一星两地时差定位方法性能分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021,36(3)
电子信息对抗技术
Electronic Information Warfare Technology
㊀㊀中图分类号:TN971.1㊀㊀㊀㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀㊀㊀㊀文章编号:1674-2230(2021)03-0045-05
收稿日期:2020-07-09;修回日期:2020-10-26
作者简介:王玉林(1982 ),男,高级工程师,硕士,主要研究方向为通信对抗总体,无线电测向与无源定位㊂
一星两地时差定位方法性能分析
王玉林1,孙㊀哲2,陈建峰1
(1.中国电子科技集团公司第54研究所,石家庄050081;2.海军驻邯郸地区军事代表室,河北邯郸056000)
摘要:针对同轨多星定位系统以及高低轨联合定位系统需要卫星数量多的特点,设想地面站和卫星联合定位体制㊂考虑到时差定位体制对卫星运动不敏感的特征,提出一星三地和一星两地两种定位体制,从定位场景㊁定位原理㊁理论定位误差和误差分布四个方面对定位效能进行分析㊂重点论述一星两地时差定位误差的地理分布㊁时间分布以及受高度的影响,对将来的工程化应用提供支撑㊂
关键词:时差定位;星地联合定位;一星三地;一星两地;误差分布DOI :10.3969/j.issn.1674-2230.2021.03.009
A Performance Analysis of One -Star and Two Stations Joint
TDOA Location Method
WANG Yulin 1,SUN Zhe 2,CHEN Jianfeng 1
(1.The 54th Research Institute of CETC,Shijiazhuang 050081,China;
2.Naval Military Representative Office in Handan,Handan 056000,Hebei,China)
Abstract :In view of the large number of satellites required for the co -orbit multi -satellite posi-tioning system and the high -low orbit joint positioning system,the joint positioning system of ground stations and satellites are envisaged.Taking into account the fact that the time difference positioning system is not sensitive to satellite motion,two time difference positioning systems which are one star /three stations and one star /two stations are proposed.The performance is an-alyzed from four aspects:location scene,location principle,theoretical location error and error distribution.The validity of the positioning model is proved by simulation,and the geographical distribution of the error is analyzed theoretically,which provides support for the future engineer-ing application.
Key words :time difference location;joint satellite -ground positioning;one star /three stations;one star /two stations;distribution of the error
1㊀引言
基于卫星平台的无源定位技术具有覆盖范围广㊁定位精度高㊁工作频率范围宽和受地形影响小等诸多优势,在工程中得到广泛应用㊂
文献[1]和文献[2]介绍了同步轨道双星对地面干扰源的时差/频差定位技术,文献[3]提出了高低轨联合定位设想㊂文献[4]和文献[5]针
对多星定位体制展开讨论,分析了每种体制的解析或迭代算法以及定位误差的分布规律㊂
多星定位体制要求多颗卫星有相同的极化方式,工作频段可同时覆盖目标频率,波束可同时覆盖待定位区域,选星条件较严苛㊂若无法满足多星定位条件,可引入地面站构成星地联合定位系统㊂星地联合定位方法,是指空间卫星和地面接
5
4
王玉林,孙㊀哲,陈建峰
一星两地时差定位方法性能分析
投稿邮箱:dzxxdkjs@
收站联合组成空间上庞大的定位基线,融合了卫星接收大空域覆盖和地面高增益接收的特点,是多星定位选星困难时的一种代替手段㊂文献[6]提出了星地协同单边时差与测向交会定位模式,采用一星一地实现目标定位,适用于岛礁等阵地建设地形受限的场合㊂本文将重点关注多个观测站与卫星的联合侦察,定位体制采用时差定位,适用于沿海岸线部署的阵地㊂
无源定位系统性能的全特征描述一般包括以下几个方面:第一是定位方程组的求解,包括解析求解㊁迭代求解㊁地理网格搜索等多种手段;第二是定位误差的理论推导,一般通过对定位方程组求偏导的方式,推算理论定位精度或克罗美劳界,综合考虑观测量测量误差㊁定位平台误差㊁接收设备时钟或晶振漂移引起的系统误差等因素;第三是定位误差的敏感要素分析,包括观测量误差㊁信号特征(载频㊁带宽㊁信噪比和数据长度等)㊁观测平台位置误差和速度误差㊁观测平台姿态误差㊁观测平台时钟或晶振漂移引起的系统误差㊁观测平台构型等等,结合当前的误差水平,分析误差最敏感的因素,并在设计阶段制定相应的对策,比如同步轨道双星定位体制,定位误差对卫星速度误差最敏感,工程中引入了星历校准技术;第四是定位误差的分布特征,包括地理分布和时间分布,并引出不可定位区域㊁最佳定位区域㊁不可定位时段和最佳定位时段,进而指导定位系统在最有利的情况下开展工作㊂
涉及到卫星平台的定位系统需要考虑卫星资源调度㊁上行下行信号接收匹配㊁大量数据传输等许多工程问题,本文将针对星地联合双时差定位系统的设备配置关系,建立理论模型,并进一步分析定位性能从而为工程实现提供参考㊂以时差定位体制为例,根据地面站数量可分为一星三地和一星两地两种时差定位体制,针对每种定位体制,本文将从定位场景㊁定位原理㊁理论定位误差和误差分布四个方面对星地联合时差定位体制展开论述㊂
2㊀一星三地时差定位
2.1㊀定位场景
一星三地时差定位场景如图1所示,一星指一颗高轨卫星,三地指地面站1㊁地面站2和地面站3㊂其中,地面站1㊁地面站2和地面站3接收目标辐射源旁瓣辐射信号,地面站4是高轨卫星下行信号的地面接收站,不参与定位解算㊂目标辐射源装载于机载运动平台,处于地面站1㊁地面站2㊁地面站3和高轨卫星的通视范围内㊂
一星三地时差定位系统的优势体现在扩展了三站时差定位系统的作用距离㊂当辐射源距离地面站1㊁地面站2和地面站3较远时,3站侦收到的信号较弱,时差测量误差较大,定位误差也偏大㊂地面站4接收高轨卫星转发的目标辐射源信号,通过主瓣辐射和大口径天线侦收获得高信噪比信号,可作为目标信号检测和时差测量的基准,并提高检测概率和定位精度

图1㊀一星三地时差定位场景图
2.2㊀定位原理
如图1所示,选地心地固坐标系,信号从目标辐射源发出,存在四条路径,对空路径到达卫星并向下转发到地面站4,对地路径到达3个地面站㊂目标辐射源信号到达地面站1㊁地面站2和地面站3的传输距离分别记为l1㊁l2㊁l3,目标辐射源信号到达地面站4的传输距离记为l4+l m4㊂其中l4表示目标辐射源信号到卫星的传输距离,l m4表示
卫星下行信号到地面站4的传输距离㊂
地面站1㊁地面站2㊁地面站3和地面站4采集到的数据打上时标,统一传送至后端数据处理中心,经过检测㊁配对实现参数测量,从各地面站到后端处理中心的传输时延在匹配过程中被自动消除㊂
地面站1㊁地面站2和地面站3相对于地面站4的时差测量值分别为:
DTO14=l1-l4-l m4
()/v c(1)
64
电子信息对抗技术·第36卷
2021年5月第3期王玉林,孙㊀哲,陈建峰
一星两地时差定位方法性能分析
DTO24=l2-l4-l m4
()/v c(2)
DTO34=l3-l4-l m4
()/v c(3)其中v c表示光速㊂
差分时差可表示为:
DTO24-DTO14=l2-l1()/v c(4)
DTO34-DTO14=l3-l1()/v c(5)其中l2-l1()/v c㊁l3-l1()/v c是目标辐射源相对于地面站1㊁地面站2和地面站3的时差,其中地面站1为主站㊂通过时差差分处理消除了从目标辐射源通过卫星到达地面站4的路径时延,定位解算过程不需要卫星星历和卫星转发器的转发时延,需借助卫星的转发通道,易于工程实现㊂通过以上分析可知,一星三地时差定位体制具有如下特点:
a)接收卫星转发的下行目标辐射源信号,获得高信噪比的基准信号,增加对辐射源目标的检测概率㊁提高了时差测量精度和时差定位精度;
b)通过时差双差处理抵消了卫星转发处理延时,卫星位置不参与定位解算,实现复杂度低;
c)定位误差的地理分布特征由地面3站的位置布局决定,与选取卫星的轨道位置无关㊂误差分布规律与常规三站时差定位相同㊂
d)未涉及参考站㊂
3㊀一星两地时差定位
3.1㊀定位场景
一星两地时差定位场景如图2所示,一星指一颗高轨卫星,两地指地面站1和地面站2㊂地面需配置四个地面站,其中地面站1接收目标辐射源旁瓣辐射信号㊁地面站2接收目标辐射源旁瓣辐射信号及参考信号,地面站3接收卫星转发的下行目标辐射源信号,参考站向卫星和地面站1发射参考信号㊂其中目标辐射源装载于机载运动平台,且处于地面站1㊁地面站2和高轨卫星的通视范围内㊂引入参考站的目的是消除卫星转发器产生的处理延时㊂
一星两地时差定位主要应用在以下场合: a)地面三站因地形地貌限制无三站共视区,只有两站共视的场合;
b)目标辐射源到某站距离较大接收功率低,导致三站无法同时检测发现目标,只有两站可发现目标的场合㊂
地面三站时差定位系统要求三站同时检测到目标方可进行时差定位解算,若其中一个站故障或检测不到目标信号,会导致三站不成系统和侦察站点资源浪费,引入卫星资源构成一星两地定位布局,可提高侦察站点的资源利用率,提高装备作战效能

图2㊀一星两地时差定位场景图
3.2㊀定位原理
如图2所示,选地心地固坐标系,目标辐射源信号到达地面站1和地面站2的传输路径记为l1和l2,目标辐射源信号到达地面站3的传输路径记为l3+l3m㊂参考站信号到达地面站1的传输路
径记为l1r,参考站信号到达地面站3的传输路径记为l r+l3m㊂
目标辐射源信号到达地面站2和地面站3的时差为:
DTO23(unk)=l2-l3-l3m
()/v c(6)目标辐射源信号到达地面站1和地面站3的时差为:
DTO13(unk)=l1-l3-l3m
()/v c(7)卫星和地面站3位置参数已知,时差观测量进一步可转换为:
l2-l3()/v c=DTO23(unk)+l3m/v c(8)
l1-l3()/v c=DTO13(unk)+l3m/v c(9)高轨卫星作为主站,地面站1和地面站2作为辅站,形成三站时差定位布局,时差测量值即式(8)和式(9)㊂
目标辐射源信号到达地面站3的传输路径经过了卫星转发,存在卫星处理延时,因此引入参考
74
王玉林,孙㊀哲,陈建峰
一星两地时差定位方法性能分析
投稿邮箱:dzxxdkjs@
站以消除系统误差㊂参考站信号分两条路径,一条是地面路径由地面站1接收,一条是地天路径通过卫星转发被地面站3接收,两条路径的长度分别为l1r和l r+l3m㊂
参考站信号到达地面站1和地面站3的时差可表示为:
DTO(ref)=l1r-l r-l3m
()/v c(10)式(10)与式(6)㊁式(7)相减,得到差分时差: DTO13(unk)-DTO(ref)=
l1-l3-l3m
()/v c-l1r-l r-l3m
()/v c=
l1-l3+l r-l1r
()/v c(11) DTO23(unk)-DTO(ref)=
l2-l3-l3m
()/v c-l1r-l r-l3m
()/v c=
l2-l3+l r-l1r
()/v c(12)差分时差抵消了卫星传输路径,消除了卫星处理延时㊂于是,高轨卫星作为主站,地面站1和地面站2作为辅站,时差观测量进一步转换为: l1-l3()/v c=DTO13(unk)-DTO(ref)-l r-l1r
()/v c
(13) l2-l3()/v c=DTO23(unk)-DTO(ref)-l r-l1r
()/v c
(14)涉及到的测量量包括DTO13(unk),DTO23 (unk)和DTO(ref)㊂卫星与地面站1和地面站2构成一个庞大的三角形布局,因此可实现高精度的时差定位㊂将卫星位置㊁地面站1和地面站2的位置及时差测量误差带入三站时差定位理论定位误差公式即可获得一星两地时差理论定位误差分布公式㊂
3.3㊀误差分布
3.3.1㊀定位误差地理分布
设定高轨卫星大地坐标为(122.88ʎE,27.38ʎN,25000km),地面站1的大地坐标为(121.8ʎE, 29.4ʎN,500m),地面站2的大地坐标为(121.5ʎ, 28.5ʎ,500m),地面站3的大地坐标为(121.7ʎ, 30.8ʎ,60m),参考站大地坐标为(121.7ʎ,28.8ʎ, 500m),时差测量误差500ns,卫星位置误差1km,地面站及参考站位置误差1m㊂
在STK中模拟卫星运行轨迹,并标记地面站及卫星星下点位置,如图3所示㊂
考察距离参考站500km以内区域,定位误差分布如图3所示㊂其中圆形表示地面站,菱形表示参考站,星形表示卫星星下点

图3㊀一星两地各站部署示意图
观察图4可知,在当前卫星㊁参考站及地面站位置配置下,一星两地时差定位体制的定位误差地理分布具有如下特点:
a)在地面站1和地面站2连线及延长线附近定位误差偏大甚至不可定位;
b)定位误差分布相对于地面站1和地面站2连线连线近似成线性对称分布;
c)目标距离地面站越远,定位误差越大

图4㊀一星两地时差定位误差分布(单位:km) 3.3.2㊀定位误差时间分布
选取非同步卫星参与定位解算时,卫星位置随时间发生变化,一星两地通视区域和几何构型随之发生改变,地面站1㊁地面站2㊁地面站3和参考站位置与3.3.1节相同,设定辐射源大地坐标为(122.6ʎE,28.92ʎN,8000m),卫星沿图3航迹从右下角飞行到右上角,每1分钟取一次卫星位
84
电子信息对抗技术㊃第36卷2021年5月第3期
王玉林,孙㊀哲,陈建峰一星两地时差定位方法性能分析
置,共40分钟,考察对固定目标定位的误差变化规律,如图5所示

图5㊀定位误差随时间的变化
观察图5可知,当卫星飞跃地面双站共视区域时,一星两地时差定位方法对目标定位的误差随卫星位置的变化很小,说明在文中设定的仿真条件下,定位误差具有近似非时变特征㊂
从原理上分析,当卫星从图3航迹从右下角飞行到右上角的过程中,一星两地形成的定位三角形仅发生了细微的变化,卫星相对于双站的张角维持在0.24ʎ左右,卫星到双站的距离变化未超过50km,相对于卫星高度25000变化只有千分之二,因此卫星位置变化对定位误差只产生很小的影响㊂
3.3.3㊀定位误差随卫星高度的变化
进一步通过仿真验证卫星位置不变高度变化对定位误差的影响,设定辐射源大地坐标为(126.2ʎE,29.0ʎN,8000m),卫星大地坐标为(122.8ʎE,28.385ʎN),卫星高度从500km 变化到25000km,对辐射源的定位误差随卫星高度的变化趋势如图6所示

图6㊀定位误差随卫星高度的变化
观察图6可知,随着卫星高度升高,定位误差逐渐减小;当卫星高度在5000km 以上时,定位误
差降低的趋势明显减缓,也说明对定位差对高度不敏感;当卫星高度低于2000km 时,定位误差随高度升高迅速降低㊂因此工程实现时,建议选择5000km 高度以上的卫星参与定位,且高度的进一步提升对定位效能的改善并不明显㊂
4 结束语
㊀㊀文章从定位场景㊁定位原理㊁理论定位误差和误差分布四个方面对两种定位方法的性能进行了初步分析㊂其中一星三地时差定位是对三站时差定位系统效能的增强和扩展,适用于高精度监视重点目标;一星两地时差定位系统适用于三站不通视或单定位站损坏的情况,通过引入空间卫星和地面站形成超长基线,可提高侦察站作战效率,定位误差分布具有地理分布线性对称㊁近似非时变和对卫星高度不敏感的特征㊂分析结果可支撑后续卫星定位方向的立项论证和过程实现㊂参考文献:
[1]㊀WANG G,LI Y,ANSARI N.A Semidefinite Relaxa-tion Method for Source Localization Using TDOA and FDOA Measurements[J].IEEE Trans on Veh Tech-nology,2013,62(2):853-862.
[2]㊀张威,马宏,吴涛,等.一种基于泰勒级数展开的卫星FDOA 地面干扰源定位算法[J].无线电通信技术,2019,45(4):385-390.
[3]㊀郑仕力,董乔忠.基于高低轨联合的空中目标三维定
位侦察技术[J].航天电子对抗,2018,34(2):25-28.[4]㊀任凯强,孙正波.三星时差定位系统的有源校正算
法[J].宇航学报,2018,39(3):327-330.[5]㊀秦耀璐,杨淑萍,束锋,等.基于TDOA /FDOA 多星联合定位误差与卫星构型分析[J].电波科学学报,2018,33(5):566-570.
[6]㊀李高云,李斌,陈亮,等.低约束条件下星地协同侦察
定位[J].电子信息对抗技术,2019,34(1):1-4,18.[7]㊀李立峰,江漫,陈兵.单星卫星通信终端定位技术
研究[J].无线电通信技术,2017,43(4):71-74.[8]㊀吴耀云,游屈波,哈章.双星系统对雷达无源定位的可行性分析[J].电子信息对抗技术,2011,26(3):1-5.
[9]㊀王奉帅,刘聪锋.迭代最小二乘卫星定位算法[J].
无线电通信技术,2018,44(4):339-342.
[10]㊀郭连华,郭福成,李金洲.一种多标校源的高轨伴
星时差频差定位算法[J].宇航学报,2012,33(10):1408-1411.
9
4。

相关文档
最新文档