k最近邻分类模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k最近邻分类模型
K最近邻(K-Nearest Neighbors,KNN)分类模型是一种基于实例的学习,或者说是局部逼近和将所有的计算推迟到分类之后进行的模型。

在KNN模型中,输出是由输入实例的最近邻的K个训练实例的多数表决来确定的。

具体来说,KNN算法的工作流程如下:
准备数据,对数据进行预处理。

这包括数据的清洗、特征的选取和标准化等步骤。

选用合适的数据结构存储训练数据和测试元组。

这通常使用一种称为KD树(KD-tree)的数据结构,它可以帮助我们快速找到样本点的最近邻。

设定参数,如K值。

K值的选择对KNN算法的性能有很大的影响,通常需要通过实验来确定最优的K值。

维护一个大小为K的按距离由大到小的优先级队列,用于存储最近邻训练元组。

随机从训练元组中选取K个元组作为初始的最近邻元组,分别计算测试元组到这K个元组的距离,将训练元组标号和距离存入优先级队列。

遍历训练元组集,计算当前训练元组与测试元组的距离,将所得距离L与优先级队列中的最大距离Lmax进行比较。

如果L>=Lmax,则舍弃该元组,遍历下一个元组。

否则,将新的元组及其距离加入优先级队列,并删除队列中距离最大的元组。

当所有训练元组都遍历完毕后,优先级队列中的元组就是测试元组的K个最近邻。

根据这K个最近邻的类别,通过多数表决来确定测试元组的类别。

KNN算法的优点是简单易懂,无需参数估计,无需训练。

但是,它的计算量大,尤其是当样本容量大的时候,因为对每个待分类的文本都要计算它到全体已知样本的距离,才能
求得它的K个最近邻点。

此外,KNN算法对样本的依赖性很大,如果样本不平衡,可能会导致分类结果的不准确。

总的来说,K最近邻分类模型是一种简单而有效的分类方法,适用于各种类型的数据,包括文本、图像等。

但是,它的性能受到数据特性、K值选择以及距离度量方式等因素的影响,需要在实际应用中进行适当的调整和优化。

相关文档
最新文档