【配套K12】2018年高中数学课时跟踪检测十一微积分基本定理新人教A版选修2_2

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(十一) 微积分基本定理
层级一 学业水平达标
1.下列各式中,正确的是( ) A.⎠⎛a b
F ′(x )d x =F ′(b )-F ′(a ) B.⎠⎛a b
F ′(x )d x =F ′(a )-F ′(b ) C.⎠⎛a b
F ′(x )d x =F (b )-F (a ) D.⎠⎛a b
F ′(x )d x =F (a )-F (b )
解析:选C 由牛顿-莱布尼茨公式知,C 正确. 2.⎠⎛0π
(cos x +1)d x 等于( ) A .1 B .0 C .π+1
D .π
解析:选D ⎠⎛0π
(cos x +1)d x =(sin x +x ) ⎪⎪

π
=sin π+π-0=π.
3.已知积分⎠⎛01
(kx +1)d x =k ,则实数k =( ) A .2 B .-2 C .1
D .-1
解析:选A 因为⎠⎛01
(kx +1)d x =k ,
所以⎝ ⎛⎭⎪⎫12kx 2+x ⎪⎪

1
=k .
所以1
2
k +1=k ,所以k =2.
4. ⎠⎛-a a
|56x |d x ≤2 016,则正数a 的最大值为( ) A .6 B .56 C .36
D .2 016
解析:选A ⎠⎛-a a
|56x |d x =2⎠⎛0
a
56x d x =2×562x 2⎪⎪⎪
a
=56a 2≤2 016,故a 2
≤36,即0<a ≤6.
5.⎠⎛03
|x 2
-4|d x =( )
A.
21
3
B.
223
C.233
D.
253
解析:选C ∵|x 2
-4|=⎩
⎪⎨⎪⎧
x 2
-4,2≤x ≤3,4-x 2
,0≤x ≤2,
∴⎠⎛03
|x 2-4|d x =⎠⎛23
(x 2-4)d x +⎠⎛02
(4-x 2)d x
=⎝ ⎛⎭⎪⎫13x 3-4x ⎪⎪

3
2
+⎝
⎛⎭⎪⎫4x -13x 3⎪⎪⎪
2
=⎣

⎡⎦⎥⎤-
-⎝ ⎛⎭⎪⎫83-8+⎣⎢⎡⎦
⎥⎤⎝ ⎛⎭⎪⎫8-83-0 =-3-83+8+8-83=23
3
.
6.⎠⎛02
(x 2
-x )d x =__________.
解析:∵⎝ ⎛⎭⎪⎫x 33-12x 2′=x 2
-x ,∴原式=⎝ ⎛⎭⎪⎫x 3
3-12x 220=⎝ ⎛⎭⎪⎫83-2-0=23.
答案:2
3
7. 设f (x )=⎩⎪⎨


x 2
,x ≤0,cos x -1,x >0.
则⎠
⎛1
-1f (x )d x =_________. 解析:⎠⎛-11
f (x )d x =⎠⎛-11
x 2d x +⎠⎛01
(cos x -1)d x
=13x 3⎪⎪⎪
-1
+(sin x -x ) ⎪⎪

1
=⎣⎢⎡⎦
⎥⎤13
×03-
13-
3
+[(sin 1-1)-(sin 0-0)] =sin 1-2
3
.
答案:sin 1-2
3
8.已知等差数列{a n }的前n 项和为S n ,且S 10=⎠⎛03
(1+2x )d x ,则a 5+a 6=__________.
解析:S 10=⎠⎛03
(1+2x )d x =(x +x 2)30=3+9=12.
因为{a n }是等差数列, 所以S 10=a 5+a 6
2=5(a 5+a 6)=12,所以a 5+a 6=12
5
.
答案:125
9.已知f (x )=ax 2
+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01
f (x )d x =-2,求a ,
b ,
c 的值.
解:由f (-1)=2得a -b +c =2, ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0, ②
而⎠⎛01
f (x )d x =⎠⎛01
(ax 2+bx +c )d x
=⎝ ⎛⎭⎪⎫13ax 3+12bx 2+cx 10=13a +1
2
b +
c ,
∴13a +1
2
b +
c =-2, ③ 由①②③式得a =6,b =0,c =-
4.
法二:设f (x )=|2x +3|+|3-2x |
=⎩⎪⎨⎪⎧
-4x ,-3≤x <-32

6,-32≤x ≤32,
4x ,32<x ≤3.
如图,所求积分等于阴影部分面积,
即⎠⎛3-3(|2x +3|+|3-2x |)d x =S =2×12×(6+12)×3
2+3×6

45.
层级二 应试能力达标
1.函数F (x )=⎠⎛0
x cos t d t 的导数是( )
A .F ′(x )=cos x
B .F ′(x )=sin x
C .F ′(x )=-c o s x
D .F ′(x )=-sin x
解析:选A F (x )=⎠⎛0
x
cos t d t =sin t ⎪⎪⎪
x
=sin x -sin 0=sin x .
所以F ′(x )=cos x ,故应选A.
2.若函数f (x )=x m
+nx 的导函数是f ′(x )=2x +1,则⎠⎛12
f (-x )d x =( )
A.56
B.12
C.23
D.16
解析:选A ∵f (x )=x m
+nx 的导函数是f ′(x )=2x +1,∴f (x )=x 2
+x ,∴⎠⎛12
f (-x )d x
=⎠⎛1
2
(x 2
-x )d x =⎝ ⎛⎭⎪⎫13x 3-12x 2⎪⎪⎪
2
1
=5
6
. 3.若⎠⎛1a
⎝ ⎛⎭
⎪⎫2x +1x d x =3+ln 2,则a 的值是( )
A .6
B .4
C .3
D .2
解析:选 D ⎠⎛1a
⎝ ⎛⎭
⎪⎫2x +1x d x =(x 2+ln x )a 1=(a 2+ln a )-(1+ln 1)=(a 2-1)+ln a =3+ln 2.
∴⎩⎪⎨⎪

a 2
-1=3,a >1,a =2,
∴a =2.
4.若f (x )=x 2
+2⎠⎛01f (x )d x ,则⎠⎛01
f (x )d x =( )
A .-1
B .-13
C.13
D .1
解析:选B 设⎠⎛01
f (x )d x =c ,则c =⎠⎛0
1
(x 2
+2c )d x =⎝ ⎛⎭⎪⎫13x 3+2cx ⎪⎪⎪
1
0=1
3
+2c ,解得c =-13
.
5.函数y =x 2
与y =kx (k >0)的图象所围成的阴影部分的面积为92
,则k =
________________.
解析:由⎩⎪⎨
⎪⎧
y =kx ,y =x 2

解得⎩⎪⎨
⎪⎧
x =0,y =0
或⎩⎪⎨
⎪⎧
x =k ,y =k 2
.
由题意得,⎠⎛0
k (kx -x 2
)d x =⎝ ⎛⎭⎪⎫12kx 2-13x 3⎪⎪⎪
k
=12k 3-13k 3=16k 3=9
2
,∴k =3. 答案:3
6.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________
解析:长方形的面积为S 1=3,S 阴=⎠⎛01
3x 2
d x =x 3
⎪⎪

1
=1,则P =
S 阴
S 1
=13
. 答案:13
7. 已知S 1为直线x =0,y =4-t 2
及y =4-x 2
所围成图形的面积,
S 2为直线x =2,y =4-t 2及y =4-x 2所围成图形的面积(t 为常数).
(1)若t =2时,求S 2.
(2)若t ∈(0,2),求S 1+S 2的最小值. 解:(1)当t =2时,
S 2=
([2-(4-x 2
)]d x =⎝ ⎛⎭

⎫13x 3-2x =4
3
(2-1). (2)t ∈(0,2),S 1=⎠⎛0t
[(4-x 2)-(4-t 2
)]d x
=⎝
⎛⎭⎪⎫t 2x -13x 3⎪⎪⎪
t
0=23
t 3
, S 2=⎠⎛t
2
[(4-t 2)-(4-x 2
)]d x =⎝ ⎛⎭⎪⎫13x 3-t 2x ⎪⎪⎪
2
t
=83-2t 2
+23
t 3, 所以S =S 1+S 2=43t 3-2t 2
+83

S ′=4t 2-4t =4t (t -1),
令S ′=0得t =0(舍去)或t =1, 当0<t <1时,S ′<0,S 单调递减, 当1<t <2时,S ′>0,S 单调递增,
所以当t =1时,S min =2.
8.如图,直线y =kx 分抛物线y =x -x 2
与x 轴所围成图形为面积相等的两部分,求k
的值.
解:抛物线y =x -x 2
与x 轴两交点的横坐标x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积
S =⎠⎛0
1
(x -x 2
)d x =⎝ ⎛⎭⎪⎫x 22-x 3
3⎪⎪⎪
1
=12-13=1
6
. 抛物线y =x -x 2
与直线y =kx 两交点的横坐标为
x ′1=0,x ′2=1-k ,
所以S
2=
(x -x 2
-kx )d x =⎝ ⎛⎭⎪⎫1-k 2
x 2-x 3
3=16(1-k )3,又知S =16
,所以(1-k )3
=12
. 于是k =1-312=1-34
2
.。

相关文档
最新文档