2017-2018年河南省信阳市罗山县七年级(下)期末数学试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年河南省信阳市罗山县七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在小题给出的四个选项中,只有
一项是符合题目要求的)
1.(3分)在实数﹣2,2,0,﹣1中,最小的数是()
A.﹣2B.2C.0D.﹣1
2.(3分)估计的值在()
A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.(3分)如图,l1∥l2,∠1=56°,则∠2的度数为()
A.34°B.56°C.124°D.146°
4.(3分)不等式组的解集在数轴上表示为()
A.B.
C.D.
5.(3分)x=﹣3,y=1为下列哪一个二元一次方程式的解?()
A.x+2y=﹣1B.x﹣2y=1C.2x+3y=6D.2x﹣3y=﹣6 6.(3分)某学校将为初一学生开设A、B、C、D、E、F共6门选修课,选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如下尚不完整的统计图表.
根据图表提供的信息,下列结论错误的是()
A.这次被调查的学生人数为400人
B.被调查的学生中喜欢选修课E、F的人数分别为80,70
C.喜欢选修课C的人数最少
D.扇形统计图中E部分扇形的圆心角为72°
7.(3分)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()
A.30,40B.45,60C.30,60D.45,40
8.(3分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限
9.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()
A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)10.(3分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()
A.B.
C.D.
二、填空题(每题3分,共15分)
11.(3分)请写出一个比﹣2大的无理数.
12.(3分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.
13.(3分)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买1束鲜花和1个礼盒的总价为元.
14.(3分)已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围是.15.(3分)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2035个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.
三、解答题
16.(8分)已知|a+8|与2×(b﹣36)2互为相反数,求(+)的平方根.
17.(10分)解下列二元一次方程组.
(1)
(2)
18.(8分)解不等式组,并写出不等式组的整数解.
19.(9分)我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:
(1)本次调查中共抽取了名学生.
(2)补全条形统计图.
(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?
20.(9分)已知A(0,1),B(2,0),C(4,3).
(1)在坐标系中描出各点,画出三角形ABC;
(2)求三角形ABC的面积;
(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,请直接写出点P的坐标.
21.(9分)如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.
22.(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.
(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?
23.(12分)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
2017-2018学年河南省信阳市罗山县七年级(下)期末数
学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分.在小题给出的四个选项中,只有
一项是符合题目要求的)
1.(3分)在实数﹣2,2,0,﹣1中,最小的数是()
A.﹣2B.2C.0D.﹣1
【解答】解:在实数﹣2,2,0,﹣1中,最小的数是﹣2,
故选:A.
2.(3分)估计的值在()
A.2到3之间B.3到4之间C.4到5之间D.5到6之间
【解答】解:∵2=<=3,
∴3<<4,
故选:B.
3.(3分)如图,l1∥l2,∠1=56°,则∠2的度数为()
A.34°B.56°C.124°D.146°
【解答】解:∵l1∥l2,
∴∠1=∠3,
∵∠1=56°,
∴∠3=56°,
∵∠2+∠3=180°,
∴∠2=124°,
故选:C.
4.(3分)不等式组的解集在数轴上表示为()
A.B.
C.D.
【解答】解:根据大小小大中间找得出解集为﹣1<x≤1,
故选:B.
5.(3分)x=﹣3,y=1为下列哪一个二元一次方程式的解?()
A.x+2y=﹣1B.x﹣2y=1C.2x+3y=6D.2x﹣3y=﹣6【解答】解:将x=﹣3,y=1代入各式,
A、(﹣3)+2×1=﹣1,正确;
B、(﹣3)﹣2×1=﹣5≠1,故此选项错误;
C、2×(﹣3)+3‧1=﹣3≠6,故此选项错误;
D、2×(﹣3)﹣3‧1=﹣9≠﹣6,故此选项错误;
故选:A.
6.(3分)某学校将为初一学生开设A、B、C、D、E、F共6门选修课,选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如下尚不完整的统计图表.
根据图表提供的信息,下列结论错误的是()
A.这次被调查的学生人数为400人
B.被调查的学生中喜欢选修课E、F的人数分别为80,70
C.喜欢选修课C的人数最少
D.扇形统计图中E部分扇形的圆心角为72°
【解答】解:被调查的学生人数为60÷15%=400(人),
∴选项A正确;
扇形统计图中D的圆心角为×360°=90°,
∵×360°=36°,360°×(17.5%+15%+12.5%)=162°,
∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,
∴选项D正确;
∵400×=80(人),400×17.5%=70(人),
∴选项B正确;
∵12.5%>10%,
∴喜欢选修课A的人数最少,
∴选项C错误;
故选:C.
7.(3分)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()
A.30,40B.45,60C.30,60D.45,40
【解答】解:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,
则跑步的人数为:150×30%=45,
打羽毛球的人数为:150×40%=60.
故选:B.
8.(3分)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限
【解答】解:由点P(0,m)在y轴的负半轴上,得
m<0.
由不等式的性质,得
﹣m>0,﹣m+1>1,
则点M(﹣m,﹣m+1)在第一象限,
故选:A.
9.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()
A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,
则P(a﹣2,b+3)
故选:A.
10.(3分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()
A.B.
C.D.
【解答】解:设有x匹大马,y匹小马,根据题意得
,
故选:C.
二、填空题(每题3分,共15分)
11.(3分)请写出一个比﹣2大的无理数﹣或等.
【解答】解:因为正数大于负数,两个负数,绝对值大的反而小,
所以所求数有无数个,如﹣或等.答案不唯一.
故答案为﹣或等
12.(3分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数50°.
【解答】解:∵AB∥CD,
∴∠ABC=∠1=65°(两直线平行,同位角相等),
∠ABD+∠BDC=180°(两直线平行,同旁内角互补),
∵BC平分∠ABD,
∴∠ABD=2∠ABC=130°(角平分线定义)
∴∠BDC=180°﹣∠ABD=50°,
∴∠2=∠BDC=50°(对顶角相等).
故答案是:50°.
13.(3分)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买1束鲜花和1个礼盒的总价为88元.
【解答】解:设一束鲜花的价格为x元,一个礼盒的价格为y元,
根据题意得:,
(①+②)÷3,得:x+y=88.
故答案为:88.
14.(3分)已知点M(1﹣2m,m﹣1)在第四象限,则m的取值范围是m.【解答】解:∵点M(1﹣2m,m﹣1)在第四象限,
∴
解得:
∴m<.
故答案为:m.
15.(3分)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2035个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(﹣1,﹣2).
【解答】解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2),
∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3,
∴从A→B→C→D→A一圈的长度为2(AB+BC)=10.
∵2035=203×10+5,
∴细线另一端所在位置的点的坐标是,即(﹣1,﹣2).
故答案为(﹣1,﹣2),
三、解答题
16.(8分)已知|a+8|与2×(b﹣36)2互为相反数,求(+)的平方根.
【解答】解析:根据相反数的定义可知:|a+8|+2×(b﹣36)2=0,
∴a+8=0、b﹣36=0,
解得:a=﹣8、b=36,
∴+=+=﹣2+6=4,
则(+)的平方根为±2.
17.(10分)解下列二元一次方程组.
(1)
(2)
【解答】解:(1),
①+②得:n=1,
把n=1代入②得:m=﹣,
所以方程组的解为:;
(2),
①+×②得:y=﹣,
把y=﹣代入②得:x=,
所以方程组的解为:.
18.(8分)解不等式组,并写出不等式组的整数解.
【解答】解:解不等式①得:x≥﹣1,
解不等式②得:x<,
∴不等式组的解集为﹣1≤x<,
则不等式组的整数解有﹣1、0.
19.(9分)我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘
制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:
(1)本次调查中共抽取了200名学生.
(2)补全条形统计图.
(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是36度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?
【解答】解:(1)30÷15%=200名,
答:本次调查中共抽取了200名学生;
故答案为:200;
(2)喜爱《挑战不可能》节目的人数=200﹣20﹣60﹣40﹣30=50名,
补全条形统计图如图所示;
(3)喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×=36度;
故答案为:36;
(4)2000×=600名,
答:该学校喜欢《最强大脑》节目的学生人数是600人.
20.(9分)已知A(0,1),B(2,0),C(4,3).
(1)在坐标系中描出各点,画出三角形ABC;
(2)求三角形ABC的面积;
(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,请直接写出点P的坐
标.
【解答】解:(1)如图所示:
(2)过点C向x、y轴作垂线,垂足为D、E.
∴四边形DOEC的面积=3×4=12,△BCD的面积==3,△ACE的面积=
=4,△AOB的面积==1.
∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积=12﹣3﹣4﹣1=4.
当点p在x轴上时,△ABP的面积==4,即:,解得:BP=8,
所点P的坐标为(10,0)或(﹣6,0);
当点P在y轴上时,△ABP的面积==4,即=4,解得:AP=4.
所以点P的坐标为(0,5)或(0,﹣3).
所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).
21.(9分)如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.
【解答】证明:∵AD∥BE,
∴∠A=∠3,
∵∠A=∠E,
∴∠3=∠E,
∴DE∥AB,
∴∠1=∠2.
22.(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.
(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?
【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:
,
解得:,
小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,
200×[(40﹣30)+(16﹣10)]=3200(元),
∴销售完后,该水果商共赚了3200元;
(2)设大樱桃的售价为a元/千克,
(1﹣20%)×200×16+200a﹣8000≥3200×90%,
解得:a≥41.6,
答:大樱桃的售价最少应为41.6元/千克.
23.(12分)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
【解答】解:(1)如图1,∵∠1与∠2互补,
∴∠1+∠2=180°.
又∵∠1=∠AEF,∠2=∠CFE,
∴∠AEF+∠CFE=180°,
∴AB∥CD;
(2)如图2,由(1)知,AB∥CD,
∴∠BEF+∠EFD=180°.
又∵∠BEF与∠EFD的角平分线交于点P,
∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,
∴∠EPF=90°,即EG⊥PF.
∵GH⊥EG,
∴PF∥GH;
(3)∠HPQ的大小不发生变化,理由如下:
如图3,∵∠1=∠2,
∴∠3=2∠2.
又∵GH⊥EG,
∴∠4=90°﹣∠3=90°﹣2∠2.
∴∠EPK=180°﹣∠4=90°+2∠2.
∵PQ平分∠EPK,
∴∠QPK=∠EPK=45°+∠2.
∴∠HPQ=∠QPK﹣∠2=45°,
∴∠HPQ的大小不发生变化,一直是45°.。