2.1.2.圆的参数方程 课件(人教A选修4-4)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x=2cos θ+1,y=2sin θ-2, 故 2x+y=4cos θ+2+2sin θ-2. =4cos θ+2sin θ=2 5sin(θ+φ). ∴-2 5≤2x+y≤2 5. 即 2x+y 的最大值为 2 5,最小值为-2 5.
返回
圆的参数方程突出了工具性作用,应用时,把圆 上的点的坐标设为参数方程形式,将问题转化为三角
返回
点击下图进入
返回
x=cos θ 是圆 y=sin θ
上一动点,求 PQ 中
点的轨迹方程,并说明轨迹是什么曲线.
解:设中点 M(x,y).则 x=2+cos θ, 2 0+sin θ , y= 2 1 x=1+2cos θ, 即 y=1sin θ, 2
(θ 为参数)
返回
返回
圆的参数方程 (1)在 t 时刻,圆周上某点 M 转过的角度是 θ,点 M 的坐 标是(x,y),那么 θ=ωt(ω 为角速度).设|OM|=r,那么由三
x y 角函数定义,有 cos ωt= r ,sin ωt= r ,即圆心在原点 O,
x=rcosωt 的圆的参数方程为 (t y=rsinωt
函数问题,利用三角函数知识解决问题.
返回
3. 求原点到曲线
x=3+2sin θ, C: y=-2+2cos θ
(θ 为参数)的最短距离.
解:原点到曲线 C 的距离为: x-02+y-02= 3+2sin θ2+-2+2cos θ2 = 17+43sin θ-2cos θ = 3 2 17+4 13 sin θ- cos θ 13 13
= 17+4 13sinθ+φ≥ 17-4 13= 13-22= 13-2. ∴原点到曲线 C 的最短距离为 13-2.
返回
4.已知圆
x=cos θ, C y=-1+sin
θ
与直线 x+y+a=0 有公共点,
求实数 a 的取值范围.
x=cos θ, 解:法一:∵ y=-1+sin
[解]
根据圆的特点,结合参数方程概念求解.
如图所示,
设圆心为 O′,连 O′M,∵O′为圆心, ∴∠MO′x=2φ.
x=r+rcos ∴ y=rsin 2φ.
2φ,
返回
(1)确定圆的参数方程,必须根据题目所给条件, 否则,就会出现错误,如本题容易把参数方程写成
x=r+rcos y=rsin φ.
φ,Biblioteka (2)由于选取的参数不同,圆有不同的参数方程.
返回
1.已知圆的方程为x2+y2=2x,写出它的参数方程.
解:x2+y2=2x 的标准方程为(x-1)2+y2=1, 设 x-1=cos θ,y=sin θ,则
x=1+cos 参数方程为 y=sin θ
θ,
(0≤θ<2π).
返回
2.已知点 P(2,0),点 Q
逆 时针旋
OM
的位置时,OM0 转过的角度.
(3)若圆心在点 M0(x0,y0),半径为 R,则圆的参数方程 为
x=x +Rcos θ 0 y=y0+Rsin θ
(0≤θ<2π) .
返回
返回
[例1]
圆(x-r)2+y2=r2(r>0),点M在圆上,O为原点,
以∠MOx=φ为参数,求圆的参数方程. [思路点拨]
半径为 r
为参数).其中参数
t 的物理意义是: 质点做匀速圆周运动的时间 .
返回
(2)若取 θ 为参数,因为 θ=ωt,于是圆心在原点 O,半 径为 r
x=rcos θ 的圆的参数方程为y=rsin θ (θ
为参数).其中参数 θ
的几何意义是:OM0(M0 为 t=0 时的位置)绕点 O 转到
这就是所求的轨迹方程. 1 它是以(1,0)为圆心,以 为半径的圆. 2
返回
[例2]
若x,y满足(x-1)2+(y+2)2=4,求2x+y的最值. (x-1)2+(y+2)2=4表示圆,可考虑利用圆的
[思路点拨]
参数方程将求2x+y的最值转化为求三角函数最值问题. [解] 令 x-1=2cos θ,y+2=2sin θ,则有
θ
消去 θ,
得 x2+(y+1)2=1. ∴圆 C 的圆心为(0,-1),半径为 1. |0-1+a| ∴圆心到直线的距离 d= ≤1. 2 解得 1- 2≤a≤1+ 2.
返回
法二:将圆 C 的方程代入直线方程,得 cos θ-1+sin θ+a=0, π 即 a=1-(sin θ+cos θ)=1- 2sin(θ+ ). 4 π ∵-1≤sin(θ+ )≤1,∴1- 2≤a≤1+ 2. 4
返回
圆的参数方程突出了工具性作用,应用时,把圆 上的点的坐标设为参数方程形式,将问题转化为三角
返回
点击下图进入
返回
x=cos θ 是圆 y=sin θ
上一动点,求 PQ 中
点的轨迹方程,并说明轨迹是什么曲线.
解:设中点 M(x,y).则 x=2+cos θ, 2 0+sin θ , y= 2 1 x=1+2cos θ, 即 y=1sin θ, 2
(θ 为参数)
返回
返回
圆的参数方程 (1)在 t 时刻,圆周上某点 M 转过的角度是 θ,点 M 的坐 标是(x,y),那么 θ=ωt(ω 为角速度).设|OM|=r,那么由三
x y 角函数定义,有 cos ωt= r ,sin ωt= r ,即圆心在原点 O,
x=rcosωt 的圆的参数方程为 (t y=rsinωt
函数问题,利用三角函数知识解决问题.
返回
3. 求原点到曲线
x=3+2sin θ, C: y=-2+2cos θ
(θ 为参数)的最短距离.
解:原点到曲线 C 的距离为: x-02+y-02= 3+2sin θ2+-2+2cos θ2 = 17+43sin θ-2cos θ = 3 2 17+4 13 sin θ- cos θ 13 13
= 17+4 13sinθ+φ≥ 17-4 13= 13-22= 13-2. ∴原点到曲线 C 的最短距离为 13-2.
返回
4.已知圆
x=cos θ, C y=-1+sin
θ
与直线 x+y+a=0 有公共点,
求实数 a 的取值范围.
x=cos θ, 解:法一:∵ y=-1+sin
[解]
根据圆的特点,结合参数方程概念求解.
如图所示,
设圆心为 O′,连 O′M,∵O′为圆心, ∴∠MO′x=2φ.
x=r+rcos ∴ y=rsin 2φ.
2φ,
返回
(1)确定圆的参数方程,必须根据题目所给条件, 否则,就会出现错误,如本题容易把参数方程写成
x=r+rcos y=rsin φ.
φ,Biblioteka (2)由于选取的参数不同,圆有不同的参数方程.
返回
1.已知圆的方程为x2+y2=2x,写出它的参数方程.
解:x2+y2=2x 的标准方程为(x-1)2+y2=1, 设 x-1=cos θ,y=sin θ,则
x=1+cos 参数方程为 y=sin θ
θ,
(0≤θ<2π).
返回
2.已知点 P(2,0),点 Q
逆 时针旋
OM
的位置时,OM0 转过的角度.
(3)若圆心在点 M0(x0,y0),半径为 R,则圆的参数方程 为
x=x +Rcos θ 0 y=y0+Rsin θ
(0≤θ<2π) .
返回
返回
[例1]
圆(x-r)2+y2=r2(r>0),点M在圆上,O为原点,
以∠MOx=φ为参数,求圆的参数方程. [思路点拨]
半径为 r
为参数).其中参数
t 的物理意义是: 质点做匀速圆周运动的时间 .
返回
(2)若取 θ 为参数,因为 θ=ωt,于是圆心在原点 O,半 径为 r
x=rcos θ 的圆的参数方程为y=rsin θ (θ
为参数).其中参数 θ
的几何意义是:OM0(M0 为 t=0 时的位置)绕点 O 转到
这就是所求的轨迹方程. 1 它是以(1,0)为圆心,以 为半径的圆. 2
返回
[例2]
若x,y满足(x-1)2+(y+2)2=4,求2x+y的最值. (x-1)2+(y+2)2=4表示圆,可考虑利用圆的
[思路点拨]
参数方程将求2x+y的最值转化为求三角函数最值问题. [解] 令 x-1=2cos θ,y+2=2sin θ,则有
θ
消去 θ,
得 x2+(y+1)2=1. ∴圆 C 的圆心为(0,-1),半径为 1. |0-1+a| ∴圆心到直线的距离 d= ≤1. 2 解得 1- 2≤a≤1+ 2.
返回
法二:将圆 C 的方程代入直线方程,得 cos θ-1+sin θ+a=0, π 即 a=1-(sin θ+cos θ)=1- 2sin(θ+ ). 4 π ∵-1≤sin(θ+ )≤1,∴1- 2≤a≤1+ 2. 4