发电厂电气设备及其系统
发电厂及变电站电气设备
发电厂及变电站电气设备1. 背景介绍发电厂和变电站是电力系统中重要的组成部分,负责将发电机产生的电能进行输送、分配和转换,以满足不同区域的用电需求。
其中,电气设备扮演着关键角色,包括发电机、变压器、开关设备等。
本文将介绍发电厂及变电站中常见的电气设备。
2. 发电机发电机是发电厂的核心部件,负责将机械能转化为电能。
根据不同的发电方式,发电机可以分为热力发电机、水力发电机、风力发电机等。
在热力发电厂中,发电机通常由蒸汽涡轮驱动,使发电机转子旋转,产生交流电能。
而在水力和风力发电厂中,利用水力或风力驱动发电机产生电能。
发电机主要由定子和转子两部分组成。
其中,定子为固定部分,包含电枢绕组,负责产生磁场。
转子则为旋转部分,包含永磁体或电磁绕组,在定子的磁场作用下产生感应电动势。
发电机的输出电压、电流和频率取决于转子的转速和定子的磁场。
3. 变压器变压器在发电厂及变电站中起到关键的电能转换和输送作用。
它能将高电压转换为低电压,或将低电压转换为高电压。
变压器主要由铁芯和绕组组成。
铁芯由硅钢片叠压而成,主要用于增加磁通密度和减少能量损耗。
绕组由导线缠绕而成,分为一次绕组和二次绕组。
一次绕组连接到输入电源,二次绕组则连接到输出负载。
变压器通过磁感应原理将输入电压的能量传递到输出电路中,保证电能的正常传输。
变压器可以根据功率级别分为干式变压器和油浸式变压器,根据使用场景可分为发电厂变压器和变电站变压器。
它们在电力系统中起到电压升降和电能输送的重要作用。
4. 开关设备开关设备用于控制、保护和隔离电力系统中的各个部分。
它们在发电厂及变电站中起到关键的安全性和可靠性保障作用。
常见的开关设备包括断路器、隔离开关和负荷开关。
断路器主要用于开关电路和保护电气设备,其内部配有电流保护和过压保护装置。
隔离开关用于隔离电气设备,确保设备的安全维护和修理。
负荷开关用于接通或切断负载电路,控制电气设备的供电状态。
开关设备的选型和设计要根据电力系统的需求及特点来确定。
发电厂电气部分
发电厂电气部分1. 引言发电厂是实现电力供应的重要设施,其电气部分是保障发电过程稳定运行的关键要素。
本文将介绍发电厂电气部分的主要组成和功能,以及常见问题和解决方案。
2. 发电厂电气部分的组成和功能发电厂电气部分主要由以下几个组成部分组成,并且各部分在发电过程中发挥不同的功能。
2.1 发电机发电机是发电厂的核心设备,其主要功能是将机械能转化为电能。
发电机通常由转子和定子组成,通过磁场的作用将机械能转化为电能。
发电机的选择和设计将直接影响发电厂的发电能力和效率。
2.2 变压器变压器在发电厂的电气系统中扮演着重要的角色。
其主要功能是将发电机产生的高电压电能转换为输送电网所需的电压。
变压器在发电厂内部负责升压,将发电机输出的低电压升压为输电线路所需的高电压,以降低输电过程中的能量损耗。
2.3 开关设备开关设备用于控制和保护发电厂的电气设备。
其主要功能是在需要时开关电路,以及在发生故障时切断电路以保护设备。
开关设备通常包括断路器、接触器等,其选择和布置将影响发电厂的运行安全性和可靠性。
2.4 控制系统控制系统是发电厂的大脑,负责监控和控制发电厂的各个电气设备,以保证正常运行。
控制系统通常由计算机控制和监测设备组成,通过采集和处理各种传感器的信号,实现对发电厂的自动控制和运行参数调节。
2.5 电力负荷管理系统电力负荷管理系统用于监测和管理对发电厂的供电需求。
其主要功能是根据实时负荷情况调整发电机的运行,并控制发电量以满足用电需求。
电力负荷管理系统还负责优化发电厂的运行,以提高发电效率和节约能源。
3. 发电厂电气部分的常见问题和解决方案在发电厂的电气部分运行过程中,常会遇到一些问题,以下是一些常见问题及其解决方案。
3.1 电气设备故障在发电厂的电气设备中,由于长时间运行和其他外部因素的影响,可能会发生各种故障。
解决这些故障的关键是对设备进行定期的检修和维护,及时发现并解决潜在问题。
3.2 过载和短路问题过载和短路是发电厂电气部分常见的问题,其产生的原因可能是设备运行过程中负荷过大或电路设计不合理。
发电厂发电机、电气设备及系统风险辨识与分析
521发电厂发电机、电气设备及系统风险辨识与分析赵亦农 辽宁力康职业卫生与安全技术咨询服务有限公司摘 要:通过对发电厂发电机、电气设备及系统进行危险有害因素辨识,辨识出系统中存在的主要危险因素有触电伤害、雷电伤害、火灾、爆炸、高处坠落等;存在的主要有害因素有电磁辐射危害、中毒和窒息危害。
本研究可以为电厂工程技术人员对发电厂运行过程中的风险认知和控制决策提供支持和帮助,可以有效控制风险,遏制事故发生和人员伤亡。
关键词:发电厂 电气设备 系统 风险辨识一、引言发电厂是电力生产的重要环节,就安全而言,由于其生产工艺流程及行业生产特点,决定了发电生产企业安全工作的重要性。
发电生产“产、供、销”一次性完成,没有其他中间环节,整体性特别强。
在发电生产过程中任何一个环节出了问题,都会影响整体安全效果。
发电生产过程中存在的有害危险因素种类多,可能发生的事故类别多。
因此,要想更好的防范发电厂事故发生,就必须要深入辨识了解发电厂存在的各类危险有害因素,确保做到有的放矢,防患于未然。
在电力生产过程中,发电机及电气设备系统由于其系统的复杂性,存在的风险往往隐性的比较多,如果不加以重视,可能会酿成更大的事故发生。
本文试图应用系统安全理论,从危险和有害因素两个方面,通过发电厂发电机、电气设备及系统风险辨识和分析,更加系统、全面的认知和评价发电机及电气系统的安全状态,为发电厂电气设备安全风险管控提供帮助和技术支持。
二、发电机、电气设备及其系统主要危险因素分析重点对发电机及励磁系统危险,变压器危险,高、低压配电装置危险,电缆火灾,污闪事故,雷击和接地网故障,继电保护和直流系统危险,全厂停电事故,电气误操作,触电伤害,高处坠落等方面进行风险辨识和分析。
1.发电机及励磁系统危险因素分析。
其存在危险因素主要有:由于制造质量不良、检修质量低劣、运行中操作维护不当、过电压、发电机定子铁芯间绝缘破坏、发热、绝缘老化、等造成定子线圈绝缘击穿,引起火灾;发电机由于安装、检修不当,密封油系统故障,造成发电机密封不良,引起火灾;在发电机电压幅值、相位、频率与电力系统相差过大情况下,由于人为误操作或自动装置误动作将该发电机并入电力系统,造成发电机非同期并列,产生巨大冲击电流,强大的电动力效应,将使发电机定子绕组变形、扭弯、绝缘崩裂、甚至将定子绕组毁坏,同时,使机组发生强烈的振动,并引起电力系统电压下降,严重时会引起系统振荡,乃至瓦解;定子绕组中的负序电流过大会使转子表面的部件过热,甚至烧损;转子匝间短路,保护开关拒动,烧毁发电机转子;发电机非全相运行会烧损发电机转子;定转子间气隙内存在焊渣、铜屑、螺丝和检修工具等,引起扫膛,使定转子(上接第460页)存在差别;假设胃溃疡患者组的最后5个数据存在错误,则去掉后再次判断。
发电厂电气主系统设备介绍
电气主系统的设备配置
发电机:将机 械能转换为电 能的核心设备
变压器:升高 或降低电压, 实现电能传输
和分配
开关柜:控制 和保护电气系
统中的设备
要点。
互感器:阐述 互感器的作用、 运行条件及维
护要求。
电抗器:说明 电抗器的功能、 运行注意事项 及维护措施。
电气主系统的安全措施
继电保护:对电 气设备和线路进 行保护,防止故 障扩大
自动重合闸:在 断路器跳闸后自 动重新合闸,提 高供电可靠性
备用电源自动投 入:在主电源故 障时自动切换到 备用电源,保障 连续供电
单击添加标题 发电机组 开关设备
发电厂电气主系 统概述 变压器
其他设备
发电厂电气主系统的构成
发电机:将机械能转换为电能的 核心设备
开关柜:控制和保护电气回路, 确保安全运行
添加标题
添加标题
添加标题
添加标题
变压器:升高或降低电压,实现 电能传输和分配
电缆:传输电能,连接各设备, 保障电力输送
电气主系统在发电厂中的作用
变压器的类型和特点
变压器的类型: 油浸式变压器、 干式变压器、组 合式变压器等
变压器的主要特 点:电压转换、 电流转换、阻抗 变换等
变压器的应用场 景:电力系统、 工业自动化、轨 道交通等
变压器的性能指 标:额定容量、 额定电压、额定 电流等
变压器的运行和维护
变压器的维护要求:定期检 查、清扫、紧固、测量和试 验等
负荷开关
定义:用于接通或断开电路中的负荷电流,具有过载保护功能的开关设备。
发电厂及电力系统的主要电气设备和作用
发电厂及电力系统的主要电气设备和作用一、发电厂生产过程简介(一)、发电厂的分类发电厂是把其他形式的能量转换为电能的特殊工厂,根据利用能量的形式的不同,分为以下几类:1、火力发电厂2、水力发电厂3、原子能发电厂4、风力发电厂5、其他,如太阳能、地热、潮汐发电等目前,我国电力系统中主要以火力发电厂和水力发电厂为主(二)火力发电厂的能量转换过程燃料的化学能→蒸汽的热能→汽轮机发电机转子的动能(机械能)→电能↑↑↑锅炉(吸热)汽轮机(膨胀做功)发电机(电磁转换)二、火力发电厂的主要电气设备及作用1、一次设备1)、发电机:将机械能转换为电能参数2)、变压器:将发电机输出的电能的电压升高或降低参数3)、高低压配电装置:它是按主接线的要求,由断路器、隔离开关、自动开关、接触器、熔断器、母线和必要的辅助设备如避雷器、电压互感器、电流互感器等构成的主体,其作用是接受和分配电能4)、电力电缆:向用电设备输送电能5)、电动机:厂用附属设备的拖动设备、原动机,主要包括交流电动机与直流电动机两种,交流电动机又分为三相鼠笼式、绕线式两种参数2、二次设备对一次设备进行控制、测量、监察以及在发生故障时能迅速切除故障的继电保护装置、自动控制与信号装置等设备,如:继电器、测量仪表、控制、自动、信号装置、控制电缆等,称为二次设备三、继电保护装置(一)电气设备的故障1、造成故障的原因(1)外力破坏(2)内部绝缘击穿(3)误操作2故障种类(1)三相短路(2)两相短路(3)大电流接地系统的单相接地短路(4)电气设备内部线圈的匝间短路3故障的后果(1)短路——短路电流——强电弧或导电回路的严重过热——烧毁电气设备(2)短路——短路电流——强大的电动力——机械破坏(3)短路——系统电压下降——破坏正常生产——设备停产、停车(4)破坏系统稳定——发电厂解裂——系统瓦解——巨大损失(5)人身伤亡4、继电保护的作用迅速切除故障设备,针对各种不正常运行状态发出信号,通知运行人员,限制事故范围,投入备用电源,使重要设备迅速获得供电5、对继电保护的要求1)选择性2)快速性3)灵敏性4)可靠性5、常用继电保护种类1)过电流保护2)电流速断保护3)限时电流速断保护4)低电压保护5)过负荷保护6)差动保护7)方向过流保护8)距离保护9)瓦斯保护10)零序电流保护6、自动装置1)自动调节励磁装置2)自动准同期装置3)备用电源自动投入装置4)自动重合闸四、电气运行的主要参数、指标1、电量(KWH)发电量、厂用电量、送电量(上网电量)发电量=厂用电量+送电量2、电力(KW)发电电力厂用电力送出电力发电电力=厂用电力+送出电力3、厂用电率厂用电率=(厂用电量÷发电量)×100℅4、电流(A)发电机电流厂用电流送出电流厂用变电流低压各段电流5、电压(V)发电机电压电网电压厂用电压6、发电机功率因数(力率)COS¢COS¢=发电机有功功率/发电机视在功率五、安全用电1、两票三制两票:工作票、操作票三制:交接班制、巡回检查制、设备定期试验与轮换制2、保证安全的组织措施1)工作票制度2)工作许可制度3)工作监护制度4)工作间断、转移和终结制度3、保证安全的技术措施1)停电2)验电3)装设接地线4) 悬挂标示牌和装设遮拦。
发电厂电气设备及运行课程总结
发电厂电气设备及运行课程总结一、引言电力是现代社会的重要能源,而发电厂是电力的重要生产场所。
电气设备是发电厂的核心组成部分,对于发电厂的运行起着重要作用。
本文将对发电厂电气设备及运行课程进行总结,旨在加深对该领域的理解和应用。
二、发电厂电气设备1. 发电机组发电机组是发电厂的核心设备,它将机械能转换为电能。
常见的发电机组包括汽轮发电机组、水轮发电机组和燃气发电机组等。
发电机组的主要部件包括转子、励磁系统、定子和冷却系统等。
2. 变压器变压器是发电厂电力传输与分配的重要设备,它能将高压电能转换为低压电能,以满足不同电压等级的用电需求。
变压器主要由铁芯和线圈构成,通过电磁感应原理进行能量转换。
3. 开关设备开关设备是发电厂电力系统的控制和保护装置,主要包括断路器、隔离开关和接地开关等。
开关设备能够实现电路的合闸和分闸操作,以及对故障电路的隔离和保护。
4. 电力电子设备电力电子设备是现代发电厂中应用广泛的设备,它能够实现电能的高效转换和控制。
常见的电力电子设备包括变频器、整流器和逆变器等。
这些设备在提高发电效率、稳定电网运行等方面发挥着重要作用。
三、发电厂电气设备运行1. 运行管理发电厂电气设备的运行管理是确保设备正常运行的关键环节。
运行管理包括设备的巡检、维护和保养等工作,以及对设备运行数据的监测和分析。
通过科学的运行管理,可以提高设备的可靠性和运行效率。
2. 运行安全发电厂电气设备的运行安全是保障人员和设备安全的重要任务。
运行安全包括设备的绝缘检测、接地保护和过电压保护等措施,以及对设备运行过程中的故障和异常情况进行及时处理。
3. 运行优化发电厂电气设备的运行优化是提高发电厂整体运行效率的重要手段。
运行优化包括设备的负荷调节、电能质量控制和能耗分析等工作,通过合理的运行策略和控制手段,可以降低发电成本,提高发电效益。
四、总结发电厂电气设备及运行课程是电力工程领域的重要内容,它涉及到发电厂的核心设备和运行管理等方面。
发电厂电气设备运行与维护
发电厂电气设备运行与维护1. 引言1.1 发电厂电气设备的重要性发电厂电气设备是保障整个发电系统正常运行的重要组成部分,其重要性不言而喻。
作为发电厂的核心设备之一,电气设备承担着电能转换、输送和配电等关键功能,直接影响着发电厂的安全稳定运行。
发电厂电气设备的运行状况直接关系到电力供应的连续性和可靠性,一旦发生故障或事故,将会对整个电网系统造成严重影响,甚至导致停电事故的发生。
发电厂电气设备的正常运行不仅可以保障电力供应的稳定性,还可以提高发电效率和降低生产成本。
电气设备的合理运行还可以保证发电厂的安全生产,减少潜在的安全隐患,为员工提供安全的工作环境。
发电厂电气设备的重要性在整个发电工业中不可忽视。
发电厂电气设备的重要性无法低估。
只有认识到电气设备在发电厂运行中的关键作用,才能更好地加强对电气设备的运行与维护工作,确保发电厂的安全稳定运行。
1.2 电气设备运行与维护的必要性电气设备运行与维护的必要性是发电厂运行中不可或缺的环节。
发电厂的电气设备承担着转换能源、传输电能、控制电能等重要功能,如果这些设备出现故障或不正常运行,将直接影响到发电厂的安全运行和电能输出质量。
对电气设备进行定期的检修和维护工作,可以有效提高设备的可靠性和稳定性,延长设备的使用寿命,减少设备的故障发生率,保障发电厂的安全运行。
通过定期的维护工作,可以及时发现电气设备存在的问题并进行修复,避免由于设备故障带来的生产停工和损失。
电气设备的定期维护还可以提高设备的运行效率,降低能耗,减少对环境的影响。
电气设备的运行与维护工作是发电厂运行管理中至关重要的一环,只有做好这方面的工作,才能保证发电厂的安全稳定运行,为当地电力供应做出积极贡献。
2. 正文2.1 发电厂电气设备的分类发电厂电气设备的分类主要包括以下几种:发电机、变压器、开关设备、电缆、控制设备和保护设备等。
1. 发电机:发电机是发电厂最重要的电气设备之一,通常根据结构和工作方式的不同,可分为同步发电机、异步发电机等类型。
发电厂电气设备及运行
第一章电力系统的基本知识电力系统是由发电厂、电力网(变电所、线路)和用户组成的。
电力网的主要任务是输送与分配电能,并根据需要改变电压。
电能质量指标主要是电压、频率、波形。
电力变压器的额定电压(1)电力变压器一次绕组的额定电压。
电力变压器一次绕组的额定电压有两种情况:①电力变压器直接与发电机相连,则其一次绕组的额定电压应与发电机额定电压相同,即高于同级线路额定电压的5%;②当变压器不与发电机相连,而是连接在线路上,一次绕组的额定电压应与线路额定电压相同。
(2)变压器二次绕组的额定电压。
变压器二次绕组的额定电压,是指变压器一次绕组接上额定电压而二次绕组开路时的电压,即空载电压。
而变压器在满载运行时,二次绕组内约有5%阻抗电压降。
因此分以下两种情况讨论:1)如果变压器二次供线电路很长(列如较大容量的高压线路),则变压器二次绕组额定电压一方面要考虑补偿变压器二次绕组本身5%的阻抗电压降,另一方面还要考虑变压器满载时输出的二次电压要满足线路首端应高于线路额定电压的5%,以补偿线路上的电压损耗。
所以,变压器二次绕组的额定电压要比线路额定电压高10%。
2)如果变压器二次侧供电线路不长(例如为低压线路或直接供电给高、低压用电设备的线路),则别压器二次绕组的额定电压,只需高于其所接线路额定电压的5%,即仅考虑补偿变压器内部5%的阻抗电压降。
电力系统中性点常采用不接地、经消弧线圈接地、直接接地、经低电阻接地四中运行方式。
单相接地状态不允许长时间运行,因为如果另一项也发生接地故障,就形成两相接地短路,会产生很大的短路电流,从而损坏线路及其用电设备。
单相接地运行时间不应超过2H。
全补偿:感性电流等于容性电流。
尽量避免欠补偿:感性电流小于容性电流。
很少用过补偿:感性电流大于容性电流》均采用此方法第二章同步发电机的基本知识及结构同步发电机是根据导体切割磁力线感应电动势这一基本原理工作的。
因此,同步发电机应具有产生磁力线的磁场和切割该磁场的导体。
发电厂电气主系统设备介绍
发电厂、变电所 电气主系统
电力工程系
电气主系统
一、电气设备
二、发电厂、变电所的电气接线
三、配电装置
一、电气设备
电气设备简述
一次设备:生产、输送、分配电能
分 类
二次设备:测量、监视、控制、保护
一次设备
➢生产和转换电能的设备:发电机、电动机、变压器 ➢开关电器:断路器、隔离开关、 熔断器等 ➢限制故障电流和过电压的电器:电抗器、避雷器 ➢载流导体:裸导体(硬、软)、电缆 ➢接地装置:
断路器
开断元件(灭弧室内) 支撑绝缘件 传动元件 基座 操动机构(电磁式、弹
簧磁能、液压、气压式)
3. 断路器
③ 工作原理--灭弧原理
电弧的产生:触头间中性质点被游离。(变成带电质点)
强电场发射 热电子发射
碰撞游离
热游离
电弧的熄灭:复合去游离; 扩散去游离。
3. 断路器
④ 分类
屋内 地点
返回
二、发电厂、变电所的电气接线
电气主接线 自用电接线
返回
电气主接线
① 基本要求
电气主接线-----接受和分配电能的电路: 可靠、灵活、经济
基本接线形式
有汇流母线:单母线、双母线、 一台半 断路器接线 无汇流母线:单元接线、桥形接线、角形接线
电气主接线
单母线
电气主接线
单母线分段
电气主接线
U1/U2=W1/W2
③ 分类
2. 变压器
相数 单相 三相
调压 无载调压:±2x2.5% 方式 有载调压:30%
双绕组 普通 绕组 三绕组 自耦
分裂
冷却 方式
干式
油浸 式
发电厂电气设备
发电厂电气设备
1、电气基本知识 2、电气主接线与配电装置 3、发电机与电力变压器 4、开关设备 5、电力互感器 6、电动机 7、电气二次设备
2021/3/20
2
1 电路
1、概念—电路是指电流所通过的路径。 2、电路的组成:完整的电路主要由电源、负
载(用电设备)与导线组成。 3、电路图
2021/3/20
6
3、电气主接线常见接线方式
3.l 单母线制 单母线制如图,优点:
接线简单清晰、采用设 备少,投资省,操作方 便,便于扩建。缺点: 单母线制的可靠性和灵 活性较低,母线 故障或 检修时,都会影响母线 全部负荷的用电。
2021/3/20
7
3.2 单母线分段接线就
是将一段母线用断路器 分为两段,它的优点是接 线简单,投资省,操作方便; 缺点是母线故障或检修 时要造成部分回路停电。
按铁芯形式有:芯式变压器和壳式变压器。
按冷却方式分类有:干式变压器和油浸变压器(油浸自冷、油浸 风冷、油浸水冷、,强迫油循环,水内冷)
2021/3/20
39
2021/3/20
40
变压器的结构及各主要部件作用
变压器主要部件是铁心 (器身)和绕组。铁心是 变压器的磁路,绕组是 变压器的电路。二者构 成变压器的核心即电磁 部分。除了电磁部分, 还有油箱/冷却装置/绝缘 套管/调压和保护装置等 部件。
2021/3/20
1—槽楔;2—波纹板;3—热弹性绝缘;
21
4—上层空心绕组;5—下层实心绕组
发电机转子外形图
2021/3/20
22
发电机转子铁心图
2021/3/20
23
发电机转子外形图
2021/3/20
发电厂主要设备及其功能
发电厂主要电气设备图1火力发电厂的主要设备发电厂的电气设备根据其用途可分为一次设备和二次设备。
其中直接生产、输送和分配电能的设备是一次设备,由发电机、变压器以及配电设备(开关电器、限流器、互感器、导体绝缘子等)构成。
二次设备是保证一次设备安全、可靠运行的重要组成部分,其任务是监视一次设备和电力系统的工作状况,对一次设备进行控制,并在电气一次设备及电力系统发生故障时,能使故障部分迅速退出运行或给值班人员信号,以便采取措施及时处理,它由控制电源、继电保护、控制系统、信号系统、同步系统、控制电缆构成。
一次设备:1.发电机将机械能和水的热能转换为电能。
常见类型有同步发电机和异步发电机。
同步发电机一般应用于热力电厂,异步发电机在风力发电中得到广泛应用。
2.变压器是一种静止的电力机械,它的主要作用是通过电磁感应把一种电压的交流电能转变为同频率的另一种电压的交流电能。
发电厂用升压器将发电机端电压升高至较高电压等级后,将电能送入枢纽变电站。
3.开关电器主要功能有三点:正常运行时分合电路,如负荷开关;故障时在继电保护装置控制下自动切断故障电路,如高压断路器;设备检修时使被检修设备可靠的与电源隔离,如高压隔离开关。
4.限流电器:在输配电设备中用以增加电路的短路阻抗以限制短路电流的装置。
5.互感器:将一次接线系统的高电压、大电流变换成标准等级的电压和电流,向二次测量、控制与调节装置及仪表提供电流电压信号。
主要有电压互感器和电流互感器。
6.导体:连接各种电气设备,使发电、输电、配电、用电组成一个可以调度的系统。
通常有裸导线、硬铝母线及电力电缆等。
7.绝缘子:支持无绝缘的导体,保证对地绝缘及其机械强度。
8.接地装置:发电厂和变电站的接地装置按其作用可分为工作接地、保护接地和防雷接地。
工作接地是为了保证电力系统正常情况下和事故情况下能可靠工作,而将电力系统中的某一点接地,如变压器中性点直接接地;保护接地是为了保护人身安全,防止人身触电,而将电器设备外壳或金属结构接地;防雷接地是针对防雷保护而设置的接地,如避雷针接地。
火力发电厂锅炉、汽轮机、电气设备系统图讲解
火力发电厂的基本构成
燃料系统:提供燃烧所需的燃料如煤、油或天然气。 燃烧系统:将燃料与空气混合并燃烧产生高温高压的烟气。 热力系统:利用燃烧产生的热量加热给水使其变成蒸汽。 汽轮机系统:利用蒸汽驱动汽轮机转动从而发电。 控制系统:监控和调节整个火力发电厂的运行。
火力发电厂的工作原理
火力发电厂利用化石燃料(如煤、石油、天然气等)燃烧产生的热量将水加热成蒸汽 蒸汽压力推动汽轮机旋转进而驱动发电机发电 发电机发出的电能通过变压器升压后输送到电网供用户使用 火力发电厂需要定期维护和检修以确保安全和稳定运行
脱硫脱硝技术:采用先进的脱硫脱硝技术减少烟气中的硫氧化物和氮氧化物排放。
除尘技术:采用高效除尘技术确保烟尘排放符合标准。
废水处理:对产生的废水进行深度处理和回用减少对环境的影响。
火力发电厂的未来发展方向
高效低耗:提高发电效率降低能耗减少对化石燃料的依赖 清洁环保:采用先进的烟气处理技术和清洁燃料减少污染物排放 智能化发展:利用数字化和自动化技术提高发电厂的运营效率和安全性 多能互补:结合其他可再生能源实现多种能源的互补和优化配置
汽轮机的作用和工作原理
汽轮机的作用:将蒸汽的热能转换为机械能驱动发电机或其他机械运转。
工作原理:高温高压的蒸汽通过汽轮机的叶片时使叶片旋转从而将热能转换为机 械能。蒸汽在汽轮机中膨胀压力降低速度增加进一步推动叶片旋转。
汽轮机的构成和系统图解析
汽轮机的主要构成:进汽机构、叶轮、导流环、调节保安系统等 系统图的作用:直观展示汽轮机各部件的连接关系和工作原理 系统图的解析:重点解析进汽机构、叶轮、导流环和调节保安系统的工作原理和作用 汽轮机的工作流程:从进汽到排汽的整个工作过程以及各部件的作用和措施:包括过载保护、短路保护、欠压保护等保护装置的 设置和维护以及防止电气火灾和人身触电的措施。
发电厂电气部分(1)
发电厂电气部分(1)发电厂电气部分是一座发电厂中至关重要的组成部分,它主要负责发电厂的电力进行输送、分配和控制,保证发电厂正常稳定地运行。
下面我们将从以下几个方面详细介绍一下发电厂电气部分的相关内容:一、电厂主要的电气设备发电厂的电气设备主要包括发电机及其励磁系统、变压器组、高压开关柜、低压和中压开关柜、电缆和电缆槽、接地系统等。
发电机是发电厂中核心部件,转换机械能为电能的过程就是通过发电机实现的。
变压器组则是用于将发电机输出的低压电能升压为送至变电站的高压电能。
不同的开关柜主要用于控制和隔离电厂电力系统中的故障电路。
二、电力输送和变电站发电厂输出的电能需要通过输电线路传输至变电站,并送达供电用户。
这里除了输电线路本身,还需要安装电力电缆,将输电线路从空中转换到地下,以保证电力的稳定输送。
变电站则是进行电能的升压、限流和分配,将高压输电线路上的电能降压到适当电压供应到各个用户。
三、电气系统的保护发电厂的电气系统应用非常广泛的保护系统。
保护系统主要包括潮湿保护、短路保护、超负荷保护等。
潮湿保护是利用装置严密、防潮能力强的设备控制湿气侵蚀电机,使电机绝缘始终保持良好。
短路保护则需要通过短路指示器和漏电保护器等,确保在出现短路等异常情况时,电气系统能自动停机,保证电气设备的安全。
超负荷保护则是通过安装相应的过载保护装置,防止高负荷造成的设备过载和电损。
总之,发电厂电气部分作为整个工业系统的关键部分,在运行过程中,需要注意细节问题并常常进行现场检查和维护,保障整个工业系统的安全性和稳定性,确保电力能源的稳定输出。
发电厂电气部分
发电厂电气部分1. 引言本文档旨在详细描述发电厂的电气部分,包括发电机、变压器、开关设备以及配电系统等方面的内容。
发电厂的电气部分是电力生产的重要组成部分,其安全稳定运行对于保障电力供应具有至关重要的意义。
2. 发电机发电机作为发电厂的核心设备之一,负责将机械能转化为电能。
在发电厂中,常见的发电机类型包括同步发电机和异步发电机。
发电机的工作原理是利用电磁感应产生电动势,从而实现电能的转换。
2.1 同步发电机同步发电机与电网同步运行,其转速与电网频率同步。
在发电厂中,同步发电机一般连接到励磁设备,通过调节励磁电流来控制发电机的输出电压和无功功率。
同步发电机具有稳定性好、调节性能强等优点,在大型发电厂中得到广泛应用。
2.2 异步发电机异步发电机与电网非同步运行,其转速稍低于电网频率。
在发电厂中,异步发电机一般用于小型发电单元和备用电源。
由于异步发电机结构简单、运行可靠,因此在一些特殊情况下,如突发事故停电后的紧急供电,异步发电机能够快速启动并提供电源。
3. 变压器变压器是发电厂电气部分中的重要设备,主要用于将发电机输出的电能进行变压升高或降低,并通过电网向用户进行输送。
发电厂中常用的变压器包括发电机变压器、主变压器和配电变压器。
3.1 发电机变压器发电机变压器用于将发电机产生的电能进行升压,以满足输送电网所需的电压水平。
发电机变压器在电气系统中承担着电压调节和功率传输的重要作用。
3.2 主变压器主变压器用于将发电厂产生的电能升压到适合输送至远距离的高压电网,并在电网中进行电能输送。
主变压器具有大容量、高稳定性和高可靠性的特点,对于保障电力供应的连续性具有重要意义。
3.3 配电变压器配电变压器用于将电能从电网进一步分配给用户。
发电厂中的配电变压器通过降低电压水平,实现对电能的细分输送。
配电变压器能够将电能输送到具体的用电设备,满足用户对不同电压等级的需求。
4. 开关设备开关设备在电气系统中起到连接、切断电路的作用,以及保护电气设备的安全运行。
发电厂电气设备及运行课程总结
发电厂电气设备及运行课程总结发电厂电气设备及运行课程是一门关于发电厂电气设备和运行的课程,旨在教授有关电气原理、电气设备结构、电力系统运行、电力电子技术以及自动控制等方面的知识和技能,帮助学生掌握发电厂电气设备的运行和维护技能,为日后从事发电厂的电气工程师工作奠定基础。
本文将简要介绍发电厂电气设备及运行课程的主要内容,包括课程的教学目标、教学内容和教学方法。
一、教学目标发电厂电气设备及运行课程的教学目标主要包括以下几个方面:1. 掌握发电厂电气设备的基本原理和结构,了解不同类型的电气设备及其工作原理。
2. 学会发电厂电气设备的运行和维护方法,掌握电力系统的运行控制和故障处理技能。
3. 了解发电厂电气设备的安全和可靠性要求,具备电气设备的安全评估和检查能力。
4. 提高学生的实际动手能力和解决问题的能力,培养良好的团队合作精神。
二、教学内容发电厂电气设备及运行课程的教学内容主要包括以下几个方面:1. 发电厂电气设备的基本原理和结构介绍发电厂电气设备的基本原理和结构,包括发电机、变压器、互感器、开关等设备的组成和工作原理。
2. 电力系统的运行控制介绍电力系统的运行控制方法,包括电力系统的运行模式、电力系统的运行调节、电力系统的运行维护等方面。
3. 电力电子技术介绍电力电子技术的基本原理和应用,包括电力电子变换器、电力滤波器、电力采样器等设备的原理和应用。
4. 自动控制介绍自动控制的基本原理和应用,包括自动控制系统、自动控制算法、自动控制软件等方面的知识和技术。
5. 发电厂电气设备的安全和可靠性要求介绍发电厂电气设备的安全和可靠性要求,包括电气设备的结构材料、电气元件的选型、运行维护等方面的要求。
三、教学方法发电厂电气设备及运行课程的教学方法主要包括以下几种:1. 课堂教学通过课堂教学,教师向学生介绍发电厂电气设备及运行课程的教学内容、方法和技能,让学生掌握发电厂电气设备及运行课程的知识和技能。
2. 实验教学通过实验教学,让学生实际操作发电厂电气设备及运行课程的设备和仪器,加深对发电厂电气设备及运行课程知识的理解,提高学生的实践能力。
火力发电厂电气部分及电气设备
电气接线的类型:
由一次设备所连成的电路称为(电气)一次接线或 电气主接线; 由二次设备所连成的电路称为(电气)二次接线。
二、电气接线
电气主接线通常用电气主接线图来表示。
WL3 WL4
W5 W4 QF3 WL1
220kV
QF4 WL2
QF5
T1
T2
T3
W3 W1 QF1 QF2
110kV W2
一、电气设备
2. 二次设备
对一次设备和系统的运行状态进行测量、控 制、监视和保护的设备
辅助设备、低压设备
类型:
① 测量表计 ② 继电保护、自动装置及远动装置 ③ 直流电源设备 ④ 操作电器、信号设备及控制电缆
一、电气设备
2. 二次设备
① 测量表计
如电压表、电流表、功率表和电能表等。 用于测量电路中的电气参数。
一、电气设备
2. 二次设备
④ 操作电器、信号设备及控制电缆
操作电器(如各种类型的操作把手、按钮等) 实现对电路的操作控制,
信号设备给出信号或显示运行状态标志,
控制电缆用于连接二次设备。
二、电气接线
电气接线的含义:
在发电厂和变电所中,根据各种电气设备的作用和 要求,按一定的方式用导体连接起来所形成的电路 称为电气接线。
燃料的化学能在锅炉燃烧中转变为热能, 加热锅炉中的水使之变为蒸汽。 燃烧系统由运煤、磨煤、燃烧、风烟、灰 渣等系统组成。
一、火力发电厂
(1) 燃烧系统
运煤系统
磨 煤 系 统
风烟系统
灰渣系统 燃烧系统
发电厂一次系统电气设备及接线方式教学课件
核能发电厂的工作原理
利用核反应产生热能,将热能转换为机械能,再通过发电机将机械 能转换为电能。
02
一次系统电气设备
发电机
发电机概述
发电机是发电厂的核心 设备,用于将机械能转
换为电能。
工作原理
发电机基于电磁感应原 理,通过磁场和导线的
THANKS
感谢观看
类型
高压开关设备包括断路器、负 荷开关、隔离开关等。
维护与检修
定期对高压开关设备进行维护 和检修,确保其正常工作,是
发电厂的重要工作之一。
低压开关设备
低压开关设备概述
低压开关设备用于控制和保护低压电路,是 发电厂配电系统的重要环节。
类型
低压开关设备包括断路器、接触器、继电器 等。
工作原理
低压开关设备通过机械或电气方式断开或闭 合电路,实现对电路的控制和保护。
位置来改变电压。
类型
变压器根据用途和结构,可以 分为电力变压器、整流变压器
、电炉变压器等。
安全操作
操作变压器时,必须严格遵守 安全规程,确保人员和设备安
全。
高压开关设备
高压开关设备概述
高压开关设备用于控制和保护 高压电路,是发电厂配电系统
的重要组成部分。
工作原理
高压开关设备通过机械或电气 方式断开或闭合电路,实现对 电路的控制和保护。
双母线接线采用两条相互独立的母线,每条母线都可以承担全部的负荷,因此具有较高的灵活性和可靠性。同时,由于母线 的独立性,扩建也变得相对方便。
桥式接线
简洁明了、操作方便、经济性好
桥式接线是一种特殊的双母线接线方式,通过特殊的连接方式将两条母线连接在一起,形成了一个“ 桥”的形状。这种接线方式简洁明了,操作方便,且经济性较好。
发电厂电气设备及运行
第二节 同步发电机的基本构造
图7-4定子铁芯压紧 (a)无磁性压板;(b)定子铁芯剖面
第二节 同步发电机的基本构造
(2)定子绕组。 汽轮发电机的定子绕组一般采用三相双层叠绕组,构成定子
三相交流电路。 为了减少绕组导体中集肤效应引起的附加损耗,导线由许多
相互绝缘的并联多股线组成,在槽内线圈的直线部分还应进行换 位。三相定子绕组对铁芯绝缘强度的要求,取决于电机额定电压 的高低。为了防止电晕,6.3kV及以上的定子绕组经绝缘处理后 还要涂以半导体漆。定子的每一槽内放置上、下两线圈边,并垫 以层间绝缘,线圈放入槽中,采用槽楔固定。为了能承受住因突 然短路产生的巨大电磁力而引起的端部变形,以及正常运行时不 致产生较大的振动,定子绕组端接部分需用线绳绑紧或压板夹紧 在非磁性钢做成的端箍上,如图7-5所示。
1.1.2发电厂
1、水力发电厂
通过拦河坝,使水位增高,开闸使水沿管从高处向下流入水轮机,利用位能推 动叶轮转动,发电。三峡水电站全景
1.1.2发电厂
火力发电厂
简称为电厂或火电站,它利用燃料的化学能来生产电能,我国的火电厂 以燃煤为主。
1.1.2发电厂
核能发电厂
通常称为核电站,它主要是利用原子核的裂变能来生产电能 。其生产过程与火 电厂基本相似,只是用核反应堆(俗称原子锅炉)代替了燃煤锅炉,是少量的核 燃料代替了大量的煤炭。田湾核电站图
技术条件下运行时输出的视在功率,用kV·A或MV·A表示;额定 功率是指发电机输出的有功功率,用kW或MW表示。 (2)额定定子电压。指发电机在设计技术条件下运行时,定 子绕组出线端的线电压,用kV表示。 (3)额定定子电流。指发电机定子绕组出线的额定线电流, 单位为A。 (4)额定功率因数。指发电机在额定功率下运行时,定子电 压和定子电流之间允许的相角差的余弦值,即额定功率因数。
发电厂及变电站电气设备介绍
发电厂及变电站电气设备介绍1. 引言发电厂和变电站是电力系统中至关重要的组成部分,它们负责将能源转化为电能并进行传输和分配。
在电气设备中,发电厂和变电站的电气设备起到了至关重要的作用。
本文将介绍发电厂和变电站的电气设备的功能、类型以及其在电力系统中的作用。
2. 发电厂电气设备发电厂的电气设备主要包括发电机、变压器、开关设备和保护设备。
2.1 发电机发电机是发电厂的核心设备,它将机械能转化为电能。
发电机主要由转子、定子和励磁系统组成。
转子由电枢线圈和磁极组成,定子则包括定子线圈和定子铁芯。
励磁系统负责提供发电机所需的恒定磁场。
发电机的输出电压和频率取决于转速和励磁电流的大小。
2.2 变压器变压器是将发电机产生的电能进行升压或降压的设备。
它由主绕组、副绕组和铁芯构成。
发电厂的发电机产生的电能通常为低压,变压器将其升压以便传输更长距离。
在电力系统中,多级变压器也用于降压以适应不同负荷需求。
2.3 开关设备开关设备用于控制电力系统中电流的流动。
它们包括断路器、隔离开关、负荷开关等。
断路器用于打开或关闭电路,并在电流过载时自动切断电流。
隔离开关用于隔离电路以进行检修和维护。
负荷开关则用于控制负荷的连接和断开。
2.4 保护设备保护设备用于监测电力系统中的故障并保护设备和人员安全。
它们包括继电器、保护开关、电流互感器等。
继电器是用于检测电流、电压等参数的电气装置,当参数超过设定值时,继电器将触发保护开关切断电路。
电流互感器用于测量电流,以便进行保护和控制。
3. 变电站电气设备变电站的电气设备主要包括变压器、隔离开关、断路器等。
3.1 变压器变电站中的变压器与发电厂中的变压器类似,用于升压或降压输电。
变电站通常存在多级变压器,以便适应不同电压等级的要求。
3.2 隔离开关隔离开关用于在变电站中隔离和维护电缆或设备。
它们提供了安全的工作环境,并防止故障扩散到其他部分。
3.3 断路器变电站中的断路器用于切断电路。
与发电厂中的断路器类似,变电站断路器能够在电流过载或短路时快速切断电流,以防止设备损坏和人员受伤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯低温余热发电系统培训教材之:发电厂电气设备及其系统大连易世达能源工程有限公司目录1高压配电系统及设备 (4)1.1高压电气主接线 (4)1.1.1电力系统概述 (4)1.1.2高压电气主接线的特点 (4)2发电机 (6)2.1发电机的基本原理和结构 (6)2.1发电机的同期并列 (7)2.1.1发电机同期的条件和过程 (7)2.1.2导前时间 (8)2.1.3并网方式 (8)3发电机的保护、控制和测量 (10)3.1控制回路 (10)3.2保护回路 (10)3.3信号回路包括 (10)3.4测量回路 (11)4.发电机的运行与维护 (12)4.1在不同功率因数下运行 (12)4.2发电机温度 (12)4.3发电机运行电压 (12)4.4发电机周波 (12)4.5发电机定子电流 (12)4.6运行中监视参数 (13)4.7发电机电流、励磁电流、电压的监视 (13)4.8发电机维护 (13)4.9、碳刷的检查维护项目 (13)5.发电机的事故处理 (15)5.1发电机事故过负荷 (15)5.2电机发生强烈的振荡,失去同步 (15)5.3发电机主开关及励磁开关自动跳闸 (16)5.4发电机由于内部保护(差接地)动作而掉闸 (16)5.5发电机着火 (16)5.6发电机非同期并列 (17)5.7事故处理原则 (17)6变压器 (18)6.1变压器的基本原理 (18)6.2变压器的主要参数 (18)6.2.1额定电压 (18)6.2.2额定容量 (18)6.2.3空载电流和空载损耗 (18)6.2.4温升和冷却方式 (19)6.3变压器的运行与维护 (19)6.3.1变压器投运前的检查 (19)6.3.2变压器运行中的检查 (19)6.3.3变压器运行中出现的不正常现象 (20)6.3.4变压器的事故处理 (20)6.3.5变压器并列运行条件 (21)7电抗器、互感器等高压电器 (22)7.1电抗器运行中注意事项 (22)7.2余热电站互感器的作用 (22)7.3电压互感器运行中的规定 (23)7.4电流互感器运行中的规定 (23)8低压配电系统及设备 (25)8.1低压电气主接线 (25)8.2低压配电设备 (25)8.2.2运行中配电设备的检查 (26)8.3低压电动机的运行和维护 (26)8.3.1电动机启动前的检查 (26)8.3.2 电动机线圈绝缘电阻 (27)8.3.3电动机的启动 (27)8.3.4电动机启动故障 (27)8.3.5电动机的正常运行 (28)8.3.6电动机运行中的检查 (28)8.3.7电动机的异常运行和事故处理 (29)8.3.4电动机开关自动跳闸后的处理 (30)8.4发电厂的直流系统 (30)9电气设备的倒闸操作 (31)9.1操作命令和操作程序 (31)9.2倒闸操作的基本原则和要求 (31)10自动控制 (33)10.1 DCS系统硬件组成 (33)10.2 DCS 系统网络概述 (33)10.3 DCS系统供电与接地要求 (33)10.3.1供电要求 (33)10.3.2接地要求 (34)10.3.3接地电阻要求 (35)10.3.4接地连线要求 (35)11现场仪表及测量元件 (36)11.1热电偶的应用原理 (36)11.2热电偶测温基本原理 (36)11.2.1热电偶的种类及结构形成 (36)11.2.2热电偶冷端的温度补偿 (37)11.3热电阻的应用原理 (37)11.3.1热电阻测温原理及材料 (37)11.3.2热电阻的结构 (37)11.3.3热电阻测温系统的组成 (38)11.4变送器 (39)11.4.1智能压力变送器 (39)11.4.2压力变送器 (39)1高压配电系统及设备1.1高压电气主接线1.1.1电力系统概述电力系统:由发电机、变压器、输电线路以及负荷组成的整体称为电力系统。
动力系统:电力系统加上热能动力装置、水能动力装置及其它能源动力装置称为动力系统。
电力网:电力系统中各级电压电力线路及联系的变电所叫做电力网,简称电网。
1.1.2高压电气主接线的特点由于受水泥窑余热量的限制装机容量一般超过50MW,因此高压电气主接线基本上是通过电站和总降压变电站之间的联络线,连接到企业总降压变电站的高压配电母线上(6KV或10KV),发电机的出口通过主开关直接接到车间高压母线上,厂用变压器和高压电动机也直接接在发电厂的高压母线上,通常采用单母线方式运行。
发电机没有运行时厂用电由联络线倒送至发电车间的母线上,正常运行时发电机的负荷除了提供厂用,其余部分送到总降高压母线上。
正常运行的发电机和总降压变电站的高压系统是并列运行的,在事故情况下总降压变电站和电网系统脱开后,如果发电机仍然带着部分设备孤网运行,就形成了小系统运行,此时严禁总降压变电站侧非同期合闸(包含从电网进入企业更高级电压系统)。
所以,如果在总降压变电站及电网侧装设有电源自动投入装置的系统,在增加了余热发电系统后就应该停用该装置(除非配备检无压合闸),防止出现非同期并列事故。
电力系统的工作特点决定了主接线应有以下基本要求:1)保证发供电的可靠性这是电气主接线运行中的一项极为重要的任务。
运行经验证明,电力系统中的重大整体性事故往往是由于局部性事故扩大造成的,所以,保证供电可靠是电气主接线的基本要求之一。
在事故情况下及时恢复供电也是降低事故影响的重要手段。
在余热发电系统还应该注意发电机不能影响整个水泥的系统运行,事故情况下能够迅速隔离。
2)保证良好的电能质量电能质量的指标有多个,但是最重要的是电能的电压和频率两个质量。
由于我们余热发电机组容量都比较小,这两电能个指标在并入电网以后主要受整个电网的影响。
在发电机并入系统之前通过调整汽轮机的转速和励磁电流来达到调整待并发电机的频率和电压。
发电机并入系统后还能有效地改善水泥企业的功率因数,减少降压变电站补偿电容的投入数量。
2发电机2.1发电机的基本原理和结构发电机是将其他形式的能源转换成电能的机械设备。
在余热发电厂都是以蒸汽轮机做原动机的,蒸汽轮机是由一个中央很厚的钢盘及钢盘外沿有很多密排的叶片组成的主体结构。
蒸汽从喷嘴喷到叶片上时,汽轮机就转动起来,蒸汽速度越大(汽轮机的压力和温度以及主气门的开度越大),汽轮机转动得越快(也就是蒸汽的内能在喷射中变成蒸汽的动能,它的动能又转变为机轴旋转的机械能)。
这里只描述发电机组最基本的工作原理。
要想得到可使用的、稳定的电力输出,还需要一系列的发电机控制、保护器件和回路。
发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。
因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。
在同步发电机的定子铁芯内对称的排列着A---X,B---Y,C---Z 三相匝数相等的绕组,它们在轴线空间上相差1200电角度,转子绕组通入励磁电流以后就形成一个旋转磁场。
转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。
主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。
由励磁系统供给转子形成励磁电流。
载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。
即定子电压和电流。
切割运动:原动机(汽轮机)拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转,形成旋转磁场,并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。
交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。
通过引出线,即可提供交流电源。
发电机主要由定子、转子、端盖及轴瓦、空气冷却器等组成。
定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。
定子铁芯由高导磁、低比损耗的无取向冷轧硅钢板冲制的扇型片叠压而成。
定子绕组由实心多股线编织而成,定子绕组绝缘多采用“F”级云母带缠绕。
转子由转子铁芯、(或磁极、磁扼)绕组、滑环等部件组成。
发电机转轴是高强度螺栓高导磁率合金钢整体锻件。
槽内部分加工出风孔构成冷却风道。
由轴瓦及端盖将发电机的定子,转子连接组装起来。
发电机机座为整体式。
机座内腔沿轴向均布弹性定位筋,构成机座和铁芯间的弹性支撑结构,以减少在发电机运行时,由定、转子铁芯间的磁拉力在定子铁芯中产生的倍频振动对机座的影响。
定子机座和铁芯的固有频率避开了倍频振动频率。
2.1发电机的同期并列2.1.1发电机同期的条件和过程发电机和电网的同期并列操作是电气运行中最复杂、最重要的操作。
也是项目调试和试验的重要环节。
发电机和电网同期的过程必须满足下列四个条件:1)发电机和电网的相序必须相同。
2)发电机和电网的电压接近相等:u f = u s3)发电机和电网的频率接近相等:F f =F s4)发电机电压和电网电压的相位接近相等:φf = φs首先,发电机和电网的相序必须相同,这是并列条件中最重要的一个条件,在安装调试过程中需要在一次和二次多次复核,在发电机同期并列之前确保满足,(如果在同期回路和PT、CT回路改动线路都应该仔细重新复核)。
国内外由于同期操作失误或同期装置、同期系统的问题,非同期并列的事故经常发生,其后果是严重损坏发电机的定子绕组,并列开关放炮,甚至造成气轮发电机机组大轴损坏。
发电厂同期装置主要是控制和监视后三个条件。
后三个条件中如果有一个不能满足,都可能产生很大的冲击电流,并引起发电机强烈的振荡,严重的会损坏并列开关。
F发电机QF(并列开关)S电网电源图1.1发电机与系统同期示意图在图F、S为两个独立的电源系统,设其电压的表达式分别为u f =2U f sin f tu s=2U S sin(ωS t+φs)通过断路器QF使他们并列在一起运行,则合闸时刻在理论上应具备下列条件才能使两电源系统受到的冲击最小。
U f = USωf = ωS∆φ=(ωf t)-(ωS t+φs)=0上述三个条件称为同期并列的三要素。
捕捉满足同期三要素的时刻及QF合闸的过程称为同期过程,满足同期三要素的点称为同期点。
在同期的三要素中,频率和相位差这两个要素是一对矛盾体。
如果两系统的原有相位差∆φ≠0,而当满足频率相等的要素时则∆φ恒定,不可能出现为零的情况,只有当∆f = f f-f s≠0,即存在频率差时,∆φ才有出现为零的可能。
在实际应用中,电压、频率这两个要素与相位要素相比,对于系统和设备的影响要小的多;同时,电压、频率容易调至满足要求。
因此可以简单的认为,同期过程实际上是在捕捉∆φ≠0的过程,电压和频率作为同期的限定条件,确保:∆U=︱U f = U S︱∆f=︱f f = f S︱在一定的范围内就可以了。