D 63、已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( )A 、17172B 、17174C 、17178D 、3 (动点,作A 关于BC 的对称点A ',连A 'D 交BC 于P ,涉及勾股定理,相似)4、已知等腰三角形ABC 的两个顶点分别是A(0,1)、B(0,3),第三个顶点C 在x 轴的正半轴上.关于y 轴对称的抛物线y =ax 2+bx +c 经过A 、D(3,-2)、P 三点,且点P 关于直线AC 的对称点在x 轴上. (1)求直线BC 的解析式;(2)求抛物线y =ax 2+bx +c 的解析式及点P 的坐标; (3)设M 是y 轴上的一个动点,求PM +CM 的取值范围.5、如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合). (1)试证明:无论点P 运动到何处,PC 总造桥与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.6、一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,AD EP B CA BO D xy求PC +PD 的最小值,并求取得最小值时P 点坐标.7、已知:抛物线的对称轴为与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式. (2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由. 8、、如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB最短,求出点Q 的坐标; (2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由. 提示:第(2)问,是“饮马问题”的变式运用,涉及到抛物线左移。
2021届中考数学热点题型专练12 四边形【含答案】
2021届中考数学热点题型专练热点12 四边形【命题趋势】四边形是每年中考数学中必考的内容之一,其考查重点是几种特殊的四边形(平行四边形、矩形、菱形、正方形)。
具体考查这几种特殊四边形的性质与判定方法,考查题型一般为解答题的20——26题,难度中等,也可能会结合三角形,圆,甚至会与三角函数、一次函数、反比例函数,二次函数结合形成综合性的大题,甚至在压轴大题中出现,例如结合二次函数形成平行四边形的存在性等。
所以我们必须对特殊四边形的性质与判定方法相当熟悉,然后再掌握一定的解决问题的常用策略,才能决胜。
【满分技巧】一、整体了解知识基本网络,熟记四种特殊四边形的概念及性质判定,二、将四边形问题转化为三角形问题其实四边形问题的解决最终都会转化到三角形的问题,所以思考问题时一定不能只想着四边形,只要考查四边形的综合题一定会利用到三角形的相关知识,一定要想着将四边形的问题转化成三角形的问题,然后利用三角形的相关知识解决。
三、做一定量的基础练习,培养分析问题和分析图形的能力【限时检测】(建议用时:30分钟)一、选择题1.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°【答案】C【解析】黑色正五边形的内角和为:(5﹣2)×180°=540°,故选:C2.如图,在ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对【答案】C【解析】四边形ABCD是平行四边形,∴AB=CD,AD=BC,OD=OB,OA=OC∴OD=OB,OA=OC,∴AOD=∴BOC∴∴AOD∴∴COB同理可得∴AOB∴∴COD∴BC=AD,CD=AB,BD=BD∴∴ABD∴∴CDB同理可得∴ACD∴∴CAB因此本题共有4对全等三角形故选:C.3.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】D【解析】设所求多边形边数为n,则(n﹣2)•180°=1080°,解得n=8.故选:D.4.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∴EOF=90°,OC、EF交于点G.给出下列结论:∴∴COE∴∴DOF;∴∴OGE∴∴FGC;∴四边形CEOF的面积为正方形ABCD面积的;∴DF2+BE2=OG•OC.其中正确的是()A .∴∴∴∴B .∴∴∴C .∴∴∴D .∴∴【答案】B【解析】∴∴四边形ABCD 是正方形, ∴OC =OD ,AC ∴BD ,∴ODF =∴OCE =45°, ∴∴MON =90°, ∴∴COM =∴DOF , ∴∴COE ∴∴DOF (ASA ), 故∴正确;∴∴∴EOF =∴ECF =90°, ∴点O 、E 、C 、F 四点共圆, ∴∴EOG =∴CFG ,∴OEG =∴FCG , ∴OGE ∴∴FGC , 故∴正确;∴∴∴COE ∴∴DOF , ∴S ∴COE =S ∴DOF ,∴S 四边形CEOF =S∴OCD=14S 正方形ABCD ,故∴正确;∴)∴∴COE ∴∴DOF , ∴OE =OF ,又∴∴EOF =90°, ∴∴EOF 是等腰直角三角形, ∴∴OEG =∴OCE =45°,∴∴OEG ∴∴OCE , ∴OE :OC =OG :OE , ∴OG •OC =OE 2, ∴OC =12 AC ,OE =EF ,∴OG •AC =EF 2, ∴CE =DF ,BC =CD , ∴BE =CF ,又∴Rt∴CEF 中,CF 2+CE 2=EF 2, ∴BE 2+DF 2=EF 2, ∴OG •AC =BE 2+DF 2, 故∴错误, 故选:B .5.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM =DN ,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .OM =ACB .MB =MOC .BD ∴ACD .∴AMB =∴CND【答案】A【解析】∴四边形ABCD 是平行四边形,∴对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∴OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.6.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A.B.4C.4D.20【答案】C【解析】∴A,B两点的坐标分别是(2,0),(0,1),∴AB=,∴四边形ABCD是菱形,∴菱形的周长为4,故选:C.7. .一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【答案】D【解析】十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.8. .下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【答案】A【解析】A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.9. .如图,E是∴ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∴ABD=∴DCE B.DF=CF C.∴AEB=∴BCD D.∴AEC=∴CBD【答案】C【解析】∴四边形ABCD是平行四边形,∴AD∴BC,AB∴CD,∴DE∴BC,∴ABD=∴CDB,∴∴ABD=∴DCE,∴∴DCE=∴CDB,∴BD∴CE,∴BCED为平行四边形,故A正确;∴DE∴BC,∴∴DEF=∴CBF,在∴DEF与∴CBF中,,∴∴DEF∴∴CBF(AAS),∴EF=BF,∴DF=CF,∴四边形BCED为平行四边形,故B正确;∴AE∴BC,∴∴AEB=∴CBF,∴∴AEB=∴BCD,∴∴CBF=∴BCD,∴CF=BF,同理,EF=DF,∴不能判定四边形BCED为平行四边形;故C错误;∴AE∴BC,∴∴DEC+∴BCE=∴EDB+∴DBC=180°,∴∴AEC=∴CBD,∴∴BDE=∴BCE,∴四边形BCED为平行四边形,故D正确,故选:C.10..菱形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等【答案】D【解析】A、是轴对称图形,故正确;B、是中心对称图形,故正确;C、对角线互相垂直,故正确;D、对角线不一定相等,故不正确;故选:D.11..如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A .2.5B .3C .4D .5【答案】A【解析】∴四边形ABCD 为菱形, ∴CD =BC ==5,且O 为BD 的中点,∴E 为CD 的中点, ∴OE 为∴BCD 的中位线, ∴OE =CB =2.5,故选:A .12. .如图,在正方形ABCD 中,E 是BC 边上的一点,4BE =,8EC =,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于G ,连接AC ,现在有如下4个结论: ∴45EAC ∠=︒;∴FG FC =;∴//FC AG ;∴14GFC S ∆=. 其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】如图,连接DF .四边形ABC 都是正方形,AB AD BC CD ∴===,90ABE BAD ADG ECG ∠=∠=∠=∠=︒,由翻折可知:AB AF =,90ABE AFE AFG ∠=∠=∠=︒,2BE EF ==,BAE EAF ∠=∠, 90AFG ADG ∠=∠=︒,AG AG =,AD AF =, Rt AGD Rt ∴∆≅∴()AGF HL ∆,DG FG ∴=,GAF GAD ∠=∠,设GD GF x ==,1()452EAG EAF GAF BAF DAF ∴∠=∠+∠=∠+∠=︒,故∴正确,在Rt ECG ∆中,222EG EC CG =+,222(2)8(12)x x ∴+=+-, 6x ∴=,12CD BC BE EC ==+=, 6DG CG ∴==, FG GC ∴=,易知GFC ∆不是等边三角形,显然FG FC ≠,故∴错误, GF GD GC ==, 90DFC ∴∠=︒, CF DF ∴⊥,AD AF =,GD GF =,AG DF ∴⊥,//CF AG ∴,故∴正确,168242ECG S ∆=⨯⨯=,:6:43:2FG FE ==,:3:5FG EG ∴=,3722455GFC S ∆∴=⨯=,故∴错误,故选:B . 二、填空题13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为 .【答案】16【解析】M 、N 分别为BC 、OC 的中点, 28BO MN ∴==.四边形ABCD 是矩形, 216AC BD BO ∴===.故答案为16.14. .如图,该硬币边缘镌刻的正九边形每个内角的度数是 .【答案】140° 【解析】该正九边形内角和=180°×(9﹣2)=1260°, 则每个内角的度数==140°.故答案为:140°.15.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE =5,则GE 的长为 .【答案】4913【解析】∴四边形ABCD 为正方形, ∴AB =AD =12,∴BAD =∴D =90°,由折叠及轴对称的性质可知,∴ABF ∴∴GBF ,BF 垂直平分AG , ∴BF ∴AE ,AH =GH , ∴∴F AH +∴AFH =90°, 又∴∴F AH +∴BAH =90°, ∴∴AFH =∴BAH ,∴∴ABF∴∴DAE(AAS),∴AF=DE=5,在Rt∴ADF中,BF===13,S∴ABF=AB•AF=BF•AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∴AE=BF=13,∴GE=AE﹣AG=13﹣=,故答案为:.16.在平行四边形ABCD中,∴A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.【答案】16 3【解析】过D作DE∴AB于E,在Rt∴ADE中,∴∴A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt∴BDE中,∴BD=4,∴BE===2,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16 3 ,故答案为:16 3 .17.三个形状大小相同的菱形按如图所示方式摆放,已知∴AOB=∴AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则∴ABE的周长为cm.【答案】12+8 2【解析】如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∴三个菱形全等,∴CO=HO,∴AOH=∴BOC,又∴∴AOB=∴AOH+∴BOH=90°,∴∴COH=∴BOC+∴BOH=90°,即∴COH是等腰直角三角形,∴∴HCO=∴CHO=45°=∴HOG=∴COK,∴∴CKO=90°,即CK∴IO,设CK=OK=x,则CO=IO=x,IK=x﹣x,∴Rt∴CIK中,(x﹣x)2+x2=22,解得x2=2+,又∴S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴∴ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.三、解答题18.如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B 作BF CE⊥于点G,交AD于点F.(1)求证:ABF BCE∆≅∆;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC DG=;(3)如图3,在(2)的条件下,过点C作CM DG⊥于点H,分别交AD,BF于点M,N,求MNNH的值.【解析】(1)证明:BF CE ⊥, 90CGB ∴∠=︒, 90GCB CBG ∴∠+∠=,四边形ABCD 是正方形, 90CBE A ∴∠=︒=∠,BC AB =, 90FBA CBG ∴∠+∠=, GCB FBA ∴∠=∠,()ABF BCE ASA ∴∆≅∆;(2)证明:如图2,过点D 作DH CE ⊥于H , 设2AB CD BC a ===, 点E 是AB 的中点, 12EA EB AB a ∴===, 5CE a ∴,在Rt CEB ∆中,根据面积相等,得BG CE CB EB =,25BG ∴=, 2245CG CB BG ∴=-,90DCE BCE ∠+∠=︒,90CBF BCE ∠+∠=︒, DCE CBF ∴∠=∠,CD BC =,90CQD CGB ∠=∠=︒,()CQD BGC AAS ∴∆≅∆,25CQ BG ∴==, 25GQ CG CQ CQ ∴=-=, DQ DQ =,90CQD GQD ∠=∠=︒, ()DGQ CDQ SAS ∴∆≅∆, CD GD ∴=;(3)解:如图3,过点D 作DH CE ⊥于H , 1122CDG S DQ CH DG ∆==, 85CG DQ CH a DG ∴==, 在Rt CHD ∆中,2CD a =, 2265DH CD CH a ∴=-=,90MDH HDC ∠+∠=︒,90HCD HDC ∠+∠=︒, MDH HCD ∴∠=∠, CHD DHM ∴∆∆∽, ∴34DH DH CH HM ==, 910HM a ∴=,在Rt CHG ∆中,45CG =,85CH a =, 2245GH CG CH a ∴-=,90MGH CGH ∠+∠=︒,90HCG CGH ∠+∠=︒,QGH HCG ∴∠=∠, QGH GCH ∴∆∆∽, ∴HN HGHG CH=, 225HG HN a CG ∴==,12MN HM HN a ∴=-=,∴152245aMN NH a ==19.如图,在四边形ABCD 中,AD ∴BC ,延长BC 到E ,使CE =BC ,连接AE 交CD 于点F ,点F 是CD 的中点.求证:(1)∴ADF∴∴ECF.(2)四边形ABCD是平行四边形.【解析】(1)∴AD∴BC,∴∴DAF=∴E,∴点F是CD的中点,∴DF=CF,在∴ADF与∴ECF中,,∴∴ADF∴∴ECF(AAS);(2)∴∴ADF∴∴ECF,∴AD=EC,∴CE=BC,∴AD=BC,∴AD∴BC,∴四边形ABCD是平行四边形.20.如图,在正方形ABCD中,分别过顶点B,D作//BE DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:22AB =4EB =,tan 23GEH ∠=EHFG 的周长.【解析】(1)四边形ABCD 是正方形, AB CD ∴=,//AB CD ,DCA BAC ∴∠=∠, //DF BE ,CFD BEA ∴∠=∠,BAC BEA ABE ∠=∠+∠,DCA CFD CDF ∠=∠+∠, ABE CDF ∴∠=∠,在ABE ∆和CDF ∆中,ABE CDF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=,BH DG =,BE BH DF DG ∴+=+,即EH GF =,//EH GF ,∴四边形EHFG 是平行四边形;(2)如图,连接BD ,交EF 于O ,四边形ABCD 是正方形,BD AC ∴⊥,90AOB ∴∠=︒, 22AB =2OA OB ∴==,Rt BOE ∆中,4EB =,30OEB ∴∠=︒,∴EO=2 3 ,OD OB =,EOB DOF ∠=∠, //DF EB ,DFC BEA ∴∠=∠,()DOF BOE AAS ∴∆≅∆,23OF OE ∴==43EF ∴= 23FM ∴=,6EM =,过F 作FM EH ⊥于M ,交EH 的延长线于M , ∴EG//FH ,FHM GEH ∴∠=∠,tan tan 23FM GEH FHM HM∠=∠== ∴2323= ∴HM=1,∴EH=EM -HM=6-1=52222(23)113FH FM HM ++ ∴四边形EHFG 的周长222521310213EH FH =+=⨯+=+。
中考数学热点题型专练:投影与视图
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学热点题型专练:热点18 投影与视图【命题趋势】投影与视图这部分内容是一个小的考点,必考内容之一,一般为一个选择题,分值3—4分,一般解答题很少考到。
可能很多同学会忽视这部分内容,感觉投影与视图又简单,考的又少,所以在复习时往往会忽略这部分内容,这是严重错误的想法,就因为它考的不多,又简单,所以我们才应该认真对待这部分内容,拿好拿稳这几分。
【满分技巧】一、整体把握知识结构二.重点知识1.两种投影的概念与性质2.三种视图:有关视图,一般有两种类型的问题:A.由物质到视图,这种类型的问题比较简单;B.由视图想象物体的样子,这个对空间想象能力要求很高,一般比较难;这两种类型的问题,一般考查方式都是以小正方体的堆积为载体,进行考查.【限时检测】(建议用时:30分钟)一、选择题1.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【答案】B【解析】A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.2.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3【答案】D【解析】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∠=4π,∠n=120即∠BAB′=120°.∠E为弧BB′中点,∠∠AFB=90°,∠BAF=60°,∠BF=AB•sin∠BAF=6×=3,∠最短路线长为3.故选:D.3.一个几何体的三视图如图所示,则这个几何体的表面积是()A.5cm2B.8cm2C.9cm2D.10cm2【答案】D【解析】由题意推知几何体是长方体,长、宽、高分别1cm、1cm、2cm,所以其面积为:2×(1×1+1×2+1×2)=10(cm2).故选:D.4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体∠移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】将正方体∠移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.5.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解析】本题考查了三视图的判断,三视图没有发生变化的是主视图和左视图,发生变化的是俯视图,故选A.6.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【答案】D【解析】解析本题考查三视图,俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D7.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【答案】B【解析】从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.8.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】从左面看可得到从左到右分别是3,1个正方形.故选:B.9.下列几何体中,主视图是三角形的是()A. B. C. D.【答案】C【解析】A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.10.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【答案】B【解析】从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.11.如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【答案】A【解析】从上面观察可得到:.故选:C.12.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:故选:A.13.下列几何体中,俯视图不是圆的是()A.四面体B.圆锥C.球D.圆柱【答案】A【解析】A、俯视图是三角形,故此选项正确;B、俯视图是圆,故此选项错误;C、俯视图是圆,故此选项错误;D、俯视图是圆,故此选项错误;故选:A.14.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】分析根据俯视图即从物体的上面观察得得到的视图,进而得出答案A故选:A.15.)如图为正方体的一种平面展开图,各面都标有数字,则数字为﹣2的面与其对面上的数字之积是()A.﹣12B.0C.﹣8D.﹣10【答案】A【解析】分析根据正方体的平面展开图的特征知,其相对面的两个正方形之间一定相隔一个正方形,所以数字为﹣2的面的对面上的数字是6,其积为﹣12.故选:A16.如图∠是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图∠.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【答案】A【解析】图∠的三视图为:图∠的三视图为:故选:A.17.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【答案】C【解析】从上面看,得到的视图是:,故选:C.18.如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是()A.平行四边形B.正方形C.矩形D.圆【答案】C【解析】圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C.19.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.观察图形可知,这块西瓜的三视图是.故选:B.20.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【解析】左视图有3列,每列小正方形数目分别为2,1,1.故选:B.21.如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.二、填空题22.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.【答案】10【解析】设俯视图有9个位置分别为:由主视图和左视图知:∠第1个位置一定是4,第6个位置一定是3;∠一定有2个2,其余有5个1;∠最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.23.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【答案】∠∠【解析】本题考查对三视图的认识.∠长方体的主视图,俯视图,左视图均为矩形;∠圆柱的主视图,左视图均为矩形,俯视图为圆;∠圆锥的主视图和左视图为三角形,俯视图为圆.故答案为∠∠24.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为 . 【答案】(18+2)cm 2【解析】该几何体是一个三棱柱,底面等边三角形边长为2cm ,高为cm ,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm 2).故答案为(18+2)cm 2第11题图③圆锥②圆柱①长方体25.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.。
2024年初中数学中考高频考点解答题测试卷 (52)
一、解答题1. 在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.2. 如图所示,请用尺规作图法在上找一点,使点到、的距离相等.(保留作图痕迹,不写作法)3. 如图,四边形是矩形,对角线与相交于点.(1)尺规作图:作的角平分线,交于点,不写作法,保留作图痕迹,标明字母;(2)与交于点F,若,求的度数.4. 如图是一个由1×1的正方形点阵组成的点阵图,请用无刻度的直尺按要求作图.(1)如图1,点A,B是点阵中的两个点,请作出线段AB的两个三等分点.(保留作图痕迹)(2)如图2,点A,B是点阵中的两个点,请作出线段AB的两个三等分点.(保留作图痕迹)5. 某校为了解九年级全体学生物理实验操作的情况,随机抽取了30名学生的物理实验操作考核成绩,并将数据进行整理,分析如下(说明:考核成绩均取整数,A级:10分,B级:9分,C级:8分,D级:7分及以下):收集数据:10,8,10,9,5,10,9,9,10,8,9,10,9,9,8,9,8,10,6,9,8,10,9,6,9,10,9,10,8,10整理数据,并绘制统计表如下:成绩等级A B C D人数(名)10m n3根据表中信息,解答下列问题:(1)______,______.(2)计算这30名学生的平均成绩.(3)若成绩不低于9分为优秀,该校九年级参加物理实验操作考核成绩达到优秀的有560名,试估计该校有多少名学生参加物理实验操作?6. 在图中按要求作出点P:(请用尺规作图,保留作图痕迹,不写作法和证明)如图:已知和两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即,且P到,两条公路的距离相等.7. 在中,,,点D是所在直线上的点,,.(1)根据题意画出图形,求的长;(2)若点E是边上的动点,连接,求线段的最小值(结果精确到0.1).(参考数据:,,)8. 如图,在直角坐标系中,三角形的顶点都在网格上,其中C点坐标为.(1)写出点A、B的坐标:A(______,______)、B(______,______);(2)将三角形先向左平移2个单位长度,再向上平移1个单位长度,得到三角形,请你画出平移后的三角形;(3)求三角形的面积.9. 如图,已知.(1)画出关于轴对称的;(2)写出关于轴对称的各顶点的坐标.10. 2022年2月4日冬奥会开幕式在北京举行。
专题一 反比例函数的综合——2023届中考数学热点题型突破(含答案)
专题一反比例函数的综合——2023届中考数学热点题型突破题型1 反比例函数与一次函数图象交点问题1.已知正比例函数与反比例函数的图象交于A、B两点,若点,则点B的坐标为( )A. B. C. D.2.如图,在平面直角坐标系中,点,点B与点A关于直线对称,过点B 作反比例函数的图像.(1)____________;(2)若对于直线,总有y随x的增大而增大,设直线与双曲线交点的横坐标为t,则t的取值范围是___________.3.如图, 一次函数的图象与反比例函数的图象相交于A,B两点, 其中点A的坐标为, 点B 的坐标为.(1)根据图象, 直接写出满足的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上, 连接OA,OB,OP, 恰有, 求点P 的坐标.题型2 反比例函数与一次函数图形面积问题4.如图,P是反比例函数的图象上一点,过点P分别作x轴,y轴的平行线,交反比例函数的图象于点M,N,则的面积为( )A.1B.1.2C.2D.2.45.如图, 一次函数的图象与x轴和y轴分别交于点A 和点B, 与反比例函数的图象在第一象限内交于点C,轴, 轴, 垂足分别为点D,E. 当矩形ODCE与的面积相等时, k的值为___________.6.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数(m≠0)的图象相交于A,B两点,过点A作AD⊥x轴于点D, y=mxAO=5,,B点的坐标为(―6,n)(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)P是y轴上一点,且△AOP是等腰三角形,请直接写出所有符合条件的P点坐标.题型3 反比例函数与几何图形结合7.如图, 点A在双曲线上, 连接 AO并延长, 交双曲线于点C. 以AC为对角线作菱形ABCD, 点B,D在反比例函数的图象上, 且, 则k的值是( )A. B. C. D. -18.如图,已知,在矩形AOBC中,,,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数的图象与AC边交于点E,将沿EF对折后,C点恰好落在OB上的点D处,则k的值为___________.9.如图, 在平面直角坐标系中, 直线与反比例函数的图象交于点,, 过点 A作交反比例函数图象于另一点D, 过点B作交反比例函数图象于另一点C, 连接CD.(1)求直线AB的解析式;(2)判断四边形 ABCD的形状, 并说明理由.答案以及解析1.答案:A解析:把点代入,得,又正比例函数与反比例函数交点关于原点对称,则.2.答案:(1)12(2)解析:(1)点,点B与点A关于点线对称,,将代入,解得,.(2)对于直线,总有y随x的增大而增大,,,当时,,直线过定点,把代入,得,解得,故.3.答案: (1) 或.(2)(3)解析: (1) 由题图可知, 当或时, 一次函数的图象在反比例函数的图象的上方,当或时, 满足.(2) 点在反比例函数的图象上, , 解得,故反比例函数的表达式为.点在反比例函数的图象上, ,点B的坐标为.将点 A,B的坐标分别代入, 得解得故一次函数的表达式为.(3)设直线与x 轴交于点C, 当时, ,,点C的坐标为.,.,.点P在线段AB上,设点P 的坐标为.,,解得,,故点P的坐标为.4.答案:A解析:设,则,,,,的面积为:.故选:A.5.答案:2解析:对于一次函数, 当时, , 当时, ,即, 故.结合反比例函数中的几何意义, 可知.,, 解得,(舍去).6.答案:(1)(2)9(3)P点坐标为:(0,8)或(0,5)或(0,―5)或(0,258)..解析:(1)(1)AO=5,AD=3,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y=12x,故B(―6,―2),将点A,B的坐标代入一次函数表达式y=kx+b得:,解得:k=23b=2,故一次函数的表达式为:y=23x+2;(2)设一次函数交y轴于点M(0,2),△AOB的面积;(3)设点,而点A ,O 的坐标分别为:,,AP 2=9+(m ―4)2,,PO 2=m 2,当时,解得:或0(舍去0);当时,同理可得:;当时,同理可得:m =258;综上,P 点坐标为:或或或(0,258)..7.答案:C解析:如图, 过点A 作 轴于点F ,过点B 作 轴于点E , 则,四边形 ABCD 是菱 形, ,. 又,,,,. 反比例函数的图象位于第二、四象限,,.8.答案:解析:解:如图,过点E 作轴于点M ,将沿EF 对折后,C 点恰好落在OB 上的D 点处,,,,,而,,,;又,,,,;,而,,在中,,即,解得,故答案为.9.答案: (1)(2)四边形ABCD是矩形,理由见解析解析:(1)点在反比例函数的图象上,,反比例函数的解析式为.点在反比例函数的图象上,,点.将,分别代入, 得解得直线AB的解析式为.(2) 四边形ABCD是矩形.理由如下:, 直线AB的解析式为, 易知可设直线AD的解析式为.将代入, 得,,直线AD的解析式为.令, 解得,,点,.由, 点, 易得直线BC的解析式为,令, 解得,,点,,.又,四边形ABCD 是平行四边形.又,四边形ABCD 是矩形.。
2021届中考数学一轮复习热点题型专练 相交线与平行线【含答案】
2021届中考数学一轮复习热点题型专练相交线与平行线一、选择题1.将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为( )A .10°B .15°C .20°D .30°【答案】B【解析】∠AB ∠CD , ∠∠1=∠ADC =30°,又∠等腰直角三角形ADE 中,∠ADE =45°, ∠∠1=45°﹣30°=15°, 故选:B .2.如图,直线a ∠b ,点B 在a 上,且BC AB ⊥.若︒=∠351,那么2∠等于( )A ︒45B ︒50C ︒55D ︒60【答案】C 【解析】∠a//b ∠∠1=∠BAC=35° ∠∠BCA=90°-∠BAC=55° ∠∠2=∠BCA=55°(对顶角相等)21abCA故选:C3.如图,BD∠EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【答案】D【解析】∠∠B=30°,∠A=75°,∠∠ACD=30°+75°=105°,∠BD∠EF,∠∠E=∠ACD=105°.故选:D.4.如图,l1∠l2,点O在直线l1上,若∠AOB=90°,∠1=35°,则∠2的度数为()A.65°B.55°C.45°D.35°【答案】B【解析】∠l1∠l2,∠1=35°,∠∠OAB=∠1=35°.∠OA∠OB,∠∠2=∠OBA=90°﹣∠OAB=55°.故选:B.5.如图,AB∠CD,∠A=50°,则∠1的度数是()A.40°B.50°C.130°D.150°【答案】C【解析】∠AB∠CD,∠∠2=∠A=50°,∠∠1=180°﹣∠2=180°﹣50°=130°,故选:C.6.已知直线m∠n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【答案】C【解析】设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∠n,∠∠2=∠AED=70°.故选:C.7.如图,已知//∠的大小是()a b,158∠=︒,则2A.122︒B.85︒C.58︒D.32【答案】C【解析】∠a//b∠∠1=∠2∠∠1=58°∠∠2=58°故选:C8.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为()A.60︒B.65︒C.75︒D.85︒【答案】C【解析】如图:如图,∠∠BCA=60°,∠DCE=45°∠∠2=180°-60°-45°=75°∠HF//BC∠∠1=∠2=75°故选:C.9.如图,AB∠CD,∠B=75°,∠E=27°,则∠D的度数为()【答案】B【解析】∠AB∠CD,∠∠B=∠1,∠∠1=∠D+∠E,∠∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.A.45°B.48°C.50°D.58°10.如图,//∠的度数是()AB CD,AD CD=,150∠=︒,则2A.55︒B.60︒C.65︒D.70︒【答案】C【解析】如图,∠AD=CD,∠1=50°∠∠CAD=∠ACD=65°∠AB//CD∠∠2=∠ACD=65°.故选:C.二、填空题11.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=度.【答案】120【解析】:如图,连接BF,BF∠CD,∠CD∠AE,∠CD∠BF∠AE,∠∠1+∠BCD=180°,∠2+∠BAE=180°,∠∠BCD=150°,∠BAE=90°,∠∠1=30°,∠2=90°,∠∠ABC=∠1+∠2=120°.故答案为:120.12.如图,直线AB∠CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,已知∠ACD=80°,则∠DAC的度数为.【答案】50°【解析】:∠AB∠CD,∠ACD=80°,∠∠BAC=100°,又∠AD平分∠BAC,∠∠DAC=∠BAC=50°,故答案为:50°.13.如图,直线a,b被直线c,d所截.若a∠b,∠1=130°,∠2=30°,则∠3的度数为度.【答案】100【解析】:∠a∠b,∠∠3=∠4,∠∠1=∠2+∠4=∠2+∠3,∠1=130°,∠2=30°,∠130°=30°+∠3,解得:∠3=100°.故答案为:100.14.已知直线a∠b,将一块含30°角的直角三角板ABC按如图所示方式放置(∠BAC=30°),并且顶点A,C 分别落在直线a,b上,若∠1=18°,则∠2的度数是.【答案】48°【解析】:∠a∠b,∠∠2=∠1+∠CAB=18°+30°=48°,故答案为:48°15.将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=°.【答案】128°【解析】:延长DC,由题意可得:∠ABC=∠BCE=∠BCA=26°,则∠ACD=180°﹣26°﹣26°=128°.故答案为:128.16.如图,AD∠CE,∠ABC=100°,则∠2﹣∠1的度数是.【答案】80°【解析】:作BF∠AD,∠AD∠CE,∠AD∠BF∠EC,∠∠1=∠3,∠4+∠2=180°,∠3+∠4=100°,∠∠1+∠4=100°,∠2+∠4=180°,∠∠2﹣∠1=80°.故答案为:80°.17.如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=______.【答案】90°【解析】∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.18.如图,若AB∠CD,∠1=40度,则∠2=度.【答案】140°【解析】:∠AB∠CD,∠1=40°,∠∠3=∠1=40°,∠∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.19.把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=23°,则∠2=°.【答案】68°【解析】:∠∠ABC是含有45°角的直角三角板,∠∠A=∠C=45°,∠∠1=23°,∠∠AGB=∠C+∠1=68°,∠EF∠BD,∠∠2=∠AGB=68°;故答案为:68.20.如图//∠=︒.AB CD,//∠=︒,则DBCB DE,50【答案】130°【解析】:∠AB//CD∠∠B=∠C=50°∠BC//DE∠∠C+∠D=180°∠∠D=180°-50°=130°A 80° EB CF 图5 故答案为:130.三、计算题21.如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD=58°,点D 在GH 上,求∠BDC 的度数.【解析】:∵EF ∥GH ,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC ,∴∠BDC=∠ABD ﹣∠ACD=108°﹣58°=50°.22如图5,EF ∥BC ,AC 平分BAF ∠,80B ∠=︒.求C ∠的度数.【解析】∵EF//BC∴∠BAF=180°-∠B=100°∵AC 平分∠BAF∴∠CAF=12∠BAF=50°∵EF//BC ,∠∠C=∠CAF=50°23.如图,直线a∠b,点B在直线b上,且AB∠BC,∠1=55°,求∠2的度数.【解析】:∠AB∠BC,∠∠1+∠3=90°.∠∠1=55°,∠∠3=35°.∠a∠b,∠∠2=∠3=35°.24.如图,直线AB∠CD,BC平分∠ABD,∠1=54°,求∠2的度数.【解析】:∠直线AB∠CD,∠∠1=∠3=54°,∠BC平分∠ABD,∠∠3=∠4=54°,∠∠2的度数为:180°﹣54°﹣54°=72°.四、证明题25.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∠DF,求证:∠E=∠F.【证明】∠CE∠DF,∠∠ACE=∠D,∠∠A=∠1,∠180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∠∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∠∠E=∠F.26.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°,求证:AB∠CD.【证明1】:∠∠ACD=70°,∠ACB=60°,∠∠BCD=130°.∠∠ABC=50°,∠∠BCD+∠ABC=180°.∠AB∠CD.【证明2】:∠∠ABC=50°,∠ACB=60°,∠∠CAB=180°—50°—60°=70°.∠∠ACD=70°,∠∠CAB=∠ACD.∠AB∠CD.27.如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∠C D.【证明】∵OC=OE∴∠OEC=∠OCE∵∠C=25°∴∠OEC=∠OCE=25°∴∠DOE=∠OEC+∠OCE=25°+25°=50°∵∠A=50°∴AB//CD28.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.【解析】:OA∠BC,OB∠AC.∠∠1=50°,∠2=50°,∠∠1=∠2,∠OB∠AC,∠∠2=50°,∠3=130°,∠∠2+∠3=180°,∠OA∠BC.五、作图题29.如图,D是∠ABC中BC边上一点,∠C=∠DAC.(1)尺规作图:作∠ADB的平分线,交AB于点E(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:DE∠AC.【解析】(1)如图,(2)证明:∠DE平分∠ADB,∠∠ADE=∠BDE,∠∠ADB=∠C+∠DAC,而∠C=∠DAC,∠2∠BDE=2∠C,即∠BDE=∠C,∠DE∠AC.六、探究题30. 如图(13),E是直线AB、CD内部一点,AB∠CD,连接EA、ED(1)探究猜想:∠若∠A=30°,∠D=40°,则∠AED等于多少度?∠若∠A=20°,∠D=60°,则∠AED等于多少度?∠猜想图(13)中∠AED、∠EAB、∠EDC的关系并证明你的结论.(2)拓展应用:如图(14),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,∠∠∠∠分别是被射线FE隔开的4个区域(不含边界,其中区域∠∠位于直线AB上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF的关系(不要求证明).【解析】:(1)∠∠AED=70° ∠∠AED=80° ∠∠AED=∠EAB+∠EDC证明:延长AE交DC于点F∠AB∠DC∠∠EAB=∠EFD又∠∠AED是∠EFD的外角∠∠AED=∠EDF+∠EFD=∠EAB+∠EDC(2)P点在区域∠时:∠EPF=3600 -(∠PEB+∠PFC)P点在区域∠时:∠EPF=∠PEB+∠PFCP点在区域∠时:∠EPF=∠PEB-∠PFCP点在区域∠时:∠EPF=∠PFC-∠PFB。
中考数学题库(含答案和解析)
解得:
在数轴上表示其解集如下:
故选B
【点睛】本题考查的是一元一次不等式的解法.在数轴上表示不等式的解集.掌握“小于向左拐”是解本题的关键.
6.“方胜”是中国古代妇女的一种发饰.其图案由两个全等正方形相叠组成.寓意是同心吉祥.如图.将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形 .形成一个“方胜”图案.则点D. 之间的距离为()
13.小曹同学复习时将几种三角形的关系整理如图.请帮他在横线上____填上一个适当的条件.
中考数学题库(含答案和解析)
一、选择题(本题有10小题)
1.若收入3元记为+3.则支出2元记为()
A.1B.-1C.2D.-2
【答案】D
【解析】
【分析】根据正负数的意义可得收入为正.收入多少就记多少即可.
【详解】解:∵收入3元记 +3.
∴支出2元记为-2.
故选:D
【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时.通常把向指定方向变化的量规定为正数.而把向指定方向的相反方向变化的量规定为负数.
【答案】D
【解析】
【分析】根据同底数幂的乘法法则进行运算即可.
【详解】解:
故选D
【点睛】本题考查的是同底数幂的乘法.掌握“同底数幂的乘法.底数不变.指数相加”是解本题的关键.
4.如图.在⊙O中.∠BOC=130°.点A在 上.则∠BAC的度数为( )
A.55°B.65°C.75°D.130°
【答案】B
12.不透明的袋子中装有5个球.其中有3个红球和2个黑球.它们除颜色外都相同.从袋子中随机取出1个球.它是黑球的概率是_____.
【答案】
【解析】
中考数学复习题及答案
中考数学复习题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333...C. 1.1010010001...D. √22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 24. 一个多项式P(x) = 2x^3 - 5x^2 + 3x - 1,当x=1时,P(x)的值是多少?A. -1B. 0C. 1D. 25. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 如果一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 07. 一个正比例函数y = kx,当x=2时,y=6,那么k的值是多少?A. 3B. 4C. 6D. 88. 一个二次函数y = ax^2 + bx + c,当x=0时,y=4,当x=1时,y=3,当x=-1时,y=5,那么a的值是多少?A. 1B. -1C. 2D. -29. 下列哪个是二次方程的根?A. x^2 - 5x + 6 = 0B. x^2 + 5x + 6 = 0C. x^2 - 5x - 6 = 0D. x^2 + 5x - 6 = 010. 如果一个数列的前三项是1, 3, 6,那么这个数列是等差数列还是等比数列?A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定二、填空题(每题3分,共15分)11. 一个数的立方根是它本身,这个数可以是________。
12. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么这个三角形是________。
13. 一个函数f(x) = x^2 - 4x + 4,当x=________时,f(x)取得最小值。
14. 一个圆的周长为44π,那么这个圆的半径是________。
数学初三必考试题及答案
数学初三必考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 双曲线答案:B2. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和5,那么第三边的长度是:A. 3B. 5C. 8D. 不能确定答案:B4. 下列哪个选项是圆的面积公式?A. A = πrB. A = πr²C. A = 2πrD. A = r²答案:B5. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:A6. 一个数的绝对值是它自己,这个数是:A. 正数B. 负数C. 0D. 非负数答案:D7. 一个数的倒数是它自己,这个数是:A. 1B. -1C. 0D. 2答案:A8. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 2答案:A, B, C9. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 2答案:A, B10. 一个数的平方根等于它的立方根,这个数是:A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是____。
答案:±52. 一个数的立方是-8,那么这个数是____。
答案:-23. 一个数的绝对值是5,那么这个数是____。
答案:±54. 一个数的倒数是2,那么这个数是____。
答案:1/25. 一个数的平方根是3,那么这个数是____。
答案:9三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为4和6,求第三边的长度。
答案:第三边的长度为6。
2. 已知一个数的平方是36,求这个数。
答案:这个数是±6。
3. 已知一个数的绝对值是7,求这个数。
答案:这个数是±7。
4. 已知一个数的倒数是3,求这个数。
专题01 实数(解析版)-热点题型归纳与最新模考题组练
专题01 实数【题型一】 科学记数法【典例分析】(2021·山东青岛·中考真题)2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( ) A .4557510⨯ B .555.7510⨯C .75.57510⨯D .80.557510⨯【答案】C【分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫做科学记数法”进行解答即可得. 【解析】解:755750000 5.57510=⨯,故选C .【提分秘籍】科学记数法是把一个数表示成n a 10⨯的形式,其中10||1<≤a ,n 为整数。
用科学记数法表示数时,确定a ,n 的值是关键。
①当原数的绝对值大于或等于10时,n 等于原数的整数位数减1;②当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数左起第一个非零数字前所有零的个数(含小数点前的零)。
【注意】含有万、亿等单位的数,用科学记数法表示时,要先还原成原数,再用科学记数法表示,最后按要求取近似值。
【变式演练】1.(2021·山东济南·中考真题)2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km .将数字55000000用科学记数法表示为( ) A .80.5510⨯ B .75.510⨯ C .65.510⨯ D .65510⨯【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【解析】解:将55000000用科学记数法表示为5.5×107.故选:B .2.(2021·辽宁锦州·中考真题)据相关研究,经过40min 完全黑暗后,人眼对光的敏感性达到最高点,比黑暗前增加25000倍,将数据25000用科学记数法表示为( ) A .25×103 B .2.5×104C .0.25×105D .0.25×106【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时, n 是正整数;当原数的绝对值小于1时,n 是负整数.【解析】解:将数据25000用科学记数法表示为2.5×104,故选:B .3.(2021·江苏淮安·中考真题)第七次全国人口普查结果显示,我国人口受教育水平明显提高,具有大学文化程度的人数约为218360000,将218360000用科学记数法表示为( ) A .0.21836×109 B .2.1386×107C .21.836×107D .2.1836×108【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【解析】解:218360000=2.1836×108,故选:D .【题型二】 平方根、立方根的概念与性质【典例分析】(2021·内蒙古·中考真题)一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 【答案】2【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可. 【解析】∵21b -和4b +是正数a 的平方根,∵2140b b -++=,解得1b =- ,将b 代入212(1)13b ,∵正数2(3)9a,∵198a b +=-+=,∵a b +382ab,故填:2.【提分秘籍】1.一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,而一个非负数的算术平方根一定不能是负数;任何数都有立方根,正数有一个正的立方根,负数有一个负的立方根,0的立方根是0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学热点题型练习及参考答案
⊙热点一:代入法
1.(2011年山东济宁)已知关于x的方程x2+bx+a=0的一个根是-a(a≠0),则a-b值为( )
A.-1
B.0
C.1
D.2
2.(2011年广东肇庆)方程组x-y=2,2x+y=4的解是( )
A.x=1,y=2
B.x=3,y=1
C.x=0,y=-2
D.x=2,y=0
⊙热点二:特殊元素法
(2013年广东)已知实数a,b,若a>b,则下列结论正确的是( )
A.a-5
C.a33b
⊙热点三:排除(筛选)法
1.(2013年江苏淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为( )
A.5
B.7
C.5或7
D.6
2.(2011年海南)如图Z63,将平行四边形ABCD折叠,
使顶点D恰好落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC;②MN=AM.下列说法正确的是( ) 图Z63
A.①②都对
B.①②都错
C.①对②错
D.①错②对
3.(2013年四川绵阳)设“”“”“”分别表示三种不同的物体,现用天平秤两次,情况如图Z64,那么、、这三种物体按质量从大到小排列应为( )
图Z64
A. 、、
B. 、、
C. 、、
D. 、、
⊙热点四:图解法
1.(2013年浙江义乌)已知两点P1(x1,y1),P2(x2,y2)在反比例函数y=3x的图象上,当x1>x2>0时,下列结论正确的是( )
A.0
C.y1
2.如图Z65,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=1x的图象上,则图中阴影部分的面积等于____________.
图Z65
3.(2013年江苏南通)小李与小陆从A地出发,骑自行车
沿同一条路行驶到B地,他们离出发地的距离s(单位: km)和行驶时间t(单位:h)之间的函数关系的图象如图Z66,根据图中提供的信息,有下列说法:
图Z66
①他们都行驶了20 km;
②小陆全程共用了1.5 h;
③小李与小陆相遇后,小李的速度小于小陆的速度;
④小李在途中停留了0.5 h.
其中正确的有( )
A.4个
B.3个
C.2个
D.1个
巧解客观题
热点一
1.A
2.D
热点二
D
热点三
1.B
2.A
3.C
热点四
1.A
2.π
3.A。