平乡县三中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平乡县三中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 集合{}{}
2
|ln 0,|9A x x B x x =≥=<,则A
B =( )
A .()1,3
B .[)1,3
C .[]1,+∞
D .[],3e
2. 设P 是椭圆+
=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )
A .22
B .21
C .20
D .13
3. 已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为
2π
,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2
π D .23π
4. 已知函数f (x )=
是R 上的增函数,则a 的取值范围是( )
A .﹣3≤a <0
B .﹣3≤a ≤﹣2
C .a ≤﹣2
D .a <0
5. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )
A .34种
B .35种
C .120种
D .140种
6. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面
C .两两相交的三条直线一定在同一平面内
D .过同一点的三条直线不一定在同一平面内
7. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0 C .1
D .2
8. 若命题“p 或q ”为真,“非p ”为真,则( )
A .p 真q 真
B .p 假q 真
C .p 真q 假
D .p 假q 假
9. 下列说法正确的是( )
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
10.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )
A.{}|12x x <≤
B.{}|21x x -≤<
C. {}|21x x -≤≤
D. {}|22x x -≤≤
【命题意图】本题主要考查集合的概念与运算,属容易题. 11.∃x ∈R ,x 2﹣2x+3>0的否定是( )
A .不存在x ∈R ,使∃x 2﹣2x+3≥0
B .∃x ∈R ,x 2﹣2x+3≤0
C .∀x ∈R ,x 2﹣2x+3≤0
D .∀x ∈R ,x 2﹣2x+3>0
12.已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件
二、填空题
13.不等式
的解为 .
14.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 15.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .
16.已知A (1,0),
P ,Q
是单位圆上的两动点且满足,
则
+
的最大值为 .
17.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”
的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 18.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤0
2x -y +2≥0x +y -2≤0
,z =3x +y +m 的最小值为1,则m =________.
三、解答题
19.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明; (2)已知函数g (x )
=log
,当x ∈[,
]时,不等式 f (x )≥g (x )有解,求k 的取值范围.
20.(本小题满分12分)
已知函数2
1()cos cos 2
f x x x x =--. (1)求函数()y f x =在[0,
]2
π
上的最大值和最小值;
(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]
21.已知函数.
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)设
,若函数
在
上(这里
)恰有两个不同的零点,求
实数的取值范围.
22.设F 是抛物线G :x 2=4y 的焦点.
(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;
(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.
23.(本小题满分12分)已知椭圆1C :14
82
2=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;
(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.
24.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;
(2)令()()g x xf x =,区间15
22
,D e e -⎛⎫= ⎪⎝⎭
,e 为自然对数的底数。
(ⅰ)若函数()g x 在区间D 上有两个极值,求实数m 的取值范围;
(ⅱ)设函数()g x 在区间D 上的两个极值分别为()1g x 和()2g x , 求证:12x x e ⋅>.
平乡县三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1. 【答案】B
【解析】
试题分析:因为{}{}|ln 0|1A x x A x x =≥==≥,{}
{}2|9|33B x x B x x =<==-<<,所以
A B ={}|13x x ≤<,故选B.
考点:1、对数函数的性质及不等式的解法;2、集合交集的应用. 2. 【答案】A
【解析】解:∵P 是椭圆
+
=1上一点,F 1、F 2是椭圆的焦点,|PF 1|等于4,
∴|PF 2|=2×13﹣|PF 1|=26﹣4=22.
故选:A .
【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.
3. 【答案】A 【解析】
考
点:三角函数的图象性质. 4. 【答案】B
【解析】解:∵函数
是R 上的增函数
设g (x )=﹣x 2
﹣ax ﹣5(x ≤1),h (x )=(x >1)
由分段函数的性质可知,函数g (x )=﹣x 2
﹣ax ﹣5在(﹣∞,1]单调递增,函数h (x )=在(1,+∞)单调
递增,且g (1)≤h (1)
∴
∴
解可得,﹣3≤a≤﹣2
故选B
5.【答案】A
【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.
故选:A.
【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题
6.【答案】D
【解析】解:对A,当三点共线时,平面不确定,故A错误;
对B,当两条直线是异面直线时,不能确定一个平面;故B错误;
对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;
对D,由C可知D正确.
故选:D.
7.【答案】D
【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.
下列a的取值能使“¬p”是真命题的是a=2.
故选;D.
8.【答案】B
【解析】解:若命题“p或q”为真,则p真或q真,
若“非p”为真,则p为假,
∴p假q真,
故选:B.
【点评】本题考查了复合命题的真假的判断,是一道基础题.
9. 【答案】C 【解析】
考
点:几何体的结构特征. 10.【答案】B 【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R A
B =ð{}|21x x -≤<,故选B.
11.【答案】C
【解析】解:因为特称命题的否定是全称命题,所以,∃x ∈R ,x 2﹣2x+3>0的否定是:∀x ∈R ,x 2
﹣2x+3≤
0.
故选:C .
12.【答案】C
【解析】解:由a 2b >ab 2得ab (a ﹣b )>0, 若a ﹣b >0,即a >b ,则ab >0,则<成立,
若a ﹣b <0,即a <b ,则ab <0,则a <0,b >0,则<成立, 若<则
,即ab (a ﹣b )>0,即a 2b >ab 2成立,
即“a 2b >ab 2”是“<”的充要条件, 故选:C
【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
二、填空题
13.【答案】 {x|x >1或x <0} .
【解析】解:
即
即x (x ﹣1)>0 解得x >1或x <0
故答案为{x|x >1或x <0}
【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出
14.【答案】1
ln 2
【解析】 试题分析:
()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 15.【答案】 8 .
【解析】解:∵抛物线y 2
=8x=2px ,
∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+=x+2=10, ∴x=8, 故答案为:8.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
16.【答案】 .
【解析】解:设=
,则=
=,的方向任意.
∴
+
=
=1×
×
≤
,因此最大值为
.
故答案为:
.
【点评】本题考查了数量积运算性质,考查了推理能力 与计算能力,属于中档题.
17.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2
y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p则q”、“若q则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q 的充分条件.
2.等价法:利用p⇒q与非q⇒非p,q⇒p与非p⇒非q,p⇔q与非q⇔非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.18.【答案】
【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,
∴m=4.
答案:4
三、解答题
19.【答案】
【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.
理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)
又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),
则f(x)是奇函数.
(2)g(x)=log=2log3,(5分)
又﹣1<x<1,k>0,(6分)
由f(x)≥g(x)得log3≥log3,
即≥,(8分)
即k2≥1﹣x2,(9分)
x ∈[,]时,1﹣x 2最小值为,(10分)
则k 2
≥,(11分)
又k >0,则k ≥,
即k 的取值范围是(﹣∞,
].
【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.
20.【答案】(1)最大值为,最小值为32-;(2)14
. 【解析】
试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16
f x x π
=--
再利用()sin()(0,||)2f x A x b πωϕωϕ=++><
的性质可求在[0,]2
π
上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1
试题解析:
(2)因为()0f B =,即sin(2)16
B π
-
= ∵(0,)B π∈,∴112(,
)666B πππ-∈-,∴262B ππ-=,∴3
B π
= 又在ABC ∆中,由余弦定理得,
2221
2cos 49223732
b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC .
由正弦定理得:
sin sin b a B A =3sin sin 3
A =,所以sin 14A =.
考点:1.辅助角公式;2.()sin()(0,||)2
f x A x b π
ωϕωϕ=++><
性质;3.正余弦定理.
【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角. 21.【答案】
【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义 【试题解析】(Ⅰ)函数定义域为
,
又
,
所求切线方程为
,即
(Ⅱ)函数在
上恰有两个不同的零点,
等价于在上恰有两个不同的实根 等价于在上恰有两个不同的实根,
令
则
当时,,
在
递减;
当时,
,在
递增.
故
,又
.
,
,
即 22.【答案】
【解析】解:(1)设切点
.
由,知抛物线在Q 点处的切线斜率为
,
故所求切线方程为
.
即y=x 0x ﹣x 02
.
因为点P (0,﹣4)在切线上.
所以
,
,解得x 0=±4.
所求切线方程为y=±2x ﹣4.
(2)设A (x 1,y 1),C (x 2,y 2).
由题意知,直线AC 的斜率k 存在,由对称性,不妨设k >0. 因直线AC 过焦点F (0,1),所以直线AC 的方程为y=kx+1.
点A ,C 的坐标满足方程组,
得x 2
﹣4kx ﹣4=0,
由根与系数的关系知,
|AC|=
=4(1+k 2),
因为AC ⊥BD ,所以BD 的斜率为﹣,从而BD 的方程为y=﹣x+1.
同理可求得|BD|=4(1+),
S ABCD =|AC||BD|==8(2+k 2+
)≥32.
当k=1时,等号成立.
所以,四边形ABCD 面积的最小值为32.
【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.
23.【答案】(1)x y 82
=;(2)9
64
. 【解析】
试题分析:(1)求得椭圆的焦点坐标,连接2MF ,由垂直平分线的性质可得2MF MP =,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当AC 或BD 中的一条与轴垂直而另一条与轴重合时,此时四边形ABCD 面积2
2b S =.当直线AC 和BD 的斜率都存在时,不妨设直线AC 的方程为()2-=x k y ,则直
线BD 的方程为()21
--
=x k
y .分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得AC ,BD .
利用四边形ABCD 面积BD AC S 2
1
=即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出.
(2)当直线AC 的斜率存在且不为零时,直线AC 的斜率为,),(11y x A ,),(22y x C ,
则直线BD 的斜率为k
1
-,直线AC 的方程为)2(-=x k y ,联立⎪⎩⎪⎨⎧=+-=148
)2(22y x x k y ,得0888)12(2
222=-+-+k x k x k .111]
∴2
2
21218k k x x +=+,22212188k k x x +-=.
1
2)1(324)(1||2
2212
212++=-+⋅+=k k x x x x k AC .由于直线BD 的斜率为k 1-,用k 1-代换上式中的。
可得2
)
1(32||2
2++=k k BD . ∵BD AC ⊥,∴四边形ABCD 的面积)
12)(2()1(16||||21222
2+++=⋅=k k k BD AC S .
由于222222
2
]2
)1(3[]2)12()2([)12)(2(+=+++≤++k k k k k ,∴964≥S ,当且仅当1222
2+=+k k ,即
1±=k 时取得等号.
易知,当直线AC 的斜率不存在或斜率为零时,四边形ABCD 的面积8=S . 综上,四边形ABCD 面积的最小值为9
64. 考点:椭圆的简单性质.1
【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得||||2MF MP =,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当AC 或BD 中的一条与轴垂直而另一条与轴重合时,四边形面积为2
2b .当直线
AC 和BD 的斜率都存在时,分别设出BD AC ,的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得
BD AC ,,从而利用四边形的面积公式求最值.
24.【答案】(1)增区间()0,2,减区间()2,+∞,(2)详见解析
【解析】试题分析:(1)求导写出单调区间;(2)(ⅰ)函数()g x 在区间D 上有两个极值,等价于
()2ln 21g x x mx -'=+在15
22,e e -⎛⎫ ⎪⎝⎭
上有两个不同的零点,令()0g x '=,得2ln 12x m x +=
,通过求导分析 得m 的范围为512231,e e ⎛⎫
⎪ ⎪⎝⎭
;(ⅱ)2ln 12x m x +=,得12122ln 12ln 1
2x x m x x ++==
,由分式恒等变换得 12121212
212ln 12ln 12ln 1
lnx x x x x x x x ++++--=
+-,得1
1212112112222
1
ln ln 1ln ln 1x x x x x x x x x x x x x x ++++=⋅=⋅--,要证明 12x x e >,只需证12ln ln 12x x ++>,即证1
2
112
2
1ln 21x x x
x x x +⋅>-, 令312
1x
e t x -<=<,()()21ln 1t p t t t -=-+,通过求导得到()0p t <恒成立,得证。
试题解析:
(2)(ⅰ)因为()2
2ln g x x x mx x =--,
所以()2ln 2212ln 21g x x mx x mx =+--=-+',15
22,x e e -⎛⎫
∈ ⎪⎝⎭
,
若函数()g x 在区间D 上有两个极值,等价于()2ln 21g x x mx -'=+在15
22,e e -⎛⎫
⎪⎝⎭
上有两个不同的零点,
令()0g x '=,得2ln 1
2x m x
+=,
设()()2
2ln 112ln ,x x
t x t x x x '+-==,令(
)0,t x x ='=
所以m 的范围为51
2231
,e e
⎛⎫ ⎪ ⎪⎝⎭
(ⅱ)由(ⅰ)知,若函数()g x 在区间D 上有两个极值分别为()1g x 和()2g x ,不妨设12x x <,则
1212
2ln 12ln 1
2x x m x x ++=
=
, 所以12121212
212ln 12ln 12ln 1lnx x x x x x x x ++++--=
+- 即1
1
21211211222
2
1
ln ln 1ln ln 1x x x x x x
x x x x x x x x ++++=⋅=⋅--, 要证12x x e >,只需证12ln ln 12x x ++>,即证1
2112
2
1ln 21x x x
x x x +⋅>-, 令3121x
e t x -<=<,即证1ln 21t t t +⋅>-,即证1ln 21t t t -<⋅+, 令()()
21ln 1t p t t t -=-+,因为()()()()2
22
114
011t p t t t t t -=-
=+'>+, 所以()p t 在()
3
,1e -上单调增,()10p =,所以()0p t <,
即()21ln 0,1
t t t --<+所以1
ln 2
1
t t t -<+,得证。