江苏版2018年高考数学一轮复习专题11.4数学归纳法测理 Word版 含解析

合集下载

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.简单随机抽样(1)定义:一般地,从个体为N 的总体中逐个不放回地取出n 个个体作为样本(n ∈N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法,称为简单随机抽样. (2)最常用的简单随机抽样方法有两种——抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. ①采用随机的方法将总体中的N 个个体编号;②将编号按间隔k 分段,当N n 是整数时,取k =N n ;当Nn 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n ,并将剩下的总体重新编号;③在第一段中用简单随机抽样确定起始的个体编号l ;④按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. 3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)简单随机抽样是一种不放回抽样.( √ )(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( × ) (3)抽签法中,先抽的人抽中的可能性大.( × )(4)系统抽样在第1段抽样时采用简单随机抽样.( √ )(5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( × )(6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( × )1.(教材改编)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为______________. 答案 25,56,19解析 因为125∶280∶95=25∶56∶19, 所以抽取人数分别为25,56,19.2.(2015·四川改编)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是__________. 答案 分层抽样法解析 根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.3.(1)某学校为了了解2016年高考数学学科的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法 问题与方法配对正确的是____________. 答案 (1)Ⅲ,(2)Ⅰ解析 通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法. 4.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为________. 答案 695解析 由题意可知,第一组随机抽取的编号l =15,分段间隔数k =N n =1 00050=20,则抽取的第35个编号为15+(35-1)×20=695.5.某学校高一,高二,高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生. 答案 15解析设应从高二年级抽取x名学生,则x∶50=3∶10,解得x=15.题型一简单随机抽样例1(1)以下抽样方法是简单随机抽样的有________.①在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖;②某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格;③某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见;④用抽签方法从10件产品中选取3件进行质量检验.(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.答案(1)④解析(1)①、②不是简单随机抽样,因为抽取的个体间的间隔是固定的;③不是简单随机抽样,因为总体的个体有明显的层次;④是简单随机抽样.(2)由题意知前5个个体的编号为08,02,14,07,01.思维升华应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.(1)下列抽样试验中,适合用抽签法的有________.①从某厂生产的5 000件产品中抽取600件进行质量检验;②从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;③从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验;④从某厂生产的5 000件产品中抽取10件进行质量检验.(2)下列抽取样本的方式不属于简单随机抽样的有________________.①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.答案(1)②(2)①②③④解析(1)①、④中的总体个体数较多,不适宜抽签法,③中甲、乙两厂的产品质量有区别,也不适宜抽签法.②是简单随机抽样.(2)①不是简单随机抽样.②不是简单随机抽样.由于它是放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.题型二系统抽样例2(1)(2015·湖南改编)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.答案(1)4(2)12解析(1)由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名.(2)由84042=20,即每20人抽取1人,所以抽取编号落在区间[481,720]的人数为720-48020=24020=12.引申探究1.本例(2)中条件不变,若第三组抽得的号码为44,则在第八组中抽得的号码是________.答案144解析 在第八组中抽得的号码为(8-3)×20+44=144.2.本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240人,又在[481,720]中抽取8人, 所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.(1)(2016·南京模拟)高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是________.(2)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 (1)18 (2)10解析 (1)分段间隔为524=13,故还有一个学生的编号为5+13=18.(2)由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69, (939)落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 题型三 分层抽样命题点1 求总体或样本容量例3 (1)(2016·苏北四市联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =________.(2)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 (1)90 (2)1 800解析 (1)依题意得33+5+7×n =18,解得n =90,即样本容量为90.(2)分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件. 命题点2 求某层入样的个体数例4 (2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为________.(2)(2015·福建)某校高一年级有名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________. 答案 (1)180 (2)25解析 (1)由题意抽样比为3201 600=15,∴该样本中的老年教师人数为900×15=180.(2)由题意知,男生共有500名,根据分层抽样的特点,在容量为45的样本中男生应抽取的人数为45×500900=25.思维升华 分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.(1)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.(2)某公司共有1 000名员工,下设若干部门,现采用分层抽样方法,从全体员工中抽取一个样本容量为80的样本,已告知广告部门被抽取了4个员工,则广告部门的员工人数为________.答案 (1)200,20 (2)50解析 (1)该地区中小学生总人数为 3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20. (2)1 00080=x 4,x =50.五审图表找规律典例 (14分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取40(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? (3)若要抽20人调查对广州亚运会举办情况的了解,则应怎样抽样?抽取40人调查身体状况↓(观察图表中的人数分类统计情况) 样本人群应受年龄影响↓(表中老、中、青分类清楚,人数确定) 要以老、中、青分层,用分层抽样 ↓要开一个25人的座谈会 ↓(讨论单位发展与薪金调整)样本人群应受管理、技术开发、营销、生产方面的影响 ↓(表中管理、技术开发、营销、生产分类清楚,人数确定) 要以管理、技术开发、营销、生产人员分层,用分层抽样↓要抽20人调查对广州亚运会举办情况的了解↓(可认为亚运会是大众体育盛会,一个单位人员对情,况了解相当) 将单位人员看作一个整体 ↓(从表中数据看总人数为2 000) 人员较多,可采用系统抽样 规范解答解 (1)按老年、中年、青年分层,用分层抽样法抽取, [1分] 抽取比例为402 000=150.[3分] 故老年人、中年人、青年人各抽取4人、12人、24人.[5分] (2)按管理、技术开发、营销、生产分层,用分层抽样法抽取, [6分] 抽取比例为252 000=180,[8分]故管理、技术开发、营销、生产各部门抽取2人、4人、6人、13人. [10分] (3)用系统抽样,对全部2 000人随机编号,号码从0001~2000,每100号分为一组,从第一组中用简单随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.[14分]1.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为________. 答案 8解析 设样本容量为N ,则N ×3070=6,∴N =14,∴高二年级所抽学生人数为14×4070=8.2.(2017·扬州月考)打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体抽取一个13张的样本.这种抽样方法是______________. 答案 系统抽样解析 符合系统抽样的特点,故是系统抽样.3.(2016·南京、盐城联考)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________. 答案 17解析 由题意可得从高二年级学生中抽出的人数为20400×360=18,故从高三年级学生中抽取的人数为55-20-18=17.4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160进行编号,并按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若按等距的规则从第16组抽出的号码为126,则第1组中用抽签法确定的号码是________. 答案 6解析 第1组中用抽签法确定的号码是126-15×8=6.5.(2016·镇江模拟)将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______________. 答案 16,28,40,52解析 编号组数为5,间隔为605=12,因为在第一组抽得04号:又4+12=16,16+12=28,28+12=40,40+12=52, 所以其余4个号码为16,28,40,52.6.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为__________________. 答案 25,17,8解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1). 令3+12(k -1)≤300得k ≤1034,因此第Ⅰ营区被抽中的人数是25; 令300<3+12(k -1)≤495得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17. 7.(2016·山西大同一中月考)用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是__________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.8.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生. 答案 60解析 设应从一年级本科生中抽取x 名学生,则x 300=44+5+5+6,解得x =60.9.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意,可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.10.一个总体中有90个个体,随机编号0,1,2,…,89,以从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 依题意可知二年级的女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故用分层抽样法应在三年级抽取的学生人数为64×28=16.13.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n . 解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.*14.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x ,y 的值. 解 (1)用分层抽样的方法在35~50岁中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,∴3050=m5,解得m =3. 抽取的样本中有研究生2人,本科生3人,分别记作S 1,S 2;B 1,B 2,B 3.从中任取2人的所有等可能基本事件共有10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 1,B 3),(B 2,B 3),其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2), ∴从中任取2人,至少有1人学历为研究生的概率为710. (2)由题意,得10N =539,解得N =78,∴35~50岁中被抽取的人数为78-48-10=20, ∴4880+x =2050=1020+y, 解得x =40,y =5,即x ,y 的值分别为40,5.。

2018版高考数学文江苏专用大一轮复习讲义文档 第十一章 概率 11.1 含答案 精品

2018版高考数学文江苏专用大一轮复习讲义文档 第十一章 概率 11.1 含答案 精品

1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率.(2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 2.事件的关系与运算3.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.(√)(4)两个事件的和事件是指两个事件都得发生.(×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(6)两互斥事件的概率和为1.(×)1.从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则b>a的概率是________.答案1 5解析基本事件的个数有5×3=15,其中满足b>a的有3种,所以b>a的概率为315=15.2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是________.(填序号) ①必然事件②随机事件③不可能事件④无法确定答案②解析抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.3.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为________.答案0.3解析因为必然事件发生的概率是1,所以该同学的身高超过175 cm的概率为1-0.2-0.5=0.3.4.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________. 答案 ②解析 ①是互斥不对立的事件,②是对立事件,③④不是互斥事件.题型一 事件关系的判断例1 (1)从1,2,3,…,7这7个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是________.(2)设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的____________条件. 答案 (1)③ (2)充分不必要解析 (1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件. (2)若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P(B)=18,满足P(A)+P(B)=1,但A,B不是对立事件.(3)(2016·镇江模拟)某城市有甲、乙两种报纸供居民订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.①A与C;②B与E;③B与C;④C与E.解①由于事件C“至多订一种报纸”中有可能“只订甲报纸”,即事件A与事件C有可能同时发生,故A与C不是互斥事件.②事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故B与E 是互斥事件.由于事件B不发生可导致事件E一定发生,且事件E不发生会导致事件B一定发生,故B与E还是对立事件.③事件B“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B与C不是互斥事件.④由③的分析,事件E“一种报纸也不订”是事件C的一种可能,即事件C与事件E有可能同时发生,故C与E不是互斥事件.思维升华(1)准确把握互斥事件与对立事件的概念①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.下列命题:①将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;②若事件A与B互为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B为对立事件;④若事件A与B互为对立事件,则事件A∪B为必然事件.其中,真命题是________.答案②④解析对①,将一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M与N是互斥事件,但不是对立事件,故①错;对②,对立事件首先是互斥事件,故②正确;对③,互斥事件不一定是对立事件,如①中两个事件,故③错;对④,事件A 、B 为对立事件,则在一次试验中A 、B 一定有一个要发生,故④正确. 题型二 随机事件的频率与概率例2 (2016·全国甲卷)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度的平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a . 思维升华 (1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.(2015·北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有 P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14. 方法二 设红球有n 个,则n 12=13,所以n =4,即红球有4个. 又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是 312=14,212=16,312=14. 命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求: (1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100, P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖,一等奖,二等奖. 设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C . ∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法: (1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率.解 (1)记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A 、B 、C 、D 、E 、F 彼此互斥. 记“至多2人排队等候”为事件G ,则G =A +B +C , 所以P (G )=P (A +B +C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)方法一 记“至少3人排队等候”为事件H , 则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44. 方法二 记“至少3人排队等候”为事件H ,则其对立事件为事件G , 所以P (H )=1-P (G )=0.44.21.用正难则反思想求互斥事件的概率典例 (14分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思想方法指导 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解. 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[7分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.[10分]P (A )=1-P (A 1)-P (A 2)=1-15-110=710.[12分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[14分]1.(2016·宿迁模拟)甲、乙两人下棋,若甲获胜的概率为15,甲、乙下成和棋的概率为25,则乙不输棋的概率为________. 答案 45解析 乙不输棋的概率为1-15=45.2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为________. 答案 ②解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.3.(2016·镇江模拟)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为________. 答案 0.35解析 ∵“抽到的产品不是一等品”与事件A 是对立事件,∴所求概率P =1-P (A )=0.35. 4.(2016·常州模拟)在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是________.①A +B 与C 是互斥事件,也是对立事件; ②B +C 与D 是互斥事件,也是对立事件; ③A +C 与B +D 是互斥事件,但不是对立事件; ④A 与B +C +D 是互斥事件,也是对立事件. 答案 ④解析 由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故其事件的关系可由如图所示的Venn 图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,④正确.5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为________.答案0.7解析由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2,又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.6.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为________.答案0.45解析设区间[25,30)对应矩形的高为x,则所有矩形面积之和为1,即(0.02+0.04+0.06+0.03+x)×5=1,解得x=0.05.产品为二等品的概率为0.04×5+0.05×5=0.45.7.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件.答案③②①8.(2016·苏州模拟)已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683 431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案0.25解析20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.9.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43. 10.(2016·江苏苏州五中期中)一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________. 答案 0.2解析 记事件A ,B ,C 分别是摸出红球,白球和黑球,则A ,B ,C 互为互斥事件且P (A +B )=0.58,P (A +C )=0.62,所以P (C )=1-P (A +B )=0.42,P (B )=1-P (A +C )=0.38,P (A )=1-P (C )-P (B )=1-0.38-0.42=0.2.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 (1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.12.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:(1)射中9环或10环的概率; (2)命中不足8环的概率.解 (1)记事件“射击一次,命中k 环”为A k (k ∈N ,k ≤10),则事件A k 之间彼此互斥. 记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.28+0.32=0.6.(2)设“射击一次,至少命中8环”的事件为B ,则B 表示事件“射击一次,命中不足8环”. 又B =A 8∪A 9∪A 10,由互斥事件概率的加法公式得 P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.故P (B )=1-P (B )=1-0.78=0.22.因此,射击一次,命中不足8环的概率为0.22.13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 方法一 (利用互斥事件求概率) (1)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球}, 则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 取出1球为红球或黑球的概率为 P (A 1∪A 2)=P (A 1)+P (A 2) =512+412=34. (2)取出1球为红球或黑球或白球的概率为 P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3) =512+412+212=1112.方法二(利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取出1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1-212-112=34.(2)因为A1∪A2∪A3的对立事件为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-112=1112.。

(江苏版)2018年高考数学一轮复习专题11.4数学归纳法(讲)理-含答案

(江苏版)2018年高考数学一轮复习专题11.4数学归纳法(讲)理-含答案

想 an= ________.
【答案】 3 4 5 n+ 1
【题根精选精析】
2
考点:数学归纳法
【 1-1 】用数学归纳法证明“ (n 1)( n 2) (n n) 2n 1 2 (2n 1) ”( n N )时,从
“ n k到 n k 1”时,左边应增添的式子是

【答案】 2(2k 1)
【解析】当 n k 时,左边为: (k 1)( k 2) (k k) ;当 n k 1 时,左边为:
情况,只需展开

【答案】 (k + 3) 3
【 1-3 】若 f (n) 1 1 1
1 (n N * ) ,则对于 k N * , f (k 1) f (k)

23
3n 1
11
1
【答案】
3k 3k 1 3k 2
【解析】 f (k 1)
1 1
1
23
1
11
1
3(k 1) 1
23
1 3k 2
11 (1
23
n2- n+ 1 项,当
111 n=2 时, f (2) = 2+ 3+ 4
【答案】 D
11 1
1
4.设 Sn= 1+ + + +…+ n,则 Sn+1- Sn= ____________________________.
23 4
2
1
1
1
1
【答案】
2
n

1+
2
n

2

n
2+
3+…+
n
n
2 +2
1
11
专题 11.4 数学归纳法
【最新考纲解读】
内容

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). 【知识拓展】 1.三角形的面积公式S =p (p -a )(p -b )(p -c ) (p =a +b +c 2),S =abc4R =rp (R 为三角形外接圆半径,r 为三角形内切圆半径,p =a +b +c 2).2.坡度(又称坡比):坡面的垂直高度与水平长度之比. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × ) (2)俯角是铅垂线与视线所成的角,其范围为[0,π2].( × )(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( √ )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( √ )1.(教材改编)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为________ m. 答案 50 2解析 由正弦定理得AB sin ∠ACB =AC sin B ,又∵B =30°,∴AB =AC sin ∠ACBsin B =50×2212=502(m).2.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile /h ,15 n mile/h ,则下午2时两船之间的距离是________n mile. 答案 70解析 设两船之间的距离为d ,则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.3.(教材改编)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC =________ n mile. 答案 5 6解析 如图,在△ABC 中,AB =10,A =60°,B =75°, ∴BC sin 60°=10sin 45°, ∴BC =5 6.4.如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.答案32a 解析 由已知得∠DAC =30°,△ADC 为等腰三角形,AD =3a ,又在Rt △ADB 中,AB =12AD=32a . 5.在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20 km /h ;水的流向是正东,流速是20 km/h ,若不考虑其他因素,救生艇在洪水中漂行的方向为北偏东________,速度的大小为________ km/h. 答案 60° 20 3解析 如图,∠AOB =60°,由余弦定理知OC 2=202+202-800cos 120°=1 200,故OC =203,∠COY =30°+30°=60°.题型一 求距离、高度问题例1 (1)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高AD 是60 m ,则河流的宽度BC =________ m.(2)如图,A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的射影,则山高CD =________ m. 答案 (1)120(3-1) (2)800(3+1)解析 (1)如图,在△ACD 中,∠CAD =90°-30°=60°,AD =60 m ,所以CD =AD ·tan 60°=603(m).在△ABD 中,∠BAD =90°-75°=15°, 所以BD =AD ·tan 15°=60(2-3)(m). 所以BC =CD -BD =603-60(2-3) =120(3-1) (m).(2)在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin 15°=AD sin 45°,得AD =AB ·sin 45°sin 15°=800×226-24=800(3+1)(m).∵CD ⊥平面ABD ,∠CAD =45°, ∴CD =AD =800(3+1) m.思维升华 求距离、高度问题应注意(1)理解俯角、仰角的概念,它们都是视线与水平线的夹角;理解方向角的概念.(2)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(3)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.(1)一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为________ km. (2)如图所示,为测一树的高度,在地面上选取A ,B两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.答案 (1)302 (2)30+30 3解析 (1)如图,由题意,∠BAC =30°,∠ACB =105°,∴B =45°,AC =60 km ,由正弦定理BC sin 30°=ACsin 45°,∴BC =30 2 km.(2)在△P AB 中,∠P AB =30°,∠APB =15°,AB =60, sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-24, 由正弦定理得PB sin 30°=AB sin 15°,∴PB =12×606-24=30(6+2),∴树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m). 题型二 求角度问题例2 甲船在A 处,乙船在A 处的南偏东45°方向,距A 有9海里的B 处,并以20海里每小时的速度沿南偏西15°方向行驶,若甲船沿南偏东θ的方向,并以28海里每小时的速度行驶,恰能在C 处追上乙船.问用多少小时追上乙船,并求sin θ的值.(结果保留根号,无需求近似值) 解 设用t 小时,甲船追上乙船,且在C 处相遇,那么在△ABC 中,AC =28t ,BC =20t ,AB =9,∠ABC =180°-15°-45°=120°, 由余弦定理,得(28t )2=81+(20t )2-2×9×20t ×(-12),128t 2-60t -27=0, 解得t =34或t =-932(舍去),所以AC =21(海里),BC =15(海里), 根据正弦定理,得sin ∠BAC =BC sin ∠ABC AC =5314,cos ∠BAC =1-75142=1114. 又∠ABC =120°,∠BAC 为锐角, 所以θ=45°-∠BAC , sin θ=sin(45°-∠BAC )=sin 45°cos ∠BAC -cos 45°sin ∠BAC=112-5628. 思维升华 解决测量角度问题的注意事项 (1)首先应明确方位角或方向角的含义;(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步; (3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.(1)(2016·苏州模拟)如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________. 答案2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207. 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC⇒sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°) =cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 题型三 三角形与三角函数的综合问题例3 (2016·扬州调研)在斜三角形ABC 中,tan A +tan B +tan A tan B =1. (1)求C 的值;(2)若A =15°,AB =2,求△ABC 的周长.解 (1)方法一 因为tan A +tan B +tan A tan B =1,即tan A +tan B =1-tan A tan B , 因为在斜三角形ABC 中,1-tan A tan B ≠0, 所以tan(A +B )=tan A +tan B 1-tan A tan B =1,即tan(180°-C )=1,即tan C =-1, 因为0°<C <180°,所以C =135°.方法二 由tan A +tan B +tan A tan B =1,得sin A cos A +sin B cos B +sin A sin Bcos A cos B=1, 化简得sin A cos B +sin B cos A +sin A sin B =cos A cos B ,即sin(A +B )=cos(A +B ), 所以sin C =-cos C ,因为斜三角形ABC ,所以C =135°.(2)在△ABC 中,A =15°,C =135°,则B =180°-A -C =30°. 由正弦定理BC sin A =CA sin B =AB sin C 得BC sin 15°=CA sin 30°=2sin 135°=2, 故BC =2sin 15°=2sin(45°-30°) =2(sin 45°cos 30°-cos 45°sin 30°)=6-22, CA =2sin 30°=1.所以△ABC 的周长为AB +BC +CA =2+6-22+1 =2+6+22. 思维升华 三角形与三角函数的综合问题,要借助三角函数性质的整体代换思想,数形结合思想,还要结合三角形中角的范围,充分利用正弦定理、余弦定理解题.(2016·南京学情调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cosB =b cos A . (1)求ba的值;(2)若sin A =13,求sin(C -π4)的值.解 (1)方法一 由a cos B =b cos A , 结合正弦定理得sin A cos B =sin B cos A , 即sin(A -B )=0.因为A ,B ∈(0,π),所以A -B ∈(-π,π), 所以A -B =0,即A =B ,所以a =b ,即ba =1.方法二 由a cos B =b cos A ,结合余弦定理得a ·a 2+c 2-b 22ac =b ·b 2+c 2-a 22bc,即2a 2=2b 2,即ba=1.(2) 因为sin A =13,由(1)知A =B ,因此A 为锐角,所以cos A =223. 所以sin C =sin(π-2A )=sin 2A =2sin A cos A =429,cos C =cos(π-2A )=-cos 2A =-1+2sin 2A =-79.所以sin(C -π4)=sin C cos π4-cos C sin π4=429×22+79×22=8+7218.10.函数思想在解三角形中的应用典例 (14分)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.思想方法指导 已知两边和其中一边的对角解三角形时,可以设出第三边,利用余弦定理列方程求解;对于三角形中的最值问题,可建立函数模型,转化为函数最值问题解决. 规范解答解 (1)设相遇时小艇航行的距离为S 海里,[1分]则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900(t -13)2+300.[3分] 故当t =13时,S min =103,v =10313=30 3.[6分]即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小. [7分](2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t 2.[10分]∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30,故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20.[13分]故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[14分]1.(2017·苏北四市联考)一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是________海里. 答案 10 2解析 如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里).2.在高出海平面200 m 的小岛顶上A 处,测得位于正西和正东方向的两船的俯角分别是45°与30°,此时两船间的距离为________ m. 答案 200(3+1)解析 过点A 作AH ⊥BC 于点H ,由图易知∠BAH =45°,∠CAH =60°,AH =200 m ,则BH =AH =200 m ,CH =AH ·tan 60°=200 3 (m). 故两船距离BC =BH +CH =200(3+1) (m).3.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m. 答案 10 3解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=30×33=10 3 (m),在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=10 3 (m).4.(2016·南京模拟)如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为________.答案 45°解析 依题意可得AD =2010(m),AC =305(m), 又CD =50(m),所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.5.如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB =________.答案 15 6解析 在△BCD 中,∠CBD =180°-15°-30°=135°. 由正弦定理得BC sin 30°=30sin 135°,所以BC =15 2.在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6.6.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以________(米/秒)的速度匀速升旗.答案 0.6解析 在△BCD 中,∠BDC =45°,∠CBD =30°,CD =106(米). 由正弦定理,得BC =CD sin 45°sin 30°=203(米).在Rt △ABC 中,AB =BC sin 60°=203×32=30(米). 所以升旗速度v =AB t =3050=0.6(米/秒).7.如图,CD 是京九铁路线上的一条穿山隧道,开凿前,在CD 所在水平面上的山体外取点A ,B ,并测得四边形ABCD 中,∠ABC =π3,∠BAD =23π,AB=BC =400米,AD =250米,则应开凿的隧道CD 的长为________米. 答案 350解析 在△ABC 中,AB =BC =400米,∠ABC =π3,∴AC =AB =400米,∠BAC =π3.∴∠CAD =∠BAD -∠BAC =2π3-π3=π3.∴在△CAD 中,由余弦定理,得 CD 2=AC 2+AD 2-2AC ·AD ·cos ∠CAD =4002+2502-2·400·250·cos π3=122 500.∴CD =350米.8.如图,一艘船上午9∶30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10∶00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8 2 n mile.此船的航速是______ n mile/h.答案 32解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,∴v =32.9.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.答案 507解析 如图,连结OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17 500,解得OC =507.*10.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且满足a +b =cx ,则实数x 的取值范围是________. 答案 (1,2]解析 x =a +b c =sin A +sin B sin C =sin A +cos A=2sin ⎝⎛⎭⎫A +π4.又A ∈⎝⎛⎭⎫0,π2, ∴sin π4<sin ⎝⎛⎭⎫A +π4≤sin π2,即x ∈(1,2]. 11.要测量电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解 如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x . 在Rt △ADB 中,∠ADB =30°, 则BD =3x .在△BDC 中,由余弦定理得, BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°, 解得x =40,所以电视塔高为40 m.12.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝⎛⎭⎫2A +π6的值. 解 (1)在△ABC 中,由cos A =-14,可得sin A =154. 由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由a sin A =c sin C ,得sin C =158. (2)cos ⎝⎛⎭⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6=32(2cos 2A -1)-12×2sin A ·cos A =15-7316. *13.在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解 如图,设缉私船应沿CD 方向行驶t 小时,才能最快截获走私船(在D 点),则CD =103t 海里,BD =10t 海里,在△ABC 中,由余弦定理,得 BC 2=AB 2+AC 2-2AB ·AC ·cos A =(3-1)2+22-2·(3-1)·2·cos 120° =6, 解得BC = 6. 又BC sin ∠BAC =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin 120°6=22,∴∠ABC =45°,故B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD ,∴sin ∠BCD =BD ·sin ∠CBDCD=10t ·sin 120°103t=12. ∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴∠D =30°,∴BD =BC ,即10t =6, 解得t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.14.(教材改编)如图,有两条相交成60°角的直路X ′X ,Y ′Y ,交点是O ,甲、乙两人分别在OX 、OY 上,甲的起始位置离点O 3 km ,乙的起始位置离点O 1 km.后来甲沿XX ′的方向,乙沿YY ′的方向,同时以4 km/h 的速度步行.(1) 求甲、乙在起始位置时两人之间的距离;(2) 设t h 后甲、乙两人的距离为d (t ),写出d (t )的表达式.当t 为何值时,甲、乙两人之间的距离最短?并求出两人之间的最短距离. 解 (1) 由余弦定理,得起初两人的距离为 12+32-2×1×3×cos 60°=7(km). (2)设t h 后两人的距离为d (t ),则 当0≤t ≤14时,d (t )=(1-4t )2+(3-4t )2-2×(1-4t )×(3-4t )×cos 60° =16t 2-16t +7; 当t >34时,d (t )=(4t -1)2+(4t -3)2-2×(4t -1)×(4t -3)×cos 60° =16t 2-16t +7; 当14<t ≤34时, d (t )=(4t -1)2+(3-4t )2-2×(4t -1)×(3-4t )×cos 120° =16t 2-16t +7. 所以d (t )=16t 2-16t +7 =16(t -12)2+3 (t ≥0),当t =12时,两人的距离最短.答当t =12时,两人的最短距离为 3 km.。

2018版高考数学理江苏专用大一轮复习讲义教师版文档第四章 三角函数、解三角形 4.2 含答案 精品

2018版高考数学理江苏专用大一轮复习讲义教师版文档第四章 三角函数、解三角形 4.2 含答案 精品

1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan α.2.各角的终边与角α的终边的关系3.六组诱导公式【知识拓展】1.诱导公式的记忆口诀:奇变偶不变,符号看象限.2.同角三角函数基本关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( √ )1.(2015·福建改编)若sin α=-513,且α为第四象限角,则tan α的值为 .答案 -512解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512.2.(教材改编)已知cos θ=35,且3π2<θ<2π,那么tan θ的值为 .答案 -43解析 因为θ为第四象限角,所以tan θ<0,sin θ<0, sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.3.(2016·连云港模拟)计算:sin116π+cos 103π= .答案 -1 解析 ∵sin 116π=sin(π+56π)=-sin 5π6=-12, cos103π=cos(2π+4π3)=cos 4π3=-12, ∴sin116π+cos 103π=-1. 4.(教材改编)已知tan α=1,则2sin α-cos αsin α+cos α= .答案 12解析 原式=2tan α-1tan α+1=2-11+1=12.5.(教材改编)化简:tan (3π-α)sin (π-α)sin (3π2-α)+sin (2π-α)cos (α-7π2)sin (3π2+α)cos (2π+α)= .答案 1解析 因为tan(3π-α)=-tan α,sin(π-α)=sin α, sin(3π2-α)=-cos α,sin(2π-α)=-sin α,cos(α-7π2)=cos(α+π2)=-sin α,sin(3π2+α)=-cos α,cos(2π+α)=cos α,所以原式=-tan αsin α(-cos α)+-sin α(-sin α)-cos αcos α=1cos 2α-sin 2αcos 2α =1-sin 2αcos 2α=cos 2αcos 2α=1.题型一 同角三角函数关系式的应用例1 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为 .(2)(2016·苏州期末)已知θ是第三象限角,且sin θ-2cos θ=-25,则sin θ+cos θ= .答案 (1)32 (2)-3125解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. (2)由⎩⎪⎨⎪⎧sin θ-2cos θ=-25,sin 2θ+cos 2θ=1,得5cos 2θ-85cos θ-2125=0,解得cos θ=35或-725.因为θ是第三象限角,所以cos θ=-725,从而sin θ=-2425,所以sin θ+cos θ=-3125.思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.已知sin α-cos α=2,α∈(0,π),则tan α= .答案 -1解析 由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,消去sin α得2cos 2α+22cos α+1=0, 即(2cos α+1)2=0, ∴cos α=-22. 又α∈(0,π),∴α=3π4,∴tan α=tan 3π4=-1.题型二 诱导公式的应用例2 (1)(2016·宿迁模拟)已知f (x )=sin (2π-x )·cos (32π+x )cos (3π-x )·sin (112π-x ),则f (-21π4)= .(2)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是 .答案 (1)-1 (2){2,-2}解析 (1)f (x )=-sin x ·sin x-cos x ·(-cos x )=-tan 2x ,f (-21π4)=-tan 2(-21π4)=-tan 234π=-1.(2)当k 为偶数时,A =sin αsin α+cos αcos α=2;当k 为奇数时,A =-sin αsin α-cos αcos α=-2.∴A 的值构成的集合是{2,-2}. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了. ②化简:统一角,统一名,同角名少为终了. (2)含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.(1)化简:tan (π+α)cos (2π+α)sin (α-3π2)cos (-α-3π)sin (-3π-α)= .(2)(2016·南京模拟)已知角α终边上一点P (-4,3),则 cos (π2+α)·sin (-π-α)cos (11π2-α)·sin (9π2+α)的值为 .答案 (1)-1 (2)-34解析 (1)原式=tan αcos αsin[-2π+(α+π2)]cos (3π+α)[-sin (3π+α)]=tan αcos αsin (π2+α)(-cos α)sin α=tan αcos αcos α(-cos α)sin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.(2)原式=(-sin α)sin α(-sin α)cos α=tan α,根据三角函数的定义得tan α=-34.题型三 同角三角函数关系式、诱导公式的综合应用例3 (1)已知α为锐角,且有2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是 . 答案31010解析 2tan(π-α)-3cos(π2+β)+5=0化简为-2tan α+3sin β+5=0,①tan(π+α)+6sin(π+β)-1=0化简为 tan α-6sin β-1=0.②由①②消去sin β,解得tan α=3. 又α为锐角,根据sin 2α+cos 2α=1, 解得sin α=31010.(2)已知-π<x <0,sin(π+x )-cos x =-15.①求sin x -cos x 的值; ②求sin 2x +2sin 2x 1-tan x的值.解 ①由已知,得sin x +cos x =15,sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925.由-π<x <0,知sin x <0, 又sin x +cos x >0, ∴cos x >0,sin x -cos x <0,故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.引申探究本题(2)中,若将条件“-π<x <0”改为“0<x <π”,求sin x -cos x 的值. 解 若0<x <π,又2sin x cos x =-2425,∴sin x >0,cos x <0,∴sin x -cos x >0,又(sin x -cos x )2=1-2sin x cos x =4925,故sin x -cos x =75.思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形. (2)注意角的范围对三角函数符号的影响.已知sin α是方程5x 2-7x -6=0的根,求sin (α+3π2)sin (3π2-α)tan 2(2π-α)tan (π-α)cos (π2-α)cos (π2+α)的值.解 由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35,再由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=-cos α(-cos α)·tan 2α(-tan α)sin α·(-sin α)=tan α=±34.7.分类讨论思想在三角函数中的应用典例 (1)已知sin α=255,则tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α= .(2)已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)= .思想方法指导 (1)在利用同角三角函数基本关系式中的平方关系时,要根据角的范围对开方结果进行讨论.(2)利用诱导公式化简时要对题中整数k 是奇数或偶数进行讨论. 解析 (1)∵sin α=255>0,∴α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α是第一象限角时,cos α=1-sin 2 α=55, 原式=1sin αcos α=52.②当α是第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.(2)当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1.综上,原式=-1. 答案 (1)52或-52(2)-11.(2016·盐城模拟)已知cos α=45,α∈(0,π),则tan α的值为 .答案 34解析 ∵α∈(0,π), ∴sin α= 1-cos 2α=1-(45)2=35,由tan α=sin αcos α,得tan α=34. 2.已知cos α=13,且-π2<α<0,则cos (-α-π)sin (2π+α)tan (2π-α)sin (3π2-α)cos (π2+α)= .答案 -2 2解析 原式=(-cos α)·sin α·(-tan α)(-cos α)·(-sin α)=tan α,∵cos α=13,-π2<α<0,∴sin α=-1-cos 2α=-223,∴tan α=sin αcos α=-2 2.3.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 .答案 -3解析 由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.4.若sin(π-α)=-2sin(π2+α),则sin α·cos α的值为 .答案 -25解析 由sin(π-α)=-2sin(π2+α),可得sin α=-2cos α,则tan α=-2,sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25. 5.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为 . 答案 -3解析 ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-3.*6.(2016·扬州模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为 . 答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ, ∴m 24=1+m2, 解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.7.已知α为钝角,sin(π4+α)=34,则sin(π4-α)= .答案 -74解析 因为α为钝角,所以cos(π4+α)=-74,所以sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α)=-74.8.(2016·江苏如东高级中学期中)若sin α=2cos α,则sin 2α+2cos 2α的值为 . 答案 65解析 由sin α=2cos α,得tan α=2,因此sin 2α+2cos 2α=sin 2α+2cos 2αsin 2α+cos 2α =tan 2α+2tan 2α+1=4+24+1=65. 9.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线2x -y =0上,则sin (3π2+θ)+cos (π-θ)sin (π2-θ)-sin (π-θ)= . 答案 2解析 由题意可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2. 10.(2016·无锡模拟)已知α为第二象限角,则cos α1+tan 2α+sin α 1+1tan 2α= . 答案 0解析 原式=cos α sin 2α+cos 2αcos 2α+sin α sin 2α+cos 2αsin 2α =cos α1|cos α|+sin α1|sin α|, 因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0. 11.已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解 由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16. (2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85. 12.已知在△ABC 中,sin A +cos A =15.(1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵(sin A +cos A )2=125, ∴1+2sin A cos A =125, ∴sin A cos A =-1225. (2)∵sin A cos A <0,又0<A <π,∴cos A <0,∴A 为钝角,∴△ABC 为钝角三角形.(3)(sin A -cos A )2=1-2sin A cos A =4925. 又sin A -cos A >0,∴sin A -cos A =75, ∴sin A =45,cos A =-35, 故tan A =-43. *13.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π).求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解 (1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θ·cos θ=34,知⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧ sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.。

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

2018版高考数学理江苏专用大一轮复习讲义教师版文档第

1.等差数列的定义一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.(教材改编)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1=________. 答案 35解析 由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27,得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9, 解得a 1=35.2.(教材改编)已知五个数成等差数列,它们的和为5,平方和为859,则这五个数的积为________.答案 -3581解析 设第三个数为a ,公差为d ,则这五个数分别为a -2d ,a -d ,a ,a +d ,a +2d ,由已知条件得⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 解得⎩⎪⎨⎪⎧a =1,d =±23.所求5个数分别为-13,13,1,53,73或73,53,1,13,-13.故它们的积为-3581.3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=________. 答案 98解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________. 答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.(2)(2016·徐州、宿迁模拟)已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________. 答案 (1)6 (2)179解析 (1)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.(2)设等差数列{a n }的首项为a 1,则由S 5S 3=3得5a 1+10d 3a 1+3d =3,所以d =4a 1,所以a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是______. 答案 20解析 设等差数列{a n }的公差为d , 则由题设可得⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10, 解得⎩⎪⎨⎪⎧d =3,a 1=-4, 从而a 9=a 1+8d =20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为________.(2)已知等差数列{a n }中,a 4+a 6=10,若前5项的和S 5=5,则其公差为________. 答案 (1)a n =1n(2)2解析 (1)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)因为a 4+a 6=10,所以2a 5=10, 则a 5=5,又S 5=5(a 1+a 5)2=5a 3=5,故a 3=1,从而2d =a 5-a 3=4,故d =2.(3)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑n k =1(a k +1-a k )=∑n k =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值为_____.答案 (1)114 (2)-2 018解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.答案 (1)88 (2)3727解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________。

2018版高考数学(理)(苏教版江苏专用)大一轮复习讲义(课件)第十四章 选修 14.4 第1课时

2018版高考数学(理)(苏教版江苏专用)大一轮复习讲义(课件)第十四章 选修 14.4 第1课时

(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.
解答
|x - 2y + 1| = |(x - 1) - 2(y - 1)|≤|x - 1| + |2(y - 2) + 2|≤1 + 2|y - 2| + 2≤5, 即|x-2y+1|的最大值为5.
思维升华
求含绝对值的函数最值时,常用的方法有三种 (1)利用绝对值的几何意义. (2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|. (3)利用零点分区间法.
解答
①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当1<x<5时,原不等式可化为x-1-(5-x)<2, ∴x<4,∴1<x<4, ③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4).
2.若存在实数x使|x-a|+|x-1|≤3成立,求实数a的取值范围.
通不等式;
(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不
含绝对值符号的普通不等式;
(3)利用绝对值的几何意义,数形结合求解.
跟踪训练1
(1)(2016· 全国乙卷)已知函数f(x)=|x+1|-|2x-3|.
(1)在图中画出y=f(x)的图象; 解答
(2)求不等式|f(x)|>1的解集.
2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a|-|b| ≤|a±b|≤ |a|+|b| ,当且仅当 ab≥0 时 , 等号成立. (2)如果a,b,c是实数,那么 |a-c|≤|a-b|+|b-c| ,当且仅当 (a-b)
(b-c)≥0 时,等号成立.

2018江苏高考数学试卷含答案(校正精确版)

2018江苏高考数学试卷含答案(校正精确版)

2018江苏一、填空题1.已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =. 【解析】由题设和交集的定义可知,A ∩B ={1,8}.2.若复数z 满足i •z =1+2i ,其中i 是虚数单位,则z 的实部为. 【解析】因为i •z =1+2i =i(-i +2),则z =2-i ,则z 的实部为2.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为90. 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为.【解析】由伪代码可得I =3,S =2;I =5,S =4;I =7,S =8;因7>6,故结束循环,输出S =8. 5.函数f (x )=log 2x -1的定义域为.【解析】要使函数f (x )有意义,则log 2x -1≥0,即x ≥2,则函数f (x )的定义域是[2,+∞).6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.7.已知函数y =sin(2x +φ)(-π2<φ<π2)的图象关于直线x =π3对称,则φ的值是.【解析】由函数y =sin(2x +φ) (-π2<φ<π2)的图象关于直线x =π3对称,得sin(2π3+φ)=±1,因-π2<φ<π2,故π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π6.8.在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0)到一条渐近线的距离为32c ,则其离心率的值是.【解析】不妨设双曲线的一条渐近线方程为y =b a x ,即bx -ay =0,故|bc |a 2+b 2=b =32c ,故b 2=c 2-a 2=34c 2,得c =2a ,故双曲线的离心率e =ca=2.9.函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为.【解析】因函数f (x )满足f (x +4)=f (x )(x ∈R ),故函数f (x )的最小正周期是4.因在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,故f (f (15))=f (f (-1))=f (12)=cos π4=22.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,故该多面体的体积为13×(2)2×1×2=43.11.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为. 【解析】f ′(x )=2x (3x -a )(a ∈R ),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增,又f (0)=1,故此时f (x )在(0,+∞)内无零点,不满足题意.当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得,0<x <a 3,则f (x )在(0,a3)上单调递减,在(a 3,+∞)上单调递增,又f (x )在(0,+∞)内有且只有一个零点,故f (a 3)=1-a 327=0得,a =3,故f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,故f (x )在[-1,1]上的最大值与最小值的和为-3.12.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为.【解析】因AB →·CD →=0,故AB ⊥CD ,又点C 为AB 的中点,故∠BAD =45°.设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan(θ+π4)=-3.又B (5,0),故直线AB 的方程为y =-3(x-5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得x =3,y =6,故点A 的横坐标为3.13.在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为. 【解析】因∠ABC =120°,∠ABC 的平分线交AC 于点D ,故∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,故1a +1c =1,则4a +c =(4a +c )·(1a +1c )=5+c a +4ac ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.14.已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为. 【解析】所有的正奇数和2n (n ∈N *)按照从小到大的顺序排列构成{a n },在数列{a n }中,25前面有16个正奇数,即a 21=25,a 38=26.当n =1时,S 1=1<12a 2=24,不符合题意;当n =2时,S 2=3<12a 3=36,不符合题意;当n =3时,S 3=6<12a 4=48,不符合题意;当n =4时,S 4=10<12a 5=60,不符合题意;…;当n =26时,S 26=21×(1+41)2+2×(1-25)1-2=441+62=503<12a 27=516,不符合题意;当n =27时,S 27=22×(1+43)2+2×(1-25)1-2=484+62=546>12a 28=540,符合题意.故使得S n >12a n +1成立的n 的最小值为27.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体ABCD -A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ; 平面ABB 1A 1⊥平面A 1BC .【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因AB 不在平面A 1B 1C 内,A 1B 1⊆平面A 1B 1C ,故AB ∥平面A 1B 1C . (2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又AA 1=AB ,故四边形ABB 1A 1为菱形,故AB 1⊥A 1B .又AB 1⊥B 1C 1,BC ∥B 1C 1,故AB 1⊥BC .又A 1B ∩BC =B ,A 1B ⊆平面A 1BC ,BC ⊆平面A 1BC ,故AB 1⊥平面A 1BC .因AB 1⊆平面ABB 1A 1,故平面ABB 1A 1⊥平面A 1BC . 16.(本小题满分14分)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.【解析】(1)因tan α=43,tan α=sin αcos α,故sin α=43cos α.因sin 2α+cos 2α=1,故cos 2α=925,故cos2α=2cos 2α-1=-725.(2)因α,β为锐角,故α+β∈(0,π).又cos(α+β)=-55,故sin(α+β)=1-cos 2(α+β)=255,故tan(α+β)=-2.因tan α=43,故tan 2α=2tan α1-tan 2α=-247,故tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3,求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.17.【解析】(1)如图,设PO 的延长线交MN 于点H ,则PH ⊥MN ,故OH =10.过O 作OE ⊥BC 于点E ,则OE ∥MN ,故∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40-40sin θ)=1 600(cos θ-sin θcos θ).过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,连接OG ,则GK =KN =10.令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD ,故sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1 600( cos θ-sin θcos θ)平方米,sin θ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1 600(cos θ-sin θcos θ)=8 000k (sin θcos θ+cos θ),θ∈[θ0,π2).设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2),则f ′(θ)=cos 2θ-sin 2θ-sin θ=-(2sin 2θ+sin θ-1)=-(2sin θ-1)(sin θ+1).令f ′(θ)=0得,θ=π6,当θ∈(θ0,π6)时,f ′(θ)>0,故f (θ)为增函数;当θ∈(π6,π2)时,f ′(θ)<0,故f (θ)为减函数,因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点(3,12),焦点F 1(-3,0),F 2(3,0),圆O 的直径为F 1F 2.(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .(1)若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;(2)直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为267,求直线l 的方程.【解析】(Ⅰ)因椭圆C 的焦点为F 1(-3,0),F 2(3,0),故可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b>0).又点(3,12)在椭圆C 上,故⎩⎪⎨⎪⎧3a 2+14b 2=1,a 2-b 2=3,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.,故椭圆C 的方程为x 24+y 2=1.因圆O 的直径为F 1F 2,故其方程为x 2+y 2=3.(Ⅱ)(1)设直线l 与圆O 相切于P (x 0,y 0)(x 0>0,y 0>0),则x 20+y 20=3,故直线l 的方程为y =-x 0y 0(x -x 0)+y 0,即y =-x 0y 0x +3y 0.由⎩⎨⎧x 24+y 2=1,y =-x 0y 0x +3y消去y ,得(4x 20+y 20)x 2-24x 0x +36-4y 20=0(*),因直线l 与椭圆C 有且只有一个公共点,故Δ=(-24x 0)2-4(4x 20+y 20)(36-4y 20)=48y 20(x 20-2)=0.因x 0>0,y 0>0,故x 0=2,y 0=1.故点P 的坐标为(2,1).(2)因△OAB 的面积为267,故12AB ·OP =267,从而AB =427.设A (x 1,y 1),B (x 2,y 2),由(*)得x 1,2=24x 0±48y 20(x 20-2)2(4x 20+y 20),故AB 2=(x 1-x 2)2+(y 1-y 2)2=⎝⎛⎭⎫1+x 20y 20·48y 20(x 20-2)(4x 20+y 20)2.因x 20+y 20=3,故AB 2=16(x 20-2)(x 20+1)2=3249,即2x 40-45x 20+100=0,解得x 20=52满足(*)式的Δ>0,x 20=20舍去,则y 20=12,故P 的坐标为⎝⎛⎭⎫102,22. 综上,直线l 的方程为y =-5x +32.19.(本小题满分16分)记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”. (1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”; (2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(3)已知函数f (x )=-x 2+a ,e ()xb g x x=.对任意a >0,判断是否存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”,并说明理由.19.【解析】(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎪⎨⎪⎧x =x 2+2x -2,1=2x +2,此方程组无解,因此,f (x )与g (x )不存在“S 点”.(2)函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g′(x )=1x.设x 0为f (x )与g (x )的“S 点”,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 20=1,(*),得ln x 0=-12,即x 0=e -12,则a =12⎝⎛⎭⎫e -122=e 2.当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.(3)对任意a >0,设h (x )=x 3-3x 2-ax +a .因h (0)=a >0,h (1)=-2<0,且h (x )的图象是不间断的,故存在x 0∈(0,1),使得h (x 0)=0,令()302e 1x x b x =-,则b >0.函数f (x )=-x 2+a ,()e x b g x x =,则f ′(x )=-2x ,.由f (x )=g (x )且f ′(x )=g ′(x ),得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1x x x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**),此时,x 0满足方程组(**),即x 0是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S点”.20.(本小题满分16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q =2,若 |a n -b n |≤b 1对n =1,2,3,4均成立,求d 的取值范围; (2)若a 1=b 1>0,m ∈N *,q ∈(1,m2],证明:存在d ∈R ,使得|a n -b n |≤b 1对n =2,3,…,m +1均成立,并求d 的取值范围(用b 1,m ,q 表示).【解析】(1)由条件知:a n =(n -1)d ,b n =2n -1,因为|a n -b n |≤b 1对n =1,2,3,4均成立,即|(n -1)d -2n -1|≤1对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得73≤d ≤52,因此,d 的取值范围为[73,52].(2)由条件知:a n =b 1+(n -1)d ,b n =b 1q n -1.若存在d ,使得|a n -b n |≤b 1(n =2,3,…,m +1)成立,即|b 1+(n -1)d -b 1q n -1|≤b 1(n =2,3,…,m +1),即当n =2,3,…,m +1时,d 满足q n -1-2n -1b 1≤d ≤q n -1n -1b 1.因q ∈(1,m2],则1<qn -1≤q m≤2,从而q n -1-2n -1b 1≤0,q n -in -1b 1>0,对n =2,3,…,m +1均成立.故取d =0时,|a n -b n |≤b 1对n =2,3,…,m +1均成立.下面讨论数列⎩⎨⎧⎭⎬⎫q n -1-2n -1的最大项和数列⎩⎨⎧⎭⎬⎫q n -1n -1的最小项(n =2,3,…,m +1). ①当2≤n ≤m 时,q n -2n -q n -1-2n -1=nq n -q n -nq n -1+2n (n -1)=n (q n -q n -1)-q n +2n (n -1),当1<q ≤21m 时,有q n ≤q m ≤2,从而n (q n -qn -1)-q n +2>0.因此,当2≤n ≤m +1时,数列⎩⎨⎧⎭⎬⎫q n -1-2n -1单调递增,故()()2e 1x b x g x x -'=数列⎩⎨⎧⎭⎬⎫q n -1-2n -1的最大项为q m -2m .②设f (x )=2x (1-x ),当x >0时,f ′(x )=(ln 2-1-x ln 2)2x <0,所以f (x )单调递减,从而f (x )<f (0)=1.当2≤n ≤m 时,q nn q n -1n -1=q (n -1)n ≤21n ⎝⎛⎭⎫1-1n =f ⎝⎛⎭⎫1n <1,因此,当2≤n ≤m +1时,数列⎩⎨⎧⎭⎬⎫q n -1n -1单调递减,故数列⎩⎨⎧⎭⎬⎫q n -1n -1的最小项为q m m .因此,d 的取值范围为⎣⎡⎦⎤b 1(q m -2)m ,b 1q m m . 数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC = BC 的长. 【解析】连结OC ,因为PC 与圆O 相切,故PC ⊥.又因为23PC =2OC =,故224OP PC OC =+=.又因为2OB =,从而B 为Rt OCP △斜边的中点,故2BC =.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A =⎣⎢⎡⎦⎥⎤2 31 2.(1)求A 的逆矩阵A -1;(2)若点P 在矩阵A 对应的变换作用下得到点P ′(3,1),求点P 的坐标. 【解析】1)因为A =⎣⎢⎡⎦⎥⎤2 312,det(A )=2×2-1×3=1≠0,故A 可逆,从而A -1=⎣⎢⎡⎦⎥⎤ 2 -3-1 2. (2)设P (x ,y ),则⎣⎢⎡⎦⎥⎤231 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤31,故⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤ 3-1,因此,点P 的坐标为(3,-1). C .[选修4—4:坐标系与参数方程](本小题满分10分) 在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为ρ=4cos θ,故曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎫π6-θ=2,则直线l 过A (4,0),倾斜角为π6,故A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.连接OB .因为OA 为直径,从而∠OBA =π2,故AB =4cos π6=23.因此,直线l 被曲线C 截得的弦长为23.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求x 2+y 2+z 2的最小值. 【解析】由柯西不等式,得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2.因x +2y +2z =6,故x 2+y 2+z 2≥4,当且仅当x 1=y 2=z 2时,不等式取等号,此时x =23,y =43,z =43,故x 2+y 2+z 2的最小值为4.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【解析】如图,在正三棱柱ABC -A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,连接OB ,OO 1.则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB .以{OB →,OC →,OO 1→}为基底,建立如图所示的空间直角坐标系O -xyz .因AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P ⎝⎛⎭⎫32,-12,2,从而BP →=⎝⎛⎭⎫-32,-12,2,AC 1→=(0,2,2),故|cos 〈BP →,AC 1→〉|=|BP →·AC 1→||BP →|·|AC 1→|=|-1+4|5×22=31020.因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以Q ⎝⎛⎭⎫32,12,0,因此AQ →=⎝⎛⎭⎫32,32,0,AC 1→=(0,2,2),CC 1→=(0,0,2).设n =(x ,y ,z )为平面AQC 1的一个法向量,则⎩⎪⎨⎪⎧AQ →·n =0,AC 1→·n =0,即⎩⎪⎨⎪⎧32x +32y =0,2y +2z =0.不妨取n =(3,-1,1).设直线CC 1与平面AQC 1所成角为θ,则sin θ=|cos 〈CC 1→,n 〉|=|CC 1→·n ||CC 1→|·|n |=25×2=55,所以直线CC 1与平面AQC 1所成角的正弦值为55. 23.(本小题满分10分)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数. (1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).【解析】(1)记τ(abc )为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,故f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,故f n (0)=1.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,故f n (1)=n -1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n .当n ≥5时,f n (2)=[f n (2)-f n -1(2)]+[f n -1(2)-f n -2(2)]+…+[f 5(2)-f 4(2)]+f 4(2)=(n -1)+(n -2)+…+4+f 4(2)=n 2-n -22.因此,当n ≥5时,f n (2)=n 2-n -22.。

苏教版高中数学选修高考一轮理归纳法一轮复习限时提分训练基础到提升含精细解析Word含答案

苏教版高中数学选修高考一轮理归纳法一轮复习限时提分训练基础到提升含精细解析Word含答案

数学归纳法分层训练A 级 基础达标演练 (时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.用数学归纳法证明命题“当n 是正奇数时,x n +y n能被x +y 整除”,在进行第二步证明时,给出四种证法.①假设n =k (k ∈N +),证明n =k +1命题成立; ②假设n =k (k 是正奇数),证明n =k +1命题成立; ③假设n =2k +1(k ∈N +),证明n =k +1命题成立; ④假设n =k (k 是正奇数),证明n =k +2命题成立. 正确证法的序号是________.解析 ①②③中,k +1不一定表示奇数,只有④中k 为奇数,k +2为奇数. 答案 ④2.用数学归纳证明:对任意的n ∈N *,34n +2+52n +1能被14整除的过程中,当n =k +1时,34(k +1)+2+52(k +1)+1可变形为________. 答案 34(34k +2+52k +1)-52k +1×563.(2010·寿光一中模拟)若存在正整数m ,使得f (n )=(2n -7)3n+9(n ∈N *)能被m 整除,则m =________.解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 64.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开的式子是________.解析 假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除. 当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可. 答案 (k +3)35.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上________.解析 ∵当n =k 时,左侧=1+2+3+…+k 2, 当n =k +1时,左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2,∴当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.答案 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)26.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 答案 f (k +1)=f (k )+(2k +1)2+(2k +2)2二、解答题(每小题15分,共30分)7.(2012·苏中三市调研)已知数列{a n }满足:a 1=12,a n +1=2a n a n +1(n ∈N *).(1)求a 2,a 3的值;(2)证明:不等式0<a n <a n +1对于任意的n ∈N *都成立. (1)解 由题意,得a 2=23,a 3=45.(2)证明 ①当n =1时,由(1),知0<a 1<a 2,即不等式成立. ②设当n =k (k ∈N *)时,0<a k <a k +1成立, 则当n =k +1时,由归纳假设,知a k +1>0. 而a k +2-a k +1=2a k +1a k +1+1-2a k a k +1=2a k +1a k +1-2a k a k +1+1a k +1+1a k +1=2a k +1-a ka k +1+1a k +1>0,∴0<a k +1<a k +2,即当n =k +1时,不等式成立. 由①②,得不等式0<a n <a n +1对于任意n ∈N *成立.8.(2011·盐城调研)已知数列{a n }满足a n +1=-a 2n +pa n (p ∈R ),且a 1∈(0,2),试猜想p 的最小值,使得a n ∈(0,2)对n ∈N *恒成立,并给出证明. 证明 当n =1时,a 2=-a 21+pa 1=a 1(-a 1+p ). 因为a 1∈(0,2),所以欲使a 2∈(0,2)恒成立,则要⎩⎪⎨⎪⎧p >a 1,p <a 1+2a 1恒成立,解得2≤p ≤22,由此猜想p 的最小值为2. 因为p ≥2,所以要证该猜想成立,只要证:当p =2时,a n ∈(0,2)对n ∈N *恒成立. 现用数学归纳法证明: ①当n =1时结论显然成立;②假设当n =k 时结论成立,即a k ∈(0,2), 则当n =k +1时,a k +1=-a 2k +2a k =a k (2-a k ), 一方面,a k +1=a k (2-a k )>0成立,另一方面,a k +1=a k (2-a k )=-(a k -1)2+1≤1<2, 所以a k +1∈(0,2),即当n =k +1时结论也成立. 由①②可知,猜想成立,即p 的最小值为2.分层训练B 级 创新能力提升1.用数学归纳法证明不等式1+12+14+…+12n -1>12764 (n ∈N *)成立,其初始值至少应取________.解析 右边=1+12+14+…+12n -1=1-⎝ ⎛⎭⎪⎫12n1-12=2-12n -1,代入验证可知n 的最小值是8.答案 82.用数学归纳法证明1-12+13-14+…+12n -1-12n =1n +1+1n +2+12n ,则当n =k +1时,左端应在n =k 的基础上加上________.解析 ∵当n =k 时,左侧=1-12+13-14+…+12k -1-12k 当n =k +1时,左侧=1-12+13-14+…+12k -1-12k +12k +1-12k +2.答案12k +1-12k +23.在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________.解析 当n =2时,a 1+a 2=6a 2,即a 2=15a 1=115;当n =3时,a 1+a 2+a 3=15a 3, 即a 3=114(a 1+a 2)=135;当n =4时,a 1+a 2+a 3+a 4=28a 4, 即a 4=127(a 1+a 2+a 3)=163.∴a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,a 4=17×9,故猜想a n =12n -12n +1.答案 a n =12n -12n +14.已知S n =12-22+32-42+…+(-1)n -1·n 2,当n 分别取1,2,3,4时的值依次为________,所以猜想原式=________.解析 当n =1时,S 1=12=1=(-1)1-1·1×1+12 当n =2时,S 2=12-22=-3=(-1)2-1·2×2+12 当n =3时,S 3=12-22+32=6=(-1)3-1·3×3+12当n =4时,S 4=12-22+32-42=-10=(-1)4-1·4×4+12∴猜想S n =(-1)n -1·n n +12.答案 1,-3,6,-10 (-1)n -1·n n +125.(2010·全国卷)在数列{a n }中,a 1=1,a n +1=c -1a n.(1)设c =52,b n =1a n -2,求数列{b n }的通项公式;(2)求使不等式a n <a n +1<3成立的c 的取值范围. 解 (1)a n +1-2=52-1a n -2=a n -22a n,1a n +1-2=2a n a n -2=4a n -2+2,即b n +1=4b n +2.b n +1+23=4⎝⎛⎭⎪⎫b n +23,又a 1=1,故b 1=1a 1-2=-1, 所以⎩⎨⎧⎭⎬⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1,得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. ①当n =1时, a 2=c -1a 1>a 1,命题成立;②设当n =k 时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k=a k +1.故由①②知当c >2时,a n <a n +1. 当c >2时,因为c =a n +1+1a n >a n +1a n,所以a 2n -ca n +1<0有解, 所以c -c 2-42<a n <c +c 2-42,令α=c +c 2-42,当2<c ≤103时,a n <α≤3.当c >103时,α>3,且1≤a n <α,于是α-a n +1=1a n α(α-a n )<13(α-a n )<132(α-a n -1)<…<13n (α-1).所以α-a n +1<13n (α-1),当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3,与已知矛盾. 因此c >103不符合要求.所以c 的取值范围是⎝⎛⎦⎥⎤2,103.6.(2012·扬州中学最后冲刺)已知在正项数列{a n }中,对于一切的n ∈N *均有a 2n ≤a n -a n +1成立.(1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小,并证明你的结论.(1)证明 由a 2n ≤a n -a n +1,得a n +1≤a n -a 2n . 因为在数列{a n }中,a n >0,所以a n +1>0.所以a n -a 2n >0.所以0<a n <1. 故数列{a n }中的任意一项都小于1. (2)解 由(1)知0<a n <1=11,那么a 2≤a 1-a 21=-⎝⎛⎭⎪⎫a 1-122+14≤14<12,由此猜想:a n <1n(n ≥2),下面用数学归纳法证明:①当n =2时,显然成立;②当n =k 时(k ≥2,k ∈N )时,假设猜想正确,即a k <1k ≤12,那么a k +1≤a k -a 2k =-⎝ ⎛⎭⎪⎫a k -122+14<-⎝ ⎛⎭⎪⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1,故当n =k +1时,猜想也正确. 综上所述,对于一切n ∈N *,都有a n <1n.。

2018版高考数学江苏理考前三个月配套课件 专题11 数学方法 第2讲 精品

2018版高考数学江苏理考前三个月配套课件 专题11 数学方法 第2讲 精品

解析答案
(2)已知在数列{an}中,a1=1,当 n≥2 时,其前 n 项和 Sn 满足 S2n=anSn-12.
①求Sn的表达式;
解 ∵S2n=anSn-12,an=Sn-Sn-1 (n≥2),
∴S2n=(Sn-Sn-1)Sn-12,即2Sn-1Sn=Sn-1-Sn,
(*)
由题意得Sn-1·Sn≠0, (*)式两边同除以 Sn-1·Sn,得S1n-Sn1-1=2, ∴数列S1n是首项为S11=a11=1,公差为 2 的等差数列. ∴S1n=1+2(n-1)=2n-1,∴Sn=2n1-1.
专题11 数学方法
第 2 讲 整体策略与换元法
题型分析 高考展望
整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观 察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新 途径. 换元法又称辅助元素法、变量代换法,通过引进新的变量,可以把分 散的条件联系起来,隐含的条件显露出来;或者把条件与结论联系起 来;或者变为熟悉的形式,把复杂的计算和推证简化.
令t=f(a),则t≤1, 令 f(t)=12,解得 t=1- 22或 t=-1±22,
即 f(a)=1- 22或 f(a)=-1±22,由数形结合得,共有 8 个交点.
解析答案
123456789
6.设f(x2+1)=loga(4-x4)(a>1),则f(x)的值域是_(-__∞__,__l_o_g_a_4_] _. 解析 设x2+1=t(t≥1), ∴f(t)=loga[-(t-1)2+4], ∴值域为(-∞,loga4].
123456789
解析答案
123456789
(2)求x2+y2的最大值和最小值. 解 由(1)知 x2+y2=(2+ 3cos θ)2+( 3sin θ)2 =7+4 3cos θ. ∴当θ=2kπ(k∈Z)时, x2+y2 有最大值 7+4 3, 当θ=2kπ+π(k∈Z)时, x2+y2 有最小值 7-4 3.

2018江苏高考数学试题及答案解析(K12教育文档)

2018江苏高考数学试题及答案解析(K12教育文档)

2018江苏高考数学试题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018江苏高考数学试题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018江苏高考数学试题及答案解析(word版可编辑修改)的全部内容。

2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=⋂B A .2.若复数z 满足i z i 21+=⋅,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()1log 2-=x x f 的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数()⎪⎭⎫ ⎝⎛<<-+=222sin ππϕx x y 的图象关于直线3π=x 对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线()0,012222>>=-b a by a x 的右焦点()0,c F 到一条渐近线的距离为c 23,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()⎪⎪⎩⎪⎪⎨⎧≤<-+≤<=02,2120,2cos x x x xx f π, 则()()15f f 的值为 .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数()()R a ax x x f ∈+-=1223在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB 为直径的圆C 与直线l 交于另一点D .若0=⋅,则点A 的横坐标为 .13.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、, 120=∠ABC ,ABC ∠的平分线交AC 于点D ,且1=BD ,则c a +4的最小值为 .14.已知集合{}*∈-==N n n x x A ,12|,{}*∈==N n x x B n ,2|.将B A ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)焦如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,点12(3,0),(3,0)F F -,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点",求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学科#网22.(本小题满分10分)如图,在正三棱柱ABC—A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s 〈t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8} 2.2 3.90 4.85.[2,+∞)6.3107.π6-8.29.2210.4311.–3 12.313.9 14.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD—A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为5cos()αβ+=-,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得 222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而42AB =. 设1122,,()(),A x y B x y , 由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)2. 综上,直线l 的方程为532y x =-+.19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x —2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),().设x 0为f (x )与g (x )的“S ”点,由f (x 0)与g (x 0)且f ′(x 0)与g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a 〉0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )与g (x )且f ′(x )与g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点". 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+, 即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x 〈f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m . 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC . 又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt△OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分. 解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆,从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=, 则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.连结OB ,因为OA 为直径,从而∠OBA =π2, 所以π4cos 236AB ==.因此,直线l 被曲线C 截得的弦长为23. D .[选修4-5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥,当且仅当122xy z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.学科%网解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅. 因此,异面直线BP 与AC 1 (2)因为Q 为BC 的中点,所以1,0)2Q , 因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.x y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n 所以直线CC 1与平面AQC 1. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以2018江苏高考数学试题及答案解析(word 版可编辑修改)牛人数学助力高考数学 (1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。

2018江苏高考数学总复习要点——知识篇(全套)

2018江苏高考数学总复习要点——知识篇(全套)
2
2
x2 y 2
2
2
⑸ 数量积的运算律
①交换律:
a b b a
②对数乘的结合律: ( a) b (a b) a (b)
③分配律: (a b) c a c b c
注意: 数量积不满足结合律,即:
coS(-α)=cos α , 偶
tan(-α)=—tan α ,奇
Sin(2π-α)=—sin α , 奇,周期函数
coS(2π-α)=cos α , 偶,周期函数
tan(2π-α)=—tan α ,奇,周期函数
三、基本初等函数(2)三角恒等变






3正余弦正切的诱导公式
公式三(仅正弦不变号)
1)概念
一般地,我们规定实数λ与向量 的积是一个向量,
这种运算叫做向量的数乘,记作 ,它的长度和方向
规定如下:
• ① ՜ = ՜


• ②当>0时, ՜的方向与 ՜的方向相同;


• 当 <0时, ՜的方向与 ՜的方向相反;


• 特别地,当 =0时, ՜=՜

0
五、平面向量
• b=2RsinB
• c=2RsinC
• 注:∆ =
1
absinC
2
= 2 外接圆半径
四、解三角形




2余弦定理及其应用
2 = 2 + 2 − 2
2 = 2 + 2 − 2
2 = 2 + 2 − 2
• =
2 + 2 −2
(1)概念

江苏版2018年高考数学一轮复习专题11.4数学归纳法测理20171219452

江苏版2018年高考数学一轮复习专题11.4数学归纳法测理20171219452

专题11.4 数学归纳法一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 用数学归纳法证明2n n a b +≥2a b +⎛⎫ ⎪⎝⎭n (a ,b 是非负实数,n ∈N +)时,假设n =k 命题成立之后,证明n =k +1命题也成立的关键是________________. 【答案】两边同乘以2a b+ 【解析】要想办法出现a k +1+bk +1,两边同乘以2a b +,右边也出现了要证的2a b +⎛⎫ ⎪⎝⎭k +1. 2. 用数学归纳法证明等式(3)(4)123(3)()2n n n n *+++++++=∈N 时,第一步验证1n =时,左边应取的项是______________. 【答案】1234+++3. 利用数学归纳法证明不等式1+12+13+ 121n -<f(n) (n≥2,n N *∈)的过程中,由n =k 变到n =k +1时,左边增加了______________. 【答案】2k项【解析】当n k =时,左边共有21k-项,当1n k =+时,左边共有121k +-项,左边增加了()()121212k kk+---=项.4. 若f n n()=++++-121314121……,则f k f k ()()+-1等于______________. 【答案】121211211k k k ++++-+…… 【解析】因为,f n n ()=++++-121314121……,所以,f k f k ()()+-1=111111111111...............)234212212123421k k k k k +++++++++-++++-+--()( =121211211k k k ++++-+…….5. 用数学归纳法证明: (31)(1)(2)()2n n n n n n +++++++=*()n N ∈的第二步中,当1n k =+时等式左边与n k =时的等式左边的差等于 .【答案】32k +6. 在应用数学归纳法证明凸n 变形的对角线为)3(21-n n 条时,第一步检验n 等于______________. 【答案】3【解析】因为凸n 变形的n 最小为3,所以第一步检验n 等于3,故选C. 7.利用数学归纳法证明“221111n n a a a aa++-++++=-, (1,a n N ≠∈)”时,在验证1n =成立时,左边应该是 . 【答案】21a a ++【解析】用数学归纳法证明“221111n n a a a aa++-++++=-, (1,a n N ≠∈)”时,在验证1n =成立时,将1n =代入,左边以1即0a 开始,以112a a +=结束,所以左边应该是21a a ++.8. 在数列{a n }中,a n =1-12+13-14+…+121n --12n,则a k +1等于______________. 【答案】a k +121k +-122k +【解析】由于a 1=1-12,a 2=1-12+13-14,…,a k =1-12+13-14+…+121k --12k∴a k +1=a k +121k +-122k +.9. 用数学归纳法证明12+32+52+…+(2n ﹣1)2=n (4n 2﹣1)过程中,由n=k 递推到n=k+1时,不等式左边增加的项为______________. 【答案】(2k+1)210. 用数学归纳法证明(1)(2)()213(21)n n n n n n +++=-····,从k 到1k +,左边需要增乘的代数式为______________. 【答案】2(21)k +【解析】当n=k 时,左边等于 (k+1)(k+2)…(k+k )=(k+1)(k+2)…(2k ),当n=k+1时,左边等于 (k+2)(k+3)…(k+k )(2k+1)(2k+2),故从“k”到“k+1”的证明,左边需增添的代数式是()()()21221k k k +++=2(2k+1).二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。

2018版高考数学江苏理考前三个月配套课件 专题11 数学方法 第4讲 精品

2018版高考数学江苏理考前三个月配套课件 专题11 数学方法 第4讲 精品
(2)若直线 l 与双曲线交于 P、Q 两点,且O→P·O→Q=0,求O1P2+O1Q2的值.
解析答案
1 2 3 4 5 6 7 8 9 10 11 12
11.已知数列{an}中,an=1+a+21n-1(n∈N*,a∈R 且 a≠0).
(1)若a=-7,求数列{an}中的最大项和最小项的值; 解 ∵an=1+a+21n-1(n∈N*,a∈R,且 a≠0), 又 a=-7,∴an=1+2n1-9(n∈N*). 结合函数 f(x)=1+2x-1 9的单调性, 可知1>a1>a2>a3>a4, a5>a6>a7>…>an>1(n∈N*). ∴数列{an}中的最大项为a5=2,最小项为a4=0.
解析答案
bn+1 (2)证明:对于一切正整数 n,an≤2n+1+1.
点评
解析答案
返回
高考题型精练
1 2 3 4 5 6 7 8 9 10 11 12
1.已知函数 f(x)= mx2+mx+1的定义域是一切实数,则 m 的取值范围是 ___[0_,_4_]__.
解析 根据题意mx2+mx+1≥0(x∈R)恒成立, 当m=0时,满足不等式; 当 m≠0 时,需满足mΔ=>0m,2-4m≤0, 解得0<m≤4.综上0≤m≤4.
解 由(1)知,B-C=π2,又 B+C=π-A=34π,
因此 B=58π,C=π8.
由 a= 2,A=π4,得 b=assiinnAB=2sin 58π,c=assiinnAC=2sin π8,
所以△ABC 的面积 S=12bcsin A=
2sin
5π 8 sin
π8=
2cos
π 8sin
π8=12.
解析答案
1 2 3 4 5 6 7 8 9 10 11 12

2018版高考数学江苏理考前三个月配套课件 专题11 数学方法 第1讲 精品

2018版高考数学江苏理考前三个月配套课件 专题11 数学方法 第1讲 精品
解析答案
1 2 3 4 5 6 7 8 9 10 11 12
9.设函数 f(x)=kax-a-x(a>0 且 a≠1)是定义域为 R 的奇函数,若 f(1)=32, 且 g(x)=a2x+a-2x-4f(x),求 g(x)在[1,+∞)上7 8 9 10 11 12
又数列{an}为递增数列,∴a1=1,a4=8,从而a1q3=8,∴q=2. ∴数列{an}的前 n 项和为 Sn=11--22n=2n-1.
解析答案
1234
2.(2015·课标全国Ⅰ)一个圆经过椭圆1x62 +y42=1 的三个顶点,且圆心在 x 轴的正半轴上,则该圆的标准方程为___x-__32__2+__y_2_=__24_5__. 解析 由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为y+1=-2(x-2), 令 y=0,解得 x=32,圆心为32,0,半径为52.
1 行,则实数 λ=__2____. 解析 ∵向量a,b不平行, ∴a+2b≠0,又向量λa+b与a+2b平行, 则存在唯一的实数μ,使λa+b=μ(a+2b)成立,即λa+b=μa+2μb,
则得λ1==μ2,μ, 解得 λ=μ=12.
解析答案
(2)是否存在常数 a,b,c,使得等式 1·22+2·32+…+n(n+1)2=nn1+2 1(an2 +bn+c)对一切自然数 n 都成立?并证明你的结论.
∴||bx||=
|x| x2+y2+
,当 3xy
x=0
时,||bx||=0;
当 x≠0 时,||bx||=
1

yx2+ x3y+1
yx+1232+14≤2.
解析答案
1 2 3 4 5 6 7 8 9 10 11 12

(江苏版)2018年高考数学一轮复习 专题11.4 数学归纳法(练)理

(江苏版)2018年高考数学一轮复习 专题11.4 数学归纳法(练)理

专题11.4 数学归纳法1. 已知n 是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明_______. 【答案】n=k+2时命题成立【解析】因n 是正偶数,故只需证等式对所有偶数都成立,因k 的下一个偶数是k+2 2. 用数学归纳法证明1+12+14+…+112n ->12764(n ∈N *)成立,其初始值至少应取_______. 【答案】8【解析】左边=1+12+14+…+112n -=112112n --=2-112n -,代入验证可知n 的最小值是8. 3. 用数学归纳法证明“()()()()12212321n n n n n n +⋅+⋅⋅+=⋅⋅⋅⋅⋅-”,从“k 到1k +”左边 需增乘的代数式_______. 【答案】()221k +4. 若*111()1()2331f n n n =++++∈-N ,则对于*k ∈N ,(1)()f k f k +=+ . 【答案】13k + 131k + +132k +【解析】由题知()f k =*1111()2331k N k ++++∈-,(1)f k +=11112331k ++++- +13k + 131k + +13(1)1k +-*()k N ∈=11112331k ++++- +13k + 131k + +132k +*()k N ∈,所以(1)f k +=()f k + 13k + 131k + +132k +. 5. 用数学归纳法证明“当n 为正奇数时,x n+y n能被x +y 整除”的第二步是____. 【答案】假设n =2k -1(k∈N *)时正确,再推n =2k +1(k∈N *)正确【解析】因为n 为正奇数,根据数学归纳法证题的步骤,第二步应先假设第k 个正奇数也成立,本题先假设n =2k -1(k∈N *)正确,再推第k +1个正奇数,即n =2k +1(k∈N *)正确.6. 已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-++=+++⎪-++⎝⎭时,若已知假设()2n k k =≥为偶数时,命题成立,则还需要用归纳假设再证_______. 【答案】2n k =+时等式成立【解析】由于n 为正偶数,已知假设()2n k k =≥为偶数,则下一个偶数为2n k =+. 7. 若f (x )=f 1(x )=x1+x,f n (x )=f n -1[f (x )](n ≥2,n ∈N *),则f (1)+f (2)+…+f (n )+f 1(1)+f 2(1)+…+f n (1)=_______. 【答案】18. 已知f(n)=1+12+13+…+1n (n ∈N *),用数学归纳法证明f(2n )>112时,f(2k +1)-f(2k)等于________. 【答案】121k ++122k ++…+112k +【解析】∵f(2k +1)=1+12+13+14+…+1k +11k ++…+12k +121k ++122k ++…+112k +,f(2k)=1+12+13+14+…+1k +11k ++…+12k ,∴f(2k +1)-f(2k)=121k ++122k ++…+112k +.9. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】(本小题满分10分)设实数12n a a a ,,,满足120n a a a +++=,且12||||||1n a a a +++≤(*n ∈N 且2)n ≥,令(*)nn a b n n =∈N .求证:1211||22n b b b n+++-≤(*)n ∈N . 【答案】详见解析310. 【江苏省苏北三市(徐州市、连云港市、宿迁市)2016届高三最后一次模拟考试】(本小题满分10分)在集合{1,2,3,4,,2}A n =中,任取(,,*)m m n m n N ≤∈个元素构成集合m A . 若m A 的所有元素之和为偶数,则称m A 为A 的偶子集,其个数记为()f m ;m A 的所有元素之和为奇数,则称m A 为A 的奇子集,其个数记为()g m . 令()()()F m f m g m =-. (1)当2n =时,求(1),(2),(3)F F F 的值;(2)求()F m .【答案】(1)(1)0F =,(2)2F =-,(3)0F =,(2)22(1)C , ()0,m mn m F m m ⎧⎪-=⎨⎪⎩为偶数, 为奇数.0112233110C C C C C C C C C C C C m m m m m m n n n n n n n n n n n n -----+-+-+; …………………8分另一方面,2(1)(1)(1)n n n x x x +-=-,2(1)nx -中mx 的系数为22(1)C mm n-,故()F m =22(1)C m m n-.综上,22(1)C , ()0,m mn m F m m ⎧⎪-=⎨⎪⎩为偶数, 为奇数.……………………………………………10分511. 【盐城市2016届高三年级第三次模拟考试】(本小题满分10分)记2222*234()(32))(2,)n f n n C C C C n n N =+++++≥∈(.(1)求(2),(3),(4)f f f 的值;(2)当*2,n n N ≥∈时,试猜想所有()f n 的最大公约数,并证明. 【答案】(1)(2)8,(3)44,(4)140f f f ===(2)4.12. 【江苏省扬州中学2015—2016学年第二学期质量检测】设数列{}n a (n N ∈)为正实数数列,且满足20nin i n i n i C a aa -==∑.(1)若24a =,写出10,a a ;(2)判断{}n a 是否为等比数列?若是,请证明;若不是,请说明理由.【答案】(1)2,110==a a (2)是等比数列【解析】(1)当1n =时,0121011011102C a a C a a a a a +=⇒=13. 各项均为正数的数列{}n x 对一切*n ∈N 均满足112n n x x ++<.证明: (1)1n n x x +<; (2)111n x n-<<. 【解析】(1)因为0n x >,112n n x x ++<,与题设112k k x x ++<矛盾,所以,1n x ≤.若1k x =,则11k k x x +>=,根据上述证明可知存在矛盾.所以1102n n x x +<<-, 所以112n n x x +>-,且20n x ->.因为2221(1)1222n n n n n n nx x x x x x x -+--==---≥0.所以12n n x x -≥,所以12n n nx x x +<-≤1,即1n n x x +<. (注:用反证法证明参照给分) (2)下面用数学归纳法证明:11n x n>-. ① 当1n =时,由题设10x >可知结论成立; ② 假设n k =时,11k x k>-,7当1n k =+时,由(1)得,11111121121k kk x x k k k +>>==--++⎛⎫-- ⎪⎝⎭. 由①,②可得,11n x n>-. 下面先证明1n x ≤. 假设存在自然数k ,使得1k x >,则一定存在自然数m ,使得11k x m>+.14. 已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. (1)求数列{b n }的通项公式b n ; (2)设数列{a n }的通项a n =log a 11n b ⎛⎫ ⎪⎝⎭+(其中a >0且a≠1).记S n 是数列{a n }的前n 项和,试比较S n 与13log a b n +1的大小,并证明你的结论.【解析】(1)设数列{b n }的公差为d ,由题意得11110101101452b b d ⎧⎪⎨⎪⎩=,(-)+=Þ113b d ⎧⎨⎩=,=,∴b n =3n -2. (2)由b n =3n -2,知S n =log a (1+1)+log a 114⎛⎫ ⎪⎝⎭++…+log a 1132n ⎛⎫⎪-⎝⎭+。

(江苏版)2018年高考数学一轮复习(讲、练、测):_专题4.5_函数y=Asin(ωx+φ)的图象及其应用(讲)(有解析)

(江苏版)2018年高考数学一轮复习(讲、练、测):_专题4.5_函数y=Asin(ωx+φ)的图象及其应用(讲)(有解析)

专题4.5 函数y =Asin (ωx +φ)的图象及其应用【考纲解读】题组一 常识题1.把函数y =sin x 的图像上每个点的纵坐标不变,横坐标伸长为原来的2倍得到函数________的图像.2.某函数的图像向右平移π2个单位长度后得到的图像对应的函数解析式是y =sin ⎝ ⎛⎭⎪⎫x +π4,则原函数的解析式是____________.【解析】将函数y =sin ⎝⎛⎭⎪⎫x +π4的图像向左平移π2个单位长度得y =sin ⎝⎛⎭⎪⎫x +π2+π4的图像,即原函数为y =sin ⎝⎛⎭⎪⎫x +3π4. 3.已知简谐运动f (x )=2sinπ3x +φ|φ|<π2的图像经过点(0,1),则该简谐运动的初相φ为________. 【解析】因为函数图像经过点(0,1),所以将点(0,1)的坐标代入函数解析式可得2sin φ=1,即sin φ=12.又因为|φ|<π2,所以φ=π6. 题组二 常错题4.为得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图像,只需将函数y =sin 2x 的图像向________平移________个单位长度.5.设ω>0,若函数f (x )=sinωx 2cos ωx 2在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则ω的取值范围是____________.【解析】f (x )=sin ωx 2cos ωx 2=12sin ωx ,若函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π3上单调递增,则T 2=πω≥π3+π3=2π3,故ω∈⎝ ⎛⎦⎥⎤0,32.6.若f (x )=2sin(ωx +φ)+m 对任意实数t 都有f ⎝ ⎛⎭⎪⎫π8+t =f ⎝ ⎛⎭⎪⎫π8-t ,且f ⎝ ⎛⎭⎪⎫π8=-3,则实数m =________.【解析】由f ⎝ ⎛⎭⎪⎫π8+t =f ⎝ ⎛⎭⎪⎫π8-t ,得函数图像的对称轴为直线x =π8.故当x =π8时,函数取得最大值或最小值,于是有-2+m =-3或2+m =-3,即m =-1或m =-5. 题组三 常考题7. 将函数y =2cos ⎝ ⎛⎭⎪⎫2x +π3的图像向左平移13个周期后,所得图像对应的函数为________.【解析】函数y =2cos ⎝ ⎛⎭⎪⎫2x +π3的周期为π,将函数y =2cos ⎝⎛⎭⎪⎫2x +π3的图像向左平移13个周期即π3个单位长度,所得图像对应的函数为y =2cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π3+π3=2cos(2x +π)=-2cos 2x .8.已知函数f (x )=2sin ωx 2cos ωx2+cos ωx 的最小正周期为π,则ω的值是________.【解析】f (x )=2sin ωx 2cos ωx 2+cos ωx =sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,所以T =2π|ω|=π,得ω=±2.【知识清单】考点1 求三角函数解析式 1.()sin y A x ωϕ=+的有关概念2.用五点法画sin y A x =+一个周期内的简图用五点法画()sin y A x ωϕ=+一个周期内的简图时,要找五个关键点,如下表所示:3. 由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置. 4.利用图象变换求解析式:由sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,,得到函数()sin y x ϕ=+,将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+,将图象上各点的纵坐标变为原来的A 倍(0A >),便得()sin y A x ωϕ=+. 考点2 三角函数图象的变换1.函数图象的变换(平移变换和上下变换) 平移变换:左加右减,上加下减把函数()y f x =向左平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图像; 把函数()y f x =向右平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图像; 把函数()y f x =向上平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图像; 把函数()y f x =向下平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图像. 伸缩变换:把函数()y f x =图像的纵坐标不变,横坐标伸长到原来的1ω,得到函数()()01y f x ωω=<<的图像; 把函数()y f x =图像的纵坐标不变,横坐标缩短到原来的1ω,得到函数()()1y f x ωω=>的图像; 把函数()y f x =图像的横坐标不变,纵坐标伸长到原来的A ,得到函数()()1y Af x A =>的图像; 把函数()y f x =图像的横坐标不变,纵坐标缩短到原来的A ,得到函数()()01y Af x A =<<的图像. 2.由sin y x =的图象变换出()sin y x ωϕ=+()0ω>的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换)先将sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,再将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+的图象. 途径二:先周期变换(伸缩变换)再平移变换:先将sin y x =的图象上各点的横坐标变为原来的1ω倍(0ω>),再沿x 轴向左(0ϕ>)或向右(0ϕ<)平移ωϕ||个单位,便得()sin y x ωϕ=+的图象.注意:函数sin() y x ωϕ=+的图象,可以看作把曲线sin y x ω=上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动ϕω个单位长度而得到. 考点3 函数()sin y A x ωϕ=+的图像与性质的综合应用 1. x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈. 2.对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程()2x k k Z πωϕπ+=+∈解出;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由()x k k Z ωϕπ+=∈,解得()k x k Z πϕω-=∈,即其对称中心为(),0k k Z πϕω-⎛⎫∈ ⎪⎝⎭. 3. )若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈.4. ()sin()f x A x ωϕ=+的最小正周期都是2||T πω=. 【考点深度剖析】本课时是高考热点之一,主要考查:①作函数图像,包括用五点法描图及图形变换作图;②由图像确定解析式;③考查三角函数图像变换;④图像的轴对称、中心对称.题型多是容易题.【重点难点突破】考点1 求三角函数解析式【1-1】已知函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ≤π2的部分图像如图所示,则φ的值为________.【答案】π3【1-2】如图,函数()sin()f x A x ωϕ=+(其中0A >,0ω>,||2πϕ≤)与坐标轴的三个交点P 、Q 、R 满足(1,0)P ,4PQR π∠=,M 为QR 的中点,PM =, 则A 的值为 .【答案】14【解析】由题意设(),0Q a 、()0,R a -,()0a >,则,22a a M ⎛⎫-⎪⎝⎭,有两点间距离公式得,【思想方法】1.根据()sin y A x h ωϕ=++()0,0A ω>>的图象求其解析式的问题,主要从以下四个方面来考虑: (1) A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;(2) h 的确定:根据图象的最高点和最低点,即h =最高点+最低点2;(3) ω的确定:结合图象,先求出周期T ,然后由2T πω= (0ω>)来确定ω;(4) 求ϕ,常用的方法有:①代入法:把图像上的一个已知点代入(此时,,A h ω已知)或代入图像与直线y h =的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定ϕ值时,由函数()sin y A x k ωϕ=++最开始与x 轴的交点的横坐标为ϕω-(即令0x ωϕ+=,x ϕω=-)确定ϕ.将点的坐标代入解析式时,要注意选择的点属于“五点法”中的哪一个点,“第一点”(即图象上升时与x 轴的交点)为002x k ωϕπ+=+,其他依次类推即可.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向. 【温馨提醒】求ϕ时一般把图像上的一个最值点代入.考点2 三角函数图象的变换【2-1】函数()sin()(0,0,)2f x A x A πωφωφ=+>><的部分图像如图所示,则将()y f x =的图象向右平移6π个单位后,得到的图像解析式为________.【答案】sin(2)6y x π=-【解析】【2-2】函数)sin()(ϕω+=x A x f (其中A >0,2||πω<)的图象如图所示,为得到x x g 3sin )(=的图象,则只要将)(x f 的图象向 平移 个单位.【答案】右,【解析】由图知,函数)(x f 的周期32)4125(4πππ=-=T ,1=A ,3=∴ω,)3sin()(ϕ+=∴x x f , 易求得点)0,12(π在函数)(x f 的图像上,0)123sin(=+⨯∴ϕπ,又2||πω<,4πϕ-=∴,)43sin()(π+=∴x x f ,将函数)43sin()(π+=x x f 的图象向右平移12π个单位长即得x x g 3sin )(=的图象.【思想方法】1. 在解决函数图像的变换问题时,要遵循“只能对函数关系式中的,x y 变换”的原则,写出每一次的变换所第(9)题得图象对应的解析式,这样才能避免出错.2. 图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3.解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.4.特别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.【温馨提醒】解决图象变换的关键是变换“只能对函数关系式中的,x y 变换”的原则即可,值得注意点是, 要得到函数sin() y x ωϕ=+的图象,可以看作把曲线sin y x ω=上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动ϕω个单位长度而得到,而不是平行移动ϕ个单位. 考点3 函数()sin y A x ωϕ=+的图像与性质的综合应用 【 3-1】设()()()=sin cos 0,2f x x x πωϕωϕωϕ⎛⎫+++><⎪⎝⎭的最小正周期为π,且对任意实数x 都有()()4f x f π≤,则()f x 的单调减区间是 .【答案】)(],43,4[Z k k k ∈++ππππ【 3-2】若函数()2sin f x x ω=(0)ω>的图像在(0,2)π上恰有一个极大值和一个极小值,则ω的取值范围是 . 【答案】35(,]44【解析】∵函数()2sin f x x ω=(0)ω>的图像在(0,2)π上恰有一个极大值和一个极小值, ∴35222πππω<≤,∴3544ω<≤. 【思想方法】(1)奇偶性:()k k Z ϕπ=∈时,函数sin()y A x ωϕ=+为奇函数;()2k k Z πϕπ=+∈时,函数sin()y A x ωϕ=+为偶函数.(2)周期性:sin()y A x ωϕ=+存在周期性,其最小周期为2||T πω=. (3)单调性:根据sin y t =和t x ωϕ=+的单调性来研究,由22,22k x k k Z πππωϕπ-+≤+≤+∈得单调增区间;由322,22k x k k Z πππωϕπ+≤+≤+∈得单调减区间. (4)对称性:利用sin y x =的对称中心为(,0) k k Z π∈求解,令,x k k Z ωϕπ+=∈,求得x . 利用sin y x =的对称轴为2x k ππ=+ (k Z ∈)求解,令,2x k k Z πωϕπ+=+∈得其对称轴.【温馨提醒】对于函数sin()y A x ωϕ=+求其单调区间,要特别注意ω的正负,若为负值,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调区间.【易错试题常警惕】由y =sin x 的图像变换到y =A sin(ωx +φ)的图像,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题11.4 数学归纳法
一、填空题:请把答案直接填写在答题卡相应的位置........
上(共10题,每小题6分,共计60分). 1. 用数学归纳法证明2n n a b +≥2a b +⎛⎫ ⎪⎝⎭
n (a ,b 是非负实数,n ∈N +)时,假设n =k 命题成立之后,证明n =k +1命题也成立的关键是________________. 【答案】两边同乘以
2
a b
+ 【解析】要想办法出现a k +1
+b
k +1
,两边同乘以
2a b +,右边也出现了要证的2a b +⎛⎫ ⎪⎝⎭
k +1
. 2. 用数学归纳法证明等式(3)(4)
123(3)()2
n n n n *+++++++=∈N 时,第一步验证1n =时,左边应取的项是______________. 【答案】1234+++
3. 利用数学归纳法证明不等式1+
12+13+ 121
n -<f(n) (n≥2,n N *∈)的过程中,由n =k 变到n =k +1时,左边增加了______________. 【答案】2k

【解析】当n k =时,左边共有21k
-项,当1n k =+时,左边共有1
2
1k +-项,左边增加了
(
)(
)
1
2
1212k k
k
+---=项.
4. 若f n n
()=
++++-1213141
21……,则f k f k ()()+-1等于______________. 【答案】121211
21
1
k k k ++++-+…… 【解析】因为,f n n ()=++++-1213141
21……,所以,
f k f k ()()+-1=
111111111111...............)234212212123421
k k k k k +++++++++-++++-+--()( =12121121
1k k k ++++-+…….
5. 用数学归纳法证明: (31)
(1)(2)()2
n n n n n n +++++++= *()n N ∈的第二步中,当1n k =+时等式左边与n k =时的等式左边的差等于 . 【答案】32k +
6. 在应用数学归纳法证明凸n 变形的对角线为)3(2
1
-n n 条时,第一步检验n 等于______________. 【答案】3
【解析】因为凸n 变形的n 最小为3,所以第一步检验n 等于3,故选C. 7.利用数学归纳法证明“22
1
111n n a a a a a
++-++++=- , (1,a n N ≠∈)”时,在验证1n =成立时,左边应该是 . 【答案】21a a ++
【解析】用数学归纳法证明“22
1
111n n a a a a
a
++-++++=- , (1,a n N ≠∈)”时,在验证1n =成立时,将1n =代入,左边以1即0a 开始,以112a a +=结束,所以左边应该是2
1a a ++.
8. 在数列{a n }中,a n =1-
12+13-14+…+121n --12n
,则a k +1等于______________. 【答案】a k +121k +-1
22
k +
【解析】由于a 1=1-12,a 2=1-12+13-14,…,a k =1-12+13-14+…+121k --1
2k
∴a k +1=a k +121k +-1
22
k +.
9. 用数学归纳法证明12
+32
+52
+…+(2n ﹣1)2
=n (4n 2
﹣1)过程中,由n=k 递推到n=k+1时,不等式左边增加的项为______________. 【答案】(2k+1)2
10. 用数学归纳法证明(1)(2)()213(21)n
n n n n n +++=- ··
··,从k 到1k +,左边需要增乘的代数式为______________. 【答案】2(21)k +
【解析】当n=k 时,左边等于 (k+1)(k+2)…(k+k )=(k+1)(k+2)…(2k ),当n=k+1时,左边等于 (k+2)(k+3)…(k+k )(2k+1)(2k+2),故从“k”到“k+1”的证明,左边需增添的代数式是 ()()()
21221k k k +++=2
(2k+1).
二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。

(共3题,共计40分).
11. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】已知数列{}n a 满足
212111
32,(),()()(1)n n
a n f n g n f n f n a a a =-=
+++=-- ,*n N ∈. (1)求证: 1(2)3g >;(2)求证:当3n ≥时,1
()3g n >.
【答案】(1)详见解析(2)详见解析 【解析】(1)由题意知,32n a n =-,2
121111
()n n n n g n a a a a ++=
++++ , …………1分 当2n =时,234111111691
(2)47101403
g a a a =
++=++=>. ……………2分 (2)用数学归纳法加以证明:
12. 【扬州市2015—2016学年度第一学期期末检测试题】已知函数2
32)(x x x f -=,设数列{}n a 满足:
4
1
1=
a ,)(1n n a f a =+. (1)求证:*
N n ∈∀,都有3
1
<<n a ; (2)求证:
44313
313313121-≥-++-+-+n n
a a a
【答案】(1)详见解析(2)详见解析 【解析】(1)解:①当1n =时,114a =
, 有11
03
a <<
1n ∴=时,不等式成立 …………1分
②假设当*()n k k N =∈时,不等式成立,即1
03k a <<
则当1n k =+时,
22
21211()233()3()333k k k k k k k a f a a a a a a +==-=--=--+
于是2
1113()33
k k a a +-=-
13. 【镇江市2016届高三年级第一次模拟考试】(本小题满分10分) 证明:对一切正整数n ,5n
+2·3n -1
+1能被8整除.
【答案】略.
【解析】(1) 当n=1时,能被8整除,(2分)
(2) 假设当n=k,(k≥2,k∈N*,结论成立,)(2分)
则5k+2·3k-1+1能被8整除,设5k+2·3k-1+1=8m,m∈N*,当n=k+1时,5k+1+2·3k+1=5(5k+2·3k-1+1)-4·3k-1-4。

相关文档
最新文档