数学-2015-2016学年高二上学期限时训练一数学试题

合集下载

平远中学2015-2016学年度高二数学周六限时训练(1)

平远中学2015-2016学年度高二数学周六限时训练(1)

平远中学2015-2016学年度高二数学周六限时训练(1)答案班级:___________姓名:___________成绩:___________一、选择题(本题共12道小题,每小题5分,共60分)1.已知直线l 的方程为1y x =+,则该直线l 的倾斜角为( B )A .30 B.45 C.60 D.1352.不论m 为何值,直线(m -2)x -y +3m +2=0恒过定点 ( C )A .(3,8)B .(8,3)C .(-3,8)D .(-8,3)3.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是( C )4.(5分)过点(1,0)且与直线x ﹣2y ﹣2=0平行的直线方程是(A )A . x ﹣2y ﹣1=0B . x ﹣2y+1=0C . 2x+y ﹣2=0D . x+2y ﹣1=05.点(1,-1)到直线x-y+1=0的距离是( C )6.若直线1l :280ax y +-=与直线2l :(1)40x a y +++=平行 ,则实数a 的值为( A )A. 1B. 1 或 2C. 2-D. 1 或 2-7.直线1:2100--=l x y 与直线2:3440+-=l x y 的交点坐标为( B )A .(4,2)-B .(4,2)-C .(2,4)-D .(2,4)-8.两条平行线3x+4y-12=0与ax+8y+11=0之间的距离为 (B )A.2.5B.3.5C.7D.59.(5分)已知a≠0直线ax+(b+2)y+4=0与直线ax+(b ﹣2)y ﹣3=0互相垂直,则ab 的最大值等于( B )A . 0B . 2C . 4D .10.过点(1,2)且与原点的距离最大的直线方程是( A )A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.3x+y-5=011.点P 在直线3x+y-5=0上,且点P 到直线x-y-1=02,则P 点坐标为( C )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-2,1)12.已知点()()m B A ,6,4,3到直线0743=-+y x 的距离相等,则实数m 等于( D ) A. 47 B.429- C.1 D. 47或429-二、填空题(本题共4道小题,每小题5分,共20分)13.(5分)点A (1,﹣2)关于直线x+y ﹣3=0对称的点坐标为 .(5,2)14.(5分)无论实数a ,b (ab≠0)取何值,直线ax+by+2a ﹣3b=0恒过定点 .(﹣2,3)15.(5分)若直线mx ﹣(x+2)y+2=0与3x ﹣my ﹣1=0互相垂直,则点(m ,1)到y 轴的距离为 .0或516.点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是________.8。

高二数学月考试题及答案-临沂市临沭县第一中学2015-2016学年高二上学期第一次月考

高二数学月考试题及答案-临沂市临沭县第一中学2015-2016学年高二上学期第一次月考

临沭一中高14级高二上学期月度学业水平测试 数学试题 2015年10月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.测试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至4页. 注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其它答案标号.不能答在试题卷上.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,把正确选项的代号涂在答题卡上.1.在△ABC 中,已知A =30°,a =8,b =83,则△ABC 的面积等于( ) A .32 3 B .16 C .326或16 D .323或16 32.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于 ( ) A .10B .211-2C .210-2D .2103.不解三角形,下列判断正确的是( )A .a =4,b =5,A =30°,有一解B .a =5,b =4,A =60°,有两解C .a =3,b =2,A =120°,有两解D .a =3,b =6,A =60°,无解 4.在数列{a n }中,已知a 1=1,a 2=5,a n +2=a n +1-a n ,则a 2 015等于( ) A .-1 B .-5 C .1 D .-45.在△ABC 中,已知sin 2A =sin 2B +sin 2C ,且sin A =2sin B cos C ,则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 6.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则111213a a a ++=( )A .120B .105C .90D .757.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .188.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .49.在△ABC 中,a ,b ,c 分别为三内角A ,B ,C 所对的边,若B =2A ,则b ∶2a 的取值范围是( )A .(-2,2)B .(0,2)C .(-1,1)D .(12,1)10.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4016B .4015C .4014D .4013第Ⅱ卷(非选择题 共100分)注意事项:1.用蓝黑钢笔或圆珠笔答在答题纸上,直接答在试题卷上无效. 2.答题前将答题纸密封线内的项目填写清楚.二、填空题:(本大题共5个小题.每小题5分;共25分.)11.A 、B 两个小岛相距10 n mile ,从A 岛望C 岛与B 岛成60°角,从C 岛望B 岛与A 岛成45°角,则B 、C 间距离为________.12.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 13.化简1+11+2+11+2+3+…+11+2+3+…+n的结果是________.14.在锐角三角形ABC 中,∠BAC =45°,AD 为BC 边上的高,且BD =2,DC =3,则三角形ABC 的面积是________.15.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.三、解答题:本大题共6个小题. 共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题12分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.17.(本小题12分)在△ABC 中,已知sin C =sin A +sin Bcos A +cos B ,试判断三角形的形状.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0.19.(本小题12分) 在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.20.(本小题13分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B ,sin(B -A )=cos C .(1)求A ,C ;(2)若S △ABC =3+3,求a ,c .21.(本小题14分)设数列{a n }的前n 项和为S n ,点(n ,S nn )(n ∈N +)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m .临沭一中高14级高二上学期月度学业水平测试 数学试题参考答案 2015年10月1.解析:由余弦定理a 2=b 2+c 2-2bc cos A ,得64=192+c 2-2×83c ×cos30°, ∴c 2-24c +128=0,解得c =8或16. 当c =8时,S △ABC =12bc sin A =163;当c =16时,S △ABC =12bc sin A =32 3. 答案:D 2.解析:11222n n n n a a ++== ∴数列{a n }是公比为2的等比数列且a 1=2.1011102(12)2212S -∴==--答案:B3.解析:A 中∵b sin30°<a <b ,∴三角形有两解,A 不正确;B 中∵a >b ,∴A >B ,B 为锐角,∴三角形有一解,B 不正确;C 中 ∵a >b ,∴三角形有一解,C 不正确;D 中∵a <b sin60°,∴三角形无解,D 正确. 答案:D4.解析:由题意可得a 3=4,a 4=-1,a 5=-5,a 6=-4,a 7=1,…,可知数列{a n }是以6为周期的数列,且a 1+a 2+a 3+a 4+a 5+a 6=0,又知2 015除以6余数为5, 所以a 2 015=a 5=-5. 答案:B5.解析:由sin 2A =sin 2B +sin 2C 及正弦定理可知a 2=b 2+c 2⇒A 为直角; 而由sin A =2sin B cos C ,可得sin(B +C )=2sin B cos C , 整理得sin B cos C =cos B sin C ,即sin(B -C )=0,故B =C . 综合上述:B =C =π4,A =π2.答案:D6.解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.122=+1035a a d =,11121312=3=105a a a a ∴++答案:B7.解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D8.解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0, ∴a =b (舍去)或a =4b ,∴ab =4.答案:D9.解析:b 2a =sin B 2sin A =sin2A 2sin A =cos A ,又A +B +C =π,故0<A <π3,∴cos A ∈(12,1).答案:D10.解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得14014200720084014()4014()4014022a a a a S +⨯+⨯==>1401540152008()4015401502a a S a +⨯==⨯<所以使前n 项和S n >0成立的最大自然数n 是4014,选C. 答案:C11.答案:5 6 n mile12.解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >113.解析:∵11+2+3+…+n =2n n +=2(1n -1n +1),∴原式=2(11-12)+2(12-13)+…+2(1n -1n +1)=2nn +1.答案:2nn +114.解析:设AD =h ,则tan ∠BAD =2h , tan ∠CAD =3h ,又∠BAD +∠CAD =π4,故2h +3h 1-6h 2=1⇒h 2-5h -6=0.∴h =6或h =-1(舍去)故16(23)152ABC S ∆=⨯⨯+=. 答案:1515.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d . ∴20a 1=18d ,∴a 1d =1820=910.答案:91016.(本小题12分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数. 解:设三数为aq ,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,aq -+aq -=2a ,解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.17.(本小题12分)在△ABC 中,已知sin C =sin A +sin Bcos A +cos B ,试判断三角形的形状.解:∵sin C =sin A +sin Bcos A +cos B,由正弦定理得c (cos A +cos B )=a +b ,再由余弦定理得c ·c 2+b 2-a 22bc +c ·a 2+c 2-b 22ac =a +b ,∴a 3+a 2b -ac 2-bc 2+b 3+ab 2=0 ∴(a +b )(c 2-a 2-b 2)=0,∴c 2=a 2+b 2,∴△ABC 为直角三角形.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-nn +2=⎩⎪⎨⎪⎧a-a n 1-a-nn +2a ,n -n 22a=19.(本小题12分) 在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π4)的值.解:(1)在△ABC 中, 根据正弦定理,AB sin C =BCsin A ,于是AB =sin Csin ABC =2BC =2 5.(2)在△ABC 中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255,于是sin A =1-cos 2A =55. 从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2A =35,所以sin(2A -π4)=sin2A cos π4-cos2A sin π4=210.20.(本小题13分)△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,tan C =sin A +sin Bcos A +cos B ,sin(B -A )=cos C . (1)求A ,C ;(2)若S △ABC =3+3,求a ,c . 解:(1)∵tan C =sin A +sin B cos A +cos B,即sin C cos C =sin A +sin Bcos A +cos B ,∴sin C cos A +sin C cos B =cos C sin A +cos C sin B ,即sin C cos A -cos C sin A =cos C sin B -sin C cos B ,得sin(C -A )=sin(B -C ).∴C -A =B -C 或C -A =π-(B -C )(不成立). 即2C =A +B ,得C =π3.∴B +A =2π3.又∵sin(B -A )=cos C =12,则B -A =π6或B -A =5π6(舍去),得A =π4,B =5π12.(2)S △ABC =12ac sin B =6+28ac =3+3,又a sin A =c sin C ,即a 22=c 32,得a =22,c =2 3. 21.(本小题14分)设数列{a n }的前n 项和为S n ,点(n ,S nn )(n ∈N +)均在函数y =3x -2的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m .解:(1)依题意得,S nn=3n -2,即S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=1=6×1-5. 所以a n =6n -5(n ∈N +). (2)由(1)得b n =3a n a n +1=3n -n +-5]=12(16n -5-16n +1), 故T n =12[(1-17)+(17-113)+…+(16n -5-16n +1)]=12(1-16n +1).因此,使得12(1-16n +1)<m 20(n ∈N +)成立的m 必须且仅需满足12≤m20,即m ≥10,故满足要求的最小正整数m 为10.。

2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

高二数学-2015-2016学年高二上学期期中考试数学试卷

高二数学-2015-2016学年高二上学期期中考试数学试卷

2015-2016学年第一学期高二年级期中测试数学学科试题命题人审题人(第一卷)( 满分100分)一、填空题 (本大题共8小题,每小题5分,共40分)1.经过点(2,1),且与直线«Skip Record If...»平行的直线方程是___________________.2.曲线«Skip Record If...»在点«Skip Record If...»处的切线方程为_____ _____.的右焦点为焦点的抛物线方程是.3.顶点在原点且以双曲线«Skip Record If...»4.圆«Skip Record If...»与圆«Skip Record If...»的位置关系是________________.5. 已知函数«Skip Record If...»,其导函数为«Skip Record If...».则«Skip Record If...»=_____________.6.直线«Skip Record If...»被圆«Skip Record If...»:所截得的弦长为.7. 若方程«Skip Record If...»表示椭圆,则实数«Skip Record If...»的取值范围是.8.已知双曲线Γ:«Skip Record If...»的右顶点为«Skip Record If...»,与«Skip Record If...»轴平行的直线交Γ于«Skip Record If...»,«Skip Record If...»两点,记«Skip Record If...»,若Γ的离心率为«Skip Record If...»,则«Skip Record If...»的取值的集合是_________.二、解答题 (本大题共4小题,共计60分)9. (本小题满分14分)已知三角形的顶点«Skip Record If...»,试求:(1)«Skip Record If...»边所在直线的方程;(2)«Skip Record If...»边上的高所在直线的方程.10. (本小题满分14分)已知椭圆«Skip Record If...».左右焦点分别为«Skip Record If...».(1)求椭圆的右焦点«Skip Record If...»到对应准线的距离;(2)如果椭圆上第一象限的点«Skip Record If...»到右准线的距离为«Skip Record If...»,求点«Skip Record If...»到左焦点«Skip Record If...»的距离.11. (本小题满分16分)(1)对于函数«Skip Record If...»,已知«Skip Record If...»如果«Skip Record If...»,求«Skip Record If...»的值;(2)直线«Skip Record If...»能作为函数«Skip Record If...»图象的切线吗?若能,求出切点坐标;若不能,简述理由.12. (本小题满分16分)已知平面直角坐标系«Skip Record If...»,圆«Skip Record If...»是«Skip Record If...»的外接圆.(1)求圆«Skip Record If...»的一般方程;(2)若过点«Skip Record If...»的直线«Skip Record If...»与圆«Skip Record If...»相切,求直线«Skip Record If...»的方程.(第二卷) ( 满分60分)三、填空题 (本大题共6小题,每小题5分,共30分)13.直线«Skip Record If...»经过原点,且经过两条直线«Skip Record If...»的交点,则直线«Skip Record If...»的方程为______________.14. 已知圆心在第一象限的圆过点«Skip Record If...»,圆心在直线«Skip Record If...»上,且半径为5,则这个圆的方程为________________.x=处的切线方程是15.已知偶函数«Skip Record If...»的图象经过点(0,1),且在1f(xy=的解析式为.y x=-,则)216. 已知«Skip Record If...»为正数,且直线«Skip Record If...»与直线«Skip Record If...»互相垂直,则«Skip Record If...»的最小值为 .17.过点«Skip Record If...»作圆«Skip Record If...»:«Skip Record If...»的切线,切点为«Skip Record If...»,如果«Skip Record If...»,那么«Skip Record If...»的取值范围是.18.如图,椭圆,椭圆«Skip Record If...»的左、右焦点分别为«Skip Record If...»过椭圆上一点«Skip Record If...»和原点«Skip Record If...»作直线«Skip Record If...»交圆«Skip Record If...»于«SkipRecord I f...»两点,若«Skip Record If...»,则«Skip Record If...»的值为四、解答题 (本大题共2小题,共计30分)19. (本题满分14分)抛物线«Skip Record If...»在点«Skip Record If...»«Skip Record If...»处的切线«Skip Record If...»分别交«Skip Record If...»轴、«Skip Record If...»轴于不同的两点«Skip Record If...»、«Skip Record If...».(1)如果«Skip Record If...»,求点«Skip Record If...»的坐标:(2)圆心«Skip Record If...»在«Skip Record If...»轴上的圆与直线«Skip Record If...»相切于点«Skip Record If...»,当«Skip Record If...»时,求圆的方程.20. (本题满分16分)已知椭圆C:«Skip Record If...».(1)如果椭圆«Skip Record If...»的离心率«Skip Record If...»,经过点P(2,1).①求椭圆«Skip Record If...»的方程;②经过点P的两直线与椭圆«Skip Record If...»分别相交于A,B,它们的斜率分别为«Skip Record If...».如果«Skip Record If...»,试问:直线AB的斜率是否为定值?并证明.(2) 如果椭圆«Skip Record If...»的«Skip Record If...»,点«Skip Record If...»分别为考试号_______________________班级______________学号_______姓名_________________________ ————————密——————————————————封——————————————线———————椭圆«SKIP RECORD IF...»的上、下顶点,过点«SKIP RECORD IF...»的直线«SKIP RECORD IF...»分别与椭圆«SKIP RECORD IF...»交于«SKIP RECORD IF...»两点. 若△«SKIP RECORD IF...»的面积是△«SKIP RECORD IF...»的面积的«SKIP RECORD IF...»倍,求«SKIP RECORD IF...»的最大值.2015-2016学年第一学期高二年级期中测试数 学 学 科 答 题 纸1. x y -5.2e + (,3)29.解(1)53BC k =-,BC 边所在直线在y 轴上的截距为2, BC 边所在直线方程为52,53603y x x y =-++-=(2)25AC k =,AC 边上的高的斜率为52k =-,AC 边上的高的直线的方程为53(3)2y x +=--,即5290x y +-=10. (本小题满分14分)解(1)右焦点2(3,0)F ,对应右准线253x =.右焦点到对应准线的距离为163. (2)椭圆的离心率为35e =,根据第二定义, 231616535PF ed ==⋅=,根据第一定义12163421055PF a PF =-=-=,点P 到左焦点1F 的距离为345. 11. (本小题满分16分)解(1)17 (2)能切点坐标33(2,)(2,)()33k k k Z ππππ+--∈或 12. (本小题满分16分)解:(1)设圆C 方程为,022=++++F Ey Dx y x则044320623480F D E F D E F ⎧=⎪+++=⎨⎪+++=⎩ 解得D= —8,E=F=0.所以圆C :2280.x y x +-= (2)圆C :22(4)16.x y -+=圆心C(4,0),半径4当斜率不存在时,:0l x =符合题意;当斜率存在时,设直线:43,430,l y kx kx y =+-+=即 因为直线l 与圆C 相切,所以圆心到直线距离为4,2|443|34,1k k k+==+解得所以直线3:43,3120.3l y x x y =-++-=即 故所求直线0,3120.l x x y =+-=为或(第二部分满分60分)三、填空题 (本大题共6小题,每小题5分,共30分)13.20x y -= 14. 22(1)(3)25x y -+-= 15.4259()122f x x x =-+ 16. 25/2. 17.011x -≤≤ 18..6 四、解答题 (本大题共2小题,共计30分) 19. (本题满分14分)解:(1)由抛物线2:C y x =得x y 2=',02|0x y x x ='∴=切线l 的方程为)(2000x x x y y -=- 其中200x y = 令,0=x 得20x y -=;令,0=y 得20x x =;所以)0,2(0x A ,),0(20x B - 22400174x AB x =+=得到2004,2x x ==±,点P 的坐标为(2,4)±(2)设圆心E 的坐标为),0(b ,由题知1-=⋅l PE k k ,即12000-=⋅-x x by , 所以210-=-b y ; 由||||PA PE =得20202020)2()(y x b y x +=-+整理得0134020=--y y 解得10=y 或410-=y (舍去) 所以23=b ,圆E 的圆心E 的坐标为)23,0(,半径=r =||PE 25)(2020=-+b y x 圆E 的方程为45)23(22=-+y x20. (本题满分16分)解(1)①由已知得2c a =,22411a b +=,222a b c =+,联立解得228,2a b ==. 椭圆M 的方程为22182x y +=. ②直线AB 的斜率为定值12由已知直线1:1(2)PA y k x -=-代入椭圆M 的方程消去y 并整理得22111(2)[(14)(288)]0x k x k k -+++-=所以2112188214A k k x k --=+,从而2112144114A k k y k --+=+ 同理2222288214B k k x k --=+,2222244114B k k y k --+=+因为120k k +=所以121222124()(41)(14)(14)A B k k k k y y k k ---==++ 121222128()(41)(14)(14)A B k k k k x x k k ---=++ 12A B AB A B y y k x x -==-为定值(2) 解法一:12TBC S BC t t =⋅=△ ,直线TB 方程为:11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x =22284,44t t E t t ⎛⎫-- ⎪++⎝⎭ 到:TC 30x ty t --=的距离d ==直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得22436F t x t =+,所以=所以S 所以k 令21212t m +=>,则2213k m m m ==+-≤,当且仅当24m =,即t =±=”, 所以k 的最大值为4. 解法二:直线TB 方程为11y x t =+,联立221411x y y x t ⎧+=⎪⎪⎨⎪=+⎪⎩,得E x直线TC 方程为:31y x t =-,联立221431x y y x t ⎧+=⎪⎪⎨⎪=-⎪⎩,得F x =1sin 21sin 2TBC TEFTB TC BTCS TB TC k S TE TF TE TF ETF ⋅⋅∠⋅===⋅⋅⋅∠△△T CT B T E T F x x x x TB TC TE TF x x x x --=⋅=⋅-- 22824436t tt t t t t t =⋅=+-++令21212t m +=>,则22192413k m m m ==+-≤,当且仅当24m =,即t =±=”,所以k 的最大值为43.18解。

2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(文科)参考答案一、选择题:(本大题共12小题,每小题5分,共60分)12.设11(,)A x y 、22(,)B x y ,由2(1)y x y k x ⎧=⎨=-⎩得222(21)0k x k x k -++=,即121x x ⋅=.又211222y x y x ⎧=⎪⎨=⎪⎩,∴21212()1y y x x ⋅=⋅=即121y y ⋅=-,∴12120x x y y ⋅+⋅=, 即OA OB ⊥.设33(,)C x y 、44(,)D x y ,直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21y x y k x ⎧=⎨=⎩得00x y =⎧⎨=⎩或21111x k y k ⎧=⎪⎪⎨⎪=⎪⎩即21111(,)A k k ,同理22211(,)B k k .由221(2)4x y yk x ⎧-+=⎨=⎩得00x y =⎧⎨=⎩或211214141x k k y k ⎧=⎪+⎪⎨⎪=⎪+⎩即1221144(,)11k D k k ++, 同理2222244(,)11k E k k ++.∴OA =,OB = OD =OE =∴221122221211111(1)(1)2(1)(1)12116161642OABODEk k OA OB S k k k k S OD OE ∆∆++++++====≥. 二、填空题:(本大题共4小题,每小题5分,共20分)13.,x R ∀∈21xx ≠+; 14.815y x =- ; 15.3λ<; 16.20. 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,或演算步骤). 17.本题考查等差、等比数列的通项公式及前n 项和公式等基础知识,考查运算求解能力.考查化归与转化思想、方程思想.满分10分. 【解析】(Ⅰ)设等比数列{}n a 的首项为1a ,公比为q .364,32a a ==,解得12,1q a ==, ··································· 3分 1112n n n a a q --∴==. ······················································· 4分(Ⅱ)设等差数列{}n b 的首项为1b ,公差为d .4145b =+=,21b =,∴4224,d b b =-=即2d =,11=-b , ·········· 6分∴23n b n =-, ··································································· 7分 ∴数列{}+n n a b 的前n 项和为11()(1)12n n n n b b a q T q +-=+-12(123)122n n n --+-=+- ···························································· 9分 2221n n n =+-- . ···································································· 10分18.本题考查正弦、余弦定理和解三角形等基础知识,考查运算能力、思维分析能力,考查化归与转化思想、方程思想、分类讨论思想.本题满分12分.【解析】(Ⅰ) 由正弦定理,结合条件:sin (sin sin c C a A b B ⋅⋅⋅=+(可得,2(a c b a b -⋅=⋅+( ································· 2分22a b =+22b b a =+.222b a c ∴+-, ··········································································· 4分2222a c ab b ==+-,即 cos C =,0C π<<,6C π∴=. ········· 6分(Ⅱ)法一:由余弦定理,结合条件:32=a ,2c =, 又由(Ⅰ)知6C π=,可得 2222cos c a b ab C =+-,∴24122b =+-⋅,即2680b b -+=, ··········· 8分 解得2b =或4b =,经检验,两解均有意义. ··········· 11分综上,ABC ∆周长为4+6+ ··· 12分法二:由正弦定理,结合条件:32=a ,2c =,又由(Ⅰ)知6C π=,可得1sin 2sin 2a C A c === ············································ 7分 a c > A C ∴> 3A π∴=或23π,从而2B π=或6π. ······························· 8分当2B π=时,ABC ∆为直角三角形,4b ∴=,ABC ∴∆周长为6+ 当6B π=时,ABC ∆为等腰三角形,2b c ∴==,ABC ∴∆周长为4+ 11分综上,ABC ∆周长为4+6+ ··· 12分 19.本题考查抛物线定义,直线与抛物线关系,考查运算求解能力.考查化归与转化思想、数形结合思想、分类讨论思想.本题满分12分.【解析】(Ⅰ)由题意得,M 到点(3,0)的距离与到直线3x =-的距离都等于半径,由抛物线的定义可知, C 的轨迹是抛物线,设其方程为22y px =,32p=, ∴M 的轨迹方程为212y x =. ··································· 3分 (Ⅱ)法一:显然斜率不为0,设直线l :6x ty =+,11(,)A x y 、22(,)B x y2AP PB =,∴1122(6,)2(6,)x y x y --=-,∴122y y =-, ···················· 6分 由2126y x x ty ⎧=⎨=+⎩得212720y ty --=∴12121272y y t y y +=⎧⎨⋅=-⎩, ································ 8分又122y y =-,∴ 121260.5y y t =⎧⎪=-⎨⎪=⎩或121260.5y y t =-⎧⎪=⎨⎪=-⎩ , ······································ 10分∴ 直线l 的方程是212y x =-或212y x =-+. ·································· 12分法二:①当直线l 的斜率不存在时,直线l :x =6,显然不成立. ················ 4分 ②当直线l 的斜率存在时,设直线l :(6)y k x =-,11(,)A x y 、22(,)B x y ,2AP PB =, ∴1122(6,)2(6,)x y x y --=-,∴12218x x +=, ··············· 7分由212(6)y x y k x ⎧=⎨=-⎩得222212(1)360k x k x k -++=,∴21221212(1)36k x x k x x ⎧++=⎪⎨⎪⋅=⎩, ·· 9分 ∴121232x x k =⎧⎪=⎨⎪=±⎩······················································································ 11分 ∴直线l 的方程是212y x =-或212y x =-+. ·············· 12分20.本题考查等差等比数列的定义、性质,等差等比数列的综合运用,及求数列的前n 项和,考查运算求解能力.考查化归与转化思想、方程思想.本题满分12分. 【解析】(I )13,,n n a a +成等差数列,1123,32(3),n n n n a a a a ++∴=+∴-=- ··· 2分 即11323n n n n b a b a ++-==-,又131a -=,······································· 4分 ∴{}n b 是首项为1,公比为2的等比数列. ··································· 5分(II ){}n b 是首项为1,公比为2的等比数列,∴132n n n b a -=-=,即123n n a -=+. ··················································· 7分 又22log (26)log 2n n n c a n =-==, ··············································· 8分212111111()(21)(21)22121n n c c n n n n -+∴==--+-+, ······································· 9分 13352121111n n n T c c c c c c -+∴=+++111111(1)23352121n n =-+-++--+ ················································· 10分 111(1)2212n =-<+.······························································ 12分 21.本题考查解二次不等式、利用二次函数和基本不等式求最值,考查数学建模能力,信息处理能力和运算能力,考查化归转化思想、数形结合思想、函数方程思想和分类讨论思想.本题满分12分. 【解析】(Ⅰ)设该企业计划在A 国投入的总成本为()Q x (亿元), 则当010x ≤≤时,25()1644x x Q x =++,依题意:25()51644x x Q x =++≤, ············································· 1分 即24600x x +-≤,解得106x -≤≤, ··················· 3分 结合条件010x ≤≤,06x ∴≤≤.················· 4分 (Ⅱ)依题意,该企业计划在A 国投入的总成本为25,010,1644()42,10.5x x x Q x x x x ⎧++≤≤⎪⎪=⎨⎪+->⎪⎩5分 则平均处理成本为251,010,()1644421,10.5x x Q x x x x x x⎧++≤≤⎪⎪=⎨⎪-+>⎪⎩ ·········· 6分(i) 当010x ≤≤时,()51116444Q x x x x =++≥=5164x x =,即x =min()Q x x ⎛⎫= ⎪⎝⎭. ·············· 8分 (ii) 当10x >时, 22()42119914()520100Q x x x x x =-+=-+, ∴当1120x =即x =20时,min ()99100Q x x ⎛⎫=> ⎪⎝⎭. ············· 10分 ∴当x =min()Q x x ⎛⎫= ⎪⎝⎭. ···················· 11分 答:(Ⅰ)该工艺处理量x 的取值范围是06x ≤≤.(Ⅱ)该企业处理量为亿元. ······························································································· 12分 22.本题考查曲线的轨迹方程、直线和椭圆的位置关系、弦长公式、定点定值问题等知识,考查运算求解能力,探究论证能力.考查化归与转化思想、数形结合思想、函数方程思想、分类讨论思想.本题满分12分. 【解析】(I )设M 的坐标为(,)x y ,则1A M k x =≠,2A M k x =≠,12=-(x ≠, ········································· 1分化简得点M的轨迹方程是221(2x y x +=≠. ····································· 3分 (Ⅱ)①当直线l的斜率不存在时,PQ = ···································· 4分②当直线l 的斜率存在时,设11(,)P x y ,22(,)Q x y ,直线l 的方程为:(1)y k x =-,则2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得,2222(21)4220k x k x k +-+-=,∴212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, · 6分222)1)2121k PQ k k +===+>++ ·· 7分综上所述,PQ. ··············· 8分(Ⅲ)假设点N 存在,由椭圆的对称性得,则点N 一定在x 轴上,不妨设点(,0)N n ,当直线l 的斜率存在时,由(Ⅱ)得212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, ∴22121212122(1)(1)[()1]21k y y k x k x k x x x x k ⋅=--=⋅-++=-+,11(,)NP x n y =-,22(,)NQ x n y =-,∴21212121212()()()NP NQ x n x n y y x x n x x n y y ⋅=-⋅-+⋅=⋅-+++⋅∴22222222222224(241)221212121k k k n n k n NP NQ n n k k k k --++-⋅=-+-=++++ ·· 10分 对于任意的k ,0NP NQ ⋅=,∴22241020n n n ⎧-+=⎪⎨-=⎪⎩, ······························· 11分方程组无解,∴点N 不存在.综上所述,不存在符合条件的点N . ············································· 12分。

四川省成都七中2015-2016学年高二上学期期末数学模拟试卷(理科)(一) 含解析

四川省成都七中2015-2016学年高二上学期期末数学模拟试卷(理科)(一) 含解析

2015-2016学年四川省成都七中高二(上)期末数学模拟试卷(理科)(一)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53 C.47,45,56D.45,47,532.执行如图的框图,第3次和最后一次输出的A的值是()A.7,9 B.5,11 C.7,11 D.5,93.对于线性回归方程,下列说法中不正确的是()A.直线必经过点B.x增加一个单位时,y平均增加个单位C.样本数据中x=0时,可能有D.样本数据中x=0时,一定有4.如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①;②∠BAC=60°;③三棱锥D﹣ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确的是()A.①②B.②③C.③④D.①④5.若A、B两点的坐标分别是A(3cosa,3sina,1),B (2cosb,2sinb,1),则||的取值范围是( )A.B.C.(1,5) D.6.平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.若AE=3,BF=4,CG=5,则DH等于( )A.6 B.5 C.4 D.37.已知直线l的倾斜角为α,且60°<α≤135°,则直线l斜率的取值范围是( )A.B.C.D.8.已知:,求z=x2+y2最小值为()A.13 B.C.1 D.9.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1 B.(x﹣2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x﹣2)2+(y﹣2)2=110.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.﹣2 B.﹣4 C.﹣6 D.﹣8 11.两个圆C1:x2+y2+2x+2y﹣2=0与C2:x2+y2﹣4x﹣2y+1=0的公切线有且仅有()A.1条B.2条C.3条D.4条12.已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.6 C.4D.2二、填空题:本大题共4小题,每小题4分,共16分。

2015-2016学年高二上学期10月月考数学试卷

2015-2016学年高二上学期10月月考数学试卷

高二10月份阶段性模块检测数学试题第Ⅰ卷[试题说明]本试题共4页,其中第Ⅰ卷共2页,50分,第Ⅱ卷共2页,100分.满分150分,考试时间120分钟.一、选择题(本题共10小题,每题5分,共50分.每题只有一个正确答案) 1.在ABC ∆中,若O ===60,3,2B b a ,则A 等于( )O 135.A O 90.B O 45.C O 30.D2. 在ABC ∆中,若B B A A cos sin cos sin =,则ABC ∆形状( )等腰三角形.A 直角三角形.B 等腰直角三角形.C 等腰或直角三角形.D3. 已知1,,,9-21-a a 成等差数列,1,,,9-321-b b b 成等比数列,则221()b a a -的值为( )8.-A 89.-B 8.C 89.D 4.根据下列条件,确定ABC ∆有两解的是( )O ===120,20,18.A b a A O O ===60,48,60.B c A B O ===30,6,3.A b a C O ===45,16,14.A b a D5. 已知等差数列}{a n 中,||||95a a =,公差0>d ,则使前n 项和n S 取最小值的正整数n 的值是( )54.和A 65.和B 76.和C 87.和D6.等比数列}{a n 的前n 项和为6131-•=-n n x S ,则的值为x ( )31.A 31.-B 21.C 21.-D 7. 等差数列}{a n 的前n 项和为n S ,6286+=a a 若则的值为7S ( )49.A 42.B 35.C 24.D8. 设n S 为等比数列}{a n 的前n 项和,已知23233243-=-=a S a S ,,则等于公比q ( )3.A4.B5.C6.D9. 在ABC ∆中,若3120,1===∆O ABC S A b 且,则a bsin A sinB++等于( )21.A 3392.B 212.C 72.D 10.已知整数的数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3)(3,2)(4,1),(1,5),(2,4)……,则第60个数对是( ))(8,3.A )(7,4.B )(8,4.C )(7,5.D 第Ⅱ卷二、填空题(每题5分,共25分)11.在ABC ∆中,若2tan ,4,5===C B b π,则=AB12.在ABC ∆中,B A a c b sin 5sin 3,2==+,则=∠C13.在等差数列}{a n 中,n S a a a a a a n n n n 则,已知,420,1081824531==++=++--= 14. 数列1111,,......,......12123123n+++++++的前n 项和为15. 数列}{a n 的前n 项和为12-=n n S ,则=+++22221......n a a a三、解答题(解答应写出必要的文字说明和演算步骤) 16.设数列{}n a 满足1a =1,()13n n a a n N ++=∈ ⑴求{}n a 的通项公式及前n 项和n S ;⑵已知{}n b 是等差数列,n T 为其前n 项和,且12b a =,3123b a a a =++,求20T .17.在△ABC 中,角A ,B ,C 的对边a,b,c 成等差数列,且2a c =; ⑴求cosA 的值;⑵若ABC S =△,求b 的值.18.若数列{}n a 的前n 项和n S ,且满足()1202n n n a S S n -+=≥,112a =; ⑴求证:1n S ⎧⎫⎨⎬⎩⎭为等差数列; ⑵求数列{}n a 的通项公式.19.在公差为d 的等差数列{}n a 中,已知110a =,且123225a ,a ,a +成等比数列; ⑴求公差d 和数列{}n a 的通项公式; ⑵若0d <,求12n |a ||a |+|a |++….20、在△ABC 中,内角A 、B 、C 对边分别为a 、b 、c ,已知A=4π,22212b ac -=; ⑴求tanC ;⑵若△ABC 的面积为3求b 的值.21.已知正项数列{}n a 的前n 项和为n S 且n a 是n S 与2的等差中项,数列{}n b 中,11b =,点P ()1n n b ,b +在直线20x y -+=上;⑴求数列{}n a 、{}n b 的通项公式; ⑵设n n n c a b =,求{}n c 的前n 项和n T .高二10月份阶段性模块检测数学试题答案一、选择题1---5:CDADC 6---10:CBBDD 二、 填空题11、 12、012013、20 14、21nn + 15、413n -16.⑴由题意知{}n a 的首项为1a =1,公比为3的等比数列所以13n n a -=,()13131132n nn S -==--⑵因为123b a ==,3123b a a a =++=13,所以311025b b d ,d -===所以20120192010102T b d ⨯=+= 17.解:⑴因为a,b,c 成等差数列,所以2b a c =+又2a c =,所以32b c =所以2222222941432422c c c b c a cos A bc c +-+-===-⨯⑵由⑴知cos A =14-,又角A ()0,∈π,所以sin A =又113222ABC S bc sin A c c ==⨯⨯=△ 所以23c ,b ==18.⑴证明:当2n ≥时 ,由120n n n a S S -+=得112n n n n S S S S ---=-所以1112n n S S --=,又11112S a ==,所以1n S ⎧⎫⎨⎬⎩⎭是首项为2 公差为2的等差数列.⑵由⑴可得12nn S =,所以12n S n =,所以当2n ≥时,()()111122121n n n a S S n n n n -=-=-=--- 经验证112a =不适合上式. 所以()1121221n ,n a ,n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩19.解:⑴由已知得()2213225a a a +=即()()21114152a d a a d ++=+,又110a = 所以2340d d --=,解得4d =或者1d =- 当4d =时,46n a n =+ 当1d =-时,11n a n =- ⑵设n S 为{}n a 的前n 项和,()212n n n S -=由0n a ≥得11n ≤,011n a ,n <>①当11n ≤时, 12n |a ||a |+|a |++…=12n a a +a ++…=()212n n n S -=②当12n ≥时,12n |a ||a |+|a |++…=()12111213n a a +a a a +a ++-++……=()1111n S S S --2112122022n n n S S -+=-=所以12n |a ||a |+|a |++…=()2111221220122n n ,n n n ,n ⎧-≤⎪⎪⎨-+⎪≥⎪⎩20、解:⑴由22212b a c -=得221122sin B sin C -=,又A=4π,所以B+C=34π所以-cos2B=sin2C=2sinCcosC.所以22sin C sinC cos C =,所以tanC =2. ⑵由tanC =2,()0C ,∈π得sinC =,cos C = 又())4sin B sin A+C =sin C sinC+cos C π⎛⎫=+==⎪⎝⎭又c sinC b sin B ==所以c =又132S bc sin A ,bc ===∴=2=293b ,b ∴=∴=21.解:⑴n a 是n S 与2的等差中项,∴22n n S a =- ∴()11222n n S a n --=-≥∴122n n n a a a -=- ∴12nn a a -=()2n ≥ ∴{}n a 是公比为2的等比数列;由22n n S a =-得11122a S a ==-得122n n a ,a =∴= 点P ()1n n b ,b +在直线20x y -+=上 ∴120n n b b +-+=∴12n n b b +-=,∴{}n b 是公差为2的等差数列又1121n b ,b n =∴=-⑵由⑴得n n n c a b ==()212nn -()2123222n n T +n-1=⨯+⨯+…()()2312123222212n n+n T +n-3n =⨯+⨯++-…∴()()2312222212n n n -T +++2n +=+--…()12326n n +=--∴()12236n+n T n =-+。

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案

广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案龙岗区2015-2016学年第一学期期末质量监测试题高二(理科)数学本试卷共分为选择题和非选择题两部分,共22小题,满分150分,考试用时120分钟。

注意事项如下:1.答卷前,请检查答题卡是否整洁无缺损。

考生必须使用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上,并将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区。

请保持条形码整洁、不污损。

2.选择题请使用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案。

不按以上要求作答的答案无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。

如需改动,请先划掉原来的答案,然后再写上新的答案。

不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.请保持答题卡的整洁,不折叠、不破损。

考试结束后,请将试卷和答题卡一并交回。

第Ⅰ卷选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知命题p:x R,sinx1,则下列哪个命题是对p的否定?A.p:x R,sinx-1B.p:x R,sinx≥-1C.p:x R,sinx≤-1D.p:x R,sin(x2y2)+x≠12.1<k<4是方程4-kk-1的充分不必要条件。

A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知三角形ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为A.3B.2C.2/3D.4/34.在空间直角坐标系中,给定点M(2,-1,3),若点A与点M关于xOy平面对称,点B与点M关于x轴对称,则AB=?A.2B.4C.25D.375.当a<-1时,不等式(x-a)/(x+1)(x-3)≤0的解集是A.(-∞,-1)∪[a,3]B.(-∞,a)∪[-1,3]C.(-∞,a)∪(-1,3)D.(-∞,a]∪(-1,3)6.若椭圆(a>b>0)的方程为x^2/a^2+y^2/b^2=1,离心率为e,则双曲线x^2/a^2-y^2/b^2=1的离心率为?A.2√5/5B.√3/2C.√5/2D.√3/5以下省略)7.已知等比数列{a_n}中,a_3=7,前3项之和S_3=21,则公比q的值为1或-1.8.若不等式组{x+3y≥4,XXX表示平面区域被直线y=kx分为面积相等的两部分,则k的值是3/4.9.如图所示的5×5正方形表格中共有20个空格,若在每一个空格中填入一个正整数,使得每一行和每一列都成等差数列,则字母a所代表的正整数是18.10.不等式f(x)=ax^2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象大致是关于y轴对称的。

2015-2016学年高二上学期第一次质检考试数学试卷

2015-2016学年高二上学期第一次质检考试数学试卷

第一学期质检考试高二数学一、选择题(共1、垂直10 小题,每题 4 分,共 40 分)于同一条直线的两条直线的位置关系是()A.平行B.订交C.异面2、下列命题()A.三角形绕其一边旋转一周后成一个圆锥D.以上都有可能中,正确的B .一个直角梯形绕其一边旋转一周后成为是一个圆台C.平行四边形绕其一边旋转一周后成为圆柱 D .圆面绕其一条直径旋转一周后成为一个球3.若点A. N N 在直线aa 上,直线 a 又在平面B. N a内,则点 N,直线C. N aa 与平面之间的关系可记(D. N a)4、若一个正三棱柱的三视图以以下图所示,则这个正三棱柱的高和底面边长分别为()2主视图23左视图俯视图A. 2, 2 3B. 2 2 ,2C. 2, 4D. 4,25 、已知等边三角形 ABC 的边长为a,那么它的平面直观图ABC 的面积为()A. 3 a2 B . 3 a2 C . 6 a2 D . 6 a2488166、已知正方体外接球的体积是32,那么正方体的棱长等于3()A.43B.22C.4 2D.2 3 3337、以下图代表未折叠正方体的睁开图,将其折叠起来,变为正方体后的图形是()A .B .C . D.8、关于平面和共面的直线 m 、n ,以下命题中真命题是()A. 若 m ⊥ , m ⊥ n ,则 n ∥B. 若 m ∥ , n ∥ ,则 m ∥ nC. 若 m, n ∥,则 m ∥ nD.若 m 、 n 与所成的角相等,则n ∥ m9、如图, E 、 F 分别是三棱锥 P - ABC 的棱 AP 、 BC 的中点, PC = 10,AB = 6,EF = 7,则异面直线 AB 与 PC 所成的角为()A . 60°B . 45°C . 0°D . 120°10、以下图,在正方体 ABCDA 1B 1C 1D 1 中 ,E 为DD 1上一点,且DE1F 是侧面 CDD 1C 1 上的动点 , 且 B 1F // 平面 A 1BE , 则 B 1F 与平面 CDD 1C 1DD 1,3所成角的正切值m构 成 的 集合 是A 1D 1()B 1C 1A . 3 }.2E{B{13 }25AD C . { m |3m 32}D . { m |213 m3} C225 B2(第 10 题图)二、填空题(共 7 小题,每题 4 分,共 30 分)11、已知一个球的表面积和体积相等的,则它的半径为 ___________。

2015---2016高二数学阶段性测试题一及答案

2015---2016高二数学阶段性测试题一及答案

2015~2016学年度第一学期高二阶段性测试一数学试题十月 时间:120分钟 分数:150分一.选择题:(每小题5分,共10题)1. 符合下列条件的三角形有且只有一个的是( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30° C .a=1,b=2,∠A=100° D .b=c=1, ∠B=45°2.在等比数列}{n a 中,如果公比1>q ,那么等比数列}{n a 是A.递增数列B.递减数列C.常数列D.递增数列或递减数列都有可能 3.在ABC ∆中,若0cos cos =-B b A a ,则ABC ∆的形状A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形 4.函数),0(32)(2<+-=x xx x x f 取得最大值为 A.232-- B.322- C.232- D.232+5. 若{a n }是等差数列,首项01>a 054>+a a ,054<⋅a a ,则使前n 项和0>n S 成立的最大自然数n 的值为( ).A .4B .5C .7D .86. 如果方程02)1(22=-+-+m x m x 的两个实根一个小于‒1,另一个大于1,那么实数m 的取值范围是( )A .)22(,-B .(-2,0)C .(-2,1)D .(0,1) 7. 在如图的表格中,每格填上一个数字后,使每一行成等差数列,每一列成等比数列,则a b +的值为A .1B .1716C .1916D .988. 对于任意实数a 、b 、c 、d ,下列命题: ①若a b >,0c ≠,则ac bc >; ②若a b >,则22ac bc >; ③若22ac bc >,则a b >; ④若a b >,则11a b<中,真命题为 A. ①B. ②C. ③D. ④9. 已知ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则三角形的周长是 A.9 B.12 C. 15D. 1810.张先生从2005年起,每年1月1日到银行新存入a 元(一年定期),若年利率为r 保持不变,且 每年到期存款自动转为新的一年定期,那么到2012年1月1日将所有存款及利息全部取回,他可取 回的钱数为(单位为元)A.)]1()1[(8r r r a +-+ B.)]1()1[(7r r ra+-+ C.7)1(r a + D .8)1(r a + 二.填空题(每小题5分,共5题)11. 不等式x x≤1的解集是12. 不等式2(2)2(2)40a x a x -+--<对一切R x ∈恒成立,则实数a 的取值范围是13. 数列}{n a 的前n 项和为21n S n n =++,()1nn n b a =-,n N *∈则数列}{n b 的前50项的和为14.等差数列{}n a 中,若468101250a a a a a ++++=,则10143a a -的值为 . 15.如图,一艘轮船按照北偏西︒40的方向以30海里每小时的速度航行,一个灯塔原来在轮船的北偏东︒20方向上,经过40分钟后,灯塔在轮船的北偏东︒65方向上,则灯塔和轮船原来的距离为 .16.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知0cos )sin 3(cos cos =-+B A A C . (Ⅰ) 求角B 的大小;(Ⅱ) 若4,13=+=c a b ,求△ABC 的面积.17.(本小题满分12分)(1)不等式0252>-+x ax 解是⎭⎬⎫⎩⎨⎧<<221x x ,解不等式01522>-+-a x ax ;(2)求不等式4212≥++-x x 的解集18.(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=. (1)求{}n a ,{}n b 的通项公式;(2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .19.(本小题满分12分)若a 为实数,解关于x 的不等式02)2(2<--+x a ax20. (本小题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别是a b c 、、,且22265a c b ac +-=.(1)求22sin sin 22A CB ++的值;(2)若2b =,求ABC ∆面积的最大值.21.(本小题满分14分)}{na 是首项14a=的等比数列,且3S ,2S ,4S 成等差数列.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若2log n n b a =,设n T 为数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和,若n T ≤1n b λ+对一切*n N∈恒成立,求实数λ的最小值.答案DDDAD;DDCCA一、[)[)1,1,0+∞⋃-;(]2,2-;49;20;10+16解(1)0cos )sin 3(cos )cos(=-++-B A A B A0cos sin 3sin sin =-∴B A B A 3tan =∴B 3π=∴B(2)2121322acc a-+= =ac c a 3)(2-+1=∴ac∴S=43 17解a 525-= 2-=∴a03522<-+∴x x ∴不等式的解集是3(-,)21(2)1.当21≥x 时1≥x2.当212<≤-x 时 21x -≤≤- 3.当2-<x 时2-<x∴不等式的解集是(],1-∞-[)1,⋃+∞18解:2,2==q d12,12-=-=∴n n n b n a 12326-+-=n n n s 19解:0)2)(1(<-+ax x 1. 当0>a 时ax 21<<- 2. 当0=a 时 1->x3. 当02<<-a 时1->x 或ax 2<4. 当2-=a 时1-≠x 5. 当2-<a 时ax 2>或1-<x 20解:(1)ac B ac 56cos 2=53cos =∴B 25422sin 2sin 22=++∴B C A(2)532422acc a-+= ac 54≥2≤∴S21解(1)1)2(4--⋅=n n a(2)1+=n b n2121+-=n T n 2182(2)28n n n nλ≥=+++ 116λ∴≥λ∴的最小值是116。

2015-2016学年高二上学期期中考试数学试卷

2015-2016学年高二上学期期中考试数学试卷

高二期中数学卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页。

满分150分,考试时间120分钟。

考试结束后,将本试卷以及答题卡和答题纸一并交回。

答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在试卷、答题卡和答题纸规定的地方。

第Ⅰ卷注意事项:第Ⅰ卷为选择题,共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一个最符合题目要求。

每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选择其他答案标号。

不能直接写在本试卷上。

1、集合}032|{2<--=x x x M ,}|{a x x N >=,若N M ⊆,则实数a 的范围是( )A .),3[+∞B .),3(+∞C .]1,(--∞D .)1,(--∞ 2、将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )3、已知a 、b 均为单位向量,它们的夹角为3π,那么3a b + 等于( )D.44、已知直线l ,m 与平面αβγ,,满足//l l m βγαα=⊂ ,,,m γ⊥,则有( ) A .αγ⊥且//m β B .αγ⊥且l m ⊥ C .//m β且l m ⊥ D .//αβ且αγ⊥5、设函数2,0(),01x x bx c f x x ≥⎧++=⎨<⎩,若(4)(0)f f =,(2)2f =,则函数()()g x f x x=-的零点的个数是( )A .0B .1C .2D .36、已知0)](log [log log 237=x ,那么21-x 等于( )A.31 B.63 C.33 D.427、已知3cos(),sin 245x x π-=则=( )(D )(C )(B )(A )A .1825 B .725 C .725- D .1625- 8、利用如图所示程序框图在直角坐标平面上打印一系列点,则打印的点落 在坐标轴上的个数是( )A.0B.1C.2D.3 9、各项为正的等比数列{}n a 中,4a 与14a的等比中项为7112a a +的最小值为( )A .16B .8C.D .410、在错误!未找到引用源。

2 数学-2015-2016学年高二上学期期中考试数学试题

2 数学-2015-2016学年高二上学期期中考试数学试题

2015-2016学年第一学期期中考试高二数学2015.11注意事项:1.本试卷分填空题和解答题两部分,共160分,考试用时120分钟.2.答题前,考生务必将自己的班级、姓名、学号写在答题纸的密封线内.答题时,填空题和解答题的答案写在答题纸对应的位置上,答案写在试卷上无效.........,本卷考试结束后,上交答题纸. 一、填空题(本大题共14小题,每小题5分,共70分) 1. 点(1,1)P -到直线10x y -+=的距离是 ▲ .2. 若三个球的半径之比是1:2:3,则它们的体积之比是 ▲ .3. 过点(1,3)P -且垂直于直线230x y -+=的直线方程为 ▲ .4. 若三条直线两两互相垂直,则下列结论正确的是 ▲ . ①这三条直线共点;②其中必有两条直线是异面直线; ③三条直线不可能在同一平面内;④其中必有两条在同一平面内.5. 方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 ▲ .6. 已知m n 、是不重合的直线,αβ、是不重合的平面,则下列命题中正确的序号为 ▲ . (1)若,//n m n αβ= ,则//,//m m αβ; (2)若,m m αβ⊥⊥,则//αβ; (3)若//,m m n α⊥,则n α⊥;(4)若,m n αα⊥⊂,则.m n ⊥.7. 已知正三棱锥P —ABC 中,侧棱0,30PA a APB =∠=,D 、E 分别是侧棱PB 、PC 上的点,则ADE ∆的周长的最小值是 ▲ .8. 直线l 经过点(2,3),且在两坐标轴上的截距相等,则直线l 的方程是 ▲ . 9. 若,62ππα⎡⎫∈⎪⎢⎣⎭,则直线2x cos α+3y +1=0的倾斜角的取值范围 ▲ .10. 点A ,B 到平面α的距离分别为4cm 和6cm ,则线段AB 的中点M 到α平面的距离为 ▲ .11. 已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC O 的体积等于 ▲ .12. 已知(2,0)A ,(1,2)B --,P 是直线y x =上的动点,则PA PB +的最小值为 ▲ .13. 若圆2221:240C x y mx m +-+-=与圆2222:24480C x y x my m ++-+-=相交,则m 的取值范围是 ▲ .14. 若直线y =x +b 与曲线x b 的取值范围是 ▲ .二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(本题14分)如图,在平行四边形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,点H是BE 的中点,点G是AE、DF的交点.(1)求证:GH∥平面CDE;(2)求证:BD⊥平面CDE.16.(本题满分14分)已知直线1:23160l x y+-=,2:3220l x y-+=.(1)求两直线的交点P;(2)求经过点P且平行于直线230x y+-=的直线方程;(3)求以点P为圆心,且与直线230x y+-=相切的圆的标准方程.17.(本题满分14分)如图,在四棱锥P ABCD-中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,60BAD∠= ,N是PB中点,截面DAN交PC于M,E是AD中点,求证:(1)//AD MN;(2)AD⊥平面PBE;(3)PB⊥平面ADMN.18..(本题满分16分)如图,在四棱锥P ABCD-中,平面PAD⊥平面A B C D,AB DC∥,PAD△是等边三角形,已知4AD=,BD=,28AB CD==.(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)当M点位于线段PC什么位置时,PA∥平面MBD?(3)求四棱锥P ABCD-的体积.19.(本题满分16分)已知圆C:22(1)(3)9x y-+-=,直线:(23)(4)220l m x m y m++++-=.(1)无论m取任何实数,直线l必经过一个定点P,求出定点P的坐标;(2)过点P作圆C的切线,求切线方程;(3)以CP为直径的圆与圆C交于A、B两点,求线段AB的长.20.(本题满分16分)方程2()20f x x ax b=++=的一个根在(0,1)内,另一个根在(1,2)内,求:(1)21ba--的值域;(2)22(1)(2)a b-+-的值域;(3)3a b+-的值域.ACBDMNPECMDCBDHFGEAPA2015-2016学年第一学期期中考试高二数学2015.11一、填空题:本大题共14小题.每小题5分,共70分.1.________________________;2.________________________;3.________________________;4.________________________;5.________________________;6.________________________;7.________________________;8.________________________;9.________________________;10._______________________;11._______________________;12._______________________;13._______________________;14._______________________.二、解答题15.(本题14分)CBDHF G EA16.(本题14分) 17.(本题14分)ACBDMNPE18.(本题16分)19.(本题16分)CMDPA B20.(本题16分)2015-2016学年第一学期期中考试高二数学 (参考答案)2015.11一、填空题(本大题共14小题,每小题5分,共70分)1; 2.1:8:27; 3.210x y +-=; 4.③;5.223a -<<; 6.(2)(4); 7;8.3502x y y x +-==或;9.5,6ππ⎡⎫⎪⎢⎣⎭;10.1cm 或5cm ; 11.92π; 1213.122(,)(0,2)55-- ; 14.(1,1]{-⋃.二、解答题15.(本题满分14分)证明 (1)因为G 是AE 与DF 的交点,所以G 是AE 的中点.…………2分 又H 是BE 的中点,所以在△EAB 中,GH ∥AB . …………4分 因为AB ∥CD ,所以GH ∥CD . …………5分 又CD ⊂平面CDE ,GH ⊄平面CDE , 所以GH ∥平面CDE . …………7分 (2)平面ADEF ⊥平面ABCD ,交线为AD ,因为ED ⊥AD ,ED ⊂平面ADEF , 所以ED ⊥平面ABCD . …………10分 所以ED ⊥BD . …………11分 又BD ⊥CD ,CD ∩ED =D ,所以BD ⊥平面CDE . …………14分16.(本题满分14分)解:(1)由231603220x y x y +-=⎧⎨-+=⎩,得24x y =⎧⎨=⎩,所以()2,4P …………4分 (2)设20x y c ++=,…………5分则8c =-…………6分280x y +-=为所求…………8分(3)d ==10分因为相切,所以半径r 12分 所以圆方程为()()22245x y -+-=…………14分17.(本题满分14分)证明:(1)∵//AD BC ,BC ⊂平面PBC ,∴//AD 平面PBC ,…………2分 ∵AD ⊂平面ADMN ,平面ADMN 平面PBC MN =, ∴//AD MN .…………4分(2)连结BD∵PAD ∆和BAD ∆都是正三角形,∴AD PE ⊥,AD BE ⊥,又PE AE E = ,…………6分 ∴AD ⊥平面PBE ,…………7分(3)又PB ⊂平面PBE ,…………9分∴PB AD ⊥,…………10分 ∵AP AD AB ==,N 是PB 中点, ∴PB AN ⊥,…………12分 又AD AN A = ,∴PB ⊥平面ADMN .…………14分 18.(本题满分16分) 证明:(1)在ABD △中,∵4AD =,BD =,8AB =,∴222AD BD AB +=. ∴AD BD ⊥.…………2分 又 ∵平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,BD ⊂平面ABCD , ∴BD ⊥平面PAD . 又BD ⊂平面MBD ,∴平面MBD ⊥平面PAD .…………4分(2)当M 点位于线段PC 靠近C 点的三等分点处时,PA ∥平面MBD .……5分 证明如下:连接AC ,交BD 于点N ,连接MN .AC BMPD∵AB DC ∥,所以四边形ABCD 是梯形. ∵2AB CD =,∴:1:2CN NA =. 又 ∵:1:2CM MP =,∴:CN NA =:CM MP ,∴PA ∥MN .…………7分 ∵MN ⊂平面MBD ,∴PA ∥平面MBD .…………9分 (3)过P 作PO AD ⊥交AD 于O , ∵平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD .即PO 为四棱锥P ABCD -的高.…………11分又 ∵PAD △是边长为4的等边三角形,∴4PO ==12分在Rt ADB △中,斜边AB =,此即为梯形ABCD 的高.∴梯形ABCD 的面积482ABCD S +=⨯14分故1243P ABCD V -=⨯=.…………16分19.(本题满分16分)解:(1) 直线: :(23)(4)220l m x m y m ++++-=可变形(22)(342)0m x y x y ++++-=…………2分220,23420,2x y x x y y ++==-⎧⎧⎨⎨+-==⎩⎩由解得。

2015-2016学年高二上学期第二次月考数学试卷

2015-2016学年高二上学期第二次月考数学试卷

2015--2016 学年度第一学期检测高二年级数学试题一、填空题(本大题共 14 小题,每题 5 分,共 70 分。

请将答案填写在答题卷对应的地点上)1.命题“x (0, 2), x 22 x 2 ≤ 0 ”的否认是▲.2.sin A1 30 ”的 必需而不充足条件▲条件 . (填“充足”是“ A2不用要”、“必需不充足” 、 “充要”、“既不充足又不用要” )层抽样方法从全队的运动员中抽出频次考一个容量为 28 的样本,此中男运动员应抽▲ 人 .组距4. 双曲线x2y 20.041 的渐近线方程是▲.0.03345.200 辆汽车经过某一段公路时的时速的频次0.02 散布直方图如右图所示,求时速在 60, 80 的汽车0.01大概有▲ 辆40 50 60 70 80 时速( km )名 6. 已知椭圆的长轴长是短轴长的2 倍,则椭圆的离心率等于▲第 5 题在面积为 S 的△ ABC 的边 AB 上任取一点 P ,则△ PBC 的面积大于 S的概率是姓7 .▲x2y228.若椭圆+ = 1 的焦距为 2,求椭圆上的一点到两个焦点的距离之和▲m 4. 9.若直线 y = kx - 3 与曲线 y =2lnx 相切,则实数 k = __ ▲ .10. 方程x 2 y 2 1 表示双曲线,则 k 的范围是 ▲.级5 k k 3班x 2y 211. 已知圆 (x 2)2y 21经过椭圆 1(a b 0) 的一个极点和一个焦点,则此a 2b 2椭圆的离心率 e▲.12. 函数 f(x) 的定义域为 (a ,b) ,导函数 f ′(x) 在 (a ,b)内的图象如下图,则函数 f(x) (a,b) 内有极小值点的个数为 __ ▲ ____.校 学13. 设函数 f (x) x3x 2 2x 5 ,若对随意 x ∈ [ -1,2] ,都有 f(x) > m ,则实数 m 的取2值范围是 _____ ▲ __14. 已知定点 A(3,4),点 P 为抛物线 y 24x 上一动点,点P 到直线 x=-1 的距离为 d ,则|PA|+d 的最小值为▲二、解答题 ( 本大题共 6 小题,共 90 分,解答时应写出必需的文字说明,证明过程或演算步骤 .)15 ( 本小题满分14 分)已知 p :x R ,不等式x2mx 3x 2y 22恒建立, q :椭圆1的焦m 1 3 m点在 x 轴上.若命题p∧ q 为真命题,务实数m的取值范围.16( 本小题满分14 分)求以下各曲线的标准方程(1)实轴长为 12,离心率为2,焦点在 x 轴上的椭圆;3(2)抛物线的焦点是双曲线 16x 2 9 y 2 144的左极点.17. (本小题满分14 分)已知点 P(3,4) 是椭圆x2y21(a b 0) 上的一点, F1 ,F2是它的两焦点,a2b2若 PF1PF2求:(1) 的方程; (2)PF1 F2的面积.18(本小题满分 16 分)设函数 f (x) a ln x bx 2 , a,b R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年秋学期限时训练(一)高二数学2015.10一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡...相应的位置.....上。

1.命题“$x ∈R ,使得xsinx -1≤0”的否定是____________.2.抛物线x 2=4y 焦点坐标是________.3.“x>0”是“x≠0”的________条件.4.抛物线y 2=4x 上的一点A 到焦点的距离为5,则点A 到x 轴的距离是________.5.命题“若a >-2,则a >-3”及其逆命题、否命题、逆否命题4个命题中,真命题的个数是______.6.存在实数x ,使得x 2-4bx +3b<0成立,则b 的取值范围是________.7.以F 1(0,-1),F 2(0,1)为焦点的椭圆C 过点P ⎝ ⎛⎭⎪⎫22,1,则椭圆C 的方程为________.8.若曲线x 24+k +y 21-k =1表示椭圆,则k 的取值范围是______.9.不等式111x <-的解集记为p ,关于x 的不等式2(1)0x a x a +-->的解集记为q ,已知p q 是的充分不必要条件,则实数a 的取值范围是10. 在平面直角坐标系xOy 中,已知椭圆x 2a 2+y2b 2=1(a>b>0)的右顶点为A ,上顶点为B ,M 为线段AB 的中点,若∠MOA =30°,则该椭圆的离心率的值为________.11.设F 1、F 2分别是椭圆x 225+y216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则PM +PF 1的最大值为________.12. 已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y2b 2=1(a >b >0)的两个焦点,P 为椭圆上一点且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________.13. 直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC面积的最大值为________.14.已知椭圆22221(0)x y a b a b+=>>的离心率e =,A 、B 是椭圆的左、右顶点,P 是椭圆上不同于A 、B 的一点,直线PA 、PB 斜倾角分别为α、β,则cos()cos()αβαβ-+=____.二、解答题:本大题共6小题,计90 分。

解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内。

15. (14分)已知集合A={}2|230x x x --<,B={}|(1)(1)0x x m x m -+--≥,(1)当0m =时,求A B ⋂;(2)若p :2230x x --<,q :(1)(1)0x m x m -+--≥,且q 是p 的必要不充分条件,求实数m 的取值范围.16. (14分)设有两个命题.命题p :不等式x 2-(a +1)x +1≤0的解集是∅;命题q :函数f(x)=(a +1)x在定义域内是增函数.如果p ∧q 为假命题,p ∨q 为真命题,求a 的取值范围.17. (14分)若椭圆2222:1(0)x y C a b a b+=〉〉的焦点为21,F F ,点P 在椭圆C 上,且112,PF F F ⊥12414,.33PF PF ==(1) 求椭圆C 的方程;(2) 若直线l 过圆22420x y x y ++-=的圆心M 交椭圆C 于,A B 两点,且,A B 关于点M 对称,求直线l 的方程.18. (16分)已知椭圆x 2a 2+y2b 2=1(a >b >0)的长、短轴端点分别为A 、B ,从椭圆上一点M(在x轴上方)向x 轴作垂线,恰好通过椭圆的左焦点F 1,AB →∥OM →. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,F 1、F 2分别是左、右焦点,求∠F 1QF 2的取值范围.19. (16分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -相切. (1)求椭圆C 的方程;(2)设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;(3)在⑵的条件下,证明直线ME 与x 轴相交于定点.20.(16分)如图,在平面直角坐标系xOy 中,已知12,F F 分别是椭圆E:22221(0)x y a b a b+=>>的左、右焦点,B A ,分别是椭圆E 的左、右顶点,且2250AF BF +=.(1)求椭圆E 的离心率;(2)已知点()1,0D 为线段2OF 的中点,M 为椭圆E 上的动点(异于点A 、B ),连接1MF 并延长交椭圆E 于点N ,连接MD 、ND 并分别延长交椭圆E 于点P 、Q ,连接PQ ,设直线MN 、PQ 的斜率存在且分别为1k 、2k ,试问是否存在常数λ,使得120k k λ+=恒成立?若存在,求出λ的值;若不存在,说明理由.高二数学限时训练(一)参考答案1、"x ∈R ,使得xsin x -1>02、(0,1)3、充分而不必要4、45、26、(-∞,0)∪⎝ ⎛⎭⎪⎫34,+∞ 7、x 2+y22=18、334,,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭9、(2,1]--10、6311、1512、⎣⎢⎡⎦⎥⎤33,22 13、 2 14、3515、解:(1){}{}2|230|13A x x x x x =--<=-<<,………………………3分{}{}|(1)(1)0|11B x x x x x x =+-≥=≥≤-或……………………………………6分 {}|13A B x x ∴⋂=≤< ……………………………………………………………7分(2) p 为:(1,3)-………………………………………………………………9分 而q 为: (,1][1,)m m -∞-⋃++∞, …………………………………………11分 又q 是p 的必要不充分条件, 即p q ⇒………………………………………12分 所以 11m +≤-或13m -≥ ⇒ 4m ≥或2m ≤-即实数m 的取值范围为(,2][4,)-∞-⋃+∞。

………………………………14分 16、解:对于p :因为不等式x2-(a +1)x +1≤0的解集是∅,所以Δ=2-4<0. 解不等式得:-3<a<1. ………………………………3分 对于q :f (x)=(a +1)x 在定义域内是增函数,则有a +1>1,所以a>0. ……………………………………6分 又p ∧q 为假命题,p ∨q 为真命题, 所以p 、q 必是一真一假.当p 真q 假时有-3<a ≤0,……………………………………9分 当p 假q 真时有a≥1. ……………………………………12分综上所述,a 的取值范围为(-3,0]∪[1,+∞).……………………………14分17、解:⑴椭圆C 的方程为22194x y +=.………7分 ⑵81(2)9y x -=+.……7分 18、解:(1)因为F 1(-c,0),则x M =-c ,y M =b2a,所以k OM =-b 2ac ,因为k AB =-ba,∥,所以-b 2ac =-b a ,所以b =c ,故e =c a =22.…………………………6分(2)设F 1Q =r 1,F 2Q =r 2,∠F 1QF 2=θ,所以r 1+r 2=2a ,F 1F 2=2c ,且由(1)知a =2b ,则cos θ=r 21+r 22-4c 22r 1r 2=(r 1+r 2)2-2r 1r 2-4c 22r 1r 2…………………………10分=a 2r 1r 2-1≥a2⎝ ⎛⎭⎪⎫r 1+r 222-1=0,……………………………14分 当且仅当r 1=r 2时,cos θ=0,所以θ∈⎣⎢⎡⎦⎥⎤0,π2.…………………16分19、解:⑴由题意知c e a ==,所以22222234c a b e a a -===,即224a b =,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.…4分⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ① 联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=,…………7分由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<,又0k =不合题意, 所以直线PN的斜率的取值范围是0k <<或0k <<.……………10分 ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =, 所以直线ME 与x 轴相交于定点(1,0). ………………………………16分20、解:(1) 2250AF BF += ,225AF F B ∴=.()5a c a c ∴+=-,化简得23a c =,故椭圆E 的离心率为23.…………………………………4分 (2)存在满足条件的常数λ,47=-l .点()1,0D 为线段2OF 的中点,2c ∴=,从而3a =,b =()12,0F -,椭圆E 的方程为22195x y +=.………………6分 设()11,M x y ,()22,N x y ,()33,P x y ,()44,Q x y ,则直线MD 的方程为1111x x y y -=+,代入椭圆方程22195x y +=,整理得,2112115140x x y y y y --+-=.()1113115y x y y x -+=- ,13145y y x ∴=-.从而131595x x x -=-,故点1111594,55x y P x x ⎛⎫- ⎪--⎝⎭.……10分同理,点2222594,55x y Q x x ⎛⎫- ⎪--⎝⎭. 三点M 、1F 、N 共线,121222y y x x ∴=++,从而()1221122x y x y y y -=-.……………………………………12分从而()()()()121221121234121212341212124457557595944455y y x y x y y y y y y y x x k k x x x x x x x x x x --+-----=====--------. 故21407k k -=,从而存在满足条件的常数λ,47=-l .…………………………16分。

相关文档
最新文档