平面图形的认识(一)单元培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)
1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;
(1)若∠E=60°,则∠F=________;
(2)请探索∠E与∠F之间满足的数量关系?说明理由.
(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;
【答案】(1)90°
(2)解:如图,分别过点E,F作EM∥AB,FN∥AB
∴EM∥AB∥FN
∴∠B=∠BEM=30°,∠MEF=∠EFN
又∵AB∥CD,AB∥FN
∴CD∥FN
∴∠D+∠DFN=180°
又∵∠D =120°
∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°
∴∠EFD=∠MEF +60°
∴∠EFD=∠BEF+30°
(3)解:如图,过点F作FH∥EP
由(2)知,∠EFD=∠BEF+30°
设∠BEF=2x°,则∠EFD=(2x+30)°
∵EP平分∠BEF,GF平分∠EFD
∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°
∵FH∥EP
∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°
【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,
∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,
∴∠EFD=∠BEF+30°=90°.
【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;
(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.
2.将一副三角板放在同一平面内,使直角顶点重合于点O
(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.
(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.
(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.
【答案】(1)解:∵

同理:


(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:
(3)解:仍然成立.
理由如下:∵
又∵

【解析】【分析】(1)先计算出
再根据
(2)根据(1)中得出的度数直接写出结论即可.(3)根据
即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.
3.将一副直角三角板如图1摆放在直线AD上(直角三角板OBC和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC不动,将三角板MON绕点O以每秒10°的速度顺时针旋转,旋转时间为t秒
(1)当t=________秒时,OM平分∠AOC?如图2,此时∠NOC﹣∠AOM=________°;
(2)继续旋转三角板MON,如图3,使得OM、ON同时在直线OC的右侧,猜想∠NOC 与∠AOM有怎样的数量关系?并说明理由;
(3)若在三角板MON开始旋转的同时,另一个三角板OBC也绕点O以每秒5°的速度顺时针旋转,当OM旋转至射线OD上时同时停止,(自行画图分析)
①当t=________秒时,OM平分∠AOC?
(4)②请直接写出在旋转过程中,∠NOC与∠AOM的数量关系.
【答案】(1)2.25;45
(2)解:∠NOC﹣∠AOM=45°,
∵∠AON=90°+10t,
∴∠NOC=90°+10t﹣45°
=45°+10t,
∵∠AOM=10t,
∴∠NOC﹣∠AOM=45°
(3)3
(4)解:②∠NOC﹣∠AOM=45°.
∵∠AOB=5t,∠AOM=10t,∠MON=90°,∠BOC=45°,
∵∠AON=90°+∠AOM=90°+10t,∠AOC=∠AOB+∠BOC=45°+5t,
∴∠NOC=∠AON﹣∠AOC=90°+10t﹣45°﹣5t=45°+5t,
∴∠NOC﹣∠AOM=45°.
【解析】【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,
∴∠AOM= =22.5°,
∴t=2.25秒,
∵∠MON=90°,∠MOC=22.5°,
∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;
故答案为:2.25,45;
·(3)①∵∠AOB=5t,∠AOM=10t,
∴∠AOC=45°+5t,
∵OM平分∠AOC,
∴∠AOM= AOC,
∴10t= (45°+5t),
∴t=3秒,
故答案为:3.
【分析】(1)根据角平分线的定义得到∠AOM= =22.5°,于是得到t=2.25秒,由
于∠MON=90°,∠MOC=22.5°,即可得到∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)根据题意得∠AON=90°+10t,求得∠NOC=90°+10t﹣45°=45°+10t,即可得到结论;(3)①根据题意得∠AOB=5t,∠AOM=10t,求得∠AOC=45°+5t,根据角平分线的定义得到∠AOM= AOC,列方程即可得到结论;(4)②根据角的和差即可得到结论.
4.如图1,已知,点A、B在直线a上,点C、B在直线b上,且于E.
(1)求证:;
(2)如图2,平分交于点F,平分交于点G,求
的度数;
(3)如图3,P为线段上一点,I为线段上一点,连接,N为的角平分线
上一点,且,则、、之间的数量关系是________. 【答案】(1)证明:过作 ,





(2)解:作,,
设,,
由(1)知:,,

∴,
∴,
同理:,

(3)
【解析】【解答】解:(3)结论:或

I.∠NCD在∠BCD内部时,
过I点作,过N点作,设∠IPN=∠BPN=x, =y,
∴∠BCD=3y.
∵a∥b,

∴,,,
∴,,
∴,


II. 在外部时,如图3(2):
过I点作,过N点作,设∠IPN=∠BPN=x, =y,
∴∠BCD=y.
∵a∥b,
∴IG∥a∥
∴,,,
∴,,
∴,

∴.
故答案为:.
【分析】(1) 过作EF∥a,由BC⊥AD可知,由平行可知,
,从而可得 = + = ;
(2)作,,设,,由平行线性质和邻补角定义可得,,进而计算出
即可解答;
(3)分两种情况解答:I.∠NCD在∠BCD内部,II 外部,仿照(2)解答即可.
5.如图,在△ABC中,CD是AB边上的高,CE是∠ACB的平分线.
(1)若∠A=40°,∠B=76°,求∠DCE的度数;
(2)若∠A=α,∠B=β,求∠DCE的度数(用含α,β的式子表示);
(3)当线段CD沿DA方向平移时,平移后的线段与线段CE交于G点,与AB交于H点,若∠A=α,∠B=β,求∠HGE与α、β的数量关系.
【答案】(1)解:∵∠A=40°,∠B=76°,
∴∠ACB=64°.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB=32°.
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=14°,
∴∠DCE=∠ECB﹣∠BCD=32°﹣14°=18°;
(2)解:∵∠A=α,∠B=β,
∴∠ACB=180°﹣α﹣β.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB (180°﹣α﹣β).
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=90°﹣β,
∴∠DCE=∠ECB﹣∠BCD β α;
(3)解:如图所示.
∵∠A=α,∠B=β,
∴∠ACB=180°﹣α﹣β.
∵CE是∠ACB的平分线,
∴∠ECB ∠ACB (180°﹣α﹣β).
∵CD是AB边上的高,
∴∠BDC=90°,
∴∠BCD=90°﹣∠B=90°﹣β,
∴∠DCE=∠ECB﹣∠BCD β α,
由平移可得:GH∥CD,
∴∠HGE=∠DCE β α.
【解析】【分析】(1)根据三角形的内角和得到∠ACB的度数,根据角平分线的定义得到∠ECB的度数,根据余角的定义得到∠BCD=90°-∠B,于是得到结论;(2)根据角平分线
的定义得到∠ACB=180°-α-β,根据角平分线的定义得到∠ECB= ∠ACB= (180°-α-β),根据余角的定义得到∠BCD=90°-∠B=90°-β,于是得到结论;(3)运用(2)中的方法,得到
∠DCE=∠ECB-∠BCD= β- α,再根据平行线的性质,即可得出结论.
6.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图(1)若∠BOD=35°,则∠AOC=________ .
如图(2)若∠BOD=35°,则∠AOC=________ .
(2)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.
(3)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺
各有一条边互相垂直.(填空)
当________ ⊥ ________时,∠AOD = ________ .
当________ ⊥ ________时,∠AOD = ________ .
当________ ⊥ ________时,∠AOD = ________ .
当________ ⊥ ________时,∠AOD = ________ .
【答案】(1)145°;145°
(2)解:∠AOC与∠BOD互补.
∵∠AOB=∠COD=90°,
∴∠AOD+∠BOD+∠BOD+∠BOC=180°.
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠AOC与∠BOD互补.
(3)AB;OD;30°;CD;OA;45°;OC;AB;60°;AB;CD;75°
【解析】【解答】解:(1)若∠BOD=35°,
∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-35°=145°;
如图2,若∠BOD=35°,
则∠AOC=360°-∠BOD-∠AOB-∠COD
=360°-35°-90°-90°
=145°;(3)解:当 AB ⊥ OD 时,∠AOD = 30°.
当 CD ⊥ OA 时,∠AOD = 45°.
当 OC ⊥ AB 时,∠AOD = 60°.
当 AB ⊥ CD 时,∠AOD = 75°.
即∠AOD角度所有可能的值为:30°、45°、60°、75°.
【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可计算出∠AOC的度数;根据∠AOC=360°-∠BOD-∠AOB-∠COD可计算出∠AOC的度数;(2)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(3)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.
7.如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于点A1,
(1)分别计算:当∠A分别为700、800时,求∠A1的度数.
(2)根据(1)中的计算结果,写出∠A与∠A1之间的数量关系________.
(3)∠A1BC的角平分线与∠A1CD的角平分线交于点A2,∠A2BC的角平分线与∠A2CD的角平分线交于点A3,如此继续下去可得A4,…,∠A n,请写出∠A5与∠A的数量关系________.
(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.
其中有且只有一个是正确,请写出正确结论,并求出其值.
【答案】(1)解:∵A1C、A1B分别是∠ACD、∠ABC的角平分线
∴∠A1BC= ∠ABC,∠A1CD= ∠ACD
由三角形的外角性质知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,即:
∠A1= (∠ACD-∠ABC)= ∠A;
当∠A=70°时,∠A1=35°;当∠A=80°,∠A1=40°
(2)∠A=2∠A1
(3)∠A5= ∠A
(4)解:△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°-∠Q),
化简得:∠A1+∠Q=180°
故①的结论是正确,且这个定值为180°
【解析】【解答】解:(2)由(1)可知∠A1== ∠A
即∠A=2∠A1(3)同(1)可求得:
∠A2= ∠A1= ∠A,
∠A3= ∠A2= ∠A,

依此类推,∠A n= ∠A;
当n=5时,∠A5= ∠A= ∠A
【分析】(1)由三角形的外角性质易知:∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC,而∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1,可得∠A1= (∠ACD-
∠ABC)= ∠A(2)根据(1)可得到∠A=2∠A1(3)根据(1)可得到∠A2= ∠A1=
∠A,∠A3= ∠A2= ∠A,…依此类推,∠A n= ∠A,根据这个规律即可解题.(4)用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
8.问题情境:如图1,AB∥CD,∠PAB=125°,∠PCD=135°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为________度。

(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,①如果点P运动到D点右侧(不包括D点),则∠APC与α、β之间的数量关系为________.②如果点P运动到B点左侧(不包括B点),则∠APC与α、β之间的数量关系________.(直接写出结果)
【答案】(1)100°
(2)解:∠APC=α+β,
理由是:如下图,过P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠APE=∠PAB=α,∠CPE=∠PCD=β,
∴∠APC=∠APE+∠CPE=α+β.
(3)∠APC=α-β;∠APC=β-α
【解析】【解答】(1)解:如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=125°,∠PCD=135°,
∴∠APE=55°,∠CPE=45°,
∴∠APC=∠APE+∠CPE=55°+45°=100°.
( 3 )解:如下图所示,当P在BD延长线上时,
过P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠1=∠PAB=α,
∵∠1=∠APC+∠PCD
∴∠APC=∠1-∠PCD,
∴∠APC=α-β,
如下图所示,当P在DB延长线上时,
过P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠EPC=∠PCD=β,∠EPA=∠PAB=α
又∵∠EPC=∠EPA+∠APC,
∴∠APC=β-α.
【分析】(1)过P作PE∥AB,通过平行线性质来求∠APC
(2)过P作PE∥AB,交AC于E,推出 AB∥PE∥CD ,根据平行线的性质得出∠APE=α,∠CPE=β
,即可得出答案。

(3)画出图形,根据平行线的性质得出∠APE=α,∠CPE=β ,即可得出答案。

9.如图1,,点,分别在,上,射线绕点顺时针旋转至便立即逆时针回转,射线绕点顺时针旋转至便立即逆时针回转.射线转动的速度是每秒度,射线转动的速度是每秒度.
(1)直接写出的大小为________;
(2)射线、转动后对应的射线分别为、,射线交直线于点,若射线比射线先转动秒,设射线转动的时间为秒,求为多少时,直线直线?
(3)如图2,若射线、同时转动秒,转动的两条射线交于点,作,点在上,请探究与的数量关系.
【答案】(1)60°
(2)解:设灯转动t秒,直线直线,
①当时,如图,






解得;
②当时,如图,
,,

,,解得,
综上所述,当秒或秒时直线;
(3)解:和关系不会变化,
理由:设射线AM转动时间为m秒,
作,,,
,,

,,
,而,




即,
和关系不变.
【解析】【解答】解:(1)∵

∴,
∴(两直线平行,内错角相等)
故结果为:;
【分析】(1)根据得到,再根据直线平行的性质即可得到答案;(2)设灯转动t秒,直线直线,分情况讨论重合前平行、重合后平行即可得到答案;(3)根据补角的性质表示出,再根据三角形内角和即可表示出,即可得到答案;
10.如图 1,直线分别交于点 (点在点的右侧),若
(1)求证: ;
(2)如图2所示,点在之间,且位于的异侧,连,若,则三个角之间存在何种数量关系,并说明理由.
(3)如图 3 所示,点在线段上,点在直线的下方,点是直线上一点(在的左侧),连接 ,若 ,则请直接写出
与之间的数量
【答案】(1)证明:∵∠1=∠BEF,
∴∠BEF+∠2=180°
∴AB∥CD.
(2)解:
设∠N= ,∠M= ,∠AEM= ,∠NFD=
过M作MP∥AB,过N作NQ∥AB
∵,MP∥AB,NQ∥AB
∴MP∥NQ∥AB∥CD
∴∠EMP= ,∠FNQ=
∴∠PMN= - ,∠QNM= -
∴ - = -
即 = -

故答案为
(3)解:∠N+∠PMH=180°
过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.
∵,MI∥AB,NQ∥CD
∴AB∥MI∥NQ∥CD
∴∠BPM=∠PMI
∵∠MPN=2∠MPB
∴∠MPN=2∠PMI
∴∠MON=∠MPN+∠PMI=3∠PMI
∵∠NFH=2∠HFD
∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD
∵∠RFN=∠HFD
∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM
∴∠MON+∠PRF+∠RFM=360°-∠OMF
即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF
∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH
∵3∠PMI+∠PNH=180°
∴3∠PMI+∠FNP+∠FNH=180°
∵3∠RFM+∠FNH=180°
∴3∠PMI-3∠RFM+∠FNP=0°
即∠RFM-∠PMI= ∠FNP
∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH
∠FNP-2× ∠FNP=180°-∠PMH
∠FNP=180°-∠PMH
即∠N+∠PMH=180°
故答案为∠N+∠PMH=180°
【解析】【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N= ,∠M= ,∠AEM= ,∠NFD= ,过M作MP∥AB,过N作NQ∥AB可得∠PMN= - ,∠QNM= - ,根据平行线性质得到 - = - ,化简即可得到
;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN
于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减
即可得到∠RFM-∠PMI= ∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到∠FNP=180°-∠PMH,即∠N+∠PMH=180°.
11.已知直线.
(1)如图1,直接写出,和之间的数量关系.
(2)如图2,,分别平分,,那么和有怎样的数量关系?请说明理由.
(3)若点E的位置如图3所示,,仍分别平分,,请直接写出和的数量关系.
【答案】(1)
(2)解:.理由如下:
∵,分别平分,,
∴,,
∴,
由(1)得,,
又∵,

(3)解:,理由如下:
如图3,过点作,
∵,,
∴,
∴,,
∴,
由(1)知,,
又∵,分别平分,,
∴,,
∴,
∴.
【解析】【解答】(1),理由如下:
如图1,过点E作,
∵,
∴,
∴,,
∴,
即;
【分析】(1)过点E作,根据平行线的性质得,,
进而即可得到结论;(2)由角平分线的定义得,,
结合第(1)题的结论,即可求证;(3)过点作,由平行线的性质得
,结合第(1)题的结论与角平分线的定义得
,进而即可得到结论.
12.已知:直线AB,CD相交于点O,且OE⊥CD,如图.
(1)过点O作直线MN⊥AB;
(2)若点F是(1)中所画直线MN上任意一点(O点除外),且∠AOC=35°,求∠EOF的度数;
(3)若∠BOD:∠DOA=1:5,求∠AOE的度数.
【答案】(1)解:如图,MN为所求
(2)解:若F在射线OM上,
∵MN⊥AB,OE⊥CD,
∴∠AOC+∠COM=90°,∠EOF+∠COM=90°,
则∠EOF=∠AOC=35°;
若F'在射线ON上,
∵MN⊥AB,OE⊥CD,
∴∠DON=∠COM=90°-∠AOC=55°,∠EOD=90°
则∠EOF'=∠DOE+∠DON=145°;
综上所述,∠EOF的度数为35°或145°;
(3)解:∵∠BOD:∠DOA=1:5
∴∠BOD:∠BOC=1:5,
∴∠BOD=∠COD=30°,
∴∠AOC=30°,
又∵EO⊥CD,
∴∠COE=90°,
∴∠AOE=90°+30°=120°.
【解析】【分析】(1)根据垂直的定义即可作图;(2)分F在射线OM上和在射线ON 上分别进行求解即可;(3)依据平角的定义以及垂线的定义,即可得到∠AOE的度数.。

相关文档
最新文档