沪教版(上海)八年级上册 19.4 线段的垂直平分线和角平分线 讲义(无答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的垂直平分线与角平分线专题复习
知识点复习:
1、线段垂直平分线的性质
(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点
的距离相等.
定理的数学表示:如图1,∵ CD ⊥AB ,且AD =BD
∴ AC =BC.
定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.
2、线段垂直平分线的判定定理:
到一条线段两个端点距离相等的点在这条线段的垂直平分线上.
定理的数学表示:如图2,∵ AC =BC
∴ 点C 在线段AB 的垂直平分线m 上.
定理的作用:证明一个点在某线段的垂直平分线上.
3、关于线段垂直平分线性质定理的推论
(1)关于三角形三边垂直平分线的性质:
三角形三边的垂直平分线相交于一点,并且这一点到三个顶点.....的距离相等.
性质的作用:证明三角形内的线段相等.
(2)三角形三边垂直平分线的交点位置与三角形形状的关系:
若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;
若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部. 反之,也成立。

4、角平分线的性质定理:
图1
图2
角平分线的性质定理:角平分线上的点到这个角的两边的距离相等. 定理的数学表示:如图4,
∵ OE 是∠AOB 的平分线,F 是OE 上一点,且CF ⊥OA 于点C ,DF ⊥OB 于点D , ∴ CF =DF.
定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线.
5、角平分线性质定理的逆定理:
角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,
∵点P 在∠AOB 的内部,且PC ⊥OA 于C ,PD ⊥OB 于D ,且PC =PD , ∴点P 在∠AOB 的平分线上.
定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线
6、关于三角形三条角平分线的定理:
(1)关于三角形三条角平分线交点的定理:
三角形三条角平分线相交于一点,并且这一点到三边的距离相等.
定理的数学表示:如图6,如果AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、 ∠ABC 、∠ACB 的平分线,那么:
① AP 、BQ 、CR 相交于一点I ;
② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,则DI =EI =FI. 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题. (2)三角形三条角平分线的交点位置与三角形形状的关系:
三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).
7、关于线段的垂直平分线和角平分线的作图:
(1)会作已知线段的垂直平分线; (2)会作已知角的角平分线; (3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.
图4
精品习题:
1.在△ABC 中,∠C=90º,BD 是∠ABC 的平分线.已知,AC=32,且AD :DC=5:3,则点D 到AB 的距离为_______.
2.如图,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆= ( ) A .3:4 B .4:3 C .16:19 D .不能确定
3.如图,ΔABC 的三边AB 、BC 、CA 的长分别是20、30、40、其中三条角平分线将ΔABD 分为三个三角形,则S ABO ∆:S BCO ∆:S CAO ∆等于______.
4.如图所示,∠BAC =105°,若MP 和NQ 分别垂直平分AB 和AC .则∠PAQ 的度数为 .
5.AD ∥BC ,∠D=90︒,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的关系是( )
A .PD>PC
B .PD<P
C C .PD=PC
D .无法判断
6.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修一个超市,使超市到三个小区的距离相等,则超市应建在( )
A .在AC 、BC 两边高线的交点处 B.在AC 、BC 两边中线的交点处
C .在AC 、BC 两边垂直平分线的交点处 D.在∠A 、∠B 的角平分线的交点处
7.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于( )
A.25º B.30º C.45º D.60º
8.AC=AD,BC=BD,则有()
A.AB垂直平分CD B.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
9.如图,OP平分∠AOB,P A⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()
A.P A=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP
10.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有()处。

A、1
B、2
C、3
D、4
11.在Rt△ABC中,∠A=90°,AB=3,AC=4,∠ABC,∠ACB的平分线交于P点,PE⊥BC 于E点,求PE的长.
12.如图,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你判断线段AC与BH有什么关系?并说明理由.
13.如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证:AC+CD=AB.
14.如图,AD为△ABC的角平分线,AD的中垂线交AB于点E、交BC的延长线于点F,AC于EF交于点O.
(1)求证:∠3=∠B;
(2)连接OD,求证:∠B+∠ODB=180°.
15.已知:∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.
(1)如图1,当∠B=∠D时,求证:AB+AD=AC;
(2)如图2,当∠B≠∠D时,猜想(1)中的结论是否发生改变?说明理由.
16.小明做了一个如图所示的“风筝”骨架,其中AB =AD ,CB =CD .
(1)小芳同学观察了这个“风筝”骨架后,他认为AC ⊥BD ,垂足为点E ,并且BE =ED ,你同意小德的判断吗?为什么?
(2)设AC =a ,BD =b ,请用含a ,b 的式子表示四边形ABCD 的面积.
17.如图,AB ∥CD ,AE 、DE 分别平分∠BAD 和∠ADE ,求证:AD=AB+CD 。

A
B
E
C
D
18.如图,AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

19.已知:如图在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分线,求证:BC=AB+AD D
A
E C
B
A
B C
D。

相关文档
最新文档