高数积分公式大全

合集下载

高等数学积分公式大全

高等数学积分公式大全

高等数学积分公式大全高等数学是一门非常重要的学科,在很多领域都有应用。

其中,积分学是高等数学中的一个重要章节。

积分可以理解为求解曲线图形下面的面积,不同类型的积分公式有着不同的概念和应用,下面,就为大家整理了一份高等数学积分公式大全,让大家对这个知识点有一个更全面的认识。

1. 常数积分公式$$\int kdx=kx+C$$2. 幂函数积分公式$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$3. 指数函数积分公式$$\int e^xdx=e^x+C$$4. 对数函数积分公式$$\int \frac{1}{x}dx=\ln|x|+C$$5. 三角函数积分公式$$\int \sin xdx=-\cos x+C$$$$\int \cos xdx=\sin x+C$$6. 反三角函数积分公式$$\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$$$$\int \frac{1}{1+x^2}dx=\arctan x+C$$$$\int \frac{1}{\sqrt{x^2-1}}dx=\ln|x+\sqrt{x^2-1}|+C$$7. 换元法积分公式$$\int f(u)du=\int f(u(x))\frac{du}{dx}dx$$8. 分部积分公式$$\int u(x)v'(x)dx=u(x)v(x)-\int v(x)u'(x)dx$$9. 定积分公式$$\int_a^bf(x)dx=F(b)-F(a)$$10. 积分中值定理$$\int_a^bf(x)dx=f(c)(b-a)$$这便是几种高等数学积分公式的介绍,这些公式是数学中不可或缺的知识点,掌握这些公式不仅有助于学生学好数学,还对应用数学的工作有相当多的帮助。

除了这些基本的积分公式之外,高等数学还涉及到一些比较复杂的积分公式,如多重积分、线性代数积分、微积分方程等等。

1. 多重积分公式多重积分是指对多元函数的积分,通常被用于几何问题、概率论问题和物理学问题中。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2t a ns e c x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()c s cc s c c o tx x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()a r c s i n x '= ⒁()a r c c o s x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u vu v v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x d x μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2t a n s e c d x x d x = ⑹()2c o t c s cd x x d x=- ⑺()sec sec tan d x x xdx =⋅ ⑻()c s c c s c c o t d x xx dx =-⋅ ⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()a r c c o s d x d x = ⒂()21arctan 1d x dx x =+ ⒃()21a r c c o t 1d x d x x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x d x c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹c o s s i n x d x x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221s e c t a n c o s d x x d x x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ c o t l n s i n x d x x c =+⎰ sec ln sec tan xdx x x c =++⎰ c s c l n c s cc o t xd x x x c=-+⎰ 2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =++十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高数微积分基本公式大全

高数微积分基本公式大全

2 tan A tan 2A = 1− tan2 A
3.半角公式
sin A = 1− cos A
2
2
cos A = 1+ cos A
2
2
tan A =
1− cos A =
sin A
2 1+ cos A 1+ cos A
cot A =
1+ cos A =
sin A
2 1− cos A 1− cos A
log a x
= 1 dx x ln a
( ) ⑽ d ax = ax ln adx
⑾ d (ln x) = 1 dx
x
⒀ d (arcsin x) = 1 dx ⒁ d (arccos x) = − 1 dx
1− x2
1− x2

d
(arctan
x)
=
1 1+ x2
dx
四、微分运算法则

d
(arc cot
2.二倍角公式
tan(A − B) = tan A − tan B 1+ tan A tan B
cot(A − B) = cot A⋅ cot B +1 cot B − cot A
sin 2A = 2sin Acos A
cos 2A = cos2 A − sin2 A = 1− 2sin2 A = 2 cos2 A −1
(ax
)d
(ax
)
∫ f (sin x) ⋅ cos xdx = ∫ f (sin x)d (sin x)
∫ f (cos x) ⋅sin xdx = −∫ f (cos x)d (cos x)
∫ f (tan x) ⋅sec2 xdx = ∫ f (tan x)d (tan x)

高数积分公式

高数积分公式

高数积分公式高数积分公式是数学上用来求解某一函数的积分的方法,也是高数学习的基础。

本文介绍了一些关键性的高数积分公式,以及它们所代表的数学思想和意义。

首先,我们来介绍著名的定积分公式:如果f(x)为定义在区间[a,b]上的可积函数,则积分f(x)dx的值为∫a bf(x)dx=F(b)-F(a)式中F(x)是f(x)的积分,可以用来表示函数的积分,是一种函数变换的概念,对应的是复数的负变换,比如说复数z的负变换是-z,函数f(x)的积分就是-f(x)。

定积分公式表示的是函数在连续区间上的变化,也就是把一个函数积分区间上的变化表示为积分变换的差值,这样就可以计算函数在区间上的积分。

定积分公式的数学意义在于,由于它可以把一个函数的积分的求解转换为相应的积分变换求解,可以使大量本来复杂的积分求解变得简单。

其次,我们来讨论微分积分公式。

如果f(x)是定义在区间[a,b]上的可微函数,则∫a bf(x)dx=F(b)-F(a)+∫a bf(x)dx这里F(b)和F(a)分别是分别于点b和点a的f(x)的微分,而∫a bf(x)dx则是f(x)在区间[a,b]上的积分。

该公式的意义在于,它实际上是一个变分公式,变分公式的本质是,在微分的同时,进行积分变换,以便求解函数的微分和积分。

它可以帮助用户快速准确地计算函数的微分积分。

最后,我们来讨论其它高数积分公式。

有许多高数积分公式,其中有几个主要的积分公式,比如:(1)泰勒积分公式:如果f(x)是在[a,b]上多次可微函数,则∫(a,b)f(x)dx=(b-a)f(a)+(b-a)f(b)+∫(a,b)f(x)dx(2)勒让德积分公式:如果f(x)是在[a,b]上多次可微函数,则∫(a,b)f(x)dx=(b-a)f(a)+(b-a)f(b)+2∫(a,b)f(x)dx(3)辛普森-威尔逊积分公式:如果f(x)是在[a,b]上多次可微函数,则∫(a,b)f(x)dx=(b-a)f(a)+(b-a)f(b)+2∫(a,b)f(x)dx+4∫(a,b)f(x)dx(4)谭比克斯积分公式:如果f(x)是在[a,b]上多次可微函数,则∫(a,b)f(x)dx=(b-a)f(a)+(b-a)f(b)+2∫(a,b)f(x)dx+3∫(a,b)f(x)dx+4∫(a,b)f(x)dx 这些积分公式都是为了求解函数f(x)在区间[a,b]上的积分所设计的,它们能够把本来复杂的积分问题变得更加简单,减少计算量,同时又能够给出准确可靠的解。

高数微积分公式大全

高数微积分公式大全

微积分公式cos2n -1x d x =⎰∞+-+01)1(nm m x x d x 希腊字母 (Greek Alphabets)大写 小写读音 大写 小写读音 大写 小写 读音 Α α alpha Ι ι iota Ρ ρ rho Β β beta Κ κ kappa Σ σ, ς sigmaΓ γ gamma Λ λ lambd a Τ τ tau Δ δ delta Μ μ mu Υ υ upsilon Ε ε epsilon Ν ν nu Φ φ phi Ζ ζ zeta Ξ ξ xi Χ χ khi Η η eta Ο ο omicro n Ψ ψ psi ΘθthetaΠπpiΩωomega商数关系: tan θ=θθcos sin ; cot θ= θθsin cos 平方关系: cos 2θ+ sin 2θ=1; tan 2θ+ 1= sec 2θ; 1+ cot 2θ= csc 2θ順位低順位高; ⎰ 顺位高d 顺位低 ;0*∞ =∞1 *∞ = ∞∞ = 0*01 = 0000 = )(0-∞e ; 0∞ = ∞⋅0e ; ∞1 = ∞⋅0e顺位一: 对数; 反三角(反双曲)顺位二: 多项函数; 幂函数 顺位三: 指数; 三角(双曲)算术平均数(Arithmetic mean)nX X X X n+++= (21)中位数(Median) 取排序后中间的那位数字 众数(Mode)次数出现最多的数值几何平均数(Geometric mean)n n X X X G ⋅⋅⋅= (21)调和平均数(Harmonic mean))1...11(1121nx x x n H +++=平均差(Average Deviatoin)nX Xni||1-∑1 000 000 000 000 000 000 000 000 1024 yotta Y 1 000 000 000 000 000 000 000 1021 zetta Z1 000 000 000 000 000 000 1018 exa E1 000 000 000 000 000 1015 peta P1 000 000 000 000 1012 tera T 兆1 000 000 000 109 giga G 十亿1 000 000 106 mega M 百万1 000 103 kilo K 千100 102 hecto H 百10 101 deca D 十0.1 10-1 deci d 分,十分之一0.01 10-2 centi c 厘(或写作「厘」),百分之一0.001 10-3 milli m 毫,千分之一0.000 001 10-6 micro ? 微,百万分之一0.000 000 001 10-9 nano n 奈,十亿分之一0.000 000 000 001 10-12 pico p 皮,兆分之一0.000 000 000 000 001 10-15 femto f 飞(或作「费」),千兆分之一0.000 000 000 000 000 001 10-18 atto a 阿0.000 000 000 000 000 000 001 10-21 zepto z0.000 000 000 000 000 000 000 001 10-24 yocto y。

高数积分公式大全

高数积分公式大全

高数积分公式大全高等数学中的积分是数学分析的重要内容之一,它是求函数面积、定积分、不定积分等的方法,被广泛应用于科学和工程领域。

下面是高等数学中常用的积分公式大全,供大家参考和学习。

一、基本积分公式:1. 常数函数积分公式:∫c dx = cx + C(其中c为常数,C为积分常数)2. 幂函数积分公式:∫x^n dx = (1/(n+1)) * x^(n+1) + C(其中n不等于-1,C 为积分常数)3. 指数函数积分公式:∫e^x dx = e^x + C4. 三角函数积分公式:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C5. 乘方函数积分公式:∫(a^x) dx = (1/log(a)) * (a^x) + C(其中a为正数且不等于1,C为积分常数)6. 对数函数积分公式:∫(1/x) dx = ln|x| + C二、常用积分公式:1. 三角函数的复合积分:∫sin(ax) dx = - (1/a) * cos(ax) + C∫cos(ax) dx = (1/a) * sin(ax) + C2. 反三角函数的积分:∫1/(√(1-x^2)) dx = arcsin(x) + C∫1/(1+x^2) dx = arctan(x) + C3. 指数函数的积分:∫e^(ax) dx = (1/a) * e^(ax) + C4. 对数函数的积分:∫(1/x) dx = ln|x| + C5. 分式函数的积分:∫(1/(x-a)) dx = ln|x-a| + C(其中a不等于0)∫(1/(x^2+a^2)) dx = (1/a) * arctan(x/a) + C(其中a不等于0)6. 三角函数的积分:∫sin^n(x) cos^m(x) dx7. 部分分式的积分:∫(p(x)/q(x)) dx8. 具体函数的特殊积分:∫e^x sin(x) dx∫e^x cos(x) dx∫(sin(x))^n (cos(x))^m dx(其中n和m为正整数)三、数列求和公式:1. 等差数列求和公式:S_n = (n/2)(a_1 + a_n)(其中S_n为前n项和,a_1为首项,a_n为末项)2. 等比数列求和公式:S_n = (a_1(1-q^n))/(1-q)(其中S_n为前n项和,a_1为首项,q为公比)以上是高等数学中一些常见的积分公式,通过掌握和灵活运用这些公式,可以帮助我们更好地解决数学中的问题。

(完整版)大学高数公式大全

(完整版)大学高数公式大全

a b c cos , 为锐角时,
4 / 12
高等数学公式
平面的方程:
1、点法式: A( x x0 ) B( y y0 ) C ( z z0 ) 0,其中 n { A, B, C}, M 0 (x0, y0 , z0 ) 2、一般方程: Ax By Cz D 0
3、截距世方程: x
y
z 1
abc
平面外任意一点到该平 面的距离: d
x ( x, y)d
D
, y M y
( x, y) d
M
D
y ( x, y)d
D
( x, y)d
D
平面薄片的转动惯量: 对于 x轴 I x
y2 ( x, y)d , 对于 y轴 I y
x 2 ( x, y)d
D
D
平面薄片(位于 xoy平面)对 z轴上质点 M (0,0, a), (a 0)的引力: F { Fx , Fy , Fz},其中:
隐函数 F ( x, y) 0, dy dx
F F
x y
d2 ,
dx
y
2
( x
隐函数 F ( x, y, z) 0, z Fx , z Fy
x Fz
y Fz
Fx )+ (
Fy
y
Fx ) dy Fy dx
5 / 12
高等数学公式
F (x, y,u, v) 0
隐函数方程组:
J
( F ,G)
·半角公式:
sin 2
1 cos cos
2
2
1 cos 2
1 cos 1 cos
sin
1 cos 1 cos
sin
tg
ctg
2

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '=⑷()cos sin x x '=-⑸()2tan sec x x'=⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅⑻()csc csc cot x x x'=-⋅⑼()x x e e '=⑽()ln x x a a a '=⑾()1ln x x'=⑿()1log ln x a x a '=⒀()21arcsin 1x x '=-⒁()21arccos 1x x '=--⒂()21arctan 1x x '=+⒃()21arccot 1x x '=-+⒄()1x '=⒅()12x x'=二、导数的四则运算法则三、高阶导数的运算法则(1)()()()()()()()n nn u x v x u x v x ±=±⎡⎤⎣⎦(2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a u ax b +=+⎡⎤⎣⎦(4)()()()()()()()nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n n x n =(2)()()n ax b n ax be a e ++=⋅(3)()()ln n x x n a a a=(4)()()sin sin 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5)()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+(7)()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx =⑷()cos sin d x xdx =-⑸()2tan sec d x xdx=⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx=⋅⑻()csc csc cot d x x xdx=-⋅⑼()x x d e e dx =⑽()ln x x d a a adx =⑾()1ln d x dx x=⑿()1log ln x a d dx x a =⒀()21arcsin 1d x dx x=-⒁()21arccos 1d x dxx=--⒂()21arctan 1d x dx x=+⒃()21arccot 1d x dx x=-+六、微分运算法则⑴()d u v du dv ±=±⑵()d cu cdu=⑶()d uv vdu udv =+⑷2u vdu udv d v v-⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c=+⎰⑵11x x dx cμμμ+=++⎰⑶ln dxx c x=+⎰⑷ln xxa a dx c a=+⎰⑸x x e dx e c =+⎰⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x=++⎰⑾21arcsin 1dx x cx=+-⎰八、补充积分公式九、下列常用凑微分公式积分型换元公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx =形如sin n x xdx ⎰令n u x =,sin dv xdx =形如cos n x xdx ⎰令n u x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,n dv x dx =形如ln n x xdx ⎰,令ln u x =,n dv x dx=⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高数积分公式大全24个

高数积分公式大全24个

高数积分公式大全24个数学中积分公式是学习数学的基石,是求解问题的重要工具。

下面总结了数学高级积分中的24个公式:1. 加法法则:∫u(x)+v(x)dx=∫u(x)dx+∫v(x)dx2. 乘法法则:∫c(x)u(x)dx=c∫u(x)dx3. 幂函数:∫xαdx=xα+1/(α+1)+C4. 指数函数:∫exdx=ex+C5. 根号函数:∫√axdx=2/3√ax3/2+C6. 三角函数:∫sinxdx=−cosx+c7. 反三角函数:∫arcsinxdx=xarcsinx−sinx+C8. 双曲函数:∫sinx/cdx=−ln|cscx+cotx|+C9. 二次函数:∫ax2+bx+cdx=1/3ax3+1/2bx2+cxdx+C10. 指标函数:∫axdx=axlnax−x+C11. 阶乘函数:∫x(n)(dx)=x(n+1)/(n+1)+C12. 拉格朗日积分:∫xn/aeaxdx=xn+1/(an+1)+C13. 对数函数:∫lnxdx=xlnx−x+C14. 锐曲线积分:∫1/(1+a2x2)dx=arctan(ax)+C15. 椭圆积分:∫(dx/a2−dy/b2)dx=b2ln|x/a|+C16. 余切函数:∫cotxdx=ln|sinx|+C17. 正弦函数:∫cosxdx=sinx+C18. 逆正弦函数:∫arccosxdx=xarccosx−sinx+C19. 双曲函数:∫sec2x dx=tanx+C20. 余弦函数:∫−sin(2x)dx=−1/2cos2x+C21. 逆余弦函数:∫arccos(2x)dx=1/2x arccos(2x)+1/2sin(2x)+C22. 零余弦函数:∫acos2x2dx=xacos2x2+1/2sinx+C23. 正切函数:∫tanxdx=ln|secx|+C24. 逆正切函数:∫arctanxdx=xarctanx−1/2ln|x2+1|+C以上就是积分公式的24种,有了这些公式,可以有效地解决复杂的问题。

高数积分公式

高数积分公式

常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()x x ax b +⎰=1ln ax bC b x +-+6.2d ()x x ax b +⎰=21ln a ax b C bx b x+-++ 7.2d ()xx ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()x x ax b +⎰=211ln ()ax b C b ax b b x+-++的积分10.x C +11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x⎰=22(23ax b C a -14.2x=22232(34815a x abx b C a -+15.(0)(0)C b C b ⎧+>+<16.2a bx b -- 17.d x x ⎰=b 18.x=2a +(三)含有22x a ±的积分 19.22d x x a +⎰=1arctan x C a a+ 20.22d ()n xx a +⎰=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+⎰21.22d x x a -⎰=1ln 2x a C a x a-++ (四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++ 24.22d x x ax b+⎰=2d x b x a a ax b -+⎰25.2d ()xx ax b +⎰=221ln 2x C b ax b++ 26.22d ()xx ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()xax b +⎰=221d 2()2x x b ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac C b ac +<+> 30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.=1arshxC a+=ln(x C ++ 32.C +33.xC34.x=C +35.2x2ln(2a x C ++ 36.2x ⎰=ln(x C +++37.1C a + 38.2C a x -+ 39.x2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C42.xx ⎰=422(2ln(88x a x a x C +++43.x a C +44.2d x x ⎰=ln(x C x-+++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x C48.x =C +49.2x 2ln 2a x C ++50.2x ⎰=ln x C +++51.1arccos aC a x+52.2C a x +53.x 2ln 2a x C +54.x =2243(25ln 88x x a a x C -++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.d x x⎰arccos a a C x -+58.x =ln x C +++(0)a >的积分 59.=arcsinxC a+ 60.C +61.x =C +62.x C +63.2x =2arcsin 2a x C a + 64.2x ⎰arcsinxC a-+65.1lna C a x +66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a -+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-++71.x a C72.2d x x ⎰=arcsin xC x a--+(0)a >的积分73.2ax b C +++74.x2n 2a x b c C++++75.xn 2a x b c C-+++ 76.=C +77.x 2C ++78.x =C +79.x =((x b b a C --+80.x =((x b b a C --81.C()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d nx x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d nx x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x ----⋅+--⎰98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n +----+++⎰100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tan xa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos x a b x +⎰)2xC +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a114.arcsin d x x x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccosxx C a- 117.arccos d x x x a ⎰=22()arccos 24x a x C a --118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln xa C a + 123.e d axx ⎰=1e ax C a +124.e d axx x ⎰=21(1)e ax ax C a-+125.e d n axx x ⎰=11e e d n ax n ax n x x x a a--⎰126.d xxa x ⎰=21ln (ln )x x x a a C a a -+ 127.d nxx a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d axbx x ⎰=221e (sin cos )ax a bx b bx C a b -++ 129.e cos d axbx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax nbx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax nbx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d axn n n b bx x a b n--++⎰ (十四)含有对数函数的积分 132.ln d x x ⎰=ln x x x C -+133.d ln xx x ⎰=ln ln x C +134.ln d nx x x ⎰=111(ln )11n x x C n n +-+++135.(ln )d nx x ⎰=1(ln )(ln )d n nx x n x x --⎰136.(ln )d m nx x x ⎰=111(ln )(ln )d 11m n m n nx x x x x m m +--++⎰ (十五)含有双曲函数的积分 137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=ln ch x C +140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++(十六)定积分 142.cos d nx x π-π⎰=sin d nx x π-π⎰=0143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅- (n 为正偶数),0I =2π。

高数微积分公式大全

高数微积分公式大全

高数微积分公式大全1.极限和连续:- 函数f(x)在x=a处连续的充分必要条件是:$\lim_{x\toa}f(x)=f(a)$- 若$\lim_{x\to a}f(x)=A$,$\lim_{x\to a}g(x)=B$,则$\lim_{x\to a}[f(x)\pm g(x)]=A\pm B$- $\lim_{x\to a}[f(x)g(x)]=\lim_{x\to a}f(x)\cdot\lim_{x\to a}g(x)$- 若$\lim_{x\to a}f(x)=A$,$\lim_{x\to a}g(x)=B\neq0$,则$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{A}{B}$- $f(x)$在$a$点附近可导的充分必要条件是:存在常数$A$和$B$,使得$x\to a$时,$f(x)-f(a)=A(x-a)+o(x-a)$,且$A=B$-若$f(x)$在$a$点可导,则$f(x)$在$a$点连续2.微分中值定理:- 若$f(x)$在闭区间$[a,b]$上连续,在开区间$(a,b)$上可微,则在$(a,b)$内存在一点$c$,使得$f'(c)=\frac{f(b)-f(a)}{b-a}$ - 若$f(x)$在闭区间$[a,b]$上连续,且在开区间$(a,b)$上可导,且存在常数$M$,使得$,f'(x),\leq M$,则$f(x)$在闭区间$[a,b]$上有界3.微分法:-$(C)'=0$,其中$C$为常数- $(x^n)'=nx^{n-1}$,其中$n$为实数- $(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(\tan x)'=\sec^2 x$- $(e^x)'=e^x$,$(a^x)'=a^x\ln a$- $(\ln x)'=\frac{1}{x}$,$(\log_a x)'=\frac{1}{x\ln a}$4.积分法:- $\int k\,dx=kx+C$,其中$k$为常数,$C$为常数- $\int x^n\,dx=\frac{1}{n+1}x^{n+1}+C$,其中$n$为实数,$C$为常数- $\int \frac{1}{x}\,dx=\ln ,x,+C$,其中$C$为常数- $\int e^x\,dx=e^x+C$- $\int \sin x\,dx=-\cos x+C$,$\int \cos x\,dx=\sin x+C$,$\int \sec^2 x\,dx=\tan x+C$- $\int \frac{1}{\sqrt{1-x^2}}\,dx=\arcsin x+C$5.微分方程:- $y'+P(x)y=Q(x)$的通解为$y=e^{-\int P(x)\,dx}\left(\intQ(x)e^{\int P(x)\,dx}\,dx+C\right)$,其中$P(x)$和$Q(x)$是已知函数- $y''+P(x)y'+Q(x)y=R(x)$的通解是$y=e^{-\intP(x)\,dx}\left[A\int e^{\intP(x)\,dx}R(x)\,dx+B\right]+C_1e^{kx}+C_2e^{kx}$,其中$k$为$P(x)$的重根,$A$和$B$为任意常数,$C_1$和$C_2$为任意常数这只是微积分中的一些重要公式,还有许多其他的公式和定理可以用于不同的问题和应用中。

高数微积分公式大全

高数微积分公式大全

(n)
= n!
( ) (2)
eax+b
(n)
=
an ⋅ eax+b
( ) (3) ax (n) = ax lnn a
(4) sin (ax += b)(n)
an
sin

ax
+
b
+
n

π 2

(5)
cos (ax += b)(n)
a
n
cos

ax
+
b
+
n

π 2

( ) ⑼ ex ′ = ex
( ) ⑽ ax ′ = ax ln a
⑾ (ln x)′ = 1
x
( ) ⑿
log a x
′=
1 x ln a
⒀ (arcsin x)′ = 1
1− x2
⒁ (arccos x)′ = − 1
1− x2
( ) ( ) ⒂
(arctan
x)′
=
1 1+ x2
⒃ (arc cot x)′
= cot A = 1+ cos A sin A 2 1− cos A 1− cos A
4.和差化积公式
sin a + si= n b 2sin a + b ⋅ cos a − b
2
2
cos a + co= s b 2 cos a + b ⋅ cos a − b
2
2
sin (a + b)
tan a + tan b = cos a ⋅ cos b
(6)

考试必备 高数微积分公式大全

考试必备 高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()s i n c o s x x '= ⑷()cos sin x x '=- ⑸()2t a n s e c x x '=⑹()2c o t c s c x x '=-⑺()sec sec tan x x x '=⋅ ⑻()c s c c s c c o tx x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln x a x a'=⒀()a r c s i n x '=⒁()a r c c o s x '=-⒂()21arctan 1x x'=+ ⒃()21a r c c ot 1x x'=-+⒄()1x '=⒅(1'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦(2)()()()()n n cu x cux =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k kk nk u x v x cux v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n n x n = (2)()()n ax bnax bea e++=⋅ (3)()()ln n x x na a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n nnn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1nn n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1dx xd xμμμ-= ⑶()s i n c o s d x x d x= ⑷()cos sin d x xdx =- ⑸()2t a n s e c d x x d x =⑹()2c o t c s cd x x d x=- ⑺()sec sec tan d x x xdx =⋅ ⑻()c s c c s c c o t d x xx d x=-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x =⑿()1logln x a d dx x a=⒀()1arcsin d x =⒁()1a r c c o s d x d x=-⒂()21arctan 1d x dx x=+ ⒃()21a r c c o t 1d x d xx=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11xx d x cμμμ+=++⎰ ⑶ln dx x c x=+⎰⑷ln xxaa dx c a=+⎰ ⑸x xe dx e c =+⎰ ⑹c o s s i n x d x xc=+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221s e c t a n c o s d x x d xx c x ==+⎰⎰ ⑼221csc cot sin xdx x c x==-+⎰⎰ ⑽21a r c t a n 1d x x c x=++⎰⑾arcsin x c =+⎰八、补充积分公式tan lncos xdx x c =-+⎰c o t l n s i n xd x x c=+⎰ sec ln sec tan xdx x x c =++⎰c s c l n c s cc o t xd x x x c=-+⎰ 2211arctanx dx c axaa=++⎰2211ln2x a dx c x a ax a-=+-+⎰arcsinx c a=+⎰ln dx x c =++⎰九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx = 形如sin n x xdx ⎰令n u x =,sin dv xdx =形如cos n x xdx ⎰令n u x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,n dv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ−= ⑶()sin cos x x '=⑷()cos sin x x '=− ⑸()2tan sec x x '= ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x '= ⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''−⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n n u ax b a u ax b +=+⎡⎤⎣⎦ (4)()()()()()()()nn n k k k n k u x v x c u x v x −=⋅=⎡⎤⎣⎦∑五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ−= ⑼()x x d e e dx =⑽()ln x x d a a adx = ⑾()1ln d x dx x =六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu =⑶()d uv vdu udv =+ ⑷2u vdu udvd v v −⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x =+⎰ ⑷ln xx a a dx c a =+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =−+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==−+⎰⎰ ⑽21arctan 1dx x c x =++⎰⑾arcsin dx x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx = 形如sin n x xdx ⎰令nu x =,sin dv xdx = 形如cos n x xdx ⎰令nu x =,cos dv xdx = 形如ln nx xdx ⎰,令ln u x =,n dv x dx = 【特殊角的三角函数值】(1)sin 00= (2)1sin 62π= (3)sin 32π= (4)sin 12π=) (5)sin 0π=(1)cos 01= (2)cos 6π= (3)1cos 32π= (4)cos 02π=) (5)cos 1π=−(1)tan 00= (2)tan 63π=(3)tan 3π=(4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot6π= (3)cot 33π=(4)cot 02π=(5)cot π不存在 十二、重要公式 (2)()10lim 1x x x e →+= (9)lim 0x x e →−∞= (10)lim xx e →+∞=∞。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln xa x a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u v u v v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()nn n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()nn cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nx n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln x a d dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin dx x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ c o t l n s i n x d x x c =+⎰ sec ln sec tan xdx x x c =++⎰ c s c l n c s cc o t xd x x x c=-+⎰ 2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin axe xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常 用 积 分 公 式(一)含有ax b +的积分(0a ≠) 1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1ln ax b C b x +-+6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -14.2x ⎰=22232(34815a x abx b C a -+ 15.=(0)(0)C b C b ⎧+><16.2a b - 17.d x x ⎰=b ⎰18.2d x x ⎰=2a + (三)含有22x a ±的积分 19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ 21.22d xx a -⎰=1ln 2x a C a x a -++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a ++24.22d x x ax b +⎰=2d x b xa a ax b-+⎰25.2d ()x x ax b +⎰=221ln 2x C b ax b++26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b +++⎰(五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分 31.=1arshxC a+=ln(x C + 32.C +33.xC34.x=C +35.2x 2ln(2a x C ++36.2x =ln(x C +++37.⎰1ln aC a x -+38.C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C +42.xx ⎰=422(2ln(88x a x a x C +-++43.x a C +44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a+=ln x C + 46.C +47.x ⎰C +48.x =C +49.2x 2ln 2a x C +++50.2x =ln x C +++51.1arccos aC a x+52.⎰2C a x +53.x 2ln 2a x C -++54.x =2243(25ln 88x x a a x C -+++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C --++57.x ⎰arccos a a C x +58.x =ln x C +++(0)a >的积分 59.=arcsinxC a+ 60.C +61.x =C +62.x C +63.2x =2arcsin 2a x C a ++ 64.2x =arcsinxC a-+65.1C a +66.2C a x -+67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C70.xx ⎰=422(2arcsin 88x a x x a C a-+71.x ln a a C x -+72.x ⎰=arcsin xC a-+(0)a >的积分73.2ax b C +++74.x ⎰22ax b C ++++75.x2ax b C -+++76.⎰=C +77.x 2C +78.x ⎰=C ++79.x =((x b b a C --+80.x =((x b b a C -+-81.C +()a b <82.x 2()arcsin 4b a C -+ ()a b < (十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C + 87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n -+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin xa xb x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsinxx C a++114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a⎰=3221arcsin (239x x x a C a ++116.arccos d xx a ⎰=arccosxx C a-117.arccos d xx x a ⎰=22()arccos 24x a x C a --118.2arccos d x x x a⎰=3221arccos (239x x x a C a -+119.arctand x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d xa x ⎰=1ln xa C a + 123.e d axx ⎰=1e ax C a +124.e d ax x x ⎰=21(1)e axax C a-+125.e d n axx x ⎰=11e e d n ax n ax n x x x a a--⎰126.d xxa x ⎰=21ln (ln )x x x a a C a a -+ 127.d nxx a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d ax bx x ⎰=221e (sin cos )axa bxb bx C a b-++129.e cos d axbx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n --+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C +138.ch d x x ⎰=sh x C +139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0143.cos sin d mx nx x π-π⎰=0 144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π⎰=20cos d n x x π⎰ n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅-L (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-L (n 为正偶数),0I =2π。

相关文档
最新文档