北师大版数学八年级上册 分式解答题单元测试卷(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学分式解答题压轴题(难)
1.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.
(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.
(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12
S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.
【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;
(2)方案二所用的时间少
【解析】
【分析】
(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;
(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.
【详解】
(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x
=+, 解得:150x =,
检验,当150x =时,()300x x +≠,
∴原分式方程的解为:150x =,
30180x +=,
答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;
(2)设方案一所用时间为:111()222s s a b s t a b ab
+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b
=+, ∴2
2()22()
a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,
∴()20a b ->,

202a b S S ab a b
+->+,即:12t t >, ∴方案二所用的时间少.
【点睛】 本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.
2.阅读下面的解题过程: 已知2112x x =+,求2
41
x x +的值。

解:由2112x x =+知x ≠0,所以2112,2x x x x
+=+=即 ∴2
422221112222x x x x x x +⎛⎫=+=+-=-= ⎪⎝⎭,故241x x +的值为12 评注:该题的解法叫做“倒数法”,请你利用“倒数法”解下面的题目 已知2117x x x =-+,求2
421
x x x ++的值。

【答案】
163
. 【解析】
【分析】 首先根据解答例题可得21x x x -+=7,进而可得x +1x =8,再求2
421
x x x ++的倒数的值,进而可得答案.
【详解】 ∵21x x x -+=17,∴21x x x
-+=7,x +1x =8. ∵4221x x x ++=x 2+21x +1=(x +1x )2﹣2+1=82﹣1=63,∴2
421x x x ++=163
. 【点睛】
本题主要考查了分式的混合运算,关键是理解例题的解法,掌握解题方法后,再根据例题方法解答.
3.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽 新能源 EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续 航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.
(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);
(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用
电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费, 并求出与燃油车相同里程下的所需费用(油电)百分比.
【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%
【解析】
【分析】
(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.
(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.
【详解】
解:(1)设新能源汽车续航单价为x 元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:
300x :3000.6x
+ =4:1, 解得:x=0.2, ∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),
答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里.
(2)依题可得新能源汽车400公里所需费用为:
0.48×55=26.4(元),
∴新能源汽车每公里所需电电费为:
26.4÷400=0.066(元/公里),
依题可得燃油汽车400公里所需费用为:
400×0.8=320(元),
∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为:
26.4÷320=0.0825=8.25%.
答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%.
【点睛】
本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.
4.在计算23224
x x x x +-++-的过程中,三位同学给出了不同的方法: 甲同学的解法:原式=222222(3)(2)26284444
x x x x x x x x x x x +--+-----==----; 乙同学的解法:原式=3231312(2)(2)222
x x x x x x x x x x +-++--=-=++-+++=1; 丙同学的解法:原式=(x+3)(x ﹣2)+2﹣x=x 2+x ﹣6+2﹣x=x 2﹣4.
(1)请你判断一下, 同学的解法从第一步开始就是错误的, 同学的解法是完
全正确的.
(2)乙同学说:“我发现无论x 取何值,计算的结果都是1”.请你评价一下乙同学的话是否合理,并简要说明理由.
【答案】(1)丙,乙;(2)不合理,理由见解析.
【解析】
试题分析:(1)根据分式的加减法,由分解因式和同分母的分式加减,可知甲第2步去括号时没变号;乙正确;丙第一步的计算漏掉了分母,由此可知答案;
(2)根据乙的正确化简结果可知最终结果与x 值无关,但是要注意所选取的x 不能使分式无意义.
试题解析:(1)丙同学的解法从第一步开始就是错误的,乙同学的解法是完全正确的; 故答案为:丙,乙;
(2)不合理,
理由:∵当x≠±2时,
22232(3)(2)22444x x x x x x x x x +-+--+=-+---=222262444
x x x x x x +--+-=--=1, ∴乙同学的话不合理,
5.杨梅是漳州的特色时令水果.杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价每件比第一批多了5元.
(1)第一批杨梅每件进价多少元?
(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销.要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折(利润-售价-进价)?
【答案】(1)120元(2)至少打7折.
【解析】
【分析】
(1)设第一批杨梅每件进价是x 元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;
(2)设剩余的杨梅每件售价y 元,由利润=售价-进价,根据第二批的销售利润不低于320元,可列不等式求解.
【详解】
解:(1)设第一批杨梅每件进价是x 元, 则120025002,5
x x ⨯=+ 解得120.x =
经检验,x=120是原方程的解且符合题意.
答:第一批杨梅每件进价为120元.
(2)设剩余的杨梅每件售价打y 折.
则25002500
15080%150(180%)0.12?500320. 125125
y
⨯⨯+⨯⨯-⨯-≥
解得y≥7.
答:剩余的杨梅每件售价至少打7折.
【点睛】
考查分式方程的应用, 一元一次不等式的应用,读懂题目,从题目中找出等量关系以及不等关系是解题的关键.
6.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:
?1
3
22
x x
+=
--
.
(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;
(2)小华的妈妈说:“我看到标准答案是:方程的增根是2
x=,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?
【答案】(1)0
x=;(2)原分式方程中“?”代表的数是-1.
【解析】
【分析】
(1)“?”当成5,解分式方程即可,
(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.
【详解】
(1)方程两边同时乘以()2
x-得
()
5321
x
+-=-
解得0
x=
经检验,0
x=是原分式方程的解.
(2)设?为m,
方程两边同时乘以()2
x-得
()
321
m x
+-=-
由于2
x=是原分式方程的增根,
所以把2
x=代入上面的等式得
()
3221
m+-=-
1
m=-
所以,原分式方程中“?”代表的数是-1.
【点睛】
本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
7.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家
带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A 型自行车去年每辆售价多少元;
(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.
【答案】(1) 2000元;(2) A 型车20辆,B 型车40辆.
【解析】
【分析】
(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由卖出的数量相同列出方程求解即可;
(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值.
【详解】
解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由题意,得 8000080000(110%)200
x x -=-, 解得:x=2000.
经检验,x=2000是原方程的根.
答:去年A 型车每辆售价为2000元;
(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由题意,得
y=a+(60﹣a ),
y=﹣300a+36000.
∵B 型车的进货数量不超过A 型车数量的两倍,
∴60﹣a≤2a ,
∴a≥20.
∵y=﹣300a+36000.
∴k=﹣300<0,
∴y 随a 的增大而减小.
∴a=20时,y 最大=30000元.
∴B 型车的数量为:60﹣20=40辆.
∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.
【点睛】
本题考查分式方程的应用;一元一次不等式的应用.
8.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数
的2
3
;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
【答案】(1)甲队单独完成需60天,乙队单独完成这项工程需要90天;
(2)工程预算的施工费用不够,需追加预算4万元.
【解析】
【分析】
(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;
(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【详解】
(1)解:设乙队单独完成这项工程需要x天,则甲队单独完成需要2x
3
填;
4030
1
2x
x
3
+=
解得:x90
=
经检验,x=90是原方程的根.
则22
x9060
33
=⨯=(天)
答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,
则有y(1
60
+
1
90
)=1.
解得y=36.
需要施工费用:36×(8.4+5.6)=504(万元).
∵504>500.
∴工程预算的施工费用不够用,需追加预算4万元.
9.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款2.4万元,乙工程队工程款1万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用12天;
(3)若甲,乙两队合做6天,余下的工程由乙队单独做也正好如期完成.
试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.
【答案】在不耽误工期的前提下,选第三种施工方案最节省工程款.
【解析】
【分析】
关键描述语为:“甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成”;说明甲队实际工作了3天,乙队工作了x 天完成任务,工作量=工作时间×工作效率等量关系为:甲3天的工作量+乙规定日期的工作量=1列方程.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.
【详解】
解:设规定日期为x 天.由题意得
66611212
x x x x -++=++, ∴6112
x x x +=+, ∴2267212x x x x ++=+,
∴12x =;
经检验:x=12是原方程的根.
方案(1):2.4×12=28.8(万元);
方案(2)比规定日期多用12天,显然不符合要求;
方案(3):2.4×6+1×12=26.4(万元).
∵28.8>26.4,
∴在不耽误工期的前提下,选第三种施工方案最节省工程款.
【点睛】
本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.
10.某商场购进甲、乙两种空调共50台.已知购进一台甲种空调比购进一台乙种空调进价少0.3万元;用20万元购进甲种空调数量是用40万元购进乙种空调数量的2倍.请解答下列问题:
(1)求甲、乙两种空调每台进价各是多少万元?
(2)若商场预计投入资金不少于10万元,且购进甲种空调至少31台,商场有哪几种购进方案?
(3)在(2)条件下,若甲种空调每台售价1100元,乙种空调每台售价4300元,甲、乙空调各有一台样机按八折出售,其余全部标价售出,商场从销售这50台空调获利中拿出2520元作为员工福利,其余利润恰好又可以购进以上空调共2台.请直接写出该商场购进这50台空调各几台.
【答案】(1)0.1,0.4;(2)商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;(3)购买甲种空调32台,购买乙种空调18台
【解析】
【分析】
(1)可设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量关系用20万元购进甲种空调数量=用40万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,根据商场预计投入资金不少于10万元,且购进甲种空调至少31台,求出n 的范围,即可确定出购买方案;
(3)找到(2)中3种购进方案符合条件的即为所求.
【详解】
解:(1)设甲种空调每台进价是x 万元,则乙种空调每台进价是(x+0.3)万元,依题意有
20x =400.3x ×2, 解得x =0.1,
x+0.3=0.1+0.3=0.4.
答:甲种空调每台进价是0.1万元,乙种空调每台进价是0.4万元;
(2)设购买甲种空调n 台,则购买乙种空调(50﹣n )台,依题意有
0.10.4(50)1031s
n n n +-⎧⎨⎩, 解得31≤n≤33
13
, ∵n 为整数, ∴n 取31,32,33,
∴商场有3种购进方案:①购买甲种空调31台,购买乙种空调19台;②购买甲种空调32台,购买乙种空调18台;③购买甲种空调33台,购买乙种空调17台;
(3)①购买甲种空调31台,购买乙种空调19台,
(31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520
=3000﹣120+5400﹣560﹣2520
=7720﹣2520
=5200(元),
不符合题意,舍去;
②购买甲种空调32台,购买乙种空调18台,
(32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8﹣4000)﹣2520
=3100﹣120+5100﹣560﹣2520
=7520﹣2520
=5000(元),
符合题意;
③购买甲种空调33台,购买乙种空调17台,
(33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8
﹣4000)﹣2520
=3200﹣120+4800﹣560﹣2520
=7320﹣2520
=4800(元),
不符合题意,舍去.
综上所述,购买甲种空调32台,购买乙种空调18台.
【点睛】
此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本题的关键.。

相关文档
最新文档