步电机的正反转和调速

合集下载

步进电机控制原理

步进电机控制原理

步进电机控制原理步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

一、步进电机的工作原理该步进电机为一四相步进电机,采用单极性直流电源供电。

只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。

图1是该四相反应式步进电机工作原理示意图。

开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。

当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。

而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。

依次类推,A、B、C、D 四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。

四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。

单四拍与双四拍的步距角相等,但单四拍的转动力矩小。

八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。

单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:a. 单四拍b. 双四拍c八拍51单片机驱动步进电机的方法:驱动电压12V,步进角为7.5度. 一圈360 度, 需要48 个脉冲完成!该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。

步进电机详细讲解

步进电机详细讲解
驱动电路中通常包含电流检测电路和 保护电路,以实现过流保护和防止电 机过热等功能。
03
步进电机的性能参数
步进电机的步进角度
步进角度
步进电机每接收一个脉冲信号,就会转动一个固定的角度,这个角度被称为步进角度。步进角度决定了电机的最 小转动单位,是实现精确控制的重要参数。
步进角度的精度
步进电机的步进角度通常很精确,可以在几十到几百毫度范围内进行控制。这种精确的控制能力使得步进电机在 许多高精度应用中具有重要价值。
1 2
3
根据负载需求选择
根据需要带动的负载大小、扭矩和转速等参数,选择合适的 步进电机。
考虑精度要求
根据控制精度需求,选择步角距较小的步进电机,提高定位 精度。
考虑电源和控制信号
根据电源和控制信号的规格,选择合适的步进电机。
步进电机的安装与调试
安装
按照说明书正确安装步进电机, 确保电机与驱动器之间的连接稳 定可靠。
步进电机的未来展望
更广泛的应用领域
更智能的控制方式
随着步进电机技术的不断成 熟,其应用领域将越来越广 泛,包括机器人、医疗器械 、航空航天等高科技领域。
01
02
随着物联网、云计算等技术 的发展,步进电机的控制方 式将更加智能化,实现远程
监控和自动控制。
03
04
更高的性能和稳定性
未来步进电机将具备更高的 性能和稳定性,能够适应更 复杂、更恶劣的工作环境。
步进电机详细讲解
$number {01}
目 录
• 步进电机简介 • 步进电机的工作原理 • 步进电机的性能参数 • 步进电机的选型与使用 • 步进电机的发展趋势与未来展望
01
步进电机简介
步进电机的定义

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制

实训课题三PLC实现步进电机正反转和调速控制一、实验目的1、掌握步进电机的工作原理2、掌握带驱动电源的步进电机的控制方法3、掌握DECO指令实现步进电机正反转和调速控制的程序二、实训仪器和设备1、FX-48MR PLC一台2N2、两相四拍带驱动电源的步进电机一套3、正反切换开关、起停开关、增减速开关各一个三、步进电机工作原理步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图;从图中可以看出,它分成转子和定子两部分;定子是由硅钢片叠成,定子上有六个磁极大极,每两个相对的磁极N、S极组成一对;共有3对;每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相;可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推;反应式步进电动机的动力来自于电磁力;在电磁力的作用下,转子被强行推动到最大磁导率或者最小磁阻的位置,如图3-1a所示,定子小齿与转子小齿对齐的位置,并处于平衡状态;对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1b所示,即定子小齿与转子小齿不对齐的位置;把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿;错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态;本实验的电机采用两相混合式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转;因为中间连接的电磁铁的两根线不是直接连接的,是采用在转轴的位置用一根滑动的接触片;这样如果电磁铁转过了头,原先连接电磁铁的两根线刚好就相反了,所以电磁铁的N极S极就和以前相反了;但是电机上下的磁铁是不变的,所以又可以继续吸引中间的电磁铁;当电磁铁继续转,由于惯性又转过了头,所以电极又相反了;重复上述过程就步进电机转了;根据这个原理,如图3-2所示,两相步进电机的转动步骤,以正转为例:由图可见,现相异步电机正转过程分为四个步骤,即A相正方向电流、B相正方向电流、A向反方向电流和B相反方向电流;反转工作的顺序与之相反;A、B两相线圈不是固定的电流方向,这与其它步进电机的控制逻辑有所不同;因此,控制步进电机转动时,必须考虑用换相的思路设计实验线路;可以根据模拟驱动电路的功能和plc必须的逻辑关系进行程序设计;四、采用步进电机驱动器的控制方式利用步进电机驱动器可以通过PLC的高速输出信号控制步进电机的运动方向、运行速度、运行步数等状态;其中:步进电机的方向控制,只需要通过控制U/D端的On和Off就能决定电机的正转或反转;将光耦隔离的脉冲信号输入到CP端就能决定步进电机的速度和步数;控制FREE信号就能使电机处于自由状态;因此PLC的控制程序相当简单,只需通过PLC的输出就能控制步进电机的方向、转速和步数;不必通过PLC控制电机换相的逻辑关系,也不必另外添加驱动电路;实训面板见图3-4,梯形图见图3-5;本程序是利用D0的变化,改变T0的定时间隔,从而改变步进电机的转速;通过两个触点比较指令使得D0只能在10~50之间变化,从而控制步进间隔是1S~5S之间,I/O分配表见表3-1;表3-1 I/O分配表图3-5 梯形图五、采用PLC直接控制步进电机方式对于两相步进电机控制,根据其工作原理,必须考虑其换向的控制方式,因此将其步骤用代号分解,则为:①实现电流方向A+→A-、②实现电流方向B+→B-、③实现电流方向A-→A+、④实现电流方向B-→B+;如果反转则按照④、③、②、①的顺序控制;PLC的I/O分配表按照表3-2,分配图按照图3-6,梯形图见图3-7;表3-2 PLC的I/O分配表步进电机正反转和调速控制的梯形图如图3-7所示,程序中采用积算定时器T246为脉冲发生器,因系统配置的PLC为继电器输出类型,其通断频率过高有可能损坏PLC,故设定范围为K200 ms~1000ms,则步进电机可获得1~10步/秒的变速范围,X0为ON时,正转,X1为ON时;反转;X0为ON时,输出正脉冲列,步进电机正转;当X0为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值首次为0,指定M10输出,Y0、Y4为ON,步进电机A相通电,且实现电流方向A+→A-;D1加1,然后,T246马上自行复位,重新计时,时间到,T246又导通,再执行DECO指令,根据D1数值此次为1,指定M11输出,Y1、Y5为ON,步进电机B相通电,且实现电流方向B+→B-;D1加1,T246马上又自行复位,重新计数,时间到,T246又导通,再执行DECO指令,根据D1数值此次为2,指定M12输出,Y2、Y6为ON,步进电机A相通电,且实现电流方向A-→A+;D1加1,T246马上又自行复位,重新计时,时间到,T246又导通,再执行DECO命令,根据D1数值此次为3,指定M13输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生;X1为ON时,输出反脉冲列,步进电机正转;当X1为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值首次为0,指定M10输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;依此类推,完成实现A相反方向电流、B相正方向电流、A相正方向电流三个脉冲列输出;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生;当X2为ON时,程序由自动转为手动模式,当X0X1为ON时,每点动一次X3,对D1数值首次为0加1,分别指定M10、M11、M12及M13输出,从而完成一轮正反脉冲系列的产生;第73步中,当X4为ON,M8012为ON,M4为ON,且D0当前值<K1000,则D0即加1;第88步中,当X5为ON,M8012为ON,M4为ON,且D0>K200,由D0即减1;六、程序调试及执行调速时按X4或X5按钮,观察D0的变化,当变化值为所需速度时释放;如动作情况与控制要求一致表明程序正确,保存程序;如果发现程序运行与控制要求不符,应仔细分析,找出原因,重新修改,直到程序与控制要求相符为止;七、实训思考练习题如果调速需经常进行,可将D0的内容显示出来,试设想方案,修改程序,并实验;图3-7 步进电机正反转和调速控制程序说明1、步骤0,指定脉冲序列输出顺序移位值;2、当X0为ON,输出正脉冲序列,电机正转;当X1为ON,输出负脉冲序列,电机反转;3、当X2为ON,程序由自动转为手动模式,由X3状态单步触发电机运转;4、当X4为ON,如D0小于1000,每100ms对D0加1,从而延长每脉冲输出的时间间隔,降低电机的转速;5、当X5为ON,如D0大于200,每100ms对D0减1,从而缩短每脉冲输出的时间间隔,加快电机的转速;6、T0为频率调整限制;。

三相异步电动机正反转控制电路安装与调试工作页

三相异步电动机正反转控制电路安装与调试工作页

三相异步电动机正反转控制电路安装与调试工作页【标题】三相异步电动机正反转控制电路安装与调试工作页【说明】本文将介绍三相异步电动机正反转控制电路的安装与调试工作,旨在帮助读者全面了解该主题并掌握实操技巧。

文章将按照从简到繁、由浅入深的方式进行讲解,以便读者能够深入理解控制电路的原理和操作方法。

【引言】三相异步电动机是工业生产中最常见的电机类型之一,广泛应用于机械设备的驱动,如风机、水泵和输送带等。

为了实现电动机的正反转控制,我们需要安装和调试一个专门的控制电路。

本文将详细介绍该控制电路的安装过程和相关调试步骤,希望能够帮助读者顺利完成工作。

【1. 总体要求】在进行三相异步电动机正反转控制电路的安装与调试之前,我们需要了解以下总体要求:1.1 确保安全:在进行任何电气设备的安装和调试工作之前,请务必确保自身和他人的安全。

正确使用个人防护设备,并按照相关安全操作规程进行操作。

1.2 具备基础知识:在进行安装与调试工作之前,建议仔细阅读电动机的技术手册和控制电路的说明书,了解其基本原理和工作方式。

1.3 确定安装位置:在安装控制电路之前,需要根据实际情况选择合适的安装位置。

确保设备与电动机的连线便捷,并能方便观察和操作。

【2. 安装控制电路】2.1 材料准备:在安装控制电路之前,确保准备好所需材料和工具,包括控制电路板、电缆线、开关、继电器等。

2.2 连接电源电缆:将电源电缆连接到控制电路板上的输入端子,并确保接线正确牢固。

在进行接线之前,务必将电源总开关关闭,以免发生触电事故。

2.3 连接电动机电缆:将电动机的输出电缆连接到控制电路板上的输出端子,并确保接线正确牢固。

根据电机的额定电压和额定电流,选择合适的电缆规格,并进行正确的接线。

【3. 调试控制电路】3.1 控制模式选择:根据实际需求,选择合适的控制模式。

正常情况下,常用的控制模式有手动控制和自动控制两种,根据实际工作情况选择合适的模式。

3.2 调试步骤:在进行控制电路的调试之前,需要按照以下步骤进行: (1) 打开电源总开关,并确保控制电路板上的电源指示灯亮起,表示供电正常。

基于PLC变频器三相异步电动机正反的控制

基于PLC变频器三相异步电动机正反的控制

基于PLC变频器三相异步电动机正反的控制一、引言在电气控制系统中,PLC(可编程逻辑控制器)和变频器是常用的两种设备。

PLC作为控制器,可以控制各种工业设备和生产线的运行;而变频器作为调速设备,可以改变电动机的转速,从而实现对工艺过程的精确控制。

本文将介绍基于PLC和变频器的控制系统,实现三相异步电动机的正反转操作。

二、PLC和变频器的基本原理1. PLC的基本原理PLC是一种专门用于工业自动化控制的设备,它的基本原理是利用程序控制算法实现对输入和输出信号的逻辑运算和控制。

PLC可以通过数字输入和输出模块连接各种传感器和执行器,实现对生产设备和工艺过程的自动化控制。

2. 变频器的基本原理变频器是一种用于控制三相交流电动机转速的设备,它的基本原理是通过改变输入电压频率和电流的方式,调节电动机的转速。

变频器可以实现从静止到最大转速范围内的连续调速,从而满足不同工艺过程的需求。

三、基于PLC和变频器的三相异步电动机正反转控制系统设计1. 系统硬件组成本系统的硬件组成包括PLC、变频器、三相异步电动机、传感器和执行器。

PLC负责控制变频器的启停和变频操作,变频器负责控制电动机的正反转和调速,传感器负责检测电动机的运行状态,执行器负责控制电动机的机械连接。

2. 系统软件设计系统软件设计包括PLC程序和变频器参数设置两部分。

PLC程序需要实现对变频器的启停、正反转和调速控制,同时需要检测传感器信号进行运行状态的监测。

变频器参数设置需要根据实际电动机的额定功率和转速要求进行调整,以实现精确的调速控制。

3. 系统工作流程当系统启动时,PLC程序首先对变频器进行初始化设置,并监测传感器信号判断电动机的运行状态。

然后根据生产过程的要求,通过PLC程序控制变频器实现电动机的正反转和调速操作。

在电动机运行过程中,PLC程序需要实时监测传感器信号,如果发现异常情况,需要对电动机进行停止或报警处理。

四、系统的实际应用基于PLC和变频器的三相异步电动机正反转控制系统,可以广泛应用于各种工业场合。

控制三相异步电机电机正反转电路有几种方法?

控制三相异步电机电机正反转电路有几种方法?

控制三相异步电机正反转的电路有多种方法,每种方法都适用于不同的应用和控制要求。

以下是一些常见的控制三相异步电机正反转的方法:
1.接触器控制法:
这是一种传统的正反转控制方法,通过两个磁性接触器来改变电机的接线顺序。

当一个接触器闭合时,电机正转;当另一个接触器闭合时,电机反转。

必须保证两个接触器不会同时闭合,以避免短路。

2.手动星-三角开关法:
使用手动星-三角开关改变三相电机的接线方式来实现正反转控制。

通过调节开关位置,可以选择电机的运行方向。

3.变频器(Inverter)控制法:
变频器可以通过改变电机供电的频率和相位来控制电机的速度和方向。

改变输出频率的顺序,即可控制电机的正反转。

这种方法能提供平滑的启动、变速和制动控制。

4. PLC控制法:
可编程逻辑控制器(PLC)可以用来控制接触器或其他开关设备,实现电机正反转和其他复杂控制逻辑。

PLC控制提供了高度
的自动化和灵活性。

5.固态继电器(SSR)或功率半导体开关法:
使用固态继电器或者功率半导体设备(如晶闸管、IGBT)来控制电机的供电和断电,从而控制运转方向。

这种方法同样可以实现电机的快速启停和方向切换。

6.电子式正反转器件:
专门设计的电子式正反转控制器可以内嵌到电机控制电路中,为电机提供正反转的指令。

在选择三相异步电机的正反转控制方法时,应基于特定应用的需求考虑成本、复杂度、控制精度、启动电流和保护需求等因素。

例如,对于需要高精度和可编程控制的应用,变频器或PLC可能是更好的选择。

对于简单的开关控制,接触器和手动开关可能更加经济实惠。

电机的正反转原理

电机的正反转原理

电机的正反转原理电机是一种能够将电能转化为机械能的装置,广泛应用于日常生活和工业生产中。

在电机的工作过程中,正反转是其中一个重要的操作,掌握电机的正反转原理有助于理解电机的工作原理和优化电机的应用。

一、直流直流电机是一种最基本的电动机之一,它由定子和转子构成。

定子通常由磁铁或电磁铁构成,而转子是由导体绕组和集电刷构成。

1. 正转原理:当直流电机接通电源时,定子中的磁场将与转子中的电流相互作用,产生一个力矩。

根据右手定则,转子会受到一个方向的力矩,从而引起转子转动。

此时,电流从电源的正极流向电机的负极,导电刷与转子绕组之间建立了一个完整的电路。

这个方向的转动通常被称为正转。

2. 反转原理:如果我们改变了电流的方向,使电流从电源的负极流向电机的正极,那么转子将会受到反方向的力矩作用,从而导致电机反转。

这种情况下,导电刷与转子绕组之间的电路变为另一个方向。

二、交流交流电机是另一种常见的电动机类型,它使用交流电源作为能量来源。

交流电机可以分为异步电机和同步电机两种类型。

1. 异步电机的正反转原理:异步电机的正反转实质上是通过改变定子和转子的相对转速来实现的。

通过改变供电电源的相位差,可以改变电机的转向。

当两个相序相同(如ABCABC)时,电机正转;当两个相序相反(如CBAABC)时,电机反转。

2. 同步电机的正反转原理:同步电机的正反转原理相对简单,只需改变供电电源的相序即可。

由于同步电机的转速与供电电源的频率相同,所以改变相序可以改变电机的转向。

三、步进步进电机是一种将输入脉冲信号转化为固定角度步进运动的电机。

它通常由定子和转子两部分组成,转子上的绕组由多个电磁线圈构成。

1. 正转原理:步进电机的正转原理是通过依次通电激励各个电磁线圈来实现的。

每当电磁线圈通电时,它会产生一个磁场,将转子转到下一个对应的位置。

依次循环通电各个电磁线圈,转子将按指定步进角度连续转动,从而实现正转。

2. 反转原理:步进电机的反转原理与正转类似,只是通电顺序相反。

单相异步电动机原理及正反转

单相异步电动机原理及正反转

图3 单相异步电动机的机械特性单相异步电动机原理及正反转单相异步电动机是指用单相交流电源供电的异步电动机。

单相异步电动机具有结构简单、成本低廉、噪声小、使用方便、运行可靠等优点,因此广泛用于工业、农业、医疗和家用电器等方面,最常见于电风扇、洗衣机、电冰箱、空调等家用电器中。

但是单相异步电动机与同容量的三相异步电动机相比,体积较大,运行性能较差。

因此,单相异步电动机一般只制成小容量的电动机,功率从几瓦到几千瓦。

单相异步电动机在家用电器中的应用特别广泛,与人们的生活密切相关。

单行异步电动机的结构如下图:一、 单相异步电动机的工作原理和机械特性 当单相正弦交流电通入定子单相绕组时,就会在绕组轴线方向上产生一个大小和方向交变的磁场,如图1所示。

这种磁场的空间位置不变,其幅值在时间上随交变电流按正弦规律变化,具有脉动特性,因此称为脉动磁场,如图2(a)所示。

可见,单相异步电动机中的磁场是一个脉动磁场,不同于三相异步电动机中的旋转磁场。

(a)交变脉动磁场 (b)脉动磁场的分解 图2 脉动磁场分解成两个方向相反的旋转磁场为了便于分析,这个脉动磁场可以分解为大小相等,方向相反的两个旋转磁场,如图2(b)所示。

它们分别在转子中感应出大小图1 单相交变磁场相等,方向相反的电动势和电流。

两个旋转磁场作用于笼型转子的导体中将产生两个方向相反的电磁转矩T+和T- ,合成后得到单相异步电动机的机械特性,如图3所示。

图中,T+为正向转矩,由旋转磁场B m1产生;T- 为反向转矩,由反向旋转磁场B m2产生,而T为单相异步电动机的合成转矩。

从图3可知,单相异步电动机一相绕组通电的机械特性有如下特点:1.当n=0时,T + =T-,合成转矩T=0。

即单相异步电动机的启动转矩为零,不能自行启动。

2.当n>0时,T>0;n<0时,T<0。

即转向取决于初速度的方向。

当外力给转子一个正向的初速度后,就会继续正向旋转;而外力给转子一个反向的初速度时,电机就会反转。

单相异步电动机的反转与调速

单相异步电动机的反转与调速

单相异步电动机的反转与调速在日常生活中常需要对单相异步电动机进行反转和调速控制,如家用电器中洗衣机的正反转洗涤、调速及电风扇的调速等。

下面分别介绍这两种控制电路的组成原理。

一、单相异步电动机的反转要使单相异步机反转就必须改变旋转磁场的转向。

改变旋转磁场转向可通过把工作绕组(或启动绕组)的首端和末端与电源的接线对调、把电容器从一组绕组中改接到另一组绕组中等方法实现。

1.单相电容分相式异步电动机的反转控制单相电容分相式异步电动机需要变换旋转方向时,可以通过反接启动绕组或工作绕组的接线来实现。

把启动绕组或工作绕组中的一组首端和末端与电流的接线对调。

因为异步电动机的转向是从电流相位超前向电流相位落后的绕组旋转的,如果把其中的一个绕组反接,等于把这个绕组的电流相位改变了180。

,假若原来这个绕组是超前90,则改接后就变成了滞后90,结果旋转磁场的方向随之改变。

图3-16所示的是用双掷开关控制实现正反转的示意图,图3-17是用T形接法实现正反转的示意图。

有的电容分相式单相电动机也可通过改变电容器的接法来改变电动机的转向。

图3-18所示为洗衣机正反转控制示意图,当定时器开关处于图中所示位置时,电容器串联在工作绕组Lz上,电流IL z超前于ILf相位约90;经过一定时间后,定时器开关将电容从Lz绕组切所,串联到启动绕组Lf,则电流ILf超前于相位ILf约90,从而实现了电动机的反转。

这种单相异步电动机的工作绕组与启动绕组可以互换,所以工作绕组、启动绕组的线圈匝数、粗细,、占槽数都应相同。

2.罩极式单相异步电动机的反转控制外部接线无法改变罩极式电动机的转向,因为罩极电动机的旋转方向永远是从磁极的未罩部分转到被罩部分,内部结构决定了转向。

因此,要使它反转,必须改变其磁极的安装位置,这显然是很不方便的。

为了达到可反转的要求,人们设计了一种特殊形式的罩极电动机,磁极分成四个极靴,极靴上绕几匝粗绝缘导线作为罩极启动绕组,每个相对的绕组串联,用双掷开关使其交替短接,如图3-19所示。

步进电机正反转及调速设计

步进电机正反转及调速设计

步进电机正反转及调速设计陈超渭南师范学院物理与电气工程系2008级电气(1)班摘要:本系统用52系列单片机和LY-36电机驱动芯片并加入了按钮来控制步进电机实现转向、转速等。

系统中使用的四相步进电机,相应的驱动和控制电路对于其整体性能起着非常重要的作用。

经系统调试,能够很好的控制步进电机的正反转、加减速,从而达到预期目的。

整个系统具有结构简单、可靠性高、成本低和实用性强等特点,具有较高的通用性和应用推广价值。

关键词:四相步进电机 52单片机控制 YL-36驱动电路正反转1 绪论1.1 概述步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化系统中,与其他类型的电机相比具有易于精确控制,无累积误差等优点。

步进电机是一种将电脉冲转化为角位移的执行机构。

当步进驱动器接收到一个脉冲信号,就驱动步进电机按设定的方向转一个固定的角度,它的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机可以作为一种控制用的特种电机,利用其没有累积误差的特点,广泛应用于各种开环控制。

单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上,用它来做一些控制电器一类不是很复杂的工作[1]。

单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件。

本文设计一种用STC89C52作为核心部件进行逻辑控制及信号产生的步进电机控制系统。

为使步进电机系统的可靠性、通用性、可维护性以及性价比最优,根据系统的功能要求,通过单片机存储器、I/O口、中断、键盘、LED显示器的扩展来实现步进电机的启停、正反转、加减速等功能。

1.2 步进电机及单片机的发展趋势步进电机的发展,将依赖于新型材料的应用、设计手段,以及与驱动技术的最佳匹配。

随着自动控制技术、计算机网络通信技术在众多领域中的快速发展,以及进一步数字化、智能化,步进电机将会在更深入广泛的领域中得意应用。

通过变频器操作面板控制电动机的启动、正反转、点动、调速

通过变频器操作面板控制电动机的启动、正反转、点动、调速

通过变频器操作面板控制电动机的启动、正反转、点动、调速一、利用变频器的操作面板和相关参数设置,即可实现对变频器的某些基本操作如正反转、点动等运行。

变频器面板的介绍及按键功能说明、具体参数号和相应功能参照系统手册。

MM440在缺省设置时,用BOP控制电动机的功能是被禁止的。

如果要用BOP 进行控制,参数P0700应设置为1,参数P1000 也应设置为1。

用基本操作面板(BOP)可以修改任何一个参数。

修改参数的数值时,BOP有时会显示”busy”,表明变频器正忙于处理优先级更高的任务。

下面就以设置P1000=1的过程为例,来介绍通过基本操作面板(BOP)修改设置参数的流程。

操作步骤BOP显示结果1按键,访问参数2按键,直到显示P10003按键,直到显示in000,即P1000的第0组值4按键,显示当前值25按键,达到所要求的值16按键,存储当前设置7按键,显示r00008按键,显示频率二、按系统要求如图所示接线,检查电路正确无误后,合上主电源开关QS。

三、参数设置(1)设定P0010=30和P0970=1,按下P键,开始复位,复位过程大约3min,这样就可保证变频器的参数回复到工厂默认值。

(2)设置电动机参数,为了使电动机与变频器相匹配,需要设置电动机参数。

电动机参数设置见表。

电动机参数设定完成后,设P0010=0,变频器当前处于准备状态,可正常运行。

参数号出厂值设置值说明P000311设定用户访问级为标准级P001001快速调试P010000功率以KW表示,频率为50HzP0304230380电动机额定电压(V)P0305电动机额定电流(A)P0307电动机额定功率(KW)P0*******电动机额定频率(Hz)P031101400电动机额定转速(r/min)(3)设置面板操作控制参数,见下表。

参数号出厂值设置值说明P000311设用户访问级为标准级P001000正确地进行运行命令的初始化P000407命令和数字I/OP070021由键盘输入设定值(选择命令源)P000311设用户访问级为标准级P0004010设定值通道和斜坡函数发生器P100021由键盘(电动电位计)输入设定值P108000电动机运行的最低频率(Hz)P1*******电动机运行的最高频率(Hz)P000312设用户访问级为扩展级P0004010设定值通道和斜坡函数发生器P1040520设定键盘控制的频率值(Hz)P1058510正向点动频率(Hz)P1059510反向点动频率(Hz)P1060105点动斜坡上升时间(s)P1061105点动斜坡下降时间(s)四、变频器运行操作(1)变频器启动:在变频器的前操作面板上按运行键,变频器将驱动电动机升速,并运行在由P1040所设定的20Hz频率对应的560r∕min的转速上。

电工(五级初级)试题+答案

电工(五级初级)试题+答案

电工(五级/初级)试题+答案1、热继电器在使用时,其热元件应与电动机的定子绕组( )A、串联B、并联C、既可并联也可串联答案:A2、电流的方向就是( )。

A、负电荷定向移动的方向B、电子定向移动的方向C、正电荷定向移动的方向D、正电荷定向移动的相反方向答案:C3、二极管两端加上正向电压时( )。

A、一定导通B、超过死区电压导通C、超过 0.7V 时导通D、超过 0.3V 时导通答案:B4、某电容器两端电压为 40V,它所带电量为 0.2C,若它两端电压降低到20V 时,则( )A、电容器的电容量降低一半B、电容量保持不变C、电容器所带电荷量增加 1 倍D、电荷量不变答案:B5、为避免正、反转接触器同时的电动作,线路采取( )A、位置控制B、顺序控制C、自锁控制D、联锁控制答案:D6、大小和方向随时间( )的电流称正弦交流电。

A、变化B、不变化C、周期性变化D、按正弦规律变化答案:D7、( )反映了在不含电源的一段电路中,电流与这段电路两端的电压及电阻的关系。

A、欧姆定律B、楞次定律C、部分电路欧姆定律D、全欧姆定律答案:C8、提高供电线路的功率因数,下列说法正确的是( )。

A、可以节省电能B、可提高电源设备的利用率并减少输电线路中的功率损耗C、减少了用电设备中无用的无功功率D、减少了用电设备的有功功率,提高了电源设备的容量答案:B9、电力拖动电气原理图的识读步骤的第一步是( )zA、看用电器B、看电源C、看电气控制元件D、看辅助电器答案:A10、三相动力供电线路的电压是 380V,则任意两根相线之间的电压称为( )A、相电压,有效值是 380VB、相电压,有效值是 220VC、线电压,有效值是 380VD、线电压,有效值是 220V答案:C11、影响模拟放大静态工作点稳定的主要因素是 ( )。

A、三极管的放大倍数B、三极管的穿透电流C、放大信号的频率D、工作环境的温度答案:D12、三极管的 f 大于等于( )为高频管。

任务一 三相异步电动机变频调速正反转运行的PLC控制

任务一  三相异步电动机变频调速正反转运行的PLC控制

项目四 任务一 三相异步电动机变频调速正反向运行的PLC控制
✓ 模拟量输入A/D的应用举例 有一台压力传感器测量范围是0~40000N,将其连接至输出范围为0~
10V的电压变送器,并将电压变送器的输出端连接到FX5U32MR/ES内置模拟 量输入端子,要求实时显示压力数值,试编辑梯形图程序。
打开GX Works3编程软件,按图4-2、4-3所示的方法设置模拟量输入的参 数。由于FX5UPLC内置模拟量输入是将A/D转换值存于特殊寄存器SD6020中 ,数字量的范围0~4000,这个数值对应的力是0~40000N,据此编辑梯形 图如图4-4所示。
11
项目四 任务一 三相异步电动机变频调速正反向运行的PLC控制
✓ 内置模拟量输出规格
表4-3 FX5UCPU内置模拟量输出规格(续)
项目
规格
转换速度
30μs(数据的更新为每个运算周期)
绝缘方式
与CPU模块内部不绝缘
输入输出占用点数
0点(与CPU模块最大输入输出点数无关)
① 0V 输出附近存在死区区域,模拟量输出值相对于数字输入值存在部分 未反映的区域。
-32768~+32767
默认
禁止 0 0
禁用 0 0 0
CLEAR
0
15
项目四 任务一 三相异步电动机变频调速正反向运行的PLC控制
在图4-6“模块参 数 模拟输出”设置 窗口,单击该窗口左 侧“应用设置”选项 ,即可选择对输出通 道进行应用设置,设 置界面如图4-7所示 ,参数设置完成后, 单击“应用”按钮。 这一步很重要,否则 ,参数设置无效。
图4-4 模拟量输入A/D的应用梯形图
10
项目四 任务一 三相异步电动机变频调速正反向运行的PLC控制

三相异步电动机按钮联锁正反转控制工作原理

三相异步电动机按钮联锁正反转控制工作原理

三相异步电动机按钮联锁正反转控制工作原理三相异步电动机是工业生产中常见的一种电动机,它的正反转控制是非常重要的一项功能。

为了保证电动机在运行时能够正常工作并且安全可靠,通常采用按钮联锁控制方式来实现正反转控制。

本文将从三相异步电动机的工作原理、按钮联锁控制原理以及正反转控制的实现等方面进行详细介绍。

一、三相异步电动机的工作原理三相异步电动机是利用交流电源的三相交流电产生的转矩进行工作的。

它的工作原理主要是通过三相感应电动势产生电磁转矩,从而使电机转动。

当电动机正常运行时,电机的转子会受到旋转磁场的作用,产生感应电流,从而产生转矩,使电机进行正常的工作。

二、按钮联锁控制原理按钮联锁控制是一种通过按钮的操作来实现对电动机的启动、停止、正转和反转控制的一种方式。

它的原理是通过按钮之间的相互联锁来保证电动机在运行时能够正常工作并且避免误操作。

1.启动按钮当需要启动电动机时,首先按下启动按钮,使电机正转。

在启动按钮按下的同时,反转按钮将被锁定,防止误操作。

2.停止按钮当需要停止电动机时,按下停止按钮,电机将停止转动。

同时,启动按钮和反转按钮将被锁定,防止误操作。

3.反转按钮当需要使电动机反转时,按下反转按钮。

在反转按钮按下的同时,启动按钮将被锁定,防止误操作。

通过按钮联锁控制,可以有效地避免误操作,保证电动机在工作时的安全可靠。

三、正反转控制的实现实现电动机的正反转控制主要是通过按钮联锁控制来实现的。

在电路控制系统中,通常采用接触器或者PLC控制器来实现按钮联锁控制。

1.接触器控制在接触器控制系统中,通过相应的接线和接触器组合来实现按钮联锁控制。

当按下启动按钮时,相应的接触器闭合,使电机正转。

同时,反转按钮对应的接触器将被锁定,防止误操作。

停止按钮则可以通过相应的接触器断开电路,从而实现电机的停止。

2. PLC控制在PLC控制系统中,通过编程控制来实现按钮联锁控制。

通过设置相应的逻辑控制程序,可以实现启动按钮和反转按钮之间的联锁关系,从而保证电机的正反转控制。

三相异步电动机的正反转控制及调整

三相异步电动机的正反转控制及调整

三相异步电动机的正反转控制及调整 绕线式异步电动机的起动 绕线式三相异步电动机可以在转子回路中串入电阻进行起动,这样就减小了起动电流。

一般采用起动变阻器起动,起动时全部电阻串入转子电路中,随着电动机转速逐渐加快,利用控制器逐级切除起动电阻,最后将全部起动电阻从转子电路中切除。

 转子回路串接频敏变阻器起动。

 频敏变阻器的电阻随线圈中所通过的电流频率而变。

起动时,转差率S=1,转子电流(即频敏电阻线圈通过的电流)频率最高,等于电源频率。

因此,频敏变阻器的电阻最大,这就相当于起动时在转子回路中串接一个较大电阻,从而使起动电流减小。

随着电动机转速的加快转差率S逐渐减小,转子电流频率逐渐降低,频敏变阻器电阻也逐渐减小,最后把电动机的转子绕组短接,频敏变阻器从转子电路中切除。

 采用频敏变阻器起动,具有起动平滑、操作简便、运行可靠、成本低廉等优点,因此在绕线式电动机中应用较广。

 三相异步电动机的正反转控制 三相异步电动机的旋转方向与旋转磁场的旋转方向一致,而旋转磁场的旋转方向取决于三相电流的相序。

因此,要改变电动机的旋转方向,必须改变三相交流电的相序。

实际上,只要将接到电源的任意二根联线对调即可。

 三相异步电动机的正、反转方法:任意调换电源的两根进线,电动机反转。

 为此,只要用两个交流接触器就能满足这一要求,当正转接触器KMI工作时,电动机正转;当反转接KM2工作时,由于调换了两根电源线,所以电动机反转。

 如果两个接触器同时工作,那幺将有两根电源线通过它们的主触头而使电源短路。

所以对正反转控制线路最根本的要求是:必须保证两个接触器不能同时工作。

这种在同一时间里两个接触器只允许一个工作的控制作用称为联锁或互锁。

 在图(a)所示的控制电路中,正转接触器KM1的一个常闭辅助触头串接在反转接触器KM2的线圈电路中,而反转接触器的一个常闭辅助触头串接在正转接触器的线圈电路中。

这两个常闭触头称为联锁触头。

这样一来,当按下正转起动按钮SB1时,正转接触器线圈通电,主触头KM1闭合,电动机正转。

三相异步电动机启动、调速、正反转的常用方法

三相异步电动机启动、调速、正反转的常用方法

三相异步电动机启动、调速、正反转的常用方法
三相异步电动机是工业中常见的一种电动机类型,常用于驱动各种设备和机械。

下面介绍三相异步电动机的启动、调速、正反转的常用方法。

1. 启动方法:
(1) 直接启动:将电动机直接接通电源,并通过起动器启动,使电动机正常运转。

(2) 降压启动:采用降压起动器,通过降低电动机起动时的供电电压,减小启动电流,实现平稳起动。

(3) 自耦变压器启动:使用自耦变压器,先将电动机通过变压器接通降压启动,然后再切换到全压运行。

2. 调速方法:
(1) 换向极调速:在电机的定子绕组上安装两个或多个绕组,通过选择并联或串联不同的绕组,改变定子磁通路径,实现调速。

(2) 变频调速:通过改变电源的频率,控制电动机的转速。

常用的方法包括整流变频调速、逆变变频调速等。

3. 正反转方法:
(1) 切换反向起动器:在启动过程中,根据需要切换反向起动器,使电动机按照相反的方向旋转。

(2) 通过控制电源的相序:调整电源的相序,使电动机启动时的旋转方向相反。

总结起来,三相异步电动机的常用启动方法包括直接启动、降
压启动和自耦变压器启动;常用调速方法包括换向极调速和变频调速;常用正反转方法包括切换反向起动器和控制电源相序。

这些方法可以根据具体的工业应用需求进行选择和组合使用。

plc三相异步电动机正反转控制

plc三相异步电动机正反转控制

plc三相异步电动机正反转控制
PLC三相异步电动机正反转控制
PLC(可编程逻辑控制器)是一种数字化电子设备,用于控制机器和工艺自动化。

在工业生产中,PLC广泛应用于各种机械设备的控制和自动化。

其中,PLC三相异步电动机正反转控制是一种常见的应用。

PLC三相异步电动机正反转控制的原理是通过PLC控制电动机的三个相线,实现电动机的正反转。

具体实现方法如下:
1. 通过PLC控制电动机的三个相线,使电动机正转或反转。

2. 通过PLC控制电动机的起动电流和运行电流,实现电动机的平稳启动和运行。

3. 通过PLC控制电动机的转速,实现电动机的调速。

4. 通过PLC控制电动机的保护功能,实现电动机的安全运行。

在实际应用中,PLC三相异步电动机正反转控制可以应用于各种机械设备的控制和自动化。

例如,可以应用于机床、输送带、风机、水泵
等设备的控制和自动化。

总之,PLC三相异步电动机正反转控制是一种常见的应用,它可以实现电动机的正反转、平稳启动和运行、调速和保护功能。

在工业生产中,它广泛应用于各种机械设备的控制和自动化,提高了生产效率和质量。

三相异步电动机按钮联锁正反转控制工作原理

三相异步电动机按钮联锁正反转控制工作原理

三相异步电动机按钮联锁正反转控制工作原理三相异步电动机是常见的电动机类型之一,常用于机械设备中的驱动,控制它的正反转操作是非常重要的一项任务。

按钮联锁正反转控制就是一种常见的控制手段,下面将介绍它的工作原理和应用。

一、按钮联锁正反转控制的目的按钮联锁正反转控制的目的是为了保证三相异步电动机在运转过程中的安全性,避免电机因误操作或错误信号导致电机反转或同时启动而出现安全隐患。

此外,这种控制方式也可防止电机烧毁等其他因素的发生。

二、按钮联锁正反转控制原理按钮联锁正反转控制是一种通过按钮控制电机正反转的方式,不同的操作按钮在不同的时间段内会触发不同的电路,使得电机正反转的操作被互相限制。

具体控制原理如下:1.正转按钮控制原理按下正转按钮后,正转按钮将闭合,K1和K2都是闭合,导通电路后,电机正转。

2.倒转按钮控制原理按下倒转按钮后,正转按钮不变,而倒转按钮闭合,K3和K4都是闭合,导通电路后,电机倒转。

3.按钮联锁控制原理在电机正转或倒转时,如果按下另一个按钮,则会出现联锁控制。

以正转为例,当正转按钮闭合时,无论倒转按钮是否闭合,都不能触发倒转电路,使得电机不会出现反转的风险。

若倒转按钮先于正转按钮闭合,也无法触发正转电路。

倒转电路同理。

三、按钮联锁正反转控制的应用按钮联锁正反转控制适用于三相异步电动机正反转控制的各种情况,例如:1.机床操作:当操作人员需要换刀或更换切削工件时,必须停止电机的工作。

通过按钮联锁正反转控制,可以快速控制电机的正反转操作,便于操作人员停止电机的运转。

2.输送带控制:以物流输送带为例,如果物品卡住或其他原因导致物品不能继续移动,控制人员需要及时停止电机运转来避免破坏机器设备和输送带。

通过按钮联锁正反转控制,可以快速并安全地停止电机的工作,也可以快速找到问题并解决它。

3.压力系统控制:在压力传动机械设备中,例如压力机、钢圈机等机械设备中,正反转操作是非常重要的。

通过按钮联锁正反转控制,可以更方便地实现操作机械设备正反转的操作。

三相异步电动机的正反转控制

三相异步电动机的正反转控制
SA仅为电动机的转向预选开关。
电动机的启停,要通过刀开关、控制 按钮、接触器等,接通或断开定子绕 组的三相交流电源来实现。
★常用低压电器:万能转换开关
• 万能转换开关简称转换开关,是由多组相同结构的触头组 件叠装而成的多档位、多回路的主令电器。
• 因触头档位多、换接电路多、用途广,而得名“万能” 转换开关。
2)反转
先按下SB3,反转接触器KM2动作,一方面其互锁触头切断KM1线 圈电路,另一方面其主触头接入反序电,且自锁触头闭合,保证电 动机连续反向运转。
此时若再按下SB2,在电气互锁的作用下,正转接触器KM1线圈不 会得电,同样能避免电源短路事故的发生。
★电气互锁正反转的控制规律
若要求甲、乙两个接触器不能同时工作,应在各自的线圈 电路中互串对方的辅助常闭触头。
★电气互锁正反转控制的工作过程
1)正转
按下SB2 KM1线圈通电
KM1辅助常闭触头先断开,切断KM2线圈电路 KM1主触头后闭合,电动机接入正序电,正转 KM1辅助常开触头后闭合,实现自锁
按下SB2后若再按下SB3,因KM1的互锁触头已切断KM2的线圈电 路,所以KM2线圈不会得电,其主触头不会闭合,主电路中仍然只 有KM1主触头接入的正序电,避免了电源短路事故的发生。
电气互锁正反转控制的缺点:
1)正转过程中若要求反转,必须先按下停止按钮,让正转接触 器线圈断电,电气互锁触头复位(闭合)后,再按下反转按钮, 反转接触器线圈才能得电,通入反序电使电动机反转。
2)反转过程中若要求正转,也必须先按下停止按钮,待电气互 锁触头复位(闭合)后,再按下正转按钮,正转接触器线圈才能 得电,通入正序电使电动机正转。
双重互锁正反转控制的工作过程
M正转过程 中按下SB3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P1OUT=ZZ[k];
k++;
if (k==4)
{
k=0;
} } } void Fang(void)
//反转程序
{ unsigned char FZ[4]={0x40,0x04,0x02,0x01}; P1OUT=FZ[k]; k++; if (k==4) { k=0;
} }
//启动就正转 //如果反转按钮按下就反转
Fang(); Timer();
LPM3_EXIT; } } char Key3_Pressed(void) {
//判断减速按钮是否按下
unsigned int h=0;
P2REN |=BIT3; if((P2IN&BIT3)==0x00) h=1; else h=0;
char Key0_Pressed(void); char Key3_Pressed(void); char Key4_Pressed(void);
//反转执行按钮(需要一直按下不然松手就恢复到正转) //减速按钮 //加速按钮
void main( void )
//主程序
{
WDTCTL = WDTPW + WDTHOLD;
return h; } char Key4_Pressed(void) {
//判断加速按钮是否按下
unsigned int h=0; P2REN |=BIT4; if((P2IN&BIT4)==0x00) h=1; else h=0;
return h; } char Key0_Pressed(void) { unsigned int a=0;
P2DIR |=0xe0;
P2OUT |=BIT0+BIT1+BIT2+BIT3+BIT4;
P2REN |=BIT0+BIT1+BIT2+BIT3+BIT4;
BCSCTL3 |= LFXT1S_2;
TACCTL0 = CCIE;
Timerc();
TACTL = TASSEL_1 +ID_3 + MC_3;
for(i=0;i<500;i++);
TACCR0=TACCR0-3; if(TACCR0<4) {
TACCR0=10; } } } #pragma vector = TIMER0_A0_VECTOR
__interrupt void Timer_A (void)
//定时中断程序
{ Zheng(); Timer(); if(Key0_Pressed()) {
//反转按钮
P2REN |=BIT0; if((P2IN&BIT0)==0x00) a=1;
else a=0;
return a;
} void Zheng(void)
//正转程序
{ if(!Key0_Pressed())
{
unsigned char ZZ[4]={0x01,0x02,0x04,0x40};
P1DIR |=BIT0+BIT1+BIT2+BIT6;
P1OUT |=BIT0+BIT1+BIT2+BIT6;
_EINT();
LPM3;
while(1);
} void Timerc ()
//赋sed()) //如果没有按钮按下就赋初值
TACCR0=10; }
步电机的正反转和调速
来源:第九单片机论坛 讀哝ぴ芯跳
刚开始用的是延时 (太占 CPU)就换成了定时 还是辛苦了几天才弄出来
程序如下:#include <msp430g2452.h>
int i;
unsigned char k=0;
void Timer(); //调速程序
void Timerc(); //赋 TACCR0 初值 void Zheng(void); //正转程序 void Fang(void); //反转程序
void Timer()
//调速按钮
{
P2DIR |=0xe0; P2OUT |=0x1f; P2REN |=BIT3;
if(Key3_Pressed()) {
for(i=0;i<500;i++);
TACCR0=TACCR0+3; if(TACCR0>17) {
TACCR0=10; } } if(Key4_Pressed()) {
相关文档
最新文档