纳米技术与纳米材料制备及应用综述

合集下载

自组装制备纳米材料的研究现状

自组装制备纳米材料的研究现状

自组装制备纳米材料的研究现状摘要文章综述了纳米材料各种制备方法,提出了应用自组装技术制备纳米材料。

评述了其在制备纳米材料时的机理、优缺点。

综述了纳米材抖的各种制备方法,提出了应用自组装技术制备纳米材料。

并对国内外应用自组装技术制备纳米材料(如纳米团簇、纳米管、纳米膜等)的研究现状进行了综述。

关键字:纳米材料自组装纳米团簇纳米薄膜前言纳米材料是20世纪80年代中期发展起来的一种具有全新结构的材料,它所具有的独特性质,使它在磁学、电学、光学、催化以及化学传感等方面具有广阔的应用前景。

自组装技术从纳米材料出现开始就一直应用于纳米材料的制备,只不过当时没有明确地将其作为一种方法提出。

到目前为止,自组装技术已能用来制备纳米结构材料,如纳米团簇、纳米管、纳米环、纳米线、多孔纳米材料、功能化纳米材料、功能化纳米级膜及有机/无机纳米复合材料。

纳米科学生命科学技术、信息科学技术和纳米科学技术是本世纪科技发展的主流方向。

纳米科学技术是在纳米空间对原子、分子及其他类型物质的运动与变化规律进行研究,同时在纳米尺度范围内对原子、分子等物质结构单元进行操纵、加工的一个新兴科学领域。

著名物理学家诺贝尔奖获得者Richmd P.Feynman在1959年l2月指出”There is a plenty of room at the bottom”,并预言,如果人类按照自己的意志去安排一个个原子,将得到具有独特性质的物质。

1981年G.Binning教授和H.Rohrer 博士发明了扫描隧道显微镜(scanning tunneling microscopy,STM),使人类首次能够直接观察原子,并能通过STM对原子、分子进行操纵。

1990年7月,在美国巴尔的摩召开了第一届国际纳米科学技术学术会议,这标志着纳米科学技术作为一个新兴的领域正式形成,纳米材料学成为材料科学的一个新分支。

2000年7月美国国家科学技术委员会宣布实施纳米技术创新工程,并将纳米计划视为下一次工业革命的核心。

纳米纤维素研究及应用进展

纳米纤维素研究及应用进展

纳米纤维素研究及应用进展纳米纤维素是一种由植物细胞壁提取或微生物发酵得到的生物质材料,具有独特的纳米级尺寸和出色的物理、化学性能。

近年来,纳米纤维素因其出色的生物相容性、可降解性以及在能量储存、药物传递、环境治理等方面的应用潜力,受到了广泛。

本文将概述纳米纤维素的研究背景和意义,并详细介绍其制备方法、应用进展、研究现状与挑战以及未来应用前景。

纳米纤维素的制备方法主要包括物理法、化学法和生物法。

物理法主要包括高压静电纺丝、超临界流体纺丝等;化学法主要包括酸解、氧化还原等;生物法则利用微生物或植物细胞壁提取。

不同制备方法得到的纳米纤维素在形貌、尺寸和性能上略有差异。

纳米纤维素在许多领域中都有着广泛的应用。

在生物医学领域,纳米纤维素因其生物相容性和可降解性,可用于药物载体、组织工程和生物传感器等。

在能源领域,纳米纤维素可作为电极材料用于超级电容器和锂离子电池等。

纳米纤维素在环保、材料科学等领域也有着广泛的应用。

当前,纳米纤维素研究面临着许多挑战。

制备方法的优化和绿色生产是亟待解决的问题。

化学法制备过程中产生的废弃物可能会对环境造成污染,因此需要开发环保、高效的制备方法。

纳米纤维素的尺度、形貌和性能调控是研究的重要方向。

纳米纤维素的量产化、应用领域的拓展以及其在复合材料中的作用机制等方面也需要进一步探索。

随着科技的不断进步,纳米纤维素的应用前景十分广阔。

在生物医学领域,纳米纤维素作为药物载体和组织工程材料的应用将进一步拓展。

在能源领域,随着可再生能源需求的增加,纳米纤维素作为储能材料的应用前景将更加明朗。

纳米纤维素在环保、材料科学等领域也将发挥更重要的作用。

纳米纤维素作为一种重要的生物质材料,具有广泛的应用前景和巨大的发展潜力。

随着对纳米纤维素制备、性能和应用研究的深入,其在生物医学、能源、环保、材料科学等领域的应用将进一步拓展。

未来,纳米纤维素的研究将更加注重绿色生产、可持续性和规模化应用,为推动纳米科技和生物质材料的发展提供新的机遇和动力。

纳米银应用综述

纳米银应用综述

纳米银应用综述摘要纳米材料因具有很高的表面能和化学活性而显示出独特的热、电、光、声、磁、力学性能和催化性能,广泛应用于超导、化工、医学、光学、电子、电器等行业,具有广阔的应用前景。

关键词纳米银应用一、超导方面用70nm的银粉制成的轻烧结体做热交换材料,可使制冷机工作温度达到0.0I一0.003K,效率较传统材料高30%。

通过研究不同含量纳米银掺杂的f Bi,Pb)2Sr2Ca2CuO 块材,发现纳米银掺杂使材料熔点降低,加速了高(指临界温度,即从正常状态到超导态的过程中,电阻消失的温度)相的形成;纳米银掺杂大大提高了磁通蠕动激活能,其中最佳掺杂15%(质量)Ag时激活能提高5~6倍;纳米银掺杂样品的钉扎能u(H)随磁场降低比非掺杂样品要慢,改善了磁场下的传输性能;纳米银掺杂使晶问损耗峰向高温移动20K,改善了晶界弱连接,并大大增强了晶界的涡旋钉扎能力。

二、光学领域1、纳米银可用作表面增强喇曼光谱(SERS)的基质,实验证明SERS谱的获得与吸附分子的电性及纳米银的表面电性有关。

根据分子的电性,选取不同电性的纳米银,可以获得较强的SERS谱,进而扩大SERS的研究范围。

同时,纳米银粒子由于其表面等离子振荡吸收峰附近具有超快的非线性光学响应,科学家发现把纳米银掺杂在半导体或绝缘体中,可获得较大的非线性极化率,利用这一特性可制作光电器件,如光开关、高级光学器件的颜色过滤器等。

2、用纳米银制备的Ag-BaO功能薄膜,是一种全新的光发射材料,具有很高的光吸收系数,光发射性好。

纳米银和PVP复合制成薄膜,对特定的红外波长具有很强的光吸收能力。

Yoshio HAYASHI等人采用干式银盐成像法,利用少量感光性卤化银、非感光性长链有机银盐(RCOOAg)和适当的还原剂均匀分散在聚合物基体中,曝光后卤化银分解形成潜像Ag核,在120-140摄氏度范围内原位形成纳米银粒子,制备出纳米银/高分子光学材料。

3、在化纤中加入少量的纳米银,可以改变化纤品的某些性能,并赋予很强的杀菌能力。

有机一无机纳米复合材料的制备、性能及应用

有机一无机纳米复合材料的制备、性能及应用

有机一无机纳米复合材料的制备、性能及应用引言纳米复合材料是一类新型复合材料,它是指1种或多种组分以纳米量级的微粒即接近分子水平的微粒复合于基质中所构成的一种复合材料。

纳米复合材料因其分散相尺寸介于宏观与微观之间的过渡区域,将给材料的物理和化学性质带来特殊的变化,正日益受到关注。

纳米材料被誉为“21世纪最有前途的材料”,该类材料研究的种类已经涉及到无机物、有机物和非晶态材料等。

有机-=无机纳米复合材料因其综合了有机物和无机物各自的优点,并且可以在力学、热学、光学、电磁学和生物学等方面赋予材料许多优异的性能,正在成为材料科学研究的热点之一。

目前,国内外在这方面的研究成果正不断见诸报道。

本文拟对有机一无机纳米复合材料的制备、性能及应用作一个综述。

有机一无机纳米复合技术最先制得的纳米复合材料是无机纳米复合材料,如金属、非金属、陶瓷和石英玻璃等。

目前,纳米复合材料研究的种类已涉及到有机物和非晶态材料等。

各国首先着重于纳米复合材料制备方法的研究,特别是薄膜制备法的研究。

纳米复合方法常用的有3种:溶胶一凝胶法、嵌入法和纳米微粒填充法。

其中溶胶一凝胶法较早用于制备有机一无机分子杂化材料或纳米复合材料;嵌入法在分子材料领域表现出很好的前景,特别是将不同的性能综合到单一的材料中去。

把具有有机/无机纳米复合材料的性能和特点的纳米颗粒材料添加到其他材料中,可以根据不同的需要选择适当的材料和添加量达到材料改性的目的,因为复合材料中增强体的尺寸降到纳米数量级会给复合材料引入新的材料性能。

首先,纳米颗粒本身具有量子尺寸效应、小尺寸效应、表面界面效应和宏观量子隧道效应等特殊的材料特性,这会给复合材料带来光、电、热、力学等方面的奇异特性;其次,纳米颗粒增强复合材料所具有的特殊结构,如高浓度界面、特殊界面结构、巨大的表面能等等必然会大大影响复合材料的宏观性能。

由无机纳米材料与有机聚合物复合而成的有机/无机纳米复合材料具有无机材料、无机纳米材料、有机聚合物材料、无机填料增强聚合物复合材料、碳纤维增强聚合物复合材料等所不具备的一些性能。

纳米粒子

纳米粒子

磁性纳米材料的制备和应用发展综述摘要:综述了磁性纳米材料的制备方法,其中包括固相法、液相法和气相法。

对磁性纳米材料当前的应用热点进行了概述,并对其研究前景进行了展望。

关键词:磁性;纳米材料;制备;改性;1 引言20世纪70年代人们利用共沉淀法制备出了磁性液体材料,1988年巨磁电阻效应的发现,引起了世界各国的关注,掀起了纳米磁性材料的开发和应用研究热潮。

纳米磁性材料大致可分为3大类:一是纳米颗粒,二是纳米微晶,三是纳米结构材料[1]。

纳米磁性材料的磁单畴尺寸、超顺磁磁性临界尺寸、交换作用长度等在1~ 100 nm 范围内,具有奇异的超顺磁性和较高的矫顽力[2~3]。

20nm的纯铁微粒的矫顽力是大块铁的1000倍;当粒径在50~200nm之间时,矫顽力和饱和磁化强度均达到最大值,且具有单畴特性。

近年来随着计算机技术的飞速发展,记录的信息量也在不断增加。

以超微粒作记录单元,可使记录密度大大提高[4]。

磁性纳米微粒尺寸小、单畴结构矫顽力高,用它制作磁记录材料,可以提高信噪比,改善图像质量。

2 磁性纳米材料的制备在人们所熟知的大量磁性材料中,由于不能同时满足高饱和磁化强度和稳定性高的要求,饱和磁化强度高但稳定性低的材料应用在一定程度上受到了限制。

目前可选作磁性微粒的仅有少数几种,主要为金属氧化物,如三氧化二铁(Fe2O3)、MFe2O4(M=Co,Mn,Ni)、四氧化三铁(Fe3O4),二元和三元合金,如金属铁、钴、镍及其铁钴合金、镍铁合金,以及钕铁硼(NdFeB)、镧钴合金(LaCo)合金等,它们的稳定性(即抗氧化能力)依次递减,但饱和磁化强度却按上述次序递增。

纳米科技的发展,使这些磁性材料的应用成为可能,目前,磁性材料纳米化已成为材料科学的一个发展趋势。

目前磁性纳米材料制备技术可以有多种分类,一种是分做物理法和化学法;另一种是按照物质状态进行分类,如固相法、液相法和气相法。

其中,固相法包括非晶晶化法和高能球磨法;液相法包括喷雾法、沉积法、蒸发法、溶胶凝胶法、溶剂挥发分解法及电沉积法;气相法包括熔融金属反应法、气体冷凝法、真空蒸镀法、溅射法、激光诱导法、电加热蒸发法、混合等离子法及化学气相沉积法等。

纳米金粒子制备及应用研究进展

纳米金粒子制备及应用研究进展

纳米金粒子制备及应用研究进展纳米技术在21 世纪将发挥极为重要的作用,是未来纳米器件、微型机器、分子计算机制造的最可能的途径之一。

纳米材料学作为纳米技术的重要组成部分也将会受到更广泛的重视。

科学家们利用纳米颗粒作为结构和功能单元,可以组装具有特殊功能如特殊敏感性和光、电、化学性能的纳米器件。

金属纳米颗粒由于其在量子物理,信息存储,复合材料等方面的潜在应用而引起了人们的注意。

其中,金纳米粒子由于其优异的导电性能,良好的化学稳定性及其独特的光学、催化特性而吸引了更多的目光。

这主要是因为:金是一种惰性元素,其化学稳定性良好;金和硫元素之间可以形成一种非常稳定的键合作用,这有利于在其表面组装带有各种官能团的单分子层。

由于纳米金粒子这些特有的化学性能以及独特的光、电性能,自上世纪80 年代至今,化学界对纳米金粒子的应用及其功能化研究方兴未艾。

本文综述了近年来纳米金粒子的制备及应用研究进展。

纳米金粒子的制备方法一.化学还原法制备法超细金粉制备原理:将金化合物的适当溶液通过化学还原而得到单质金粉.1.抗坏血酸为还原剂生产超细金粉工艺①王水溶金将黄金用去离子水冲洗,在置于稀硝酸中煮洗5~10min后,适当加热以启动反应,当反应较为平缓后,可再加入少量王水,直至大部分尽快获金粉溶解.反映结束时应保证体系中有少量未反应的黄金存在,即在投料时必须保证黄金的过量.②浓缩,赶硝将溶金液倾入另一烧杯中,用水洗净未反应的金块或金粉,转入下一循环使用。

洗液并入溶金液。

加热并在此过程中滴加浓盐酸以赶尽氮氧化物,过滤,滤液转入旋转蒸发皿进行浓缩结晶,然后配成适当浓度的水溶液。

③还原将抗坏血酸配成饱和溶液,在不断搅拌下,将氯金酸溶液滴加到抗坏血酸溶液中,滴加完毕后继续搅拌1h,静置沉降。

④清洗、干燥和筛分将上层清液倾出,用水和乙醇以倾析法清洗金粉。

所得金粉置于真空干燥。

冷却后,将金粉过筛分级,得到不同粒度的球形金粉末。

2.Na3C6H5O7 柠檬酸钠为还原剂制得纳米金颗粒粒径在15-20nm 之间Na3C6H5O7 为还原剂时,柠檬酸钠与氯金酸的摩尔比为1.5:1 时最佳;采用HAuCl4 溶液加入到加热的Na3C6H5O7 与聚乙烯吡咯烷酮(PVP)混合溶液Na3C6H5O7 溶液加入到室温的NaBH4 与PVP 混合溶液制得的纳米金溶胶的颗粒分散性好,粒径小且更均一。

纳米粒子的制备方法综述

纳米粒子的制备方法综述

纳⽶粒⼦的制备⽅法综述纳⽶粒⼦的制备⽅法综述摘要:纳⽶材料是近期发展起来的⼀种多功能材料。

在纳⽶材料的当前研究中,其制备⽅法占有极其重要的地位,新的制备⼯艺过程的研究与控制对纳⽶材料的微观结构和性能具有重要的影响。

本⽂主要概述了纳⽶材料传统的及最新的制备⽅法。

纳⽶材料制备的关键是如何控制颗粒的⼤⼩和获得较窄且均匀的粒度分布。

[1]Abstract :Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution .关键词:纳⽶材料制备⽅法Key words :Nanometer material produce-methods正⽂:纳⽶材料的制备⽅法主要包括物理法,化学法和物理化学法等三⼤类。

下⾯分别从三个⽅⾯介绍纳⽶材料的制备⽅法。

物理制备⽅法早期的物理制备⽅法是将较粗的物质粉碎,其最常见的物理制备⽅法有以下三种:1.真空冷凝法⽤真空蒸发、加热、⾼频感应等⽅法使原料⽓化或形成等离⼦体,然后骤冷。

第一次作业2000字以上综述

第一次作业2000字以上综述

论述纳米二氧化锡分级结构的制备与材料功能摘要纳米材料时代的到来受到了各个领域的青睐和重视,随着研究的进一步深化和材料性质进一步地被挖掘,使得其应用范围越来越广泛。

由于具有多层次、多维度、多组分的耦合和协同效应,分级结构纳米材料的设计合成近年来吸引了广泛的关注。

具有这类结构的材料因其新颖的结构,奇特的构造,赋予它独特的物理、化学性质,加之形貌和尺寸对性质的极大影响,使得它将具有更新颖的应用,尤其是在纳米器件的制造方面,将具有更多潜在的应用价值,丰富了纳米结构材料的性能。

纳米二氧化锡就是一种重要的纳米应用材料,其在掺杂处理后能表现出独特的光学特性和电学特性,使其在电子技术、医学、研究等领域中应用广泛。

关键词:二氧化锡纳米材料分级结构气敏材料1绪论当晶体尺寸小道纳米尺寸后,其表面效应、量子效应、小尺寸效应等将使之产生有别于其体相材料的性质,从而带来新的应用。

随着科技的发展,对纳米材料的要求更高了。

由于具备多级次、多维度、多组分的耦合以及协同效应,分级结构材料无疑成为能够满足材料发展要求最重要的候选之一。

它是由基本纳米结构单元(零维、一维、二维)基于非共价键包括氢键、配位键、堆积效应、范德华力、静电力、疏水作用、手性作用、官能团的电子效应、立体效应和长程作用等的相互作用下按照一定规律排列或自组装结合形成稳定的具有一定规则几何外观的有序结构。

二氧化锡是一种宽禁带的n型半导体,常温下由于具有独特的光电学性质,其在传感器、发光材料、太阳能电池防静电涂料、锂离子电池等方面有着广泛的应用。

本文主要介绍三种纳米二氧化锡分级结构的制备及其性能。

2纳米二氧化锡分级结构与性能2.1二氧化锡纳米线这里主要介绍管式炉热蒸发法。

这种方法具有方法简易且费用低的优点。

首先将一片长有500nm二氧化硅的硅衬底(10mm×10mm)放在丙酮溶液中超声约5分钟,去除表面的污染物。

利用磁控溅射仪在清洁的硅衬底表面上镀上一层约20nm的金膜作为生长催化剂。

二氧化钛纳米管的制备及应用综述

二氧化钛纳米管的制备及应用综述

二氧化钛纳米管的制备及应用综述段秀全盖利刚周国伟(山东轻工业学院化学工程学院,山东济南250353)摘要:TiO2纳米管具有较大的直径和较高的比表面积等特点,在微电子、光催化和光电转换等领域展现出良好的应用前景。

本文对TiO2纳米管材料的合成方法、形成机理及应用研究进行了综述。

关键词:TiO2纳米管;制备;应用中图分类号: O632.6 文献标识码: APreparation and Application of TiO2 nanotubesDUAN Xiu-quan, GAI Li-gang, ZHOU Guo-wei(School of Chemical Engineering, Shandong Polytechnic University, Jinan, 250353, China) Abstract: TiO2nanotubes have wide applications in microelectronics, photocatalysis, and photoelectric conversions, due to their relatively larger diameters and higher specific surface areas. In this paper, current research progress relevant to TiO2nanotubes has been reviewed including synthetic methods, formation mechanisms, and potential applications.Keywords: TiO2 nanotubes; preparation; application自1991年日本NEC公司Iijima[1]发现碳纳米管以来,管状结构纳米材料因其独特的物理化学性能,及其在微电子、应用催化和光电转换等领域展现出的良好的应用前景,而受到广泛的关注。

纳米纤维素材料的特征与应用综述

纳米纤维素材料的特征与应用综述

纳米纤维素材料的特征与应用综述摘要纤维素是最丰富的天然高分子,因其具有可再生可降解的特性被受到广泛关注,由于尺寸效应,纳米纤维素具有多种特殊的物理化学性质。

本文旨在对纳米纤维素的分类和应用等方面进行综述。

关键词:纳米纤维素;静电纺丝;酸水解;纳米复合材料目前,由于使用常规的石油基聚合物产品已经产生了生态威胁,如全球气候变暖和塑料污染等,因此,可再生和可生物降解材料正受到科学界和工业界的广泛关注。

纤维素主要由植物的光合作用合成,是最丰富的天然聚合物,并已经被用于为这些问题提出合理的解决方案。

纳米纤维素是指有一维尺寸小于或等于100 nm的不同类型的纤维素纳米材料,具有高比表面积、高强度、轻质、价格低廉、良好的生物相容性和超精细结构等优点。

纳米纤维素的种类有很多,按照晶型可以分成四种:纤维素Ⅰ,Ⅱ,Ⅲ和Ⅳ型[1]。

纤维素Ⅰ又叫原生纤维素,它在自然界中形成具有Ⅰα和Ⅰβ两个同质异晶体。

纤维素Ⅱ又称再生纤维素,它是再塑晶体或者经过氢氧化钠碱化后出现的晶体,具有最稳定的晶体结构。

按照提取方法可将纳米纤维素分为微纤化纤维素(MFC)和纳米纤维素晶体(CNC),微纤化纤维素是以机械方式制备得到的纳米纤维素,而纳米纤维素晶体是通过酸水解或酶解的方法得到的。

纳米纤维素超分子以其形貌划分,主要包括纳米纤维素晶体和纳米纤维素复合物。

强酸水解细菌、植物、动物纤维素和微晶纤维素可制备纳米纤维素晶体(晶须),这种晶体长度为10 nm – 1 μm,而横截面尺寸有 5 nm - 20 nm,长度与横截面尺寸的比为1-100,比表面积约为150 m2/g;将纤维素与复合的另一材料混合,加入适宜的纤维素化学溶剂,通过溶剂浇铸后真空或者常压下挥发掉溶剂、冷冻干燥、热压法或者挤压法可获得在一维尺寸上为1-100 nm 的纤维素的复合物。

纳米纤维素的制备方法包括机械法、化学法、酶催化法和静电纺丝法[2]。

通过以上方法制备的最为典型的纳米纤维素有纤维素纳米纤维(CNF S)、纤维素纳米晶体(CNC S)和细菌纤维素(BNC)。

纳米TiO2的制备与应用的进展

纳米TiO2的制备与应用的进展

纳米TiO2的应用与制备的研究进展李俊(中南大学化学化工学院应化0903班)摘要本文主要介绍了纳米TiO2的制备方法的现阶段进展,从物理法,化学法,新型合成方法三方面介绍了国内外的研究进展,同时综述了纳米TiO2在传感器材料,催化剂载体,光催化剂、太阳能电池原料和紫外线添加剂等方面的应用。

关键词纳米粉体 TiO2化学法应用综述1.前言纳米技术是当今世界的研究前沿。

纳米级的TiO2因其化学性高、分散性好、吸收紫外线能力强等,广泛用于化工、涂料、塑料、橡胶、纤维、造纸、油墨、搪瓷、电子等行业。

对其研究比较深的主要有传感器材料、催化剂载体、光催化剂、处理水和空气中的污染物、杀菌、太阳能电池原料以及通过贵金属沉积、离子掺杂、染料敏化、半导体复合等方法来改变其光学性质这几方面。

TiO2俗称钛白粉,无毒、无味、无刺激性、热稳定性好。

其晶相结构有四种:金红石(Rutile)、锐钛矿(Anatase)、板钛矿(Brookite)和无定形,其中以金红石型和锐钛矿型TiO2应用最为广泛[1]。

这两种晶型的TiO2硬度、密度、折光指数、光催化活性等都有所不同、两种晶型的相对含量对产品性能有较大的影响。

本文主要介绍纳米TiO2的制备和其应用的研究进展。

2.纳米TiO2的应用研究2.1 传感器材料TiO2作为敏感材料,制成传感器可检测H2、CO等可燃性气体和氧气。

特别是用作汽车尾气传感器,通过测定汽车尾气的氧含量,可以控制汽车发动机的效率。

目前研制的电阻型TiO2半导体氧传感器,以其体积小、结构简单、价格便宜而受到人们的关注[2]。

中南大学的李赛[3]将尿素酶(urease)固载于不同粒径(5nm,25nm,2.4 p m)的TiO2膜上,在350℃,pH为7的条件下采用电位法研究吸附在纳米多孔Ti02上的尿素酶的活性变化。

在钛丝基体上沉积一层纳米TiO2多孔膜,然后直接将尿素酶吸附在Ti02膜上。

基于Ti02膜的pH响应,发展了一种廉价的、易于微型化的pH敏尿素酶传感器。

纳米材料综述

纳米材料综述

纳米银研究现状摘要:近年来,人们对于纳米银独特的性质给予了广泛的关注,本文综述了纳米银的研究现状与前景。

简单介绍了自20世纪90年代以来,纳米银的制备方法,着重阐述了纳米银在医疗,食品方面的应用。

关键词:纳米银用途;纳米材料的制备;纳米银抗菌;应用前景。

引言:纳米银指的是纳米级的金属银单质。

是纳米材料的一个典型代表,它是一种新兴的功能材料,有着较高的比表面积,表面活性较好,导电率高,广泛用作催化剂材料、防静电材料和生物传感器材料等[1]。

另外,纳米银还具有抗菌、除臭、吸收部分紫外线的功能,可应用于医药行业,其应用前景广阔。

因此,研究纳米银有着重要的意义。

本文就纳米银的制备方法[2]以及应用,回收等方面进行综述。

图1纳米--长度单位一、制备方法(一)物理法物理法原理简单,所得产品杂质少、质量高,但其缺点是对仪器设备要求较高,生产费用昂贵。

主要有激光烧蚀法、蒸发冷凝法、机械球磨法。

1.1激光烧蚀法激光烧蚀法是制备纳米银粒子一种新兴起的技术。

具有以下特点:①周期短;②制备过程是一种物理过程,无外来杂质的干扰;③烧蚀后的金属表面粗糙程度具有纳米量级并可以重复利用。

李亚文等[3]用脉冲激光对处于去离子水中的银片进行激光烧蚀,得到了银纳米颗粒和银纳米胶体体系,有着很好的纯净性和表面增强拉曼散射活性。

1.2蒸发冷凝法蒸发冷凝法又称为物理气相沉积法,用激光、真空蒸发、电弧高频感应、电子束照射等使原料气化或形成等离子体,然后在介质中骤然冷却使之凝结。

其特点是纯度高,结晶性好,粒度可控,但技术复杂,设备要求高。

BakerC等人[4]在惰性气体氛围中,通过冷凝的方法制备出了纳米银粒子,但存在着纳米银粒子聚结的缺点。

1.3机械球磨法机械球磨法是利用高能球磨方法,在适当的球磨条件下获得纳米级的晶粒的纯元素、合金或复合材料。

该法工艺简单,制备效率高,但易引入杂质,纯度不高,颗粒分布也不均匀。

Xu等[5]在-196℃的低温下对银粉进行高能机械球磨,得到了平均粒径约为20nm的银颗粒粉末。

纳米技术与纳米材料_无机纳米材料的制备_性能及表征_蒋惠亮

纳米技术与纳米材料_无机纳米材料的制备_性能及表征_蒋惠亮

收稿日期:2003-04-21;修回日期:2003-09-17作者简介:蒋惠亮(1956-),男,毕业于江南大学,博士生,副教授,联系电话:(0510)5867713(O )。

纳米技术与纳米材料(Ⅶ)———无机纳米材料的制备、性能及表征蒋惠亮1,2,徐光年1,方 云1,陈明清1,陆路德2(1.江南大学化学与材料工程学院,江苏 无锡 214036;2.南京理工大学化工学院,江苏 南京 210094)摘要:综述了国内外无机纳米材料研究的成果与进展,对各种金属与非金属无机纳米材料的种类、具有各种特异性能和用途作了系统的介绍,并系统地阐述了无机纳米材料的各种物理或化学的制备技术,讨论了各种制备方法的特点、适用范围以及国内外在无机纳米材料制备方法研究上的进展,并介绍了目前国内常用的一些无机纳米材料的表征方法及其特点和应用。

关键词:无机纳米材料;纳米技术;制备;性能中图分类号:TB383 文献标识码:A 文章编号:1001-1803(2004)01-0057-05 无机纳米材料是纳米材料学研究中最为重要的领域。

无机纳米材料以及与之相关的纳米复合材料的研究开发与应用正吸引众多科学家的浓厚兴趣,成为材料科学领域研究的热点,最近十几年来亦已取得了可喜的进展[1]。

目前,一些重要的无机纳米材料在制备技术、性能及结构表征以及应用方面已取得成功,近几年来,更不断有无机纳米材料产品产业化的报道。

因此,无机纳米材料的制备及无机/有机纳米复合材料的研究具有广阔的应用前景,是对相关行业的技术进步具有重要促进作用的、前景十分灿烂的研究开发领域。

1 无机纳米材料的制备技术纳米材料从形态上分,可分为纳米颗粒,纳米固体(块体或薄膜)和纳米结构。

其中,纳米颗粒是最基本的、也是研究最早、最广泛的材料。

无机纳米粉体的制备方法可分为物理和化学两大类[2]。

1.1 物理制备方法(1)蒸发-冷凝法[3]。

该方法是将装有待蒸发物质的容器抽至10-5Pa ~10-6Pa 的高真空或充填低压惰性气体后,加热蒸发源,使物质(金属、合金或化合物)蒸发成雾状原子,随隋性气体流冷凝到冷凝器上,将聚集的纳米尺度的粒子刮下、收集即得到纳米粉体。

纳米技术与应用

纳米技术与应用

《纳米技术与应用》课程论文纳米技术在军事中的应用摘要本文综述了纳米技术在军事领域中的应用,其中包括各种纳米材料和纳米武器,并探讨了纳米技术在军事应用中面临的问题及未来展望。

关键词纳米技术,军事应用,材料,武器1 前言进入新世纪,一场新的纳米技术革命正在悄然兴起。

历史经验表明,技术革命在带来产业革命的同时,必将引起军事领域的重大变革。

美国兰德公司认为,纳米技术将是“未来驱动军事作战领域革命”的关键技术。

目前,各主要军事大国,都对纳米在军事武器领域的应用高度重视,加大经费投入,开展研制试验,制造纳米武器。

纳米是一个长度单位,仅有一米的10亿分之一。

10亿分之一是什么概念,形象地比喻,一纳米的物体放到乒乓球上,就像一个乒乓球放在地球上一般。

一纳米相当于数个原子的并列长度。

纳米材料是指微观结构至少在一维方向上受纳米尺度(1nm~100nm)调制的各种固体超细材料。

纳米材料有4个基本效应,即小尺寸效应、量子尺寸效应、表面与界面效应、宏观量子隧道效应,由于这些效应,纳米材料具有常规材料所没有的特别性能,如高强度和高韧性、高热膨胀系数、高比热和低熔点、奇特的磁性、极强的吸波性,可以在光电器件、灵敏传感器、隐身技术、催化、信息存储等领域得到广泛的应用[1]。

纳米技术是在0.1纳米到几百纳米的尺度内对原子、分子进行操作、控制和加工的技术。

纳米技术的出现,将使物质加工和处理技术达到一个前所未有的水平。

在纳米这一极其微小的世界里,纳米技术有着广泛而神奇的用途,发挥着超乎人们想象的作用。

在新材料制备和现代制造技术方面,运用纳米技术,可以在纳米层次上构筑特定性质的材料或自然界中不存在的、生物材料和仿生材料;在微电子和计算机技术方面,纳米技术与微电子技术相结合出现的纳米电子学,可以超越集成电路的物理与工艺限制,研制出体积更小、速度更快、功耗更低的新一代量子功能器件,用量子元件代替微电子器件,“深蓝”、“银河”等巨型计算机就能装入口袋,“亚洲一号”通信卫星可只有鸽子大小;在环境与能源技术方面,纳米材料可用来消除水和空气中的污染,成倍地提高太阳能电池的能量转换效率;在医学技术方面,用数层纳米粒子包裹的智能药物进入人体之后,可主动搜索并攻击癌细胞或修补损伤组织,在人工器官外面涂上纳米粒子可预防移植后的排斥反应,还可研制疾病早期诊断的纳米传感器系统,大大提高医生的诊断水平;在航空航天技术方面,用纳米技术研制的低能耗、抗辐射、高性能计算机,用纳米集成的测试、控制仪器和电子设备以及抗热障、耐磨损的纳米结构涂层材料,将更多地应用到未来航空航天技术领域中[2-5]。

四氧化三铁纳米材料的制备与应用

四氧化三铁纳米材料的制备与应用

四氧化三铁纳米材料的制备与应用一、本文概述随着纳米科技的快速发展,纳米材料因其独特的物理和化学性质,在众多领域展现出了广阔的应用前景。

四氧化三铁(Fe₃O₄)纳米材料作为其中的一种,因其优良的磁学、电学和催化性能,受到了科研工作者和工程师们的广泛关注。

本文旨在全面综述四氧化三铁纳米材料的制备方法,探讨其应用领域,以及展望未来的发展方向。

本文将详细介绍几种常用的四氧化三铁纳米材料制备方法,包括共沉淀法、水热法、溶胶-凝胶法、微乳液法以及物理法等。

这些方法各有优缺点,适用于不同的应用场景。

通过对比各种方法的制备原理、操作过程以及所得产物的性能,可以为实验者提供选择制备方法的参考依据。

本文将重点讨论四氧化三铁纳米材料在生物医学、磁流体、催化剂、磁性材料、电磁波吸收材料等领域的应用。

例如,在生物医学领域,四氧化三铁纳米材料可作为磁共振成像的造影剂、药物载体以及热疗剂等;在磁流体领域,其可作为密封材料、润滑剂和磁记录介质等。

通过深入剖析这些应用案例,可以展示四氧化三铁纳米材料的多功能性和广阔的应用前景。

本文将展望四氧化三铁纳米材料未来的发展方向。

随着纳米技术的不断进步和跨学科研究的深入,四氧化三铁纳米材料有望在更多领域展现出独特的优势。

例如,通过与其他纳米材料的复合,可以进一步提高其性能和应用范围;通过对其表面进行修饰,可以增强其与生物组织的相容性和靶向性等。

因此,四氧化三铁纳米材料的研究将持续成为纳米科技领域的重要课题。

二、四氧化三铁纳米材料的制备方法四氧化三铁(Fe3O4)纳米材料的制备方法多种多样,常见的包括共沉淀法、热分解法、微乳液法、溶胶-凝胶法以及水热法等。

这些方法各有特点,适用于不同规模和应用需求的四氧化三铁纳米材料制备。

共沉淀法:共沉淀法是一种通过控制溶液中的沉淀条件,使铁离子和亚铁离子在溶液中同时沉淀,进而形成四氧化三铁纳米材料的方法。

这种方法操作简单,易于控制,但制备出的纳米颗粒尺寸分布较宽。

纳米TiO2的制备方法与应用

纳米TiO2的制备方法与应用

《纳米材料导论》课程报告题目:纳米TiO2的制备方法与应用学生姓名:李玉海学生学号:2010130101025纳米TiO2的制备方法与应用摘要:综述了纳米二氧化钛材料的制备及应用,论文主要根据二氧化钛的表征及性能,深入地讨论了纳米二氧化钛材料的一些制备方法及应用。

从物理法和化学法、或从液相法和气相法,详细地概述了二氧化钛粉体制备。

在诸多性能的分析下,二氧化钛纳米材料在空气净化、废水处理、杀菌消毒、化妆品、涂料、塑料中的应用等方面起到了实际作用。

在写作过程中,本文通过查找各种关于纳米材料以及有关纳米科技的书籍和文献进行论述,充分体现了纳米材料在生活中的应用。

关键词:纳米二氧化钛制备应用前景1. 纳米TiO2的概述钛的氧化物——二氧化钛,是雪白的粉末,是最好的白色颜料,俗称钛白。

以前,人们开采钛矿,主要目的便是为了获得二氧化钛。

钛白的粘附力强,不易起化学变化,永远是雪白的。

特别可贵的是钛白无毒。

它的熔点很高,被用来制造耐火玻璃,釉料,珐琅、陶土、耐高温的实验器皿等。

具有独特的光催化性、优异的颜色效应以及紫外线屏蔽等功能,在光纳米TiO2催化剂、化妆品、抗紫外线吸收剂、功能陶瓷、气敏传感器件等方面具有广阔的应用前景。

1.2纳米TiO2的制备方法纳米TiO2在光催化领域具有举足轻重的地位,因此制备高光催化性能的纳米TiO2一直也是光催化研究的重点内容。

纳米TiO2的制备方法大致可以分为气相法和液相法。

1.2.1气相法气相法是正在开发的一种优良方法,多用于制备纳米级别的粒子或薄膜,该法是使用钛卤化物、钛有机化合物等在加热条件下挥发,经气相反应使生成物沉淀下来。

气相法合成纳米Ti02颗粒具有纯度高、粒度细、分散性好、组分易于控制等优点。

但是气相法由于受能耗大、设备复杂、产品生产成本高、对设备材质及工艺过程要求高等条件限制,在我国要实现工业化生产,还要解决设备材质及一系列制备的工程技术问题。

1.2.2液相法液相法是选择可溶于水或有机溶剂的钛盐,使其溶解并以粒子或分子状态混合均匀,再选择一种合适的沉淀剂或采用蒸发、结晶、升华、水解等过程,将钛离子均匀沉淀后结晶出来,再经脱水或热分解制得粉体。

纳米技术论文(3篇)

纳米技术论文(3篇)

纳米技术论文(3篇)锂离子电池纳米材料研究锂离子电池纳米电极存在一些潜在的优缺点。

优点:(1)更好地释放锂嵌入和脱嵌过程中的应力,提高循环寿命;(2)可发生在块体材料中不可能出现的反应;(3)更高的电极/电解液接触面积提高了充/放电速率;(4)短的电子输运路径(允许在低电导或高功率下使用)。

缺点:(1)有自放电现象,差的循环性能及寿命;(2)劣等的颗粒包装技术使其体积能量密度很低,限制应用;(3)电极合成过程可能会更加复杂。

2.正极材料的性能和一般制备方法为了获得较高的单体电池电压,倾向于选择高电势的嵌锂化合物。

正极材料应满足:(1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;(2)温和的电极过程动力学;(3)高度可逆性;(4)全锂化状态下在空气中的稳定性。

(3)溶胶凝胶法:利用上世纪70年代发展起来的制备超微粒子的方法,制备正极材料,该方法具备了络合物法的优点,而且制备出的电极材料电容量有较大的提高;缺点是成本较高,技术还属于开发阶段]。

(4)离子交换法:用离子交换法制备的LiMnO2,获得了可逆放电容量达270mA·h/g高值,它具有所制电极性能稳定,电容量高的特点。

但过程涉及溶液重结晶蒸发等费能费时步骤,距离实用化还有相当距离。

(5)橄榄石型的磷酸铁锂材料,近年研究已经取得了很大的进展,已经在部分产品中应用,它具有安全性高(不存在爆炸的理论危险),使用寿命长(是钴酸锂的4倍)、可以大电流充放电等优异性能;缺点是生产成本高、材料堆积密度小,不利于生产控制,还不能应用到手机和电脑上。

3、负极材料的性能和一般制备方法负极材料的电导率一般都较高,则选择电位尽可能接近锂电位的可嵌入锂的化合物,如各种碳材料和金属氧化物。

可逆地嵌入脱嵌锂离子的负极材料要求具有:(1)在锂离子的嵌入反应中自由能变化小;(2)锂离子在负极的固态结构中有高的扩散率;(3)高度可逆的嵌入反应;(4)有良好的电导行;(5)热力学上稳定,同时与电解质不发生反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档