动量与能量综合计算题练习
动量和能量练习题
物理专题——动量和能量一.选择题1.一小型爆炸装置在光滑.坚硬的水平钢板上发生爆炸,所有碎片均沿钢板上方的倒圆锥面(圆锥的顶点在爆炸装置处)飞开.在爆炸过程中,下列关于爆炸装置的说法中正确的是:A .总动量守恒B .机械能守恒C .水平方向动量守恒D .竖直方向动量守恒 2(多选).向空中发射一物体,不计空气阻力。
当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则:A .b 的速度方向一定与原速度方向相反B .从炸裂到落地的这段时间里,a 飞行的水平距离一定比b 的大C .a .b 一定同时到达水平地面D .在炸裂过程中,a .b 受到的爆炸力的冲量大小一定相等3(多选).光滑水平面上静置一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,以v 2速度穿出,对这个过程,下列说法正确的是:A .子弹对木块做的功等于()222121v v m -B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能D .子弹损失的动能等于木块的动能跟子弹与木块摩擦转化的内能和4(多选).子弹在射入木块前的动能为E 1,动量大小为1p ;射穿木块后子弹的动能为E 2,动量大小为2p 。
若木板对子弹的阻力大小恒定,则子弹在射穿木板的过程中的平均速度大小为:A .2121p p E E ++ B .1212p p E E -- C .2211p E p E + D .2211p E p E - 5(多选).如图所示,质量分别为m 和2m 的A .B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙。
用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E 。
这时突然撤去F ,关于A .B 和弹簧组成的系统,下列说法中正确的是:A .撤去F 后,系统动量守恒,机械能守恒B .撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒C .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为ED .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /36(多选).一个质量为M 的物体从半径为R 的光滑半圆形槽的边缘A 点由静止开始下滑,如图所示.下列说法正确的是:A .半圆槽固定不动时,物体M 可滑到半圆槽左边缘B 点B .半圆槽在水平地面上无摩擦滑动时,物体M 可滑到半圆槽左边缘B 点C .半圆槽固定不动时,物体M 在滑动过程中机械能守恒D .半圆槽与水平地面无摩擦时,物体M 在滑动过程中机械能守恒7.如图,一轻弹簧左端固定在长木块M 的左端,右端与小木块m 连接,且m .M 及M 与地面间接触光滑。
动量与能量综合练习二
动量与能量练习二一、选择题1.甲乙两船静止在平静的水平面上,A 、B 两人分别坐在两船上,通过细绳相互拉着,当其 中一人不断地收绳,两船即相向运动.假设船和人的总质量M 甲A >M 乙B ,船行驶时的阻力不计,在此时间内( )A .两船所受的冲量大小相等,方向相反B .两船动量变化相等C .两船的位移相等 D. 两船动量之和为零2.如图3所示,物体B 被钉牢在放于光滑水平地面的平板小车上,物体A 以速率v 沿水平 粗糙车板向着B 运动并发生碰撞.则 ( ) A .对于A 与B 组成的系统动量守恒B .对于A 、B 与小车组成的系统动量守恒C .对于A 与小车组成的系统动量守恒D .以上说法都不对3.相向运动的甲和乙两小车相撞后,一同沿甲车原来的运动方向前进,这是因为( ) A .甲车的质量一定大于乙车的质量 B .碰撞前甲车的速度一定大于乙车的速度 C .碰撞前甲车的动量一定大于乙车的动量 D .甲车受到的冲量小于乙车受到的冲量 4.质量为m 的子弹水平飞行,击穿一块原来静止在光滑水平面上的木块,木块的质量为M , 在子弹穿透木块的过程中( )A .子弹和木块所受到的冲量相同B .子弹受到的阻力和木块受到的推力大小相等C .子弹和木块速度的变化相同D .子弹和木块作为一个系统,该系统的总动量守恒 5.关于系统动量守恒,正确的说法是 ( )A .只要系统所受的合外力的冲量为零,系统动量就守恒B .只要系统内有摩擦力,动量就不可能守恒C .系统所受合外力不为零,其总动量一定不守恒,但有可能在某一方向上守恒D .若系统动量守恒,则各物体动量的增量的矢量和一定为零 6.质量为M 的运砂车在光滑水平地面上以速度v0匀速运动,当车中的砂子从底部的小孔中不断流下时.车子速度将( )A .减小B .不变C .增大D .无法确定7.如图9所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木 块后留在木块内,将弹簧压缩到最短。
动量能量综合(含答案)
动 量 能 量 综 合 一1.如图所示,一个带斜面的物体A 静止在光滑的水平面上,它的质量为M =0.5kg .另一个质量为m =0.2kg 的小物体B 从高处自由下落,落到B 的斜面上,下落高度为h =1.75 m .与斜面碰撞后B 的速度变为水平向右,碰撞过程中A 、B 组成的系统的机械能没有损失.(计算时取g =10m/s 2)(1)碰后A 、B 的速度各多大?(2)碰撞过程中A 、B 的动量变化量各多大?答案:(1)=2m/s ,方向向左;=5m/s ,方向向右(2)Δp A =Mv =1kg·m/s ,方向向左;Δp B =m 220B v v +=0.415 kg·m/s=1.5 kg·m/s 2.长为L 的轻绳,一端用质量为m 1的环套在水平光滑的固定横杆AB 上,另一端连接一质量为m 2的小球,开始时,提取小球并使绳子绷紧转到与横杆平行的位置(如图)然后同时释放环和小球,当小球自由摆动到最低点时,小球受到绳子的弹力多大?答案:3m 2g +2m 22g /m 13.如图所示,在水平面的左端立着一堵竖直的墙A ,把一根劲度系数为k 的弹簧的左端固定在墙上,在弹簧右端系一个质量为m 的物体1,紧靠着1放置一个质量也是m 的物体2,两个物体与水平地面的动摩擦因数都是µ,用水平外力F 推物体2压缩弹簧(在弹性限度内),使弹簧从原长(端点在O)压缩了s ,这时弹簧的弹性势能为E p ,弹簧物体1和2都处于静止状态。
然后撤去外力F ,由于弹簧的作用,物体开始向右滑动,当物体2与1分离时,物体2的速率是多大?物体2与1分离后滑行多大距离?设弹簧的质量以及1和2的宽度都可忽略不计。
答案:v =gs mE P μ2-;s mgE P -μ24.如图所示,在光滑水平面上,有一质量为m 1=20千克的小车,通过一根几乎不可伸长的轻绳与另一个质量为m 2=25千克的拖车相连接,一质量为m 3=15千克的物体放在拖车的平板上,物体与平板间的滑动摩擦数为μ=0.20.开始时,拖车静止,绳未拉紧,小车以υ0=3米/秒的速班级: 姓名:度向前运动,求:(1)当m 1,m 2,m 3以同一速度前进时,速度的大小; (2)物体在拖车平板上移动的距离.(g 取10米/秒2.)答案:(1)1米/秒2;(2)0.33米.5.如图所示,A ,B ,C 三个物体的质量均为m ,开始时物体B 与C 相接触一起放在光滑水平面上,物体A 放在物体B 上表面的半径为R 的半圆形光滑轨道的顶端.从静止状态释放物体A ,求 (1)物体B 与物体C 分离时物体A 与物体B 的速度υA 和v B . (2)A 能上升的最大高度;(3)B 的最大速度答案:(1)gRgR 31,34 ;(2)h m=3/4R;6.如图所示,一轻质弹簧一端固定,一端与质量为 m 的小物块A 相联,原来A 静止在光滑水平面上,弹簧没有形变,质量为m 的物块B 在大小为F 的水平恒力作用下由C 处从静止开始沿光滑水平面向右运动,在O 点与物块A 相碰并一起向右运动(设碰撞时间极短)。
高三物理动量、能量计算题专题训练
动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。
现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。
小物块恰能到达圆弧轨道的最高点A 。
取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。
(2)小物块与车最终相对静止时,它距O ′点的距离。
(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。
3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。
动量能量计算题专项训练及答案
动量能量计算题专项训练【注】该专项涉及规律:牛顿定律、动量定理、动量守恒、动能定理、机械能守恒 1、(2009天津)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。
物块与车面间的动摩擦因数 =0.5,取g =10 m/s 2,求(1) 物块在车面上滑行的时间t ;(2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少。
2、(2005天津)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态。
木板突然受到水平向右的12N s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E M 为8.0J ,小物块的动能为0.50J ,重力加速度取10m/s 2,求⑴瞬时冲量作用结束时木板的速度v 0; ⑵木板的长度L 。
3、(2007天津)如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。
可视为质点的物块从A 点正上方某处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行至轨道末端C 处恰好没有滑出。
已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。
求:⑴物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍?⑵物块与水平轨道BC 间的动摩擦因数μ。
4、( 2010新课标)如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙。
重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ。
动量和能量的综合问题-解析版
专题:动量和能量的综合问题1.燃放爆竹是我国传统民俗.春节期间,某人斜向上抛出一个爆竹,到最高点时速度大小为v0,方向水平向东,并炸开成质量相等的三块碎片a、b、c,其中碎片a的速度方向水平向东,忽略空气阻力.以下说法正确的是()A.炸开时,若碎片b的速度方向水平向西,则碎片c的速度方向可能水平向南B.炸开时,若碎片b的速度为零,则碎片c的速度方向一定水平向西C.炸开时,若碎片b的速度方向水平向北,则三块碎片一定同时落地D.炸开时,若碎片a、b的速度等大反向,则碎片c落地时的速度可能等于3v0答案C解析到最高点时速度大小为v0,方向水平向东,则总动量向东;炸开时,若碎片b的速度方向水平向西,碎片c的速度方向水平向南,则违反动量守恒定律,A错误;炸开时,若碎片b的速度为零,根据动量守恒定律,碎片c的速度方向可能水平向东,B错误;三块碎片在竖直方向上均做自由落体运动,一定同时落地,C正确;炸开时,若碎片a、b的速度等大反向,根据动量守恒定律3m v0=m v c,解得v c=3v0,碎片c 落地时速度的水平分量等于3v0,其落地速度一定大于3v0,D错误.2.天问一号探测器由环绕器、着陆器和巡视器组成,总质量达到5×103kg,于2020年7月23日发射升空,2021年2月24日进入火星停泊轨道.在地火转移轨道飞行过程中天问一号进行了四次轨道修正和一次深空机动,2020年10月9日23时,在距离地球大约2.94×107千米的深空,天问一号探测器3000N主发动机点火工作约480秒,发动机向后喷射的气体速度约为3×103m/s,顺利完成深空机动,天问一号飞行轨道变为能够准确被火星捕获的、与火星精确相交的轨道.关于这次深空机动,下列说法正确的是()A.天问一号的速度变化量约为2.88×103m/sB.天问一号的速度变化量约为288m/sC.喷出气体的质量约为48kgD.喷出气体的质量约为240kg答案B解析根据动量定理有Ft=MΔvΔv=FtM=3000×4805×103m/s=288m/s,即天问一号的速度变化量Δv约为288m/s,可知A错误,B正确;设喷出气体的速度为v气,方向为正方向,质量为m,由动量守恒定律可知m v气-(M-m)Δv=0,解得喷出气体质量约为m=438kg,C、D错误.3.某人站在静止于水面的船上,从某时刻开始,人从船头走向船尾,水的阻力不计,下列说法不正确的是()A.人匀速运动,船则匀速后退,两者的速度大小与它们的质量成反比B.人走到船尾不再走动,船也停止不动C .不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比D .船的运动情况与人行走的情况无关答案D解析人从船头走向船尾的过程中,人和船组成的系统动量守恒.设人的质量为m ,速度为v .船的质量为M ,速度为v ′.以人行走的速度方向为正方向,由动量守恒定律得0=m v +M v ′,解得vv ′=-M m可知,人匀速行走,v 不变,则v ′不变,船匀速后退,且两者速度大小与它们的质量成反比,故A 正确,与题意不符;人走到船尾不再走动,设整体速度为v ″,由动量守恒定律得0=(m +M )v ″,得v ″=0即船停止不动,故B 正确,与题意不符;由以上分析知v v ′=-Mm ,则不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比,故C 正确,与题意不符;由以上分析知,船的运动情况与人行走的情况有关,人动船动,人停船停,故D 错误,与题意相符.4.(多选)倾角为θ的固定斜面底端安装一弹性挡板,P 、Q 两物块的质量分别为m 和4m ,Q 静止于斜面上A 处.某时刻,P 以沿斜面向上的速度v 0与Q 发生弹性碰撞.Q 与斜面间的动摩擦因数μ=tan θ,设最大静摩擦力等于滑动摩擦力.P 与斜面间无摩擦.斜面足够长,Q 的速度减为零之前P 不会再与之发生碰撞.重力加速度大小为g .关于P 、Q 运动的描述正确的是()A .P 与Q 第一次碰撞后P 的瞬时速度大小为v P 1=25v 0B .物块Q 从A 点上升的总高度v 029g C .物块P 第二次碰撞Q 前的速度为75v 0D .物块Q 从A 点上升的总高度v 0218g 答案CD解析P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m P v 0=m P v P 1+m Q v Q 1,由机械能守恒定律得12m P v 02=12m P v P 12+12m Q v Q 12,联立解得v P 1=-35v 0,A 错误;当P 与Q 达到H 高度时,两物块到此处的速度可视为零,对两物块运动全过程由动能定理得0-12m v 02=-(m +4m )gH -tan θ·4mg cos θ·Hsin θ,解得H =v 0218g,B 错误,D 正确;P 运动至与Q 刚要发生第二次碰撞前的位置时速度为v 02,第一次碰撞后至第二次碰撞前,对P 由动能定理得12m v 022-12m v P 12=-mgh 1,P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m v 0=m v P 1+4m v Q 1,由机械能守恒定律得12m v 02=12m v P 12+12·4m v Q 12,联立解得v 02=75v 0,C 正确.5.(多选)如图所示,一小车放在光滑的水平面上,小车AB 段是长为3m 的粗糙水平轨道,BC 段是光滑的、半径为0.2m 的四分之一圆弧轨道,两段轨道相切于B 点.一可视为质点、质量与小车相同的物块在小车左端A 点,随小车一起以4m/s 的速度水平向右匀速运动,一段时间后,小车与右侧墙壁发生碰撞,碰后小车速度立即减为零,但不与墙壁粘连.已知物块与小车AB 段之间的动摩擦因数为0.2,取重力加速度g =10m/s 2,则()A .物块到达C 点时对轨道的压力为0B .物块经过B 点时速度大小为1m/sC .物块最终距离小车A 端0.5mD .小车最终的速度大小为1m/s 答案AD解析对物块在AB 段分析,由牛顿第二定律可知F =ma代入数据解得a =μmg m =2m/s.根据运动学公式,物块在B 点的速度为-2ax =v B 2-v A 2,代入数据解得v B =2m/s从B 到C 的运动过程中,由动能定理可得-mgr =12m v C 2-12m v B 2,解得v C =0.根据向心力公式有F N =m v C 2r ,故物块到达C 点时对轨道的压力为0,A 正确;物块返回B 时,由于BC 是光滑的,有mgr =12m v B 2-12m v C 2,代入数据解得v B =2m/s ,B 错误;物块从B 到A ,以向左为正方向,由小车与物块的动量守恒,由动量守恒定律有m v B =(m +M )v ,解得v =1m/s ,整个过程由动能定理可得-mgx =12m v 2-12m v B 2,解得x =320m<3m ,不会从小车左端掉下来,符合题意,故物块最终距离A 端的距离为L =x AB -x =5720m ,C 错误,D 正确.6.如图所示,两平行光滑杆水平放置,两相同的小球M 、N 分别套在两杆上,并由轻弹簧拴接,弹簧与杆垂直。
动量守恒能量守恒练习题
动量守恒能量守恒练习题动量守恒和能量守恒是物理学中两个重要的守恒定律。
它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。
下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。
练习题1:碰撞问题两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。
它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。
根据动量守恒定律,我们可以得到以下式子:m1v1 + m2v2 = m1v1' + m2v2'对于给定的初始条件,求解碰撞后物体的速度。
练习题2:能量转化问题一物体从高处自由下落,其高度为h,质量为m。
忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2其中,g是重力加速度,v是物体的速度。
根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。
练习题3:弹簧振动问题一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。
当物体受到外力F推动后,它绕平衡位置做简谐振动。
根据动量守恒和能量守恒定律,我们可以得到以下式子:mω^2A^2 = F^2其中,A是振幅,ω是振动的角频率。
根据这个式子,可以求解物体的运动参数。
练习题4:线性势能转化为动能一个弹簧压缩到长度为x,劲度系数为k。
当弹簧释放时,它将能量转化为物体的动能。
根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2其中,x是弹簧的长度,v是物体的速度。
根据这个式子,可以求解物体的速度。
练习题5:球体滚动问题一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。
忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:mgh = 1/2mv^2 + 1/2Iω^2其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。
根据这个式子,可以求解球体在到达底部时的速度。
动量和能量训练专题(含详细解析过程)
1.两相同的物体a 和b ,分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时开始运动.若b 所受的力是a 的2倍,经过t 时间后,分别用I a ,W a 和I b ,W b 分别表示在这段时间内a 和b 各自所受恒力的冲量的大小和做功的大小,则 A .W b =2W a ,I b =2 I a B .W b =4W a ,I b =2 I a C .W b =2 W a ,I b =4 I a D .W b =4 W a ,I b =4 I a2.木块A 从斜面底端以初速度v 0冲上斜面,经一段时间,回到斜面底端.若木块A 在斜面上所受的摩擦阻力大小不变.对于木块A ,下列说法正确的是 A .在全过程中重力的冲量为零 B .在全过程中重力做功为零C .在上滑过程中动量的变化量的大小大于下滑过程中动量的变化量D .在上滑过程中机械能的变化量大于下滑过程中机械能的变化量 3.质量为m 的小物块,在与水平方向成α角的力F 作用下,沿光滑水平面运动,物块通过A 点和B 点的速度分别是v A 和v B ,物块由A 运动到B 的过程中,力F 对物块做功W 和力F 对物块作用的冲量I 的大小是 A .221122B A W mv mv =-B .221122B B W mv mv >-C .B A I mv mv =-D .B A I mv mv >-4.A 、B 两物体质量分别为m A 、m B ,且3m A =m B ,它们以相同的初动能在同一水平地面上滑行.A 、B 两物体与地面的动摩擦因数分别为μA 、μB ,且μA =2μB ,设物体A 滑行了s A 距离停止下来,所经历的时间为t A 、而物体B 滑行了s B 距离停止下来,所经历的时间为t B .由此可以判定 A .s A >s B t A >t BB .s A >s B t A < t BC .s A <s B t A >t BD .s A <s B t A <t B5.质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为p 1、p 2和E 1、E 2,比较它们的大小,有 A .1212p p E E >>和 B .1212p p E E ><和 C .1212p p E E <>和D .1212p pE E <<和6.竖直向上抛出的物体,从抛出到落回到抛出点所经历的时间是t ,上升的最大高度是H ,所受空气阻力大小恒为f ,则在时间t 内 A .物体受重力的冲量为零B .在上升过程中空气阻力对物体的冲量比下降过程中的冲量大C .物体动量的增量大于抛出时的动量D .物体机械能的减小量等于f H7.如图所示,水平地面上放着一个表面均光滑的凹槽,槽两端固定有两轻质弹簧,一弹性小球在两弹簧间往复运动,把槽、小球和弹簧视为一个系统,则在运动过程中 A .系统的动量守恒,机械能不守恒B .系统的动量守恒,机械能守恒C .系统的动量不守恒,机械能守恒D .系统的动量不守恒,机械能不守恒8.汽车拉着拖车在平直公路上匀速行驶.突然拖车与汽车脱钩,而汽车的牵引力不变,各自受的阻力不变,则脱钩后,在拖车停止运动前,汽车和拖车系统 A .总动量和总动能都保持不变 B .总动量增加,总动能不变 C .总动量不变,总动能增加D .总动量和总动能均增加9.一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和10.如图所示,质量为m 的物体(可视为质点)以某一速度从A点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体A .重力势能增加了34mghB .重力势能增加了mghC .动能损失了mghD .机械能损失了12mgh提示:设物体受到摩擦阻力为F ,由牛顿运动定律得3sin304F mg ma mg +︒==,解得14F mg =重力势能的变化由重力做功决定,故△E p =mgh动能的变化由合外力做功决定33(sin30)4sin302k F mg s ma s mg mgh +︒==-=-︒机械能的变化由重力以外的其它力做功决定 故114sin302h E F s mg mgh ∆===︒机械 综合以上分析可知,B 、D 两选项正确.11.高速公路上发生了一起交通事故,一辆总质量2000kg 向南行驶的长途客车迎面撞上了一辆总质量为4000kg 向北行驶的卡车,碰后两辆车连接一起,并向南滑行了一小段距离后停止,根据测速仪的测定,长途客车碰前的速率是20m/s ,由此可知卡车碰前瞬间的动能 A .等于2×105J B .小于2×105JC .大于2×105JD .大于2×105J ,小于8×105J12.一个人稳站在商店的自动扶梯的水平踏板上,随扶梯向上加速,如图所示.则A .踏板对人做的功等于人的机械能的增加量B .踏板对人的支持力做的功等于人的机械能的增加量C .克服人的重力做的功等于人的机械能增加量D .对人做功的只有重力和踏板对人的支持力13.“神舟”六号载人飞船顺利发射升空后,经过115小时32分的太空飞行,在离地面343km的圆轨道上运行了77圈.运动中需要多次“轨道维持”.所谓“轨道维持”就是通过控制飞船上发动机的点火时间和推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行“轨道维持”,由于飞船受轨道上稀薄空气的影响,轨道高度会逐渐降低,在这种情况下飞船的动能、重力势能和机械能的变化情况将会是 A .动能、重力势能和机械能逐渐减小B .重力势能逐渐减小、动能逐渐增大,机械能不变C .重力势能逐渐增大,动能逐渐减小,机械能不变D .重力势能逐渐减小、动能逐渐增大,机械能逐渐减小提示:“神舟”六号飞船在每一圈的运行中,仍可视为匀速圆周运动,由万有引力提供向心力得:22Mm v Gm r r =,所以飞船的动能为:21,22k GMm E mv r==轨道高度逐渐降低,即轨道半径逐渐减小时,飞船的动能将增大;重力做正功,飞船的重力势能将减小;而大气阻力对飞船做负功,由功能关系知,飞船的机械能将减小.故选项D 正确. 14.质量为m 1=4kg 、m 2=2kg 的A 、B 两球,在光滑的水平面上相向运动,若A 球的速度为v 1=3m/s ,B 球的速度为v 2=-3m/s ,发生正碰后,两球的速度的速度分别变为v 1'和v 2',则v 1'和v 2'可能为 A .v 1'=1m/s ,v 2'=1m/s B .v 1'=4m/s ,v 2'=-5m/s C .v 1'=2m/s ,v 2'=-1m/sD .v 1'=-1m/s ,v 2'=5m/s15.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5kg ·m/s ,B 球的动量为7kg·m/s ,当A 球追上B 球时发生对心碰撞,则碰撞后A 、B 两球动量的可能值为A .p A ′=6kg ·m/s ,pB ′=6kg ·m/s B .p A ′=3kg ·m/s ,p B ′=9kg ·m/sC .p A ′=-2kg·m/s ,p B ′=14kg ·m/sD .p A ′=-5kg ·m/s ,p B ′=17kg ·m/s16.利用传感器和计算机可以测量快速变化的力的瞬时值.下图是用这种方法获得的弹性绳中拉力F 随时间的变化图线.实验时,把小球举高到绳子的悬点O 处,然后放手让小球自由下落.由此图线所提供的信息,以下判断正确的是 A .t 2时刻小球速度最大B .t 1~t 2期间小球速度先增大后减小C .t 3时刻小球动能最小D .t 1与t 4时刻小球动量一定相同17.如图所示,木块静止在光滑水平面上,子弹A 、B 从木块两侧同时射入木块,最终都停12 3 4 5t在木块中,这一过程中木块始终保持静止.现知道子弹A 射入深度d A 大于子弹B 射入的深度d B ,则可判断A .子弹在木块中运动时间t A >tB B .子弹入射时的初动能E kA >E kBC .子弹入射时的初速度v A >v BD .子弹质量m A <m B18.质量为m 的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.首先左侧射手开枪,子弹水平射入木块的最大深度为d 1,然后右侧射手开枪,子弹水平射入木块的最大深度为d 2,如图所示,设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相同.当两颗子弹均相对于木块静止时,下列判断正确的是 A .木块静止,d 1= d 2 B .木块向右运动,d 1< d 2 C .木块静止,d 1< d 2D .木块向左运动,d 1= d 2提示:由动量守恒和能量守恒求解.19.矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,如图所示.质量为m 的子弹以速度v 水平射向滑块.若射击上层,则子弹刚好不穿出,如图甲所示;若射击下层,整个子弹刚好嵌入,如图乙所示.则比较上述两种情况,以下说法正确的是A .两次子弹对滑块做功一样多B .两次滑块所受冲量一样大C .子弹击中上层过程中产生的热量多D .子弹嵌入下层过程中对滑块做功多20.一个半径为r 的光滑圆形槽装在小车上,小车停放在光滑的水平面上,如图所示,处在最低点的小球受击后获得水平向左的速度v 开始在槽内运动,则下面判断正确的是 A .小球和小车总动量不守恒 B .小球和小车总机械能守恒 C .小球沿槽上升的最大高度为r甲 乙D .小球升到最高点时速度为零21.半圆形光滑轨道固定在水平地面上,如图所示,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道左、右最高点释放,二者碰后粘在一起向左运动,最高能上升到轨道M 点,如图所示,已知OM 与竖直方向夹角为60°,则两物体的质量之比为m 1︰m 2为 A.1)∶1) B1 C.1)∶1)D.1提示:由对称性可知,m 1、m 2同时到达圆轨道最低点,根据机械能守恒定律可知,它们到达最低点的速率应相等v 2112()()m m v m m v '-=+,以后一起向左运动,由机械能守恒定律可得,212121()(1cos 60)()2m m gR m m v '+-︒=+, 联立以上各式解得12∶1)∶1)m m =22.如图所示,在光滑的水平面上,物体B 静止,在物体B 上固定一个轻弹簧.物体A 以某一速度沿水平方向向右运动,通过弹簧与物体B 发生作用.两物体的质量相等,作用过程中,弹簧获得的最大弹性势能为E P .现将B 的质量加倍,再使物体A 通过弹簧与物体B 发生作用(作用前物体B 仍静止),作用过程中,弹簧获得的最大弹性势能仍为E P .则在物体A 开始接触弹簧到弹簧具有最大弹性势能的过程中,第一次和第二次相比A .物体A 的初动能之比为2:1B .物体A 的初动能之比为4:3C .物体A 损失的动能之比为1:1D .物体A 损失的动能之比为27:3223.如图所示,竖直的墙壁上固定着一根轻弹簧,将物体A 靠在弹簧的右端并向左推,当压缩弹簧做功W 后由静止释放,物体A 脱离弹簧后获得动能E 1,相应的动量为P 1;接着物体A 与静止的物体B 发生碰撞而粘在一起运动,总动能为水平面的摩擦不计,则 A .W =E 1=E 2 B .W =E 1>E 2 C .P 1=P 2D .P 1>P 224.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A 、B 相连接,并静止在光滑的水平面上.现使A 瞬时获得水平向右的速度3m/s ,以此刻为计时起点,两物块-v甲B的速度随时间变化的规律如图乙所示,从图象信息可得A .在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由压缩状态恢复到原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻A 与B 的动能之比为E k1∶E k2=1∶825.如图所示,一轻弹簧左端固定在长木板M 的左端,右端与小木块m 连接,且m 、M 及M 与地面间接触光滑.开始时,m 和M 均静止,现同时对m 、M 施加等大反向的水平恒力F 1和F 2,从两物体开始运动以后的整个运动过程中,弹簧形变不超过其弹性限度,对于m 、M 和弹簧组成的系统A .由于F 1、F 2等大反向,故系统机械能守恒B .当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的动能最大C .由于F 1、F 2大小不变,所以m 、M 各自一直做匀加速运动D .由于F 1、F 2等大反向,故系统的动量始终为零提示:F 1、F 2为系统外力且做功代数和不为零,故系统机械能不守恒;从两物体开始运动以后两物体作的是加速度越来越小的变加速运动,当弹簧弹力大小与F 1、F 2大小相等时,m 、M 各自的速度最大,动能最大;由于F 1、F 2等大反向,系统合外力为零,故系统的动量始终为零. 26.如图所示,一轻弹簧与质量为m 的物体组成弹簧振子,物体在一竖直线上的A 、B 两点间做简谐运动,点O 为平衡位置,C 为O 、B之间的一点.已知振子的周期为T ,某时刻物体恰好经过C 向上运动,则对于从该时刻起的半个周期内,以下说法中正确的是 A .物体动能变化量一定为零B .弹簧弹性势能的减小量一定等于物体重力势能的增加量C .物体受到回复力冲量的大小为mgT /2D .物体受到弹簧弹力冲量的大小一定小于mgT /2提示:这是弹簧振子在竖直方向上做简谐运动,某时刻经过C 点向上运动,过半个周期时间应该在C 点大于O 点对称位置,速度的大小相等,所以动能的变化量为零,A 选项正确;由系统机械能守恒得,弹簧弹性势能的减少量一定等于物体重力势能的增加量,B 选项正确;振子在竖直方向上做简谐运动时,是重力和弹簧的弹力的合力提供回复力的,由动量定理I 合=△p ,设向下为正方向,22TI mgI mv =+=合弹,又因为C 点为BO 之间的某一点,v ≠0,所以,C 选项错误,D 选项正确.27.固定在水平面上的竖直轻弹簧,上端与质量为M 的物块B 相连,整个装置处于静止状态时,物块B 位于P 处,如图所示.另有一质量为m 的物块C ,从Q 处自由下落,与B 相碰撞后,立即具有相同的速度,然后B 、C 一起运动,将弹簧进一步压缩后,物块B 、C 被反弹.下列结论中正确的是 A .B 、C 反弹过程中,在P 处物块C 与B 相分离 B .B 、C 反弹过程中,在P 处物C 与B 不分离 C .C 可能回到Q 处 D .C 不可能回到Q 处28.如图所示,AB 为斜轨道,与水平面夹角30°,BC 为水平轨道,两轨道在B 处通过一小段圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的动摩擦因数为μ,求:(1)整个过程中摩擦力所做的功?(2)物块沿轨道AB 段滑动的时间t 1与沿轨道BC 段滑动的时间t 2之比t 1/t 2等于多少? 【答案】(1)mgh ;(2解析:(1)设物块在从A 到B 到C 的整个过程中,摩擦力所做的功为W f ,则由动能定理可得mgh -W f =0,则W f =mgh(2)物块在从A 到B 到C 的整个过程中,根据动量定理,有12(sin30cos30)0mg mg t mgt μμ︒-︒-=解得12sin30cos30t g t g mg μμ==︒-︒ 29.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v =滑上B的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取210m /s ).求: (1)A 、B 最后的速度;(2)木块A 与木板B 间的动摩擦因数. 【答案】(1)1m/s ;(2)0.3解析:(1)A 、B 最后速度相等,由动量守恒可得()M m v mv +=0解得01m /s 4v v == (2)由动能定理对全过程列能量守恒方程μmg L mv M m v ⋅=-+21212022()解得0.3μ=30.某宇航员在太空站内做了如下实验:选取两个质量分别为m A =0.1kg 、m B =0.2kg 的小球A 、B 和一根轻质短弹簧,弹簧的一端与小球A 粘连,另一端与小球B 接触而不粘连.现使小球A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v 0=0.1m/s 做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动,从弹簧与小球B 刚刚分离开始计时,经时间t =3.0s,两球之间的距离增加了s =2.7m ,求弹簧被锁定时的弹性势能E p ? 【答案】0.027J解析:取A 、B 为系统,由动量守恒得0()A B A A B B m m v m v m v +=+ ① 又根据题意得:A B v t v t s -=②由①②两式联立得:v A =0.7m/s ,v B =-0.2m/s由机械能守恒得:2220111()222p A B A A B BE m m v m v m v ++=+ ③代入数据解得E p =0.027J31.质量为m 1=0.10kg 和m 2=0.20kg 两个弹性小球,用轻绳紧紧的捆在一起,以速度v 0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t =5.0s 后两球相距s =4.5m .求这两个弹性小球捆在一起时的弹性势能. 【答案】2.7×10-2J解析:绳子断开前后,两球组成的系统动量守恒,根据动量守恒定律,得2211021)(v m v m v m m +=+绳子断开后,两球匀速运动,由题意可知12()v v t s -=或21()v v t s -=代入数据解得120.7m/s 0.2m/s v v ==-,或120.5m/s 0.4m/s v v =-=,两球拴在一起时的弹性势能为2021222211)(212121v m m v m v m E P +-+==2.7×10-2J32.一块质量为M 长为L 的长木板,静止在光滑水平桌面上,一个质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为v 05.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v ;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.v【答案】(1;(2)208(12)25v m g Mμ- 解析:(1)设长木板的长度为l ,长木板不固定时,对M 、m 组成的系统,由动量守恒定律,得005v mv m Mv '=+ ① 由能量守恒定律,得22200111()2252v mgl mv m Mv μ'=-- ② 当长木板固定时,对m ,根据动能定理,有2201122mgl mv mv μ-=- ③ 联立①②③解得v =(2)由①②两式解得208(12)25v m l g Mμ=- 33.如图所示,光滑轨道的DP 段为水平轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g .求撤去外力前的瞬间,弹簧的弹性势能E 是多少?【答案】解析:对A 、B 、C 及弹簧组成的系统,当弹簧第一次恢复原长时,设B 、C 共同速度大小为v 0,A 的速度大小为v A ,由动量守恒定律有0)(2v m m mv A +=①则v A =v 0由系统能量守恒有E =12 2mv A 2+12 (m +m )v 02 ②此后B 、C 分离,设C 恰好运动至最高点Q 的速度为v ,此过程C 球机械能守恒,则mg ·2R =12 mv 02-12 mv 2 ③在最高点Q ,由牛顿第二定律得Rmv mg 2= ④ 联立①~④式解得E =10mgR34.如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上的O 点,此时弹簧处于原长.另一质量与B 相同的块A 从导轨上的P 点以初速度v 0向B 滑行,当A 滑过距离l 时,与B 相碰.碰撞时间极短,碰后A 、B 粘在一起运动.设滑块A 和B 均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g .求:(1)碰后瞬间,A 、B 共同的速度大小;(2)若A 、B 压缩弹簧后恰能返回到O 点并停止,求弹簧的最大压缩量.【答案】(1;(2)20168v l g μ- 解析:(1)设A 、B 质量均为m ,A 刚接触B 时的速度为v 1,碰后瞬间共同的速度为v 2,以A 为研究对象,从P 到O ,由功能关系22011122mgl mv mv μ=- 以A 、B 为研究对象,碰撞瞬间,由动量守恒定律得mv 1=2mv 2解得2v =(2)碰后A 、B 由O 点向左运动,又返回到O 点,设弹簧的最大压缩量为x , 由功能关系可得221(2)2(2)2mg x m v μ=解得20168v l x g μ=- 35.如图所示,质量M =1kg 的滑板B 右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木板A之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 质量m =1kg ,开始时木块A 与滑块B 以v 0=2m/s 的速度水平向右运动,并与竖直墙碰撞.若碰撞后滑板B 以原速v 0弹回,g 取10m/s 2.求:滑板B 向左运动后,木块A 滑到弹簧C 墙压缩弹簧过程中,弹簧具有的最大弹性势能.【答案】5.4J解析:木块A 先向右减速后向左加速度,滑板B 则向左减速,当弹簧压缩量最大,即弹性势能最大为E p 时,A 和B 同速,设为v .对A 、B 系统:由动量守恒定律得 00()Mv mv m M v -=+① 解得v =1.2m/s 由能量守恒定律得22200111()222p mv Mv m M v E mgL μ+=+++ ②由①②解得 5.4p E =J36.如图所示,质量M =4kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5m ,这段滑板与木块A 之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.可视为质点的小木块A 以速度v 0=0.2,由滑板B 左端开始沿滑板B 表面向右运动.已知A 的质量m =1kg ,g 取10m/s 2 .求:(1)弹簧被压缩到最短时木块A 的速度;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【答案】(1)2m/s ;(2)39J解析:(1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为V ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,A 、B 系统的动量守恒,则mv 0=(M +m )V① V =m M m +v 0 ②木块A 的速度:V =2m/s③ (2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.由能量守恒,得E P =22011()22mv m M v mgL μ-+- ④解得E P =39J37.设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱? 已知:返回过程中需克服火星引力做功(1)R W mgR r=-,返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ;不计火星表面大气对返回舱的阻力和火星自转的影响. 【答案】(1)2R mgR r - 解析:物体m 在火星表面附近2mMG mg R =,解得2GM gR =设轨道舱的质量为0m ,速度大小为v .则2002m Mv Gm r r = 联立以上两式,解得返回舱与轨道舱对接时具有动能22122k mgR E mv r== 返回舱返回过程克服引力做功(1)R W mgR r=-返回舱返回时至少需要能量k E E W =+ 解得(1)2R E mgR r =- 38.美国航空航天局和欧洲航空航天局合作研究的“卡西尼”号土星探测器,在美国东部时间2004年6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族.“卡西尼”号探测器进入绕土星飞行的轨道,先在半径为R 的圆形轨道Ⅰ上绕土星飞行,运行速度大小为v 1.为了进一步探测土星表面的情况,当探测器运行到A 点时发动机向前喷出质量为△m 的气体,探测器速度大小减为v 2,进入一个椭圆轨道Ⅱ,运动到B 点时再一次改变速度,然后进入离土星更近的半径为r 的圆轨道Ⅲ,如图所示.设探测器仅受到土星的万有引力,不考虑土星的卫星对探测器的影响,探测器在A 点喷出的气体速度大小为u .求:(1)探测器在轨道Ⅲ上的运行速率v 3和加速度的大小;(2)探测器在A 点喷出的气体质量△m .【答案】(11v ,212R v r;(2)122v v m u v -- 解析:(1)在轨道I 上,探测器m 所受万有引力提供向心力,设土星质量为M ,则有212v MmG m RR = 同理,在轨道Ⅲ上有232()()v M m m G m m rr -∆=-∆由上两式可得31v v = 探测器在轨道Ⅲ上运行时加速度设为a ,则23v a r= 解得212Ra v r = (2)探测器在A 点喷出气体前后,由动量守恒定律,得mv 1=(m -△m )v 2+△mv 解得122v v m m u v -∆=- 78.如图所示,光滑水平路面上,有一质量为m 1=5kg 的无动力小车以匀速率v 0=2m/s 向前行驶,小车由轻绳与另一质量为m 2=25kg 的车厢连结,车厢右端有一质量为m 3=20kg的物体(可视为质点),物体与车厢的动摩擦因数为μ=0.2,开始物体静止在车厢上,绳子是松驰的.求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移(设物体不会从车厢上滑下);(2)从绳拉紧到小车、车厢、物体具有共同速度所需时间.(取g =10m/s 2)【答案】(1)0.017m ;(2)0.1s解析:(1)以m 1和m 2为研究对象,考虑绳拉紧这一过程,设绳拉紧后,m 1、m 2的共同速度为v 1这一过程可以认为动量守恒,由动量守恒定律有m 1v 0=(m 1+m 2)v 1,解得10112521m/s 5253m v v m m ⨯===++. 再以m 1、m 2、m 3为对象,设它们最后的共同速度为v 2,则m 1v 0=(m 1+m 2+m 3)v 2, 解得102123520.2m/s 52520m v v m m m ⨯===++++ 绳刚拉紧时m 1和m 2的速度为v 1,最后m 1、m 2、m 3的共同速度为v 2,设m 3相对m 2的位移为Δs ,则在过程中由能量守恒定律有221213123211()()22m m v m g s m m m v μ+=∆+++ 解得Δs =0.017m .(2)对m 3,由动量定理,有μm 3gt =m 3v 220.20.1s 0.210v t g μ===⨯ 所以,从绳拉紧到m 1、m 2、m 3有共同速度所需时间为t =0.1s .79.已知A 、B 两物块的质量分别为m 和3m ,用一轻质弹簧连接,放在光滑水平面上,使B 物块紧挨在墙壁上,现用力推物块A 压缩弹簧(如图所示).这个过程中外力F 做功为W ,待系统静止后,突然撤去外力.在求弹簧第一次恢复原长时A 、B 的速度各为多大时,有同学求解如下:解:设弹簧第一次恢复原长时A 、B 的速度大小分别为v A 、v B系统动量守恒:0=m v A +3m v B系统机械能守恒:W =22B A 11322mv mv +⨯解得:A v =B v =“-”表示B 的速度方向与A 的速度方向相反) (1)你认为该同学的求解是否正确.如果正确,请说明理由;如果不正确,也请说明理由并给出正确解答.(2)当A 、B 间的距离最大时,系统的弹性势能E P =?【答案】(1)不正确.A v =v B =0;(2)34W 解析:(1)该同学的求解不正确.在弹簧恢复原长时,系统始终受到墙壁给它的外力作用,所以系统动量不守恒,且B 物块始终不动,但由于该外力对系统不做功,所以机械能守恒,即在恢复原长的过程中,弹性势能全部转化为A 物块的动能.2A 12W mv =解得A v =v B =0 (2)在弹簧恢复原长后,B 开始离开墙壁,A 做减速运动,B 做加速运动,当A 、B 速度相等时,A 、B 间的距离最大,设此时速度为v ,在这个过程中,由动量守恒定律得 mv A =(m +3m )v解得A 14v v ==根据机械能守恒,有W =22P 11322mv mv E +⨯+ 解得P 34E W =80.1930年发现用钋放出的射线,其贯穿能力极强,它甚至能穿透几厘米厚的铅板,1932年,英国年轻物理学家查德威克用这种未知射线分别轰击氢原子和氮原子,结果打出一些氢核和氮核.若未知射线均与静止的氢核和氮核正碰,测出被打出的氢核最大速度为v H =3.5×107m/s ,被打出的氮核的最大速度v N =4.7×106m/s ,假定正碰时无机械能损失,设未知射线中粒子质量为m ,初速为v ,质子的质量为m ’.(1)推导打出的氢核和氮核速度的字母表达式;(2)根据上述数据,推算出未知射线中粒子的质量m 与质子的质量m ’之比(已知氮核质量为氢核质量的14倍).【答案】(1)H H 2m v v m m =+,N N 2m v v m m =+;(2) 1.0165m m=' 解析:(1)碰撞满足动量守恒和机械能守恒,与氢核碰撞时,有21H H v m mv mv +=,2212212121H H v m mv mv += 解得H H 2m v v m m =+.同理可得N N2m v v m m =+。
动量与能量综合练习一
动量与能量综合分析练习1.如图14所示,一个半径R=0.80m 的1/4光滑圆弧轨道固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度h=1.25m 。
在圆弧轨道的最下端放置一个质量mB=0.30kg 的小物块B (可视为质点)。
另一质量mA=0.10kg 的小物块A (也视为质点)由圆弧轨道顶端从静止开始释放,运动到轨道最低点时,和物块B 发生碰撞,碰后物块B 水平飞出,其落到水平地面时的水平位移s=0.80m 。
忽略空气阻力,重力加速度g 取10m/s2,求:1)物块A 滑到圆弧轨道下端时的速度大小;2)物块B 离开圆弧轨道最低点时的速度大小;3)物块A 与物块B 碰撞过程中,A 、B 所组成的系统损失的机械能。
2.如图2-3-6所示,在水平光滑桌面上放一质量为M 的玩具小车。
在小车的平台(小车的一部分)上有 一质量可忽略的弹簧,一端固定在平台上,另一端用质量为m 的小球将弹簧压缩一定距离后用细线捆住.用 手将小车固定在桌面上,然后烧断细线,小球就被弹出,落在车上A 点.OA =s .如果小车不固定而烧断 细线,球将落在车上何处?设小车足够长,球不致落在车外.3.如图8所示,质量为1.0kg 的物体m1,以5m/s 的速度在水平桌面上AB 部分的左侧向右运动,桌面AB 部分与m1间的动摩擦因数μ=0.2,AB 间的距离s=2.25m ,桌面其他部分光滑。
m1滑到桌边处与质量为2.5kg 的静止物体m2发生正碰,碰撞后m2在竖直方向上落下0.6m 时速度大小为4m/s ,若g 取10m/s2,问m1碰撞后静止在什么位置?4.如图所示,在光滑水平地面上有一辆质量为M 的小车,车的上表面光滑,车上装有一个半径为R 的光滑1/4圆环.一个质量为m 的小滑块从跟车面等高的平台上以速度V0滑入圆环.试问:1)小滑块的初速度V0满足什么条件才能使滑块不至于滑出圆环?2)若滑块滑出圆环还能上升的高度为R,则V0为多少?物块还能掉到车上吗?3)若车的上表面是粗糙的,且长度为L,若物块以V0滑上车以后又恰能回到车的最左端,则摩擦因素μ为多少?图 2-3-65.如图所示,光滑水平面上静放一上表面粗糙的长木板,质量为M=20kg ,另一质量为m=5kg 的物块,可看成质点,以大小为V0=4m/s 、方向水平向右的初速度从木板的左端滑上木板,由于摩擦最后刚好停在板的右端(g 取10m/s2)。
动量能量综合题
动量和能量综合练习班级座号姓名成绩一、选择题:1、如图所示,两物体质量为m1 =2 m2 ,两物体与水平地面间的动摩擦因数分别为μ1和μ2,当细线烧断后,压缩弹簧在弹开两物体的过程中系统的总动量守恒,而且弹簧恢复到原长两物体脱离弹簧时速度均不为零,则()A、μ1 : μ2=1 : 2B、m1和m2的最大速度大小之比v1 : v2=1 : 2C、m1和m2脱离弹簧后各自移动的最大距离之比s1 : s2=1 : 2D、m1 和m2脱离弹簧后各自移动的时间之比t1 : t2=1 : 22、如图所示,甲车和小孩A的总质量为M1,以速度v0沿水平地面向右运动,乙车和小孩B 在质量为M2,车上小孩B推着地面上一质量为m的箱子以共同速度v0向左运动,M1=M2,不计摩擦,为了防止相撞,乙车上小孩将箱子推出,甲车上小孩将箱子接住,此后,下面情况中可能发生的是()A、甲车静止,乙车向右运动B、甲车向左运动,乙车向右运动,它们的速率相等,且小于v0C、两车都向左运动,甲车的速率大于乙车的速率D、甲车向左运动,乙车向右运动,甲车的速率小于乙车的速率3、一质量为2m的小物块A,沿X轴的正方向运动,与静止在X轴上的质量为m的小物块B 发生碰撞。
碰撞前物块A的速度为v0,已知碰撞后,两物块都沿X轴的正方向运动,则碰撞后小物块B可能获得的速度为()A、v0B、2v0C、2v0/3D、v0/24、如图所示,在光滑水平桌面上放着长为L的方木块M,今有A、B两颗子弹沿同一水平直线分别以v A、v B从M的两侧同时射入木块。
A、B在木块中嵌入的深度分别为d A、d B,且d A>d B,(d A+d B)<L,而木块却一直保持静止,则可判断A、B子弹入射前()A、速度v A>v BB、子弹A的动能大于B的动能C、子弹A的动量大于B的动量D、子弹A的动量大小等于B的动量大小5、如图所示,下端固定的竖直轻弹簧的上端与质量为3kg的物体B连接,质量为1kg的物体A放在B上先用力将弹簧压缩后释放,它们向上运动,当A、B分离后A又上升了0.2m达到最高点,这时B第一次向下运动且弹簧恰好恢复原长,则从A、B分离到A达到最高点的过程中,弹簧弹力对B的冲量大小为(取g=10m/s2)( )A、4N SB、6N SC、8N SD、12N S6、如图所示,在光滑水平面上,有一质量M=3kg的薄木板和质量m=1kg的木块,都以4m/s 的初速度朝相反方向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.4m/s时,物块m的运动情况是()A、作加速运动B、作减速运动C、作匀速运动D、以上运动都可能7、在有空气阻力的情况下,将一物体由地面竖直上抛,当它上升至距离地面h1高度时,其动能和重力势能相等,当它下降至离地面h2高时,其动能又恰好与重力势能相等,已知抛出后上升的最大高度为H,则()A、h1>H/2, h2>H/2B、h1>H/2, h2<H/2C、h1<H/2, h2>H/2D、h1<H/2, h2<H/28、原来静止的物体受合外力作用时间为2t0,作用力随时间的变化情况如图所示,则()A、t=0到t= t0时间内物体的动量变化与t= t0到t=2 t0内动量变化相等B、t=0到t= t0时间内物体的平均速率与t= t0到t=2 t0内平均速率不等C、t=2 t0时物体的速度为零,外力在2 t0时间内对物体的冲量为零D、2 t0时间内物体的位移为零,外力对物体做功为零9、静止在地面上的物体在水平拉力F1作用一段时间后撤去,物体的v-t图象如图中折线OAC 所示;若用水平拉力F2作用于该物体,过一段时间撤去,物体的v-t图象如图中OBD所示,在两次运动过程中,位移相等,则()A、力F1的冲量较大B、力F2的冲量较大C、F1力做的功较多D、F2力做的功较多10、(较难)如图所示,跨过同一高度处的光滑定滑轮的细线连接着质量相同的物体A和B,A 套在光滑水平杆上,细线与水平杆的夹角为530,定滑轮离水平杆的高度为0.2m。
最新动量与能量综合计算题练习
动量与能量综合1、如图所示,一质量为M,长为L的木板固定在光滑水平面上。
一质量为m的小滑块以水平速度v0从木板的左端开始滑动,滑到木板的右端时速度恰好为零。
(1)小滑块在木板上的滑动时间;(2)若木块不固定,其他条件不变,小滑块相对木板静止时距木板左端的距离。
2、如图所示,光滑半圆轨道竖直放置,半径为R,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M = 0.99kg的木块,一颗质量为m = 0.01kg的子弹,以v o= 400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R多大时,平抛的水平距离最大? 最大值是多少?(g取10m/s2)3.质量为M的物块A静止在离地面高h的水平桌面的边缘,质量为m的物块B沿桌面向A运动并以速度v0与A发生正碰(碰撞时间极短)。
碰后A离开桌面,其落地点离出发点的水平距离为L。
碰后B 反向运动。
已知B与桌面间的动摩擦因数为μ.。
重力加速度为g,桌面足够长。
求:(1)碰后A、B分别瞬间的速率各是多少?(2)碰后B后退的最大距离是多少?4. 如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比122m m =,秋千的质量不计,秋千的摆长为R ,C 点比O点低5R .5、如图12所示,一个半径R =0.80m 的41光滑圆弧轨道固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度h =1.25m 。
在圆弧轨道的最下端放置一个质量m B =0.30kg 的小物块B (可视为质点)。
另一质量m A =0.10kg 的小物块A (也视为质点)由圆弧轨道顶端从静止开始释放,运动到轨道最低点时,与物块B 发生碰撞,碰后A 物块和B 物块粘在一起水平飞出。
第十六章 专题 动量和能量的综合应用
第16章 动量守恒定律 专题 动量和能量的综合应用题型一 滑块—木板模型例1.如图所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?练习1.如图所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )A .L B.3L 4C.L 4D.L 2【小结】:1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.班级: 姓名:题型二子弹打木块模型例2.如图所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.练习2.矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图所示,则上述两种情况相比较,下列说法不正确的是()A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大【小结】:1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.题型三 弹簧类模型例3.两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m 4,速度为v 0,子弹射入木块A 并留在其中.求:(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小.(2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.练习3.如图所示,与水平轻弹簧相连的物体A 停放在光滑的水平面上,物体B 沿水平方向向右运动,跟与A 相连的轻弹簧相碰.在B 跟弹簧相碰后,对于A 、B 和轻弹簧组成的系统,下列说法中正确的是( )A .弹簧压缩量最大时,A 、B 的速度相同B .弹簧压缩量最大时,A 、B 的动能之和最小C .弹簧被压缩的过程中系统的总动量不断减少D .物体A 的速度最大时,弹簧的弹性势能为零【小结】:1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例4.(动量与能量的综合应用)如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:(1)滑块A与B碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.第16章 动量守恒定律专题 动量和能量的综合应用课后练习(一)1.如图所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12m v 2 B .μmgLC.12NμmgLD.mM v 22(m +M )3.用不可伸长的细线悬挂一质量为M 的小木块,木块静止,如图4所示.现有一质量为m 的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v 0,重力加速度为g ,则下列说法正确的是( )A .从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B .子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v 0M +mC .忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D .子弹和木块一起上升的最大高度为m 2v 022g (M +m )24.如图所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )A .3 JB .4 JC .12 JD . 6 J班级: 姓名:5.如图所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h 4D .B 与A 分开后能达到的最大高度不能计算6.如图所示,光滑水平面上一质量为M 、长为L 的木板右端紧靠竖直墙壁.质量为m 的小滑块(可视为质点)以水平速度v 0滑上木板的左端,滑到木板的右端时速度恰好为零.(1)求小滑块与木板间的摩擦力大小;(2)现小滑块以某一速度v 滑上木板的左端,滑到木板的右端时与竖直墙壁发生弹性碰撞,然后向左运动,刚好能够滑到木板左端而不从木板上落下,试求v v 0的值.动量守恒定律专题 动量和能量的综合应用课后练习(二)1.如图,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)(1)小滑块的最终速度大小;(2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少?2.两物块A 、B 用水平轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,质量为4 kg 的物块C 静止在前方,如图所示.B 与C 碰撞后二者会粘在一起运动.则在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?班级: 姓名:3.如图所示,物体A置于静止在光滑水平面上的平板小车B的左端,在A的上方O点用不可伸长的细线悬挂一小球C(可视为质点),线长L=0.8 m.现将小球C拉至水平(细线绷直)无初速度释放,并在最低点与A物体发生水平正碰,碰撞后小球C反弹的最大高度为h=0.2 m.已知A、B、C的质量分别为m A=4 kg、m B=8 kg和m C=1 kg,A、B间的动摩擦因数μ=0.2,A、C碰撞时间极短,且只碰一次,取重力加速度g =10 m/s2.(1)求小球C与物体A碰撞前瞬间受到细线的拉力大小;(2)求A、C碰撞后瞬间A的速度大小;(3)若物体A未从小车B上掉落,则小车B的最小长度为多少?4.如图所示,质量m B=2 kg的平板车B上表面水平,在平板车左端相对于车静止着一块质量m A=2 kg 的物块A,A、B一起以大小为v1=0.5 m/s的速度向左运动,一颗质量m0=0.01 kg的子弹以大小为v0=600 m/s的水平初速度向右瞬间射穿A后,速度变为v=200 m/s .已知A与B之间的动摩擦因数不为零,且A 与B最终达到相对静止时A刚好停在B的右端,车长L=1 m,g=10 m/s2,求:(1)A、B间的动摩擦因数;(2)整个过程中因摩擦产生的热量为多少?微型专题 动量和能量的综合应用[学习目标] 1.进一步熟练掌握动量守恒定律的应用.2.综合应用动量和能量观点解决力学问题.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,应由能量守恒求解问题.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度是多少?(2)木块A 从刚开始运动到A 、B 速度刚好相等的过程中,木块A 所发生的位移是多少?(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ①得:v =v 04② (2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02③ 则木块A 所发生的位移为x 1=15v 0232μg④ (3)方法一:B 向右加速过程的位移设为x 2.则μmgx 2=12×3m v 2⑤ 由⑤得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二:从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2 得:L =3v 028μg. 二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,则系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2 如图2所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图2(1)射入的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案 (1)Mm v 22(M +m )(2)m 2v 22(M +m )2μg解析 因子弹未射出,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.(1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得:m v =(M +m )v ′①射入过程中系统损失的机械能ΔE =12m v 2-12(M +m )v ′2② 解得:ΔE =Mm v 22(M +m ). (2)子弹射入木块后二者一起沿地面滑行,设滑行的距离为x ,由动能定理得:-μ(M +m )gx =0-12(M +m )v ′2③ 由①③两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统动量守恒.当子弹不穿出木块时,相当于完全非弹性碰撞,机械能损失最多. 三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程往往涉及到多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大. 例3 两块质量都是m 的木块A 和B 在光滑水平面上均以速度v 02向左匀速运动,中间用一根劲度系数为k的水平轻弹簧连接,如图3所示.现从水平方向迎面射来一颗子弹,质量为m4,速度为v 0,子弹射入木块A 并留在其中.求:图3(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能. 答案 (1)v 05 v 02 (2)140m v 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得: m v 02-m v 04=(m4+m )v A 解得v A =v 05(2)由于子弹击中木块A 后木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给A 、B 木块施以弹力,使得木块A 加速、B 减速运动,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧弹性势能最大,在弹簧压缩过程木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒. 设弹簧压缩量最大时共同速度为v ,弹簧的最大弹性势能为E pm , 选向左为正方向,由动量守恒定律得:54m v A +m v B =(54m +m )v 由机械能守恒定律得:12×54m v A 2+12m v B 2=12×(54m +m )v 2+E pm 联立解得v =13v 0,E pm =140m v 02.1.(滑块—木板模型)如图4所示,质量为M 、长为L 的长木板放在光滑水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图4A .L B.3L 4 C.L 4 D.L2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C 项错误.2.(子弹打木块模型)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图5所示,则上述两种情况相比较,下列说法不正确的是( )图5A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 D解析 设子弹的质量是m ,初速度是v 0,滑块的质量是M ,选择子弹初速度的方向为正方向,由动量守恒定律知滑块获得的最终速度(最后滑块和子弹的共同速度)为v.则:m v0=(m+M)v所以:v=m v0M+m可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(子弹初、末速度相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;滑块的末速度是相等的,所以获得的动能是相同的,根据动能定理,滑块动能的增量是子弹做功的结果,所以两次子弹对滑块做的功一样多,故C正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,Q=F f·x相对,由于两种情况相比较子弹能射穿的厚度不相等,即相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类模型)(多选)如图6所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图6A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.4.(动量与能量的综合应用)如图7所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C间的动摩擦因数均为μ=0.5,小车C与水平地面间的摩擦忽略不计,取g=10 m/s2.求:图7(1)滑块A 与B 碰撞后瞬间的共同速度的大小; (2)小车C 上表面的最短长度. 答案 (1)2.5 m/s (2)0.375 m解析 (1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律得:m A gh =12m A v 12①代入数据解得v 1=2gh =5 m/s ②设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,以向右的方向为正方向, m A v 1=(m A +m B )v 2③ 代入数据解得v 2=2.5 m/s ④(2)设小车C 上表面的最短长度为L ,滑块A 与B 最终恰好没有从小车C 上滑出,三者最终速度相同设为v 3,以向右的方向为正方向 根据动量守恒定律有: (m A +m B )v 2=(m A +m B +m C )v 3⑤ 根据能量守恒定律有:μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 32⑥联立⑤⑥式代入数据解得L =0.375 m.一、选择题考点一 滑块-木板模型1.如图1所示,在光滑水平面上,有一质量M =3 kg 的薄板和质量m =1 kg 的物块都以v =4 m/s 的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s 时,物块的运动情况是( )图1A .做减速运动B .做加速运动C .做匀速运动D .以上运动都有可能答案 A解析 开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v 1,规定向右为正方向,根据动量守恒定律得:(M -m )v =M v 1代入数据解得:v 1≈2.67 m/s <2.9 m/s ,所以物块处于向左减速的过程中.2.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图2所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图2A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的整体动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1 系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.考点二 子弹打木块模型3.如图3所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法不正确的是( )图3A .木块的机械能增量为F f LB .子弹的机械能减少量为F f (L +d )C .系统的机械能减少量为F f dD .系统的机械能减少量为F f (L +d )答案 D解析子弹对木块的作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.4.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图4所示.现有一质量为m的子弹自左方水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图4A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由于弹簧射入木块瞬间系统动量守恒可知:m v0=(m+M)v′所以子弹射入木块后的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.考点三弹簧类模型5.如图5所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图5A .P 的初动能B .P 的初动能的12C .P 的初动能的13D .P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确.6.如图6所示,静止在光滑水平面上的木板,质量M =2 kg ,右端有一根轻质弹簧沿水平方向与木板相连,质量m =1 kg 的铁块以水平速度v 0=6 m/s ,从木板的左端沿板面向右滑行,压缩弹簧又被弹回,最后恰好停在木板的左端.在上述过程中弹簧具有的最大弹性势能为( )图6A .3 JB .4 JC .12 JD .6 J 答案 D7.(多选)如图7所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图7A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,即A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,B 能达到的最大高度为h ′=14h ,即C 正确,D 错误. 二、非选择题8.(滑块—木板模型)如图8,质量为M =0.2 kg 的长木板静止在光滑的水平地面上,现有一质量为m =0.2 kg 的滑块(可视为质点)以v 0=1.2 m/s 的速度滑上长木板的左端,小滑块与长木板间的动摩擦因数=0.4,小滑块刚好没有滑离长木板,求:(g 取10 m/s 2)图8(1)小滑块的最终速度大小; (2)在整个过程中,系统产生的热量;(3)以地面为参照物,小滑块滑行的距离为多少? 答案 (1)0.6 m/s (2)0.072 J (3)0.135 m 解析 (1)小滑块与长木板组成的系统动量守恒, 规定向右为正方向,由动量守恒定律得: m v 0=(m +M )v 解得最终速度为:v =m v 0M +m =0.2×1.20.2+0.2 m/s =0.6 m/s (2)由能量守恒定律得: 12m v 02=12(m +M )v 2+Q 代入数据解得热量为:Q =0.072 J (3)对小滑块应用动能定理: -μmgs =12m v 2-12m v 02代入数据解得距离为s =0.135 m.9.(子弹打木块模型)如图9所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一块质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度向左运动,一颗质量m 0=0.01 kg 的。
经典课时作业 动量和能量综合训练
经典课时作业动量和能量综合训练(含标准答案及解析)时间:45分钟分值:100分一、选择题1.一铅球正在做平抛运动.下列说法正确的是(不计空气阻力)( )A.在连续相等的时间内铅球的动量变化量都相等B.在连续相等的时间内铅球的动能变化量都相等C.在相等的时间内铅球动能增加量一定等于它重力势能的减少量D.重力对铅球做功不影响它水平方向的匀速运动2.质量不同而初动量相同的两个物体,在水平地面上由于摩擦力的作用而停止运动,它们与地面间的动摩擦因数相同,比较它们的滑行时间和滑行距离,则( )A.两个物体滑行的时间一样长B.质量大的物体滑行的时间较长C.两个物体滑行的距离一样长D.质量小的物体滑行的距离较长3.质量为5 kg的A球静止在光滑水平面上,质量为2 kg的B球以10 m/s的速度与A 正碰,则碰后A和B的速度可能的是(设B球初速度方向为正)( )A.v A=2m/s,v B=5m/sB.v A=5m/s,v B=2m/sC.v A=-2m/s,v B=15m/sD.v A=4m/s,v B=04.一质点以一定的初速度飞入一个恒定有界引力场(进入后该质点受到一个恒力),又从该引力场飞出来,从质点进入到离开该有界场,可能的情况有( )A.动量和动能都变化B.动量和动能都不变C.只有动能变化,而动量不变D.只有动量变化,而动能不变5.如图a所示,物块A、B间拴接一个压缩后被锁定的弹簧,整个系统静止放在光滑水平地面上,其中A物块最初与左侧固定的挡板相接触,B物块质量为2 kg.现解除对弹簧的锁定,在A 离开挡板后,B物块的v-t图象如图b所示,则可知( )A.在A离开挡板前,A、B系统动量不守恒,之后守恒B.在A离开挡板前,A、B与弹簧组成的系统机械能守恒,之后不守恒C.弹簧锁定时其弹性势能为9 JD.A的质量为1 kg,在A离开挡板后弹簧的最大弹性势能为3 J6.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑.弹簧开始时处于原长,运动过程中始终处在弹性限度内.在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有( )A.当A、B加速度相等时,系统的机械能最大B.当A、B加速度相等时,A、B的速度差最大C.当A、B速度相等时,A的速度达到最大D.当A、B速度相等时,弹簧的弹性势能最大7.质量为m=1 kg的物块A从倾角为θ=37°的固定斜面顶端由静止开始下滑到斜面底端,在此过程中重力对物块的冲量为5 N·s,重力做的功为4.5 J.若将该斜面放在光滑水平地面上,仍让物块A从斜面顶端由静止开始下滑,当物块到达斜面底端时(取g=10m/s2,sin37°=0.6,cos37°=0.8)( )A.物块和斜面的总动量为3 kg· m/sB.物块和斜面的总动量为5 kg· m/sC.物块和斜面的总动能为4.5 JD.物块的动能为4.5 J8.如图所示, 该物体从斜面的顶端由静止开始下滑,经过A点时的速度与经过C点时的速度相等,已知AB=BC,则下列说法正确的是( )斜面上除了AB段粗糙外,其余部分均是光滑的,小物体与AB段的动摩擦因数处处相等.今使A.物体在AB段与BC段的加速度大小相等B.物体在AB段与BC段的运动时间相等C.重力在这两段中所做的功相等D.物体在AB段与BC段的动量变化相等9.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b 两块,若质量较大的a块物体的速度方向仍沿原来的方向,则有( )A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等10.如图所示将一光滑的半圆槽置于光滑水平面上,让一小球自左侧槽口A的正上方从静止开始下落,与圆弧槽相切自A点进入槽内,到达最低点B,再上升到C点后离开半圆槽,则以下结论中不正确的是( )A.小球在半圆槽内从A到B的运动的过程中,只有重力对它做功,所以小球的机械能守恒B.小球在半圆槽内运动的过程中,小球与半圆槽组成的系统的机械能守恒C.小球在半圆槽内运动的过程中,小球与半圆槽的水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动11.同一粗糙水平面上有两个完全相同的滑块并排放置,现分别用方向相同的恒定拉力F1与F2(F1>F2)作用于滑块,使滑块从静止开始运动一段时间后撤去拉力,最终两滑块位移相同,滑块运动的v-t图象如图所示(两图线速度减小阶段平行),则( )A.两拉力的冲量I1>I2B.两拉力的冲量I1<I2C.两拉力做的功W1>W2D.两拉力做的功W1=W212.物体只在力F作用下运动,力F随时间变化的图象如图所示,在t=1 s时刻,物体的速度为零,则下列论述正确的是( )A.0~3 s内,力F所做的功等于零,冲量也等于零B.0~4 s内,力F所做的功等于零,冲量也等于零C.第1 s内和第2 s内的速度方向相同,加速度方向相反D.第3 s内和第4 s内的速度方向相反,加速度方向相同13.(1)下列是一些有关高中物理实验的描述,其中错误的是________.A.在“验证力的平行四边形定则”实验中,拉橡皮筋的细绳要稍长,并且实验时要使弹簧与木板平面平行B.在“用单摆测定重力加速度”实验中,如果摆长测量无误,但测得的g值偏小,其原因可能是将全振动的次数n误计为n-1C.在“验证机械能守恒定律”的实验中,需要用天平测物体(重锤)的质量D.在做“验证动量守恒定律”实验中,确定小球落后的方法是:用尽可能小的圆把所有的小球落点圈在里面,圆心就是小球落点的平均位置(2)下列说法中正确的是________.A.在用落体法“验证机械能守恒定律”的实验中,所用的重锤的质量宜大一些B.做“验证力的平行四边形定则”实验时,两个测力计可以和木板成一定的角度C.做“碰撞中的动量守恒”的实验时,必须让斜槽末端的切线水平D.在“用单摆测定重力加速度”实验中,应该在摆球摆到最高点时开始计时14.如图所示的实验装置,水平桌面上固定一个曲面斜面体C,曲面下端的切平面是水平的,并且曲面是不光滑的.桌上还有质量不等的小滑块A、B,小滑块A、B放在曲面上时放手后均能沿曲面向下滑动且能滑出斜面体C.另外还有实验器材:天平,重锤线,刻度尺,白纸,复写纸.(1)要想比较准确地测出小滑块A从曲面顶端滑到曲面底端(曲斜面体最右端)的过程中,滑块A克服摩擦力所做的功:(重力加速度g为已知)①写出实验中需要直接测量的物理量:(用字母表示,并对字母简要说明)_______________________________________________________________②滑块A克服摩擦力做功W f的表达式:________________________________________________________________(2)应用以上器材和测量仪器,还可以完成的物理实验有:_________________________________________________________________15.2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注.冰壶在水平冰面上的一次滑行可简化为如下过程:如下图,运动员将静止于O点的冰壶(视为质点)沿直线OO′推到A点放手,此后冰壶沿AO′滑行,最后停于C点.已知冰面和冰壶间的动摩擦因数为μ,冰壶质量为m,AC=L,CO′=r,重力加速度为g.(1)求冰壶在A点的速率;(2)求冰壶从O点到A点的运动过程中受到的冲量大小;(3)若将BO′段冰面与冰壶间的动摩擦因数减小为0.8μ,原只能滑到C点的冰壶能停于O′点,求A点与B点之间的距离.16.某机械打桩机原理可简化为如图所示,直角固定杆光滑,杆上套有m A=55 kg和m B=80 kg两滑块,两滑块用无弹性的轻绳相连,绳长为5 m,开始在外力作用下将A滑块向右拉到与水平夹角为37°时静止释放,B滑块随即向下运动,并带动A滑块向左运动,当运动到绳与竖直方向夹角为37°时,B滑块(重锤)撞击正下方的桩头C,桩头C的质量m C=200 kg.碰撞时间极短,碰后A滑块由缓冲减速装置让其立即静止,B滑块反弹上升h1=0.05 m,C桩头朝下运动h2=0.2 m静止.取g=10 m/s2.求:(1)滑块B碰前的速度;(2)泥土对桩头C的平均阻力.17.竖直平面内有一半径为R=3.2 m的光滑圆弧轨道,O为轨道的最低点,A点距O点的高度为h1=0.2 m,B点距O点的高度为h2=0.8 m.现从A点释放一质量为M的大球(半径远小于R),且每隔适当的时间从B点释放一质量为m的小球,它们和大球碰撞后都结为一体,已知M=4m,g取10 m/s2.(1)若大球向右运动到O点时,第一个小球与之碰撞,求碰撞后大球的速度;(2)若大球向右运动到O点时,第一个小球与之碰撞,当大球第一次向左运动到O点时,第二个小球恰好与之碰撞,求第一、二两个小球释放的时间差;(3)若大球第一次向右运动到O点时与小球碰撞,以后每当大球向左运动到O点时,就会与一个小球碰撞,求经过多少次碰撞后,大球将越过A点?标准答案及解析: 一、选择题 1.解析:由动量定理可知,铅球在连续相等时间内动量的变化等于重力的冲量mgΔt,因此是相等的,A 正确;由动能定理得动能的变化等于重力做的功,相等时间内位移不等,重力做功不等,因此动能的变化不等,B 错;由于机械能守恒,铅球动能的增量总等于重力势能的减少量,C 正确;重力做功改变物体的动能,由于重力产生的加速度在竖直方向上,因此不影响水平方向的匀速运动,D 正确.答案:ACD 2.解析:由动量定理P=μmgt,由动能定理得22P m=μmgs,即P 2=2μm 2gs,显然P 相同,m 大则时间长、滑行距离长,D 对.答案:D 3.解析:本题考查碰撞,动量守恒定律.此类碰撞问题中对于碰撞速度、质量可能性分析的试题主要从以下三个方面分析:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理.两球在碰撞过程中动量守恒即P A +P B =P A′+P B′,代入数据发现B 选项动量不守恒;由于在碰撞过程中,不可能有其他形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有:22222222A B A B A B A BP P P P m m m m ''++≥,代入数据发现C 选项机械能增加了,同时也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景;同理发现A 项也不符合碰撞后A 球的速度必须大于或等于B 球的速度这一物理情景.经上分析可知只有D 选项正确.答案:D 4.解析:相当于质点受恒力作用一段时间而做类抛体运动,由动量定理可知质点的动量是一定要变化的,B 、C 错;质点的动能是否改变就要看质点速度的大小是否改变,若恒力先做负功后做正功,且总功为零,则动能不变,所以质点的动能可能变,也可能不变,A 、D 正确.质点受到的恒力可以是重力与引力场恒力的合力,也可以仅受引力场恒力,结果都是一样的.答案:AD 5.解析:在A 离开挡板前,由于挡板对A 有作用力,所以,A 、B 系统所受合外力不为零,则系统动量不守恒;A 离开挡板后,系统所受合外力为零,动量守恒,A 选项正确.在A 离开挡板前,挡板对A 的作用力不做功,A 、B 及弹簧组成的系统在整个过程中机械能都守恒,B 选项错误.解除对弹簧的锁定后至A 刚离开挡板的过程中,弹簧的弹性势能释放,全部转化为B 的动能,根据机械能守恒定律,有:E p =201,2B m v 由图象可知,v 0=3m/s,解得:E p =9 J,C 选项正确.分析A 离开挡板后A 、B 的运动过程,并结合图象数据可知,弹簧伸长到最长时A 、B 的共同速度为v 共=2 m/s,根据机械能守恒定律和动量守恒定律,有:m B v 0=(m A +m B )v共,E′p =22011(),22B A B m v m m v -+共联立解得:E′p =3 J,D 选项正确. 答案:ACD 6.解析:本题通过弹簧连接AB 两物体,考查对牛顿运动定律、功能规律的综合运用能力.根据牛顿运动定律,对A 物体,,A F kx a m -=对B 物体,B kxa m=.可见随着弹簧压缩量x 增加,A 的加速度逐渐减小,B 的加速度逐渐增大.AB 物体运动过程利用速度图象表示,如图,很方便地判断出B 、C 、D 项正确,A 项错误.答案:BCD 7.解析:当斜面固定时,物块在斜面上滑动可能受到重力、斜面支持力和滑动摩擦力的作用,下滑到底端的过程中重力的冲量为5 N\5s=mgt,t=0.5 s;重力做的功为4.5 J=mgh,h=0.45 m;斜面长21237hL at sin ==。
高中物理动量、能量综合题
动量与能量综合题1.如图所示,质量m1=0.3kg 的小车静止在光滑的水平面上,车长L足够长,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=5 m/s从左端滑上小车,当物块对地位移x2=2.1m 的时候与小车保持相对静止。
已知物块与车面间的动摩擦因数u=0.5,取g=10 m/s2。
求:(1)物块与小车的共同速度v的大小;(2)小车发生的位移x1;(3)系统动能损失多少?损失的能量去哪了?(4)如何求系统产生的热量?(5)物块相对于小车的相对位移d多大?2.在光滑水平的地面上,有一个M=2kg长度为d=10cm的木块,一颗质量m=10g的子弹以v0=200m/s的速度射入其中,当木块在水平地面前进s=0.5m时,子弹从其中穿出且速度减为v1=100m/s,求:(1)子弹和木块间的作用力;(2)木块获得的速度是多少?(3)系统损失了多少机械能?(4)物块相对于小车的相对位移d3.如图所示,在水平轨道上有一轻质弹簧,左端固定在墙M上,右端恰好处于斜坡最低点O,弹簧正好为原长。
光滑坡道顶端距水平面高度为h=5m,质量为m A=2kg的小物块A从坡道顶端由静止滑下。
已知在OM段,物块A与水平面间的动摩擦因数为μ=0.25,其余各处的摩擦不计,g=10m/s²。
求:(1)物块A第一次滑到O点时的速度v的大小;(2)若弹簧的劲度系数k=1×103N/m,则弹簧最大压缩量d是多少?(设弹簧处于原长时弹性势能为零)(3)若物块A能够被弹回到坡道上,则它能够上升的最大高度是多少?vv4.某校物理兴趣小组决定举行遥控赛车比赛。
比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。
已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。
动量和能量综合问题
动量和能量综合问题班级__________ 座号_____ 姓名__________ 分数__________1. 弹性碰撞发生弹性碰撞的两个物体碰撞前后动量守恒,动能守恒,若两物体质量分别为m 1和m 2,碰前速度为v 1,v 2,碰后速度分别为v 1ˊ,v 2ˊ,则有: m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1)21m 1v 12+21m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 (2) 联立(1)、(2)解得:v 1ˊ=1212211-2v m m v m v m ++,v 2ˊ=2212211-2v m m v m v m ++.特殊情况:①若m 1=m 2 ,v 1ˊ= v 2 ,v 2ˊ= v 1 . ②若v 2=0则 v 1ˊ=12121-v m m m m +,v 2ˊ=21112m m v m +.(i)m 1>>m 2 v 1ˊ=v 1,v 2ˊ=2v 1 . (ii)m 1<<m 2 v 1ˊ=-v 1,v 2ˊ=0 . 2. 完全非弹性碰撞碰后物体的速度相同, 根据动量守恒定律可得:m 1v 1+m 2v 2=(m 1+m 2)v 共 (1)完全非弹性碰撞系统损失的动能最多,损失动能:ΔE k = ½m 1v 12+ ½ m 2v 22- ½(m 1+m 2)v 共2. (2) 联立(1)、(2)解得:v 共 =212211m m v m v m ++;ΔE k =2212121-21)v v (m m m m + 3. 非弹性碰撞介于弹性碰撞和完全非弹性碰撞之间的碰撞。
动量守恒,碰撞系统动能损失。
根据动量守恒定律可得:m 1v 1+m 2v 2=m 1v 1ˊ+m 2v 2ˊ (1) 损失动能ΔE k ,根据机械能守恒定律可得: ½m 1v 12+ ½ m 2v 22=21m 1v 1ˊ2+21m 2v 2ˊ 2 + ΔE k . (2) 恢复系数e =2112-′-v v v v ′ ①非弹性碰撞:0<e <1;②弹性碰撞:e =1;③完全非弹性碰撞:e =0。
板块动量能量综合题(答案)
板块动量能量综合题(参考答案)一、计算题1. 【答案】(1)3v;(2)273v gμ;(329v g μ 【解析】(1)以A 、B 两物体及小车组成的系统为研究对象,以A 的初速度方向为正方向,由动量守恒定律得203m v mv mv '⋅-+=解得'=3vv方向向右;(2)设平板车的长度至少为L ,根据系统能量守恒得222111(2)32223v m v mv m mgL μ⎛⎫+-⋅= ⎪⎝⎭解得273v L gμ=(3)①物体A 、B 未相碰撞,B 停止时,A 继续运动,此时小车开始运动.对小车应用动能定理210223v mgs m μ⎛⎫-=-⋅⨯ ⎪⎝⎭解得29v s gμ= ②物体B 速度为零时正好与A 相撞,碰后小车开始加速,最终达到共同速度3vv =共 .对小车应用动能定理得212023v mgs m μ⎛⎫'-⋅=-⋅⨯ ⎪⎝⎭,则 2=36v s g μ'所以小车位移大小的取值范围是 22369v v s g gμμ≤≤ 2. 【答案】 (1)4 m/s (2) m/s m/s 0.5 m 【解析】(1)对a 滑块在B 点有mg=m 得v B =m/s滑块a 与滑块b 碰后,由A 点运动到B 点,根据机械能守恒定律得 m =m +2mgR滑块a 与滑块b 发生弹性碰撞,有 mv 0=-mv A +Mv 1 m =m +M 联立解得v 1=4 m/s 。
(2)b 滑块冲上c 木板至刚离开c 木板的过程有 Mv 1=Mv 2+2Mv 3M=M+×2M+μMgL解得b刚离开长木板c时b滑块的速度v2=m/s,c木板的速度v3=m/s(另一解不合题意,已舍)b滑块冲上d木板的过程Mv2+Mv3=2Mv4M+M=×2M+μMgd解得d=0.5 m。
3.【答案】(1)物块A、B第一次碰撞前的速度大小各为13m/s和0.66m/s。
(2)B物块与木板C右端挡板碰后瞬间的速度为1.5m/s,方向向左;(3)若物块A、B第二次相碰于木板C左端,则v0应为3m/s。
动量与能量结合综合题附答案
动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab 和cd ,其质量均为m ,能沿导轨无摩擦地滑动.金属杆ab 和cd 与导轨及它们间的接触等所有电阻可忽略不计.开始时ab 和cd 都是静止的,现突然让cd 杆以初速度v 向右开始运动,如果两根导轨足够长,则( )A .cd 始终做减速运动,ab 始终做加速运动,并将追上cdB .cd 始终做减速运动,ab 始终做加速运动,但追不上cdC .开始时cd 做减速运动,ab 做加速运动,最终两杆以相同速度做匀速运动D .磁场力对两金属杆做功的大小相等2.一轻弹簧的下端固定在水平面上,上端连接质量为m 的木板处于静止状态,此时弹簧的压缩量为,如图所0h 示。
一物块从木板正上方距离为的A 处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达03h 最低点后又向上运动。
若物块质量也为m 时,它们恰能回到O 点;若物块质量为时,它们到达最低点后又向上2m 运动,在通过O 点时它们仍然具有向上的速度,求:1,质量为m 时物块与木板碰撞后的速度;2,质量为2m 时物块向上运动到O 的速度。
3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为,导轨上面横放着两根L 导体棒和,构成矩形回路,两根导体棒的质量皆为,电阻皆为,回路中其余部分的电阻可不计。
在整ab cd m R 个导轨平面内都有竖直向上的匀强磁场,磁感应强度为。
设两导体棒均可沿导轨无摩擦地滑行,开始时,棒B 静止,棒有指向棒的初速度,若两导体棒在运动中始终不接触,求:cd ab cd 0v(1)在运动中产生的焦耳热最多是多少?Q (2)当棒的速度变为初速度的时,棒的加速度是多少?ab 4/3cd a4.(20分) 如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,两物块的质量均为M=0.60kg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量与能量综合
1、如图所示,一质量为M,长为L的木板固定在光滑水平面上。
一质量为m的小滑块以水平速度v0从木板的左端开始滑动,滑到木板的右端时速度恰好为零。
(1)小滑块在木板上的滑动时间;
(2)若木块不固定,其他条件不变,小滑块相对木板静止时距木板
左端的距离。
2、如图所示,光滑半圆轨道竖直放置,半径为R,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M = 0.99kg的木块,一颗质量为m = 0.01kg的子弹,以v o= 400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R多大时,平抛的水平距离最大? 最大值是多少?(g取10m/s2)
3.质量为M的物块A静止在离地面高h的水平桌面的边缘,质量为m的物块B沿桌面向A运动并以速度v0与A发生正碰(碰撞时间极短)。
碰后A离开桌面,其落地点离出发点的水平距离为L。
碰后B 反向运动。
已知B与桌面间的动摩擦因数为μ.。
重力加速度为g,桌面足够长。
求:
(1)碰后A、B分别瞬间的速率各是多少?
(2)碰后B后退的最大距离是多少?
4. 如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位
置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极
短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求
男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员
质量m 2之比12
2m m =,秋千的质量不计,秋千的摆长为R ,C 点比O
点低5R .
5、如图12所示,一个半径R =0.80m 的4
1光滑圆弧轨道固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度h =1.25m 。
在圆弧轨道的最下端放
置一个质量m B =0.30kg 的小物块B (可视为质点)。
另一质量m A =0.10kg 的小
物块A (也视为质点)由圆弧轨道顶端从静止开始释放,运动到轨道最低点时,
与物块B 发生碰撞,碰后A 物块和B 物块粘在一起水平飞出。
忽略空气阻力,
重力加速度g 取10m/s 2
,求:
(1)物块A 与物块B 碰撞前对圆弧轨道最低点的压力大小;
(2)物块A 和B 落到水平地面时的水平位移大小;
(3)物块A 与物块B 碰撞过程中A 、B 组成系统损失的机械能。
6. 如图所示,长木板ab 的b 端固定一挡板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m .木板
位于光滑水平面上.在木板a 端有一小物块,其质量m =1.0kg ,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态.现令小物块以初速v 0=4.0m/s 沿木板向前滑动,
直到和挡板相碰.碰撞后,小物块恰好回到a 端而不脱离木板.求碰
撞过程中损失的机械能.
图12
7.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A = 2.0kg ,m B = 1.0kg ,m C = 1.0kg .现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做108J (弹簧仍处于弹性限度内),然后同时释放A 、B ,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰以4m/s 的速度迎面与B 发生碰撞并粘连在一起.求:
(1)弹簧刚好恢复原长时(B 与C 碰撞前)A 和B 物块速度的大小.
(2
)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.
8.如图所示,光滑轨道的DP 段为水平轨道,PQ 段为半径是R 的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P 点.一轻质弹簧两端分别固定质量为2m 的小球A 和质量为m 的小球B ,质量为m 小球C 靠在B 球的右侧.现用外力作用在A 和C 上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P 端足够远的水平轨道上.若撤去外力,C 球恰好可运动到轨道的最高点Q .已知重力加速度为g .求撤去外力前的瞬间,弹簧的弹性势能E 是多少?
9、如图所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态,另一
质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离L 1时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运动,但互不粘连,已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形
变量为L 2,求A 从P 出发时的初速度v 0.
10. 质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,
弹簧的压缩量为x 0,如图所示.一物块从钢板正上方距离为3x 0的A 处自由
落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低
点后又向上运动.已知物块质量也为m 时,它们恰能回到O 点.若物块质
量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速
度.求物块向上运动到达的最高点与O 点的距离.
11、如图所示,光滑水平面上有一质量M =4.0 kg 的带有圆弧轨道的小车,车的上表面是一段长L =1.0m 的粗糙水平轨道,水平轨道左侧连一半径R =0.25m 的4
1光滑圆弧轨道,圆弧轨道与水平轨道在O ' 点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m =1.0 kg 的小物块紧靠弹簧放置,小物块与水平轨道间的动摩擦因数 = 0.50.整个装置处于静止状态, 现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A .取g =10m/s 2 , 求:
(1)解除锁定前弹簧的弹性势能;
(2)小物块第二次经过O ' 点时的速度大小;
(3)小物块与车最终相对静止时,它距O ' 点的距离.。