2018――2019年期末考试题_2018-2019学年高一上学期期末数学试题(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《2018――2019年期末考试题_2018-2019学年高一上学期
期末数学试题(解析版)》
摘要:、单选题.已知集合则(). B...【答案,). B...【答案,.已知函数若函数有三零则取值围(). B...【答案
0809学年市高上学期期末数学试题、单选题.已知集合则(). B...【答案】【析】直接利用交集定义可得【详】;.故选.【睛】题主要考了交集定义属基础题.直线斜率(). B...【答案】B 【析】将直线化斜截式可直接得斜率【详】由
得.直线斜率.故选.【睛】题主要考了斜率概念属基础题 3.下列函数既是偶函数又区上单调递增是(). B...【答案】【析】直接由析式判断函数单调性和奇偶性即可得【详】.函数定义域函数非奇非偶函数故错误.函数偶函数当函数减函数不满足条件.故错误.函数奇函数上减函数不满足条件.故错误.函数是偶函数当是增函数满足条件.故正确故选.【睛】题主要考了函数奇偶性和单调性判断属基础题.仓库里堆积着正方体货箱若干要搬运这些箱子很困难可是仓库管理员要清下箱子数量是就想出办法将这堆货物三视图画了出你能根据三视图他清下箱子数量吗?这些正方体货箱数().6 B.7 .8 .9 【答案】【析】结合三视图分析每层正方体数即可得【详】由俯视图可得所有正方体共6摞每摞正方体数如下图所示故这些正方体货箱数8 故选.【睛】题主要考了识别几何体三视图考了空
想象力属基础题 5.设则关系正确是(). B...【答案】【析】利用指数和对数函
数单调性比较三数和0,关系即可得【详】;.故选.【睛】题主要考了指数、对数比较考了函数单调性属基础题 6.当下列选项函数和致图象正确是(). B...【答案】【析】结合判断两函数单调性即可得【详】当则是减函数是原增函数故选.【睛】题主要考了对数函数和次函数单调性属基础题 7.将直角边长等腰直角三角形绕其条直角边旋周所形成几何体体积(). B...【答案】【析】直接由圆锥体积公式即可【详】旋成几
何体是圆锥其底面半径高如图所示;则圆锥体积.故选.【睛】题主要考了圆锥体积计算
属基础题 8.已知函数区上单调递增则取值围(). B...【答案】【析】直接根据
二次函数性质由对称轴和区位置关系即可得【详】依题对称轴得故选.【睛】题主要考了
二次函数单调性属基础题 9.且两坐标轴上截距相等直线方程().或B.或.或.【答案】B 【析】分直线原与不原两种情况不原只斜率即可【详】直线且两坐标轴上截距相等当截距0直线方程;当直线不原斜率直线方程.直线方程或.故选.【睛】题主要考了直线截距概念容易忽略原情况属易错题 0.已知是两条不直线是三不平面则下列命
题正确是().若则 B.若则.若则.若则【答案】【析】通分析线面和面面位置关系
通反例可知,B,不正确由线面垂直判断得【详】由是两条不直线是三不平面知若则与相交、平行或异面故错误;若则与相交或平行故错误;若则由面面垂直判定定理得故正确;若则与相交、平行或故错误.故选.【睛】题主要考了线面和面面位置关系考了空想象力属基础题.已知函数是定义上偶函数且区上单调递减若实数满足()则取值围
(). B...【答案】【析】由奇偶性和单调性可得从而得【详】函数是定义上偶
函数且区上单调递减()等价()即.即得即实数取值围是故选.【睛】题主要考了函数奇偶性和单调性属基础题.已知函数若函数有三零则取值围(). B...【答案】B 【析】作出图象如图令问题化函数有两零结合二次抛物线图象根据根分布列不等式即可【详】作出图象如图设则由图象知当有两根当只有根若函数有三零等价函数有两零其或当另根满足题;当则满足得得综上故选.【睛】题主要考了复合型方程根数问题进行合理等价化是题关键属档题二、填空题 3.__.【答案】【析】直接利用对数运算法则即可【详】原式.故答案.【睛】题主要考了对数运算属基础题.已知直线与相平行则两直线与距离
__.【答案】【析】由平行得再利用平行线距离公式可得【详】直线与相平行两直线与距离.故答案.【睛】题主要考了直线平行参数及平行线距离公式属基础题 5.已知函数常数)若则__.【答案】【析】设可得函数奇函数从而可得即得代入条件即可得【详】根据题设
有则函数奇函数则即变形可得则有则;故答案5 【睛】题主要考了奇偶性应用题关键是设从而与奇偶性建立系进而得属基础题 6.已知直三棱柱六顶都球上底面是直角三角形且侧棱则球体积__.【答案】【析】利用直三棱柱几何特征结合底面直角三角形可到球心从而得半径
即可得【详】如图分别易知即外接球球心计算可得故答案.【睛】题主要考了三棱柱外接球问题属基础题三、答题 7.已知函数.()直角坐标系作出与图象;()请写出函数
性质并给予证明;(3)请写出不等式集.【答案】()图像见析()是偶函数证明见析(3)【析】()利用分段函数析式和次函数图象可作图;()由图像可得函数偶函数进而利用定
义证明即可;(3)结合图象即可不等式【详】()则对应图象()函数是偶函数是偶函数.(3)当由得当由得由图象知若则即不等式集【睛】题主要考了分段函数图象及图象
应用属基础题 8.已知三顶坐标分别.()边所直线方程;()若边上线所直线方程面积.【答案】()()【析】()先直线斜率结合斜式即可得;()先将代入直线可得再由坐标满足直线可得;利用到直线距离可高从而得面积【详】()边所直线方程即;()把
代入得.线方程坐标即.到直线距离...【睛】题主要考了直线方程涉及斜式坐标及到直线距离属基础题 9.用水清洗堆蔬菜上残留农药对用定量水清洗次效作如下假定用单位量水可洗蔬菜上残留农药量用水越多洗农药量也越多但总还有农药残留蔬菜上.设用单位量水清
洗次以蔬菜上残留农药量与次清洗前残留农药量比函数.()试规定值并释其实际义;()
试根据假定写出函数应该满足条件和具有性质;(3)设.现有单位量水可以清洗次也可以把水平分成份清洗两次试问用哪种方案清洗蔬菜上残留农药量比较省?说明理由.【答案】()表示没有用水洗蔬菜上残留农药量将保持原样()函数应该满足条件和具有性质是上单调递减且(3)答案不唯具体见析【析】()由表示清洗思从而得;()结合题干信息可得和及围;(3)分别计算两种方式农药残留量进而作差比较即可【详】()表示没有用水洗蔬菜上残
留农药量将保持原样.()函数应该满足条件和具有性质是上单调递减且.(3)设仅清洗
次残留农药量清洗两次残留农药量则;是当清洗两次残留农药量较少;当两种清洗方法具有相效;当次清洗残留农药量较少.【睛】题主要考了函数实际应用问题题关键是分析题干信息提取代数式属基础题 0.如图四棱锥平面底面是菱形.()证;()到面距离.【答案】()证明见析()【析】()由和即可证得;()由可得进而可得【详】证明()底面是
菱形平面平面是平面两条直交线平面又平面.()底面是菱形又平面设到平面距离且平
面即是等边三角形得到面距离.【睛】题主要考了线面垂直证明及性质考了等体积法面
距属基础题.已知二次函数.()若函数偶函数值;()若函数区上值值.【答案】()0;()【析】()得对称轴方程由偶函数图象可得值;()得对称轴方程推理对称轴和区关系
结合单调性可得析式再由单调性可得值.【详】()二次函数对称轴由偶函数可得;()
对称轴当即递增可得且值;当即递减可得且值3;当即值当取得值综上可得值【睛】题
考二次函数对称性和单调性运用值考分类讨论思想方法和化简运算能力、推理能力属档题..已知函数区上有且仅有零取值围.【答案】【析】分别讨论和结合△和△分析当△分和讨论即可【详】()若则令由得不题()当△ 由题可知△可得①若则△函数零不满足题;②
若函数零是满足题;下面讨论△函数区上有且仅有零情况由零判断定理有即得而△()只要讨论另零是否区.由可得.所以另零是满足题.故实数取值围.【睛】题主要考了二次方程根分布涉及分类讨论情况较多属难题。

相关文档
最新文档